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Logic and Foundations II� �
• Part 5. Models of first-order arithmetic (continued) (5 lectures)

• Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)

• Part 7. Real analysis and reverse mathematics (8.5 lectures)

• Part 8. Second order arithmetic and non-standard methods (6.5 lectures)� �
Part 8. Schedule� �
• May 21, (0) Introduction to forcing

• May 23, (1) Harrington’s conservation result on WKL0
• May 28, (2) H.Friedman’s conservation result on WKL0
• May 30, (3) Friedman’s result (continued) and a self-embedding theorem I

• June 04, (4) A self-embedding theorem II

• June 06, (5) A self-embedding theorem III and STY theorem I

• June 11, (6) STY theorem II� �
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Theorem 3.1 (Self-Embedding Theorem)

Let M = (M,S) be a countable model of WKL0 with M ̸= ω. Then, there exists a proper
initial segment I of M such that M⌈I = (I, S⌈I) is isomorphic to M. Here,
S⌈I = {X ∩ I | X ∈ S}.

We first prove the following lemma, which will be frequently used later.

Lemma 3.2 (Compactness in WKL0)

(1) For any Π0
1 formula φ(X), there exists a Π0

1 formula φ̂ such that WKL0 proves:

φ̂ ↔ ∃X φ(X).

(2) For any Π0
1 formula φ(k,X), WKL0 proves:

∀n∃X ∀k < nφ(k,X) → ∃X ∀k φ(k,X).
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We define G-Σ0
1 formulas or simply G formulas by generalizing Σ0

1 formulas as follows.
The G formulas are obtained from Σ0

1 formulas by using ∧,∨, bounded universal quantifier
∀x < y and unbounded existential quantifier ∃x, and set quantifiers ∀X,∃X.
In WKL0, we can prove that a G formula is equivalent to a Σ0

1 formula.

Definition 3.3 (G formulas in RCA0)

A sequence G0 ⊂ G1 ⊂ G2 ⊂ · · · of sets of L2
OR-formulas is defined inductively modulo 4

as follows: for each e ∈ N,

G0 = {finite disjunctions (∨) of atomic formulas or their negations},
G4e+1 = {∃xϕ | ϕ is a finite conjunction (∧) of G4e formulas} ∪G4e,

G4e+2 = {∀x < y ϕ | ϕ is a finite disjunction (∨) of G4e+1 formulas} ∪G4e+1,

G4e+3 = {∃X ϕ | ϕ is a finite conjunction (∧) of G4e+2 formulas} ∪G4e+2,

G4e+4 = {∀X ϕ | ϕ is a finite disjunction (∨) of G4e+3 formulas} ∪G4e+3.

Finally, we set G =
⋃

e∈N Ge. The formulas in G are called G formulas.

In the following, we will define Sat for G formulas.
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From now on, a structure M = (M,S) is denoted by V . Then, for each p ∈ M , let
Mp = {a ∈ M | M |= a < p}, Sp = {X ∩Mp | X ∈ S} and Vp = (Mp, Sp).

For any formula φ in L2
OR, let φ

Vp be a formula obtained by restricting the ranges of
variables to Vp = (Mp, Sp). More precisely, in φVp , quantification over numbers is bounded
by p, and quantification over sets is also considered as ranging binary sequences of length
p, which can be coded by numbers < 2p. So, φVp can be regarded as a ∆0

1 formula in V .
Thus, by using SatΣ0

1
, we define the satisfaction predicate Satp(z, ξ) as follows:

Satp(⌜φ⌝, ξ) ≡ SatΣ0
1
(⌜φVp⌝, ξ ↾ Vp), i.e., φ(ξ)Vp .

Here, ξ is a finite function that assigns elements of Mp ∪ Sp to free variables in φ, and
ξ ↾ Vp is the assignment obtained from ξ by restricting its values to Vp.

We also remark that a variable z in Satp(z, ξ) can potentially express a non-standard
number. In V , we can verify that Satp satisfies Tarski’s truth definition clauses (cf.
Theorem IV.2.26 in [P. Hájek and P. Pudlák, Metamathematics of First-oder Arithmetic,
Springer, 1993.]).
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Next, we define the satisfaction relation for G formulas as follows:

Definition 3.4

For each z ∈ G, define the satisfaction relation Sat(z, ξ) as follows:

Sat(z, ξ) ↔ ∃p Satp(z, ξ ↾ Vp).

