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Logic and Computation� �
• Part 1. Introduction to Theory of Computation

• Part 2. Propositional Logic and Computational Complexity

• Part 3. First Order Logic and Decision Problems

• Part 4. Modal logic

• Part 5. Modal µ-calculus

• Part 6. Automata on infinite objects

• Part 7. Recursion-theoretic hierarchies� �
Part 4. Schedule (tentative)� �
• March 4, (1) Kripke models and normal logics

• March 6, (2) Kripke completeness

• March 11, (3) Standard translation and bisimulation

• March 13, (4) Decidability results

• . . .� �
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Recap

• M = (W,R, v) is a Kripke model if (W,R) is a directed graph (Kripke frame) and
v is a function from the set P of atomic propositions to the power set of W . v can be
identified with a function v′ :W × P → {T,F} such that v′(s, p) = T ⇔ s ∈ v(p).

• M, s |= φ, equivalently V (s, φ) = T, which means φ holds at a state s ∈W , is
defined as follows:

M, s |= p⇔ v(s, p) = T,

M, s |= ¬φ⇔M, s |= φ does not hold,

M, s |= φ→ ψ ⇔M, s |= φ implies M, s |= ψ,

M, s |= □φ⇔M, t |= φ for all t ∈ sR.

• φ is valid in a model M = (W,R, v), denote M |= φ, if M, s |= φ for any s ∈W .

• φ is valid in a frame F , denote F |= φ, if it is valid in any model (F, v).

• φ is valid, denote |= φ, if M |= φ for any model M .
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• A logic (a set of propositions) L is normal if it satisfies the following conditions:

(1) contains all tautologies (or axioms P1, P2, P3),
(2) contains the normal axiom: □(φ→ ψ) → (□φ→ □ψ),
(3) is closed under the modus ponens rule (MP),
(4) is closed under the necessitation rule (Nec): φ ∈ L⇒ □φ ∈ L.

• The smallest normal logic is called K, named after Kripke.

• For a normal modal logic L, the canonical frame FL = (WL, RL) is defined as:
(1) WL is the set of maximal consistent sets in L,
(2) (s, t) ∈ RL ⇔ for all □φ ∈ s, we have φ ∈ t.

• The canonical model ML = (FL, vL) consists of a canonical frame FL, and vL s.t.
s ∈ vL(p) (i.e., ML, s |= p) ⇔ p ∈ s.

• Truth Lemma. For any proposition φ, ML, s |= φ⇔ φ ∈ s.

• Completeness Theorem. Any normal modal logic L is strongly complete with
respect to its canonical model ML, i.e., if ∀s(ML, s |= Γ ⇒ML, s |= φ) then Γ ⊢L φ.
In particular, K is also strong complete w.r.t. the whole class of models, and
it coincides with the set of all valid propositions.
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§4.3. Canonical Normal Modal Logics

• When considering the completeness theorem for logics other than L = K, the choice of
model classes becomes important. We will consider normal modal logics L whose
models are characterized by their frames F .

• However, we should note that even if ML is a model of L, there may exist another
valuation v′ such that (FL, v

′) is not a model of L, namely FL ̸|= L.

• If FL |= L holds, we say that L is canonical.

• For a class of frames F , L(F) denotes the set of all propositions that are valid in
every frame of F . A logic L is called Kripke complete if there exists a class F such
that L = L(F).

• Furthermore, if L is Kripke complete, then letting F(L) be the collection of all frames
that validate every proposition of L, we obtain L(F(L)) = L.

• Canonical logics are necessarily Kripke complete.
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• Major canonical logics are obtained from K by adding new axiom schemata A (possibly
multiple). In other words, they form the smallest normal modal logic containing A.

• Typical additional axioms include the following:

D : □φ→ ♢φ (or ¬□⊥), T : □φ→ φ,
4 : □φ→ □□φ, .2 : ♢□φ→ □♢φ,
5 : ♢φ→ □♢φ, B : ♢□φ→ φ (or φ→ □♢φ).

• Based on these axioms, we define major systems of normal modal logic as follows

T := K+T, B := K+B, D := K+D,
K4 := K+ 4, S4 := T+ 4, S4.2 := S4+ .2,
S5 := T+ 5 = S4+B.

