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K. Tanaka Logic and Computation II� �
• Part 4. Modal logic

• Part 5. Modal µ-calculus

• Part 6. Automata on infinite objects

• Part 7. Recursion-theoretic hierarchies� �
Part 5. Schedule (tentative)� �
• March 27, (1) Introduction to modal µ-calculus and monadic second-order logic

• April 1, (2) Basics of modal µ-calculus

• April 3, (3) The adequacy theorem

• April 8, (4) CTL� �
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K. Tanaka Recap: The Evaluation Game
A Kripke model M is fixed. For a state s and a formula φ, we consider the evaluation
game E(M, s, φ). In this game, two players ∃ (female) and ∀ (male) decompose the
formula while moving a token from s over the frame (much like a board game).

We first consider multi-modal logic with a model M = (W, (Ri)i∈I , v). A position in the
game E(M, s0, φ) is a pair (s, ψ) where s ∈W and ψ is a subformula of φ. The rules are
as follows: (s0, φ) is the initial position.
• At position (s, ψ ∨ ψ′), it is ∃’s turn to choose either (s, ψ) or (s, ψ′).
• At position (s, ψ ∧ ψ′), ∀ chooses a next position (s, ψ) or (s, ψ′).
• At position (s,□iψ), ∀ chooses a next position (t, ψ) such that there is an i-labeled
edge from s to t. (If no such t exists, ∀ loses.)

• At (s,♢iψ), ∃ chooses such a position (t, ψ). (If no such t exists, ∃ loses.)

When a terminal position (s, p) or (s,¬p) is reached, ∃ wins if s ∈ v(p) or s /∈ v(p), resp.

Adequacy Theorem� �
∃ has a winning strategy in E(M, s, φ) ⇐⇒ M, s |= φ� �
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For simplicity, we assume that any two fixpoint variables appearing in a formula are
distinct. We add the following rules for new positions:
• A position (s, ηX.θ) automatically changes to (s, θ).
• Later, when the play reaches (t,X), the game goes to (t, ηX.θ).

This means that the game does not need to terminate in a finite way. If the play terminates
in a finite number of moves, the winning condition is the same as in the modal logic case.

If the play is infinite, then the winner is decided by the form of the outermost (largest)
fixed point formula appearing infinitely often:
• If the outmost fixpoint is of the form µX.φ, then ∀ wins.
• If it is of the form νX.φ, then ∃ wins.

To prove the adequacy theorem, it suffices to show:
1 If M, s |= φ, then ∃ has a (memoryless) winning strategy in the game E(M, s, φ).
2 If M, s ̸|= φ, then ∀ has a (memoryless) winning strategy in the game E(M, s, φ).

In fact, ∃’s strategy always chooses positions (t, ψ) s.t. M, t |=V ′ ψ, and similarly for ∀,
where V ′ is a certain extension of V , which is obtained while fixpoint operators are
unfolded during the game.
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We construct a temporary valuation V ′.
List up the subformulas of φ with fixpoint operators in prefix and order them by size as:

η1X1.ψ1, η2X2.ψ2, . . . , ηnXn.ψn,

where ηi is µ or ν. So, if ηiXi.ψi is a subformula of ηjXj .ψj , then j ≤ i. Hence, Xj may
appear free in ηiXi.ψi for j < i.
Now we set

V0 := V, Vi+1 := Vi ∪
{
Xi+1 7→ ||ηi+1Xi+1.ψi+1||MVi

}
.

Then the truth values of the subformulas (with free variables) of φ are all determined by
V ′ = Vn, and so a strategy can be defined by choosing a position (t, ψ) s.t. M, t |=V ′ ψ.
However, this doesn’t guarantee a winning strategy, especially when the game proceeds
infinitely. For such cases, we need to ensure that the largest subformula appearing infinitely
often is headed by a ν-operator.
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From the list of fixpoint subformulas of φ, we extract the subformulas headed by µ:

µY1.θ1, µY2.θ2, . . . , µYm.θm

For an ordinal sequence r = (α1, . . . , αm), we define V r
n as follows:

V r
0 := V, V r

i+1 := V r
i ∪

{
Xi+1 7→

{
||ηi+1Xi+1.ψi+1||MV ri if ηi+1 = ν

||µαjYj .θj ||MV ri if ηi+1Xi+1 = µYj

}

where ||µαX.θ(X)||MV := Ψα for Ψ(S) = ||θ(X)||MV (X):=S .

