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• Part 4. Modal logic

• Part 5. Modal µ-calculus

• Part 6. Automata on infinite objects

• Part 7. Recursion-theoretic hierarchies� �
Part 5. Schedule (tentative)� �
• March 27, (1) Introduction to modal µ-calculus and monadic second-order logic

• April 1, (2) Basics of modal µ-calculus

• April 3, (3) The adequacy theorem

• April 8, (4) CTL

• April 10, (5) Applications� �
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As applications of µ-calculus, we introduce CTL (Computation Tree Logic), a representative
temporal logic, and two related systems. These logics are widely used in computer science.

Although CTL may have several modal operators, we only focus on two binary operators:

A(φUψ), E(φUψ)

These mean:

• A(φUψ): On all infinite paths, ψ holds eventually and φ holds until then.

• E(φUψ): On some path, ψ holds eventually and φ holds until then.

Here, a path is a sequence of states generated by computation. U stands for “Until”. We
also include the usual modal operator □.
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Definition (CTL Formula)

Let p be an atomic proposition. A CTL formula is inductively defined as:

φ ::= p | ¬φ | (φ→ φ) | □φ | A(φUφ) | E(φUφ)

Other logical connectives are defined as usual.
Unless stated otherwise, the frame (W,R) used in CTL is assumed to be serial:
∀s∃t (sRt).
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Definition (Satisfaction Relation)

Let M = (W,R, v) be a relational model. The satisfaction relation M, s |= φ is defined
inductively as follows:

• For p, ¬φ, φ→ ψ and □φ, the usual clauses apply.

• M, s0 |= A(φUψ): For every infinite path s0Rs1Rs2R . . . , there exists i such that
M, si |= ψ and M, sj |= φ for all j < i.

• M, s0 |= E(φUψ): There exists a finite path s0Rs1R . . . Rsi such that M, si |= ψ and
M, sj |= φ for all j < i.

5 / 23



Logic and
Computation

K. Tanaka Proof System for CTL

Definition (Proof System)

Axioms:

(1) Classical tautologies.

(2) Modal axiom: □(φ→ ψ) → (□φ→ □ψ).

(3) Seriality: □φ→ ♢φ.

(4) A(φUψ) ↔ ψ ∨ (φ ∧□A(φUψ)).

(5) E(φUψ) ↔ ψ ∨ (φ ∧ ♢E(φUψ)).

Inference Rules:

(6) Modus ponens: from φ and φ→ ψ, infer ψ.

(7) Necessitation: from φ, infer □φ.

(8) If ψ ∨ (φ ∧□θ) → θ, then A(φUψ) → θ.

(9) If ψ ∨ (φ ∧ ♢θ) → θ, then E(φUψ) → θ.

We write ⊢CTL φ to indicate that φ is provable in this system.
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Theorem 1 (Completeness)

⊢CTL φ ⇐⇒ |=CTL φ

Proof. (⇒) Axioms (1)–(7) are straightforward.
We show (8): Assume A(φUψ) → θ is not valid. So, A(φUψ) → θ is false at some state s
in a model M , i.e.,

M, s |= A(φUψ) ∧ ¬θ.
We look for a state t along a path from s such that

M, t |= (ψ ∨ (φ ∧□θ)) ∧ ¬θ. . . . (⋆)

If ψ is true at s, then (⋆) holds at s. If not, then by A(φUψ) φ holds at s.
If also □θ holds at t = s, then (⋆) again holds.
If not, then there exists a successor s′ such that M, s′ |= ¬θ.
At s′, A(φUψ) still holds, and we repeat the reasoning. Proceeding along a path thus
constructed, we eventually reach a state t where ψ holds, and at that state (⋆) holds.
Hence, (ψ ∨ (φ ∧□θ)) → θ is not valid. A similar argument proves (9). 7 / 23
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(⇐): Suppose ̸⊢CTL φ. We aim to construct a finite serial model M such that M, s ̸|= φ.