T is a system defined by Feys, B reflects the ideas of Brouwer, and D represents
deontic logic. S4 and S5 are systems introduced by Lewis.

• It is easy to see that K ⊂ K4 ⊂ S4 ⊂ S4.2 ⊂ S5. On the other hand, we have
K ⊂ D ⊂ T ⊂ S4, but D and T cannot be compared with K4. Similarly, K ⊂ B ⊂ S5,
but B cannot be compared with the others.
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All the above normal modal logics are Kripke complete and are characterized by the
following classes of frames:

Theorem 4.12

(1) F |= T ⇔ F ∈ Fref : sRs,

(2) F |= B ⇔ F ∈ Fsym : sRt⇒ tRs,

(3) F |= D ⇔ F ∈ Fser(serial) : ∀s∃tsRt,
(4) F |= K4 ⇔ F ∈ Ftran : sRt ∧ tRu⇒ sRu,

(5) F |= S4 ⇔ F ∈ Fref ∩ Ftran,

(6) F |= S4.2 ⇔ F ∈ Fref ∩ Ftran ∩ Fdir,
where Fdir (directed): sRt ∧ sRt′ ⇒ ∃u(tRu ∧ t′Ru),

(7) F |= S5 ⇔ F ∈ Fref ∩ FEuc = Fref ∩ Fsym ∩ Ftran, where FEuc (Euclidean):
sRt ∧ sRt′ ⇒ tRt′.
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Proof.
(1) (⇐) Suppose the frame F = (W,R) belongs to Fref . For any model M = (F, v) and
any s ∈W , we want to show that M, s |= □φ→ φ. Assume M, s |= □φ. By the
interpretation of □φ, for all t ∈ sR, we have M, t |= φ. Since R is reflexive, s ∈ sR holds,
so M, s |= φ. Hence, M, s |= □φ→ φ is proved.

(⇒) Conversely, suppose the frame F = (W,R) does not belong to Fref . Then, there
exists some s ∈W such that s /∈ sR. Define a valuation v such that for some atomic
proposition p, v(p) =W − {s}, while v(q) is arbitrary for other atomic propositions q. In
the model M = (F, v), we have M, s ̸|= p and M, t |= p for all t ̸= s. Since all t ∈ sR
satisfy t ̸= s, it follows that M, t |= p, hence M, s |= □p. However, M, s ̸|= p, so
M, s ̸|= □p→ p. Therefore, M ̸|= □p→ p and F ̸|= □p→ p.

The rest are left as exercises.

Problem 2� �
In particular, show the following:
(2) F |= B ⇔ F ∈ Fsym.
(5) F |= S4 ⇔ F ∈ Fref ∩ Ftran.� �
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• A typical example of non-canonical logic is Gödel-Löb’s system GL.

• Gödel proved his first incompleteness theorem by showing that the sentence meaning
its own unprovability is unprovable. Then, Henkin asked whether or not the sentence
meaning its own provability is provable. His question is expressed as follows:
H : □(□φ↔ φ) → □φ. (□ = provability)

• Then, Löb gave a positive answer by showing the following stronger proposition.
L : □(□φ→ φ) → □φ.
He also showed that this proposition is essential to the second incompleteness theorem.

• A normal logic GL is defined as follows:
GL := K+ L.

Problem 3� �
(1) Show that GL ⊃ K4.
(2) F |= GL if and only if F is transitive and contains no infinite R-chains
s1Rs2Rs3R . . . .� �
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Theorem 4.13

GL is not canonical.

Proof. Transform a formula φ in GL into a formula φ◦ in Peano arithmetic PA as follows:

(1) Replace atomic propositions p with arithmetic statements p◦.

(2) Preserve Boolean operations: (φ⊙ ψ)◦ := φ◦ ⊙ ψ◦.