Lemma. Let ψ is a subformula of φ. If M, t |=Vn ψ, then there exists a minimal ordinal
sequence r (in lexicographic order) such that M, t |=V rn ψ. Denote such an r by rµ(t, ψ).

Note. Let r̄ be (ᾱ1, . . . , ᾱm) where ᾱj is the least closure ordinal of µYj .θj , that is,
V r̄
n (Yj) = ||µᾱjYj .θj ||MV r̄i . Then, r

µ(t, ψ) < r̄ for all t, ψ.
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For a valid move over true positions in the game,

• If ψ is headed by ν, then rµ remains unchanged.

• If ψ is constructed by Boolean or modal operators, rµ stays the same or decreases.

• If ψ ≡ µY.θ(Y ), then rµ strictly decreases. More strictly, after a position
(t, µY.θ(Y )), a move from (t, Y ) to (t, θ(Y )) decreases rµ, because for
t ∈ ||µαY.θ(Y )||MV rn , there exists some β < α such that t ∈ ||θ(µβY.θ(Y ))||MV rn .

Winning strategy for ∃: Always choose (t, ψ) such that:

M, t |=
V
rµ(t,ψ)
n

ψ.

Similarly, if M, s ̸|=V φ, define rν(t, ψ), and ∀’s strategy is to choose (t, ψ) such that:

M, t ̸|=
V
rν (t,ψ)
n

ψ.

Thus, the adequacy theorem is proved.
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Tips. ν for infinity (always) µ for finiteness (eventually)

• νX.p ∧□aX · · · · · · · · · p always holds along every a-path.

• νX.p ∧□a□aX · · · · · · · · · p holds at every even position along every a-path.

• νX.q ∨ (p ∧□aX) · · · · · · · · · p holds until q holds along every a-path.

• µX.p ∨ ♢aX · · · · · · · · · p eventually holds on some a-path.

• µX.p ∨□aX · · · · · · · · · p eventually holds on every a-path.

• µX.q ∨ (p ∧□aX) · · · along every a-path, p holds until q holds and q eventually holds.

• µX.νY.(p ∧□aX) ∨ (¬p ∧□aY ) · · · · · · p holds only finitely often on every a-path.

• νX.µY.(p ∧ ♢aX) ∨ ♢aY ) · · · · · · p holds infinitely often on some a-path.

• νX.µY.♢aX ∨ ♢bY · · · · · · · · · there exists a {a, b}-path with infinitely many a.
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Prob 2. For two Lµ-formulas φ,ψ, we write φ ≡ ψ if for any model M , [[φ]]M = [[ψ]]M .
Show the following equivalences.
(1) µX.φ(X) ≡ φ(µX.φ(X)). (2) µX.φ(X) ≡ ¬νX.¬φ(¬X).

Prob 3. Find an example of a model M and a formula θ(X) such that [[µωX.θ(X)]] is not
equivalent to the fixpoint [[µX.θ(X)]]. For such an example, consider which ordinal α
makes [[µαX.θ(X)]] and [[µX.θ(X)]] equivalent.
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As applications of µ-calculus, we introduce CTL (Computation Tree Logic), a representative
temporal logic, and two related systems. These logics are widely used in computer science.

Although CTL may have several modal operators, we only focus on two binary operators:

A(φUψ), E(φUψ)

These mean:

• A(φUψ): On all infinite paths, ψ holds eventually and φ holds until then.

• E(φUψ): On some path, ψ holds eventually and φ holds until then.

Here, a path is a sequence of states generated by computation. U stands for “Until”. We
also include the usual modal operator □.