Let Sub(φ) be the set including all the subformulas of φ, closed under the following:

• If A(θUψ) ∈ Sub(φ), then it also includes □A(θUψ)

• If E(θUψ) ∈ Sub(φ), it includes ♢E(θUψ)

Then put
Sub+(φ) := Sub(φ) ∪ {A(⊤U⊤),□A(⊤U⊤),⊤,□⊤,⊥}

Define a model M = (W,R, v) as follows:

• W := {(Γ,∆) | Γ ∪∆ = Sub+(φ) is a partition, and Γ ⊬CTL

∨
∆}

• Transition: (Γ,∆)R(Π,Σ) if for every formula □θ ∈ Γ, we have θ ∈ Π

• Valuation: (Γ,∆) ∈ v(p) iff p ∈ Γ

Note that if Γ ∪∆ ⊂ Sub+(φ) and Γ ⊬CTL

∨
∆, then there exists a partition

Γ+ ∪∆+ = Sub+(φ) such that Γ ⊂ Γ+, ∆ ⊂ ∆+, and still Γ+ ⊬CTL

∨
∆+.

∵ If Γ ⊬CTL

∨
∆ then for any θ, Γ ∪ {θ} ⊬CTL

∨
∆ or Γ ⊬CTL

∨
∆ ∪ {θ}.
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Lemma 2

For any s = (Γ,∆) ∈W and any formula θ that is not of the form A(·U·) or E(·U·):
• If θ ∈ Γ, then M, s |= θ

• If θ ∈ ∆, then M, s ̸|= θ

Proof. By induction on the construction of formula θ.
(1) Case: θ = p (atomic proposition). By the definition of v(p), θ ∈ Γ iff M, s |= θ.

(2) Case: θ = φ→ ψ. First suppose θ ∈ Γ. Then, φ ∈ Γ and ψ ∈ ∆ implies Γ ⊢CTL

∨
∆,

a contradiction. Thus, φ /∈ Γ or ψ /∈ ∆, that is, φ ∈ ∆ or ψ ∈ Γ. By induction hypothesis,
M, s ̸|= φ or M, s |= ψ, that is, M, s |= φ→ ψ. Next, suppose θ ∈ ∆. Then, we have
φ /∈ Γ and ψ /∈ ∆, that is, φ ∈ ∆ and ψ ∈ Γ, hence M, s ̸|= φ→ ψ.

(3) Case: θ = □φ. First suppose θ ∈ Γ. Then, by the definition of transition relation R,
(Γ,∆)R(Π,Σ) implies φ ∈ Π, so M, (Π,Σ) |= φ. Next suppose θ ∈ ∆. We want to show
that there exists (Π,Σ) such that (Γ,∆)R(Π,Σ) and φ ∈ Σ. Let Γ/□ = {α : □α ∈ Γ}.
Then, we have Γ/□ ̸⊢CTL φ. For otherwise, Γ ⊢CTL □φ (∈ ∆), a contradiction.
Now, we can construct a partition Π ∪ Σ = Sub+(φ) such that Γ/□ ⊂ Π, φ ∈ ∆, and still
Π ⊬CTL

∨
Σ. By Γ/□ ⊂ Π, we have (Γ,∆)R(Π,Σ).
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To extend the truth lemma to formulas involving A(·U·) or E(·U·), the model must encode
path information explicitly. Such constructions are more involved and omitted here.

Remark: Case: θ = A(φUψ). Suppose θ ∈ Γ. Then, by axiom (4), either ψ ∈ Γ or (both
φ ∈ Γ and □A(φUψ) ∈ Γ). If ψ ∈ Γ, then by induction hypothesis, M, s |= ψ, hence by
the definition of A(·U·), we have M, s |= A(φUψ). Next assume φ ∈ Γ and □A(φUψ) ∈ Γ.
By ind. hyp., M, s |= φ. Now, take any s1 = (Π,Σ) such that (Γ,∆)R(Π,Σ). Then,
θ = A(φUψ) ∈ Π. So, by the same argument, we have M, s1 |= ψ or (both M, s1 |= φ and
□A(φUψ) ∈ Π). Thus, we can show that for any path, φ holds always or until ψ holds,
which is not sufficient.
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As important variants of CTL, we introduce:

• Linear Temporal Logic (LTL) — temporal logic over linear (non-branching) time

• CTL∗ — combines features of both CTL and LTL

In LTL, only linear sequences of states are considered, so there is no distinction between □
and ♢. Both are replaced by the temporal operator X (”next”).
Likewise, A(φUφ′) and E(φUφ′) are unified as φUφ′ in LTL.
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Definition (LTL formulas)

φ ::= p | ¬φ | (φ→ φ′) | Xφ | φUφ′

Other logical connectives are defined as usual.

• Xφ: ”φ holds at the next state”

• φUφ′: ”φ′ eventually holds, and until then φ holds”

Derived temporal operators:

Fφ := ⊤Uφ (eventually φ holds)

Gφ := ¬F¬φ (always φ holds)
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We assume a serial frame based on the natural numbers N, with each transition
corresponding to a successor state.
Atomic propositions p1, . . . , pn are evaluated via binary vectors b⃗ ∈ {0, 1}n. A model
becomes an infinite word α ∈ ({0, 1}n)ω.

Satisfaction Relation

α, i |= Xφ ⇐⇒ α, i+ 1 |= φ

α, i |= φUψ ⇐⇒ ∃j ≥ i (α, j |= ψ ∧ ∀k ∈ [i, j − 1] α, k |= φ)

Exercise. Answer the following:

(1) Show that GFφ expresses ”infinitely often φ holds”.

(2) What does FGφ express?

(3) Define φWψ to mean: ”φ holds while ψ holds”.
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CTL∗ handles branching time globally, and evaluates formulas as LTL on each individual
path. In other words, CTL∗ extends LTL by adding path quantifiers:

• Aφ: φ holds on all paths from the current state

• Eφ: φ holds on some path from the current state

We define satisfaction with respect to a model M , a path P = s0, s1, . . . , and a state si:

Satisfaction Relation

• For propositional formulas and Xψ, φUψ: interpret them as in LTL on path P .

• M,P, s |= Aφ ⇐⇒ for all paths Q through s, M,Q, s |= φ

• M,P, s |= Eφ ⇐⇒ there exists a path Q through s such that M,Q, s |= φ
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Exercise. Show the following:
(1) For any CTL formula φ, construct a CTL∗ formula φ∗ by:

• Replacing □ψ with AXψ
• Translating A(ψUψ′), E(ψUψ′) as modal combinations

Then:
M, s |= φ ⇐⇒ For every path P through s :M,P, s |= φ∗

(2) In CTL∗, the formula EFG p expresses ”there exists a path where p holds infinitely
often”.
Explain why this cannot be expressed in plain CTL.

Summary of Temporal Logics:
• CTL: Branching-time logic, evaluated globally
• LTL: Linear-time logic, evaluated along single paths
• CTL∗: Combines CTL and LTL, allows path quantification and temporal reasoning

Notably, CTL∗ can express properties like:

EFG p (there is a path where p holds infinitely often)

which CTL cannot express.
Yet, even CTL∗ is translatable into modal µ-calculus Lµ.
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In Section 4.9 (0325), we analyzed the initial state of the ”Muddy Children Puzzle” using
epistemic logic. The story begins when their mother announces, ”There is a child with mud
on their forehead.”
If two children have mud on their foreheads, all the children know that ”a child with mud is
present.” However, reasoning does not begin without this announcement. By announcing
φ, it is not just assumed that Eφ, but rather Cφ is assumed.
This logic that deals with changes in knowledge models is called Dynamic Epistemic
Logic (DEL). Specifically, the logic that provides common knowledge through public
announcements is called Public Announcement Logic (PAL). The simplest formal
system of this logic is introduced below. We will not use the operator Ba, and the operator
Ka (for a ∈ A) is assumed to satisfy the S5 axiom. Additionally, the new modal operator
[φ!]ψ is defined to satisfy the following:

M, s |= [φ!]ψ ⇐⇒ M, s |= φ =⇒ M [φ!], s |= ψ,

where M [φ!] = (W ′, {Ra ↾W ′}, v ↾W ′) and W ′ = {s ∈W :M, s |= φ}. Since we assume
M, s |= φ, W ′ is non-empty. The operator [φ!] represents ”the announcement of φ”.
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Consider two players, I and II, each drawing one card from a deck, making sure the
opponent cannot see the card. Ignore the text written on the card and focus on whether it
is red (r) or black (b). If I draws a red card r and II draws a black card b, the state is
denoted as (r, b). The set of possible worlds is:

W = {(r, r), (r, b), (b, r), (b, b)}.

The relations RI and RII are equivalence relations, so we can represent them with ∼I and
∼II, where the relations are reflexive and also satisfy:

(r, r) ∼I (r, b), (b, r) ∼I (b, b); (r, r) ∼II (b, r), (r, b) ∼II (b, b).

If it is announced that I drew a red card r, then the new set of possible worlds is
W ′ = {(r, r), (r, b)}, and the relation RII remains only reflexive.
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Assume that M |= ¬φ does not hold. Show the following:

(1) If Ra is reflexive, transitive, or Euclidean, then Ra[φ!] will also satisfy these properties.

(2) If Ra is serial, Ra[φ!] does not necessarily satisfy this property.
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The axiom system for PAL is as follows:

1 For Ka, we have S5 (and optionally K, T, S4, KD45, etc.).

2 [φ!]p↔ (φ→ p), [φ!]ψ ∧ ψ′ ↔ ([φ!]ψ ∧ [φ!]ψ′).

3 [φ!]¬ψ ↔ (φ→ ¬[φ!]ψ), [φ!]Kaψ ↔ (φ→ Ka[φ!]ψ).

4 Inference rule: If ψ, then [φ!]ψ.

As is clear from the axioms, formulas in PAL can be rewritten as normal EL formulas
without the public announcement operator [φ!]. However, in general, [φ!]φ does not hold.

Problem.
Let φ be p ∧ ¬Kap. Show that there exists a model where [φ!]φ does not hold.
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Now, let’s return to the ”Muddy Children Puzzle” where p = p1 ∨ p2 ∨ p3 is announced and
becomes common knowledge. As a result, the state (0, 0, 0) is no longer possible, and the
model M changes to M ′, as shown below.

When looking at the state (0, 0, 1), there are no states connected by −−
3

(except for the

child themselves), so we have M ′, (0, 0, 1) |= K3p3. Thus,

M, (0, 0, 1) |= [p!]K3p3.
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If child 3 announces that he does not know if he have mud on his forehead (¬K3p3), then
everyone can infer they are not in any state other than (0, 0, 1). Similarly, since
M ′, (1, 0, 0) |= K1p1, the announcement by child 1 eliminates the possibility of the state
(1, 0, 0). Likewise, child 2’s announcement eliminates the possibility of the state (0, 1, 0).
Thus, the remaining states are as follows:

In this model M ′′, when looking at the state (1, 0, 1), no states are connected by −−
1

or

−−
3

(except for the child themselves), so we have:

M ′′, (1, 0, 1) |= K1p1 ∧ K3p3.

Similarly, for states (1, 1, 0) and (0, 1, 1), the two children with mud on their foreheads will
know they have mud on their own forehead. 21 / 23
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Finally, in the state (1, 1, 1), no child can determine if he has mud on their forehead at this
point in model M ′′. However, if everyone announces they do not know, then all states
where exactly two children have mud are eliminated, and only the state (1, 1, 1) remains.
Therefore, in the end, everyone will know they have mud on their own forehead.
This concludes the explanation of the muddy children puzzle. Recent developments in
modal logic are remarkable, and if possible, I would like to explore this topic further in the
future.
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Thank you for your attention!
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