(3) Define (□φ)◦ by BewPA(⌜φ◦⌝). If GL ⊢ φ, then PA ⊢ φ◦. Let s0 := {φ : N |= φ◦}.
Since s0 is complete, s0 ∈WGL. For any φ,
□φ ∈ s0 ⇒ N |= BewPA(⌜φ◦⌝) ⇒ PA ⊢ φ◦ ⇒ N |= φ◦ ⇒ φ ∈ s0, so s0Rs0, which
forms an infinite chain, contradicting FGL |= GL. Thus, GL is not canonical.

An example of a Kripke-incomplete logic is GH := K+H, which is closely related to GL. It
is clear that GL ⊃ GH, but the axiom 4 is what separates the two. Nevertheless, we have
F(GL) = F(GH), which means that GH is not Kripke complete.
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Recap: First-Order Logic

• First-order logic is developed in propositional connectives, quantifiers ∀x and ∃x,
equality = and other mathematical symbols. The set of mathematical symbols to use
is called a language.

• A structure in a language L (simply, an L-structure) is defined as a non-empty set A
equipped with an interpretation of the symbols in L.

• A term is a symbol string to denote an element of a structure. A formula is to
describe a property of a structure. A formula with no free variables is called a sentence.

• “A sentence φ is true in A”, denote A |= φ, is defined by Tarski’s clauses.
A is a model of a theory T (a set of sentences), denote A |= T , if ∀φ ∈ T (A |= φ).
We say that φ holds in T , denote T |= φ, if ∀A(A |= T → A |= φ).

• Compactness theorem. If all finite subsets of a theory T have a model, T has a model.

• Löwenheim-Skolem’s downward theorem. For a structure A in a countable language
L, there exists a countable A′ ⊂ A s.t. A′ |= φ⇔ A |= φ for any LA′-sentence φ.
A′ is called an elementary substructure of A, A′ ≺ A.
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§4.4. Translation to First-Order Logic

Let us examine how Kripke models M = (W,R, v) can be treated within first-order logic.
For this purpose, we interpret an atomic proposition pi as a subset v(pi) = Pi ⊂W (where
i < n or i ∈ N), and consider the relational structure M ′ = (W,R,P0, P1, P2, . . . ). The
modal relation “M,x |= φ” can be translated into a first-order formula STx(φ) on M

′.

Definition 4.14 (Standard Translation)

The standard translation STx(φ) of a modal proposition φ is defined inductively as
follows:

STx(pi) := Pi(x),

STx(¬φ) := ¬STx(φ),
STx(φ→ ψ) := STx(φ) → STx(ψ),

STx(□φ) := ∀y(R(x, y) → STy(φ)).
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Theorem 4.15

For a Kripke model M and its corresponding first-order structure M ′, the following hold:
(1) M, s |= φ⇔M ′ |= STs(φ),
(2) M |= φ⇔M ′ |= ∀x STx(φ).

Proof. By induction on the construction of φ.
Let us now look at some applications.

Corollary 4.16 (Compactness)

For any set of modal propositions Φ, if every finite subset of Φ is satisfiable, then Φ itself is
satisfiable. That is, there exists a model M and a state s such that M, s |= Φ.

Proof. For a set of modal propositions Φ, define STx(Φ) := {STx(φ) : φ ∈ Φ}. By
Theorem 4.15, if a modal proposition φ is satisfiable in M, s, then its standard translation
STs(φ) has a model M ′. Therefore, if every finite subset of Φ is satisfiable, then every
finite subset of STs(Φ) also has a model. By the compactness theorem of first-order logic,
STs(Φ) is satisfiable in some M ′, which implies that Φ is also satisfiable in M, s.
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Corollary 4.17 (Weak LS Downward Property)

If a set of modal propositions Φ has an infinite model, then it also has a countably infinite
model. (Note: LS = Löwenheim-Skolem)

Proof. Since STx(Φ) has the weak LS downward property, we can transform its model into
a Kripke model.

Note.

• M |= φ is expressed as a first-order formula ∀xSTx(φ), but F |= φ may not.

The latter can be represented by a monadic second-order formula ∀P⃗∀xSTx(φ).
• In fact, the frame that makes Löb’s axiom L valid cannot be characterized by a
first-order formula. This is because if arbitrarily long finite sequences of R exist, then
by compactness, an infinite sequence of R also exists.