10 / 20



Logic and
Computation

K. Tanaka Syntax of CTL

Definition (CTL Formula)

Let p be an atomic proposition. A CTL formula is inductively defined as:

φ ::= p | ¬φ | (φ→ φ) | □φ | A(φUφ) | E(φUφ)

Other logical connectives are defined as usual.
Unless stated otherwise, the frame (W,R) used in CTL is assumed to be serial:
∀s∃t (sRt).
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Definition (Satisfaction Relation)

Let M = (W,R, v) be a relational model. The satisfaction relation M, s |= φ is defined
inductively as follows:

• For p, ¬φ, φ→ ψ and □φ, the usual clauses apply.

• M, s0 |= A(φUψ): For every infinite path s0Rs1Rs2R . . . , there exists i such that
M, si |= ψ and M, sj |= φ for all j < i.

• M, s0 |= E(φUψ): There exists a finite path s0Rs1R . . . Rsi such that M, si |= ψ and
M, sj |= φ for all j < i.
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Various modal operators can be defined from the above two. For example,

AGφ := ¬E(⊤U¬φ), where ⊤ := p→ p.

Here, “A” stands for “for All paths” and “G” stands for “Globally in the future.”

Importantly, CTL formulas can be translated into modal µ-calculus formulas.
Let (φ)♮ be the translation of a CTL formula φ into a modal µ-calculus formula:

(A(φUψ))♮ := µX.ψ♮ ∨ (φ♮ ∧□X)

(E(φUψ))♮ := µX.ψ♮ ∨ (φ♮ ∧ ♢X)

All other connectives remain unchanged. Note: only one variable X is used in this
translation.
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Theorem 1 (Translation Theorem)

For any serial relational structure M and any CTL formula φ:

M, s |= φ ⇐⇒ M, s |= (φ)♮

A CTL formula φ is said to be valid if M, s |= φ for every serial model M = (W,R, v) and
every state s, and we write:

|=CTL φ

Validity in CTL can be reduced to the validity of the single-variable modal µ-calculus.
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Definition (Proof System)

Axioms:

(1) Classical tautologies.

(2) Modal axiom: □(φ→ ψ) → (□φ→ □ψ).

(3) Seriality: □φ→ ♢φ.

(4) A(φUψ) ↔ ψ ∨ (φ ∧□A(φUψ)).

(5) E(φUψ) ↔ ψ ∨ (φ ∧ ♢E(φUψ)).

Inference Rules:

(6) Modus ponens: from φ and φ→ ψ, infer ψ.

(7) Necessitation: from φ, infer □φ.

(8) If ψ ∨ (φ ∧□θ) → θ, then A(φUψ) → θ.

(9) If ψ ∨ (φ ∧ ♢θ) → θ, then E(φUψ) → θ.

We write ⊢CTL φ to indicate that φ is provable in this system.
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Theorem 2 (Completeness)

⊢CTL φ ⇐⇒ |=CTL φ

Proof. (⇒) Axioms (1)–(7) are straightforward.
We show (8): Assume A(φUψ) → θ is not valid. So, A(φUψ) → θ is false at some state s
in a model M , i.e.,

M, s |= A(φUψ) ∧ ¬θ.
We look for a state t along a path from s such that

M, t |= (ψ ∨ (φ ∧□θ)) ∧ ¬θ. . . . (⋆)

If ψ is true at s, then (⋆) holds at s. If not, then by A(φUψ) φ holds at s.
If also □θ holds at t = s, then (⋆) again holds.
If not, then there exists a successor s′ such that M, s′ |= ¬θ.
At s′, A(φUψ) still holds, and we repeat the reasoning. Proceeding along a path thus
constructed, we eventually reach a state t where ψ holds, and at that state (⋆) holds.
Hence, (ψ ∨ (φ ∧□θ)) → θ is not valid. A similar argument proves (9). 16 / 20
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(⇐): Suppose ̸⊢CTL φ. We aim to construct a finite serial model M such that M, s ̸|= φ.