For simplicity, we abbreviate Satp(z, ξ ↾ Vp) as Sat
p(z, ξ).

In the following, we identify a formula with its code.

Lemma 3.5

In a model V of WKL0, Sat(z, ξ) satisfies Tarski’s truth definition clauses for G formulas.

Proof idea. In fact, if z is Σ0
1, Sat(z, ξ) ⇔ ∃p Satp(z, ξ) ⇔ ∃p z(ξ)Vp ⇔ z(ξ).

The critical case is z = ∀X z′ (where z′ is a G formula).

Sat (∀X z′, ξ) ⇔ ∃p Satp (∀X z′, ξ) ⇔ ∃p ∀U Satp (z′, ξ ∪ {(X,U)})
⇔ ∀U ∃p Satp (z′, ξ ∪ {(X,U)}) (⇐ by compactness (Lemma 3.2(2)))

⇔ ∀U Sat (z′, ξ ∪ {(X,U)}) ,

where ξ ∪ {(X,U)} is an extension of ξ with X assigned to U .
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Lemma 3.6

In a model V = (M,S) of WKL0, we fix any e ∈ M and an M -finite assignment map ξ.
Then, there exists a p ∈ M such that for all Ge formulas z whose free variables all belong
to the domain of ξ, then Sat(z, ξ) ⇔ Satp(z, ξ) holds.

Proof. Since the domain of the assignment map ξ is M -finite, the set of Ge formulas
whose free variables are in the domain of ξ is essentially M -finite (disregarding repetitions
of the same formulas within a disjunction or conjunction). This fact can be demonstrated
by Σ0

1 induction on e.

Therefore, for M -finitely many Ge formulas z, if Sat(z, ξ) holds, let pz be p such that
Satp(z, ξ), or otherwise let pz = 0 . Then, if we put q = max{pz}, 1 then we have
Sat(z, ξ) ⇔ Satq(z, ξ). 2

1Strictly speaking, strong Σ0
1 collection principle (SΣ1) is used here. (Refer to Problem 1 following

Lemma 1.8 in Chapter 7.)
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Definition 3.7 (reflection)

In a model V of WKL0, for any e, p, and for two assignment maps ξ, ξ′ with the same
domain, the relation Refpe(ξ, ξ

′) is defined as follows:

Sat(z, ξ) ⇒ Satp(z, ξ′), for each Ge formula z with free variables in the domain of ξ.

Lemma 3.8

In a model V of WKL0, supposing Refpe(ξ, ξ
′) with M -finite ξ, ξ′, the following holds:

(1) If e = 4d+ 1, ∀a∃a′ < pRefpe−1(ξ ∪ {(y, a)}, ξ′ ∪ {(y, a′)}), where y is a variable not
in the domain of ξ.

(2) If e = 4d+ 2, for each numerical variable x belonging to ξ,
∀a′ < ξ′(x)∃a < ξ(x)Refpe−1(ξ ∪ {(y, a)}, ξ′ ∪ {(y, a′)}), with y not in ξ.

(3) If e = 4d+ 3, ∀U ∃U ′ Refpe−1(ξ ∪ {(Y,U)}, ξ′ ∪ {(Y, U ′)}), where Y is a variable not
belonging to the domain of ξ.

(4) If e = 4d+ 4, ∀U ′ ∃U Refpe−1(ξ ∪ {(Y,U)}, ξ′ ∪ {(Y, U ′)}), with Y not in ξ.
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Proof Let V = (M,S) be a model of WKL0, and let ξ, ξ′ be M -finite assignments with
the same domain such that Refpe(ξ, ξ

′) is satisfied.

(1) For e = 4d+ 1. Show ∀a∃a′ < pRefpe−1(ξ ∪ {(y, a)}, ξ′ ∪ {(y, a′)}).
Fix any a ∈ M . Let Z be the set of all codes of Ge−1 formulas z satisfying
Sat(z, ξ ∪ {(y, a)}) and in a non-redundant form (i.e., no same formula is repeated in
disjunctions or conjunctions), whose free variables are either y or belong to the
domain of ξ. According to the argument in the proof of Lemma 3.6, this set Z is
M -finite within V . Thus, by (bounded Σ0

1 -CA) (Lemma 7.1.8), Z exists.