• In first-order logic, Ehrenfeucht-Fräıssé game connects the concepts of elementary
equivalence to isomorphism. In modal logic, this corresponds to the idea of
“bisimulation”.
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Definition 4.18 (Bisimulation)

Let M = (W,R, v),M ′ = (W ′, R′, v′) be Kripke models. Z ⊂W ×W ′ is a bisimulation
between M and M ′ if the following holds. (0) Z ̸= ∅.
(1) sZs′, then for any p ∈ P , M, s |= p⇔M ′, s′ |= p.
(2) If sZs′ and sRt, then there is t′ ∈W ′ such that s′R′t′ and tZt′ (the forth condition).
(3) If sZs′ and s′R′t′, then there is t ∈W such that sRt and tZt′ (the back condition).
If there exists a bisimulation Z between M and M ′ s.t. sZs′, we write M, s ↔ M ′, s′.

𝑞𝑞𝑝 𝑞 𝑝 𝑝 𝑞𝑝

𝑞𝑞

24

 1  2  3

 4

 5
 𝑎  𝑒 𝑑

 𝑏

 𝑐

𝑀 𝑀′

𝑍 ൌ ሼ 1, 𝑎 , 2, 𝑏 , 3, 𝑐 , 4, 𝑒 , ሺ5, 𝑒ሻሽ 
Figure: Z = {(1, a), (2, b), (2, c), (3, d), (4, e), (5, e)}

Definition 4.19 (Modal equivalence)

Let M and M ′ be Kripke models. M , s and M ′, s′ are modally equivalent, denote
M, s ≡M ′, s′, if for all modal propositions φ, M, s |= φ⇔M ′, s′ |= φ. 15 / 18
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Theorem 4.20 (Bisimulation invariant theorem)

If M, s ↔ M ′, s′, then M, s ≡M ′, s′.

Proof.

• We assume there exists a bisimulation Z such that M, s ↔ M ′, s′, and our goal is to
show that for all φ, M, t |= φ⇔M ′, t′ |= φ if tZt′.

• We prove this by induction on the construction of modal proposition φ.

• The case φ = □ψ is essential. Suppose M, s |= □ψ, and we show M ′, s′ |= □ψ. So,
we will show that for any t′ ∈ s′R′, M ′, t′ |= ψ.

• M, s ↔ M ′, s′ gives sZs′, so by the backward condition, there is t such that sRt and
tZt′. By M, s |= □ψ and sRt, we have M, t |= ψ. Since tZt′, M, t ↔ M ′, t′, it
follows that M ′, t′ |= ψ from the induction hypothesis.

The converse of the above theorem does not hold in general. However, there are some
special classes of Kripke models where the converse of the theorem also holds, which is
called the Hennessy-Milner property.
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We say that M = (W,R, v) is a finite branching model if sR is a finite set for any s ∈W .

Theorem 4.21

The class of finite branching models has the Hennessy-Milner property.

Proof. Assume M , M ′ are finite branching and M, s ≡M ′, s′. Let Z be the set of pairs
(w,w′) such that M,w ≡M ′, w′. It is obvious that Z ̸= ∅. Condition (1) of Definition
4.18 can be obtained from M, s ≡M ′, s′. To prove (2) of Definition 4.18, suppose sZs′

and sRt. Since M, s |= ¬□⊥ by sRt, we have M ′, s′ |= ¬□⊥ and so there is t′ such that
s′R′t′. Since there are only a finite number of such t′ due to the finite branch property,
and so we list them as t′1, t

′
2, . . . , t

′
n.

Suppose to the contrary that for all i ≤ n, not tZt′i. Then for each i ≤ n, there is ψi such
that M, t |= ψi and M

′, t′i |= ¬ψi. So M, t |=
∧

i ψi and M
′, s′ |= □

∨
i ¬ψi. Then,

M, s |= □
∨

i ¬ψi by sZs
′. So, M, t |=

∨
i ¬ψi by sRt, which contradicts M, t |=

∧
i ψi.

Therefore, for some i ≤ n, we have tZt′i. This complete the proof for (2). Similarly, we can
prove for (3).
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Thank you for your attention!
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