Let Sub(φ) be the set including all the subformulas of φ, closed under the following:

• If A(θUψ) ∈ Sub(φ), then it also includes □A(θUψ)

• If E(θUψ) ∈ Sub(φ), it includes ♢E(θUψ)

Then put
Sub+(φ) := Sub(φ) ∪ {A(⊤U⊤),□A(⊤U⊤),⊤,□⊤,⊥}

Define a model M = (W,R, v) as follows:

• W := {(Γ,∆) | Γ ∪∆ = Sub+(φ) is a partition, and Γ ⊬CTL

∨
∆}

• Transition: (Γ,∆)R(Π,Σ) if for every formula □θ ∈ Γ, we have θ ∈ Π

• Valuation: (Γ,∆) ∈ v(p) iff p ∈ Γ

Note that if Γ ∪∆ ⊂ Sub+(φ) and Γ ⊬CTL

∨
∆, then there exists a partition

Γ+ ∪∆+ = Sub+(φ) such that Γ ⊂ Γ+, ∆ ⊂ ∆+, and still Γ+ ⊬CTL

∨
∆+.

∵ If Γ ⊬CTL

∨
∆ then for any θ, Γ ∪ {θ} ⊬CTL

∨
∆ or Γ ⊬CTL

∨
∆ ∪ {θ}.
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Lemma 3

For any s = (Γ,∆) ∈W and any formula θ that is not of the form A(·U·) or E(·U·):
• If θ ∈ Γ, then M, s |= θ

• If θ ∈ ∆, then M, s ̸|= θ

Proof. By induction on the construction of formula θ.
(1) Case: θ = p (atomic proposition). By the definition of v(p), θ ∈ Γ iff M, s |= θ.

(2) Case: θ = φ→ ψ. First suppose θ ∈ Γ. Then, φ ∈ Γ and ψ ∈ ∆ implies Γ ⊢CTL

∨
∆,

a contradiction. Thus, φ /∈ Γ or ψ /∈ ∆, that is, φ ∈ ∆ or ψ ∈ Γ. By induction hypothesis,
M, s ̸|= φ or M, s |= ψ, that is, M, s |= φ→ ψ. Next, suppose θ ∈ ∆. Then, we have
φ /∈ Γ and ψ /∈ ∆, that is, φ ∈ ∆ and ψ ∈ Γ, hence M, s ̸|= φ→ ψ.

(3) Case: θ = □φ. First suppose θ ∈ Γ. Then, by the definition of transition relation R,
(Γ,∆)R(Π,Σ) implies φ ∈ Π, so M, (Π,Σ) |= φ. Next suppose θ ∈ ∆. We want to show
that there exists (Π,Σ) such that (Γ,∆)R(Π,Σ) and φ ∈ Σ. Let Γ/□ = {α : □α ∈ Γ}.
Then, we have Γ/□ ̸⊢CTL φ. For otherwise, Γ ⊢CTL □φ (∈ ∆), a contradiction.
Now, we can construct a partition Π ∪ Σ = Sub+(φ) such that Γ/□ ⊂ Π, φ ∈ ∆, and still
Π ⊬CTL

∨
Σ. By Γ/□ ⊂ Π, we have (Γ,∆)R(Π,Σ).
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To extend the truth lemma to formulas involving A(·U·) or E(·U·), the model must encode
path information explicitly. Such constructions are more involved and omitted here.

Remark: Case: θ = A(φUψ). Suppose θ ∈ Γ. Then, by axiom (4), either ψ ∈ Γ or (both
φ ∈ Γ and □A(φUψ) ∈ Γ). If ψ ∈ Γ, then by induction hypothesis, M, s |= ψ, hence by
the definition of A(·U·), we have M, s |= A(φUψ). Next assume φ ∈ Γ and □A(φUψ) ∈ Γ.
By ind. hyp., M, s |= φ. Now, take any s1 = (Π,Σ) such that (Γ,∆)R(Π,Σ). Then,
θ = A(φUψ) ∈ Π. So, by the same argument, we have M, s1 |= ψ or (both M, s1 |= φ and
□A(φUψ) ∈ Π). Thus, we can show that for any path, φ holds always or until ψ holds,
which is not sufficient.

19 / 20



Logic and
Computation

K. Tanaka

Thank you for your attention!
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