Now, consider a Ge-formula z′ = ∃y
∧

z∈Z z. Since Sat(z, ξ ∪ {(y, a)}) for each
z ∈ Z, it follows from Lemma 3.5 that Sat(

∧
z∈Z z, ξ ∪ {(y, a)}) and so Sat(z′, ξ).

Therefore, by the hypothesis, Satp(z′, ξ′) holds. Thus, there exists a′ < p such that
Satp(z, ξ′ ∪ {(y, a′)}) holds for each z ∈ Z, fulfilling the requirement.

(2) For e = 4d+ 2. Show ∀a′ < ξ′(x)∃a < ξ(x)Refpe−1(ξ ∪ {(y, a)}, ξ′ ∪ {(y, a′)}).
Fix any a′ < ξ′(x). To prove by contradiction, assume that for any a < ξ(x) there
exists a Ge−1 formula z such that Sat(z, ξ ∪ {(y, a)}) and ¬Satp(z, ξ′ ∪ {(y, a′)}).
Let Z be the set of all z ∈ Ge−1 satisfying ¬Satp(z, ξ′ ∪ {(y, a′)}) and in a
non-redundant form, whose free variables are either y or belong to the domain of ξ.
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(2) (continued) Like in case (1), Z exists by (bounded Σ0
1 -CA). Consider a Ge formula

z′ = ∀y < x
∨

z∈Z z. By the other assumption, for each a < ξ(x), there exists z ∈ Z
such that Sat(z, ξ ∪ {(y, a)}), so Sat(z′, ξ) holds.

Therefore, by the hypothesis, Satp(z′, ξ′) holds. Thus for each a′ < ξ′(x), there exists
z ∈ Z such that Satp(z, ξ′ ∪ {(y, a′)}), which contradicts the definition of Z.

(3) For e = 4d+ 3. ∀U ∃U ′ Refpe−1(ξ ∪ {(Y, U)}, ξ′ ∪ {(Y,U ′)}) can be shown like (1).

(4) For e = 4d+ 4. Show ∀U ′ ∃U Refpe−1(ξ ∪ {(Y,U)}, ξ′ ∪ {(Y, U ′)}).
Fix any U ′. Let Z be the set of z ∈ Ge−1 satisfying ¬Satp(z, ξ′ ∪ {(Y,U ′)}) and in a
non-redundant form, whose free variables are either y or belong to the domain of ξ.
Consider a Ge formula z′ = ∀Y

∨
z∈Z z. By contradiction, assume for each U , there

exists z ∈ Z such that Sat(z, ξ ∪ {(Y,U)}). Thus, Sat(z′, ξ) holds, and by the
hypothesis, Satp(z′, ξ′) holds, which contradicts the definition of Z.

Thus, the proof is complete. 2
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Theorem 3.1 (Self-Embedding Theorem)

Let M = (M,S) be a countable model of WKL0 with M ̸= ω. Then, there exists a proper
initial segment I of M such that M⌈I = (I, S⌈I) is isomorphic to M.

Proof Let V = (M,S) be a countable nonstandard model of WKL0, and fix q ∈ M .
Since Vq is M -finite within V , we can also make an M -finite mapping ξ0 that assigns each
number and set in Vq to distinct variables.
Now, take any nonstandard number e ∈ M . By Lemma 3.6, for any Ge-formula z whose
free variables belong to the domain of ξ0, there exists p such that Sat(z, ξ0) ⇔ Satp(z, ξ0)
holds.

In the following, by repeatedly using Lemma 3.8 (the back-and-forth method), we
construct two ω-sequences of assignment mappings ξ0 ⊆ ξ1 ⊆ · · · ⊆ ξk ⊆ . . . and
ξ′0 (= ξ0) ⊆ ξ′1 ⊆ · · · ⊆ ξ′k ⊆ . . . (k ∈ ω), where Refpe−k(ξk, ξ

′
k) holds for all k ∈ ω, and⋃

k range(ξk) = V and
⋃

k range(ξ
′
k) forms the desired initial segment of the model V .

To begin with, we enumerate the elements of V as M = {ai | i ∈ ω}, S = {Ui | i ∈ ω}.
We inductively construct ξk, ξ

′
k with the same domain (k ∈ ω) by cases:

(i) For e− k = 4d+ 1. Let a be the element ai in M − range(ξk) with the smallest index
i, and let a′ < p be obtained by Lemma 3.8(1). Then, let y be a new numerical
variable not in the domain of ξk, and set ξk+1 = ξk ∪ {(y, a)}, ξ′k+1 = ξk ∪ {(y, a′)}.
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(ii) For e− k = 4d+ 2. Let ξ′k(x0) be the largest in the order in M among all ξ′k(x)’s.
Then, let a′ be the element ai in M − range(ξ′k) and satisfying ai < ξ′k(x0) with the
smallest index i, and let a < ξ(x0) be obtained by Lemma 3.8(2). Then, let y be a
new numerical variable, and set ξk+1 = ξk ∪ {(y, a)}, ξ′k+1 = ξk ∪ {(y, a′)}.

(iii) For e− k = 4d+ 3. Let U be Ui ∈ S with the smallest index i, that is different from
any set in range(ξk) with regards to the numbers in range(ξk). Also, let U

′ be
obtained by Lemma 3.8(3). Then, let Y be a new set variable, and set
ξk+1 = ξk ∪ {(Y,U)}, ξ′k+1 = ξk ∪ {(Y, U ′)}.

(iv) For e− k = 4d+ 4. Let U ′ be Ui ∈ S, with the smallest index i, that is different from
any set in range(ξ′k) with regards to the numbers in range(ξ′k). Also, let U be
obtained by Lemma 3.8(4). Then, let Y be a new set variable, and set
ξk+1 = ξk ∪ {(Y,U)}, ξ′k+1 = ξ′k ∪ {(Y, U ′)}

From the above construction, it is easy to see that Refpe−k(ξk, ξ
′
k) holds for each k ∈ ω.

From (i) and (iii), it is obvious that
⋃

k range(ξk) = (M,S). Also, from (ii), we can easily
see that the set I consisting of a belonging to

⋃
k range(ξ

′
k) forms an initial segment of M .

Then, from (iv) it follows that
⋃

k range(ξ
′
k) = (I, S⌈I).
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Next, we prove by induction that both ξk, ξ
′
k are injective for all k ∈ ω. It is clear from the

definition that ξ0 = ξ′0 is injective.

In (i), we first extend the injective mapping ξk to an injective ξk+1, and then extend the
injective ξ′k to a mapping ξ′k+1 that satisfies Refpe−k−1(ξk+1, ξ

′
k+1). The injectivity of ξk+1

is clear from the construction. Since the injectivity is expressed by a G2 formula, ξ′k+1 is
also injective.

Similarly for (ii), (iii) and (iv).

Thus,
⋃

k ξk and
⋃

k ξ
′
k are also injective.

Let f = (
⋃

k ξ
′
k) ◦ (

⋃
k ξk)

−1, which becomes a bijection from V to V ⌈I. It is evident that
f acts as the identity map on Vq.
Furthermore, since Refp0(ξk, ξ

′
k) holds for each k ∈ ω, it is clear that f is an isomorphism.

Thus, the proof of the theorem is complete. 2
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Let’s briefly describe how the Self-Embedding Theorem 3.1 can be applied to nonstandard
analysis.

• According to Gödel’s completeness theorem and compactness theorem,

WKL0 ⊢ φ ⇔ for any non-ω model M of WKL0,M |= φ.

• Since any infinite structure has an elementarily equivalent countable structure by the
Löwenheim-Skolem Theorem,

WKL0 ⊢ φ ⇔ for any countable non-ω model M of WKL0,M |= φ.

• Choose a countable non-ω model M = (M,S) of WKL0. Theorem 3.1 states that M
has an initial segment isomorphic to itself. But by swapping their roles of M and an
isomorphic initial segment, M is seen to have an isomorphic end-extension
∗M = (∗M, ∗S), which allows us to carry out some nonstandard analysis arguments.

• For example, in M = (M,S), a real number a is indeed a set in S. Thus, a is an
initial segment ∗a⌈M of some set ∗a ∈ ∗S. Since ∗a may be taken bounded in ∗M,
it can be coded by an element of ∗M . Therefore, a real number in M can be treated
like a rational number in ∗M.
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Application (The Maximum Principle)

WKL0 ⊢ Any continuous function f : [0, 1] → [0, 1] has a maximum value.

Proof.

M = (M,S) ∗M = (∗M,∗S)

f : [0, 1] ∩Q → [0, 1] =⇒ ∗f : {qi}i<a → 2b

∥ ∥ (a, b ∈∗M −M,f =∗ f ∩M)
{qi}i∈M 2M

⇓
∗m ∩M is sup f ⇐= ∗m = max{∗f(qi)}i<a
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Other Applications

WKL0 ⊢ The Cauchy-Peano Theorem (Tanaka, 1997)

WKL0 ⊢ The existence of Haar measure for a compact group

(Tanaka-Yamazaki, 2000)

WKL0 ⊢ The Jordan curve theorem (Sakamoto-Yokoyama, 2007)
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§4. STY Theorem

In §1, we proved Harrington’s theorem that WKL0 is conservative over RCA0 with respect
to Π1

1 sentences. The proof utilized the tree forcing argument.

The STY theorem, standing for Simpson-T.-Yamazaki, extends Harrington’s conservation
result to the class of senteces in the form ∀X∃!Y φ(X,Y ) (where φ(X,Y ) is arithmetic) 2

In the original proof of the STY theorem, the forcing argument over so-called universal
trees is devised to enable the construction of models with stronger properties. However,
due to its technical complexity, we here adopt a new method of symmetric models
composed of generic set sequences, also introduced by Simpson (2000).

2A formula in this form is called “Tanaka” and a formula obtained from Tanaka formulas applying
∨,∧, ∀x, ∃y and ∀X is called “G-Tanaka.” Shore (JSL 2023) further extended the conservation to the
G-Tanaka formulas.
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Theorem 4.1 (STY theorem)

For any sentence σ in the form ∀X∃!Y φ(X,Y ) (where φ(X,Y ) is arithmetic),

WKL0 ⊢ σ ⇒ RCA0 ⊢ σ,

where ∃!Y φ(X,Y ) means ∃Y φ(X,Y ) ∧ ∀Y1 ∀Y2 (φ(X,Y1) ∧ φ(X,Y2) → Y1 = Y2).

A key to the proof of this theorem is the following lemma.

Lemma 4.2

Let M = (M,S) be a countable nonstandard model of RCA0 with A ∈ S. Then, there
exist sets S1 and S2 satisfying the following conditions:

1. S1 ∩ S2 = RecM(A) = {X ⊆ M | M |= X ≤T A}
2. (M,Si) |= WKL0, for i = 1, 2.

3. (M,S1) and (M,S2) satisfies the same sentences in L2(M ∪ {A}).
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In the above lemma, it is not necessary that S contains S1 ∪ S2. Also, since elements of S
other than A are not essentially used, it is sufficient for the lemma that (M, {A}) is a
countable model of Σ0

1 induction. We first assume the lemma to prove the main theorem.

Proof of Theorem 4.1 Suppose WKL0 ⊢ ∀X∃!Y φ(X,Y ) with an arithmetic formula
φ(X,Y ). For contradiction, assume RCA0 ⊬ ∀X∃!Y φ(X,Y ). By the completeness
theorem, there exists a countable model M = (M,S) of RCA0 such that

(M,S) |= ¬∀X∃!Y φ(X,Y ).

Consequently, there exists some A ∈ S such that either

(i) (M,S) |= ∃Y1∃Y2(φ(A, Y1) ∧ φ(A, Y2) ∧ Y1 ̸= Y2), or

(ii) (M,S) |= ∀Y ¬φ(A, Y ).

Case (i) There exist B1, B2 ∈ S such that (M,S) |= φ(A,B1) ∧ φ(A,B2) ∧B1 ̸= B2. By
Lemma 1.9 (Harrington’s lemma), there exists S′ ⊇ S such that (M,S′) |= WKL0. Since
(M,S) and (M,S′) agree on first-order parts, they validate the same arithmetic formulas.
Hence, (M,S′) |= φ(A,B1) ∧ φ(A,B2) ∧B1 ̸= B2. However, since
WKL0 ⊢ ∀X∃!Y φ(X,Y ), we have (M,S′) |= ∀X∃!Y φ(X,Y ), a contradiction.
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Case (ii) By Lemma 4.2, there exist sets S1 and S2 such that

(a) S1 ∩ S2 = RecM(A),

(b) (M,Si) |= WKL0,

(c) (M,S1) and (M,S2) satisfy the same sentences of L2(M ∪ {A}).
From (b) and WKL0 ⊢ ∀X∃!Y φ(X,Y ), there exists a unique Bi ∈ Si such that
(M,Si) |= φ(A,Bi) for each i = 1, 2. By (c), for any n ∈ M ,

n ∈ B1 ⇔ (M,S1) |= ∃Y (φ(A, Y ) ∧ n ∈ Y )

⇔ (M,S2) |= ∃Y (φ(A, Y ) ∧ n ∈ Y )

⇔ n ∈ B2

Therefore, B1 = B2 and thus B1 ∈ S1 ∩ S2. From (a), B1 ∈ RecM(A). Since (M,S) is a
model of RCA0 and B1 ∈ S, (M,S) |= ∃Y φ(A, Y ), a contradiction. 2
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In the following, we will introduce several new concepts such as a generic sequence, to
proceed with the proof of Lemma 4.2.

First, let us consider M = (M,S) as a countable nonstandard model of WKL0
3. Take any

A ∈ S and consider the formulas involving it. If φ(X,A) is a Π0
1 formula with a unique free

variable X and a parameter A, the set {X ∈ S | M |= φ(X,A)} is called a Π0,A
1 class in

M. Note that a set P ⊆ S is a Π0,A
1 class iff there exists a binary tree T ⊆ 2<M recursive

in A such that P = [T ]. Here, [T ] represents the set of all infinite paths through a tree T .

From now on, the display of parameter A is omitted due to complexity in description. By
⟨Pe | e ∈ M⟩, we denote a computable enumeration of all Π0

1 classes. Formally, using the
Π0

1 satisfaction predicate SatΠ0
1
(x,X), we define it as: for any e ∈ M,X ∈ S,

X ∈ Pe ⇔ M |= SatΠ0
1
(e,X).

We also write Pe(X) for X ∈ Pe.

3Note that in the claim of Lemma 4.2, M = (M,S) was a countable nonstandard model of RCA0.
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Definition 4.3

For an M -finite subset p ⊆ M ×M<M (denoted as p ⊆fin M ×M<M ) 4, a sequence of
sets ⟨Xn | n ∈ M⟩ meets p, if for every (e, ⟨n1, · · · , nk⟩) ∈ p,

Xn1
⊕ · · · ⊕Xnk

∈ Pe,

where Xn1
⊕ · · · ⊕Xnk

= {(x, 1) | x ∈ Xn1
} ∪ {(x, 2) | x ∈ Xn2

} · · · ∪ {(x, k) | x ∈ Xnk
}.

The condition Xn1
⊕ · · · ⊕Xnk

∈ Pe is also expressed as Pe(Xn1
, · · · , Xnk

).

Definition 4.4

Define a p.o. set (PM,≤) as follows:

PM = {p ⊆fin M ×M<M | there exists ⟨Xn | n ∈ M⟩ ∈ SM that meets p},

and the order p ≤ q on PM is defined as p ⊇ q. 5

4M<M , i.e., SeqM, includes all M -finite sequences from M .
5The reason why the order is the reverse inclusion is that when q ⊆ p, p has more conditions, hence

fewer sequences meet it.
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In WKL0, the condition that “there exists ⟨Xn | n ∈ M⟩ ∈ SM that meets p” can be
rephrased as the existence of an infinite path in an infinite tree, since the part
“(something) meets p” is a Π0

1 condition. Thus by compactness, the whole condition can
be expressed by a Π0

1 formula.

Furthermore, p(⊆fin M ×M<M ) can be considered an element of M , so PM can be
regarded as a Π0

1 subset of M .

Henceforth, unless otherwise stated, PM will simply be referred to as P.

A sequence ⟨Gn | n ∈ M⟩ is said to be a generic sequence if for any dense subset
D ∈ Def(M) of P, there exists a p ∈ D that ⟨Gn | n ∈ M⟩ meets. 6

6Even if some Gn does not belong to S, the definition remains valid as long as their existence does not
violate the Σ0

1 induction.
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Thank you for your attention!


	Self-Embedding Theorem
	§4 STY Theorem

