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Theorem 3.1 (Self-Embedding Theorem)

Let M = (M, S) be a countable model of WKL with M # w. Then, there exists a proper
initial segment I of M such that MM[I = (I, S[I) is isomorphic to M. Here,
S[I={XnNnI|XeS}

We first prove the following lemma, which will be frequently used later.

Lemma 3.2 (Compactness in WKL)

(1) For any I19 formula ¢(X), there exists a I1{ formula ¢ such that WKL proves:
® < IX p(X).

(2) For any I19 formula ¢(k, X), WKL proves:

YnIX Vk < no(k, X) — 3X Yk o(k, X).
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We define G-X{ formulas or simply G' formulas by generalizing ¥ formulas as follows.
The G formulas are obtained from X{ formulas by using A, V, bounded universal quantifier
Vz < y and unbounded existential quantifier 3x, and set quantifiers V.X, 3.X.

In WKLo, we can prove that a G formula is equivalent to a X{ formula.

Definition 3.3 (G formulas in RCA)

A sequence Gog C G1 C Gy C --- of sets of L%R—formulas is defined inductively modulo 4
as follows: for each e € N,

Gy = {finite disjunctions (V) of atomic formulas or their negations},
Gier1 = {3z ¢ | ¢ is a finite conjunction (A) of Gy, formulas} U Gy,
Gaerz = {Vx <y ¢ | ¢ is a finite disjunction (V) of G411 formulas} U Gyeq1,
Giers = {3X ¢ | & is a finite conjunction (A) of Gyeqo formulas} U Gy,
Giers = {VX ¢ | ¢ is a finite disjunction (V) of Gaey3 formulas} U Gyeys.

Finally, we set G = UeeN G.. The formulas in G are called G formulas.

In the following, we will define Sat for G formulas.
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From now on, a structure Mt = (M, S) is denoted by V. Then, for each p € M, let
M,={aeM|MEa<p}, S,={XNM,| X eS}tandV, =(M,,S,).
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For any formula ¢ in £%R, let ©"» be a formula obtained by restricting the ranges of
variables to V,, = (M, S,). More precisely, in ¢"#, quantification over numbers is bounded
by p, and quantification over sets is also considered as ranging binary sequences of length
p, which can be coded by numbers < 27. So, ¢©'» can be regarded as a A formula in V.
Thus, by using Satyo, we define the satisfaction predicate SatP(z, &) as follows:

SatP (T, &) = Satgo (TP LE 1 V,), e, 0(6)".

Here, ¢ is a finite function that assigns elements of M, U .S, to free variables in ¢, and
& 'V, is the assignment obtained from £ by restricting its values to V,.

We also remark that a variable z in Sat?(z, £) can potentially express a non-standard
number. In V, we can verify that Sat? satisfies Tarski's truth definition clauses (cf.
Theorem IV.2.26 in [P. Hajek and P. Pudldk, Metamathematics of First-oder Arithmetic,
Springer, 1993.]).
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Next, we define the satisfaction relation for G formulas as follows:
Definition 3.4

For each z € G, define the satisfaction relation Sat(z, &) as follows:

Sat(z,&) <> IpSat?(z,& [ Vp).

For simplicity, we abbreviate Sat?(z,£ [ V},) as Sat?(z,§).
In the following, we identify a formula with its code.

Lemma 3.5

In a model V' of WKLy, Sat(z,£) satisfies Tarski's truth definition clauses for G' formulas.

Proof idea. In fact, if 2 is 39, Sat(z,£) & IpSat?(2,€) & Ip2(H)"r & 2().
The critical case is z = VX 2’ (where 2’ is a G formula).
Sat (VX 2/, €) < JpSat? (VX 2/,€) & IpVU Sat? (2, € U {(X,U)})
& VU JpSat? (2,6 U{(X,U)}) (< by compactness (Lemma 3.2(2)))
& VU Sat (2,6 U{(X,U)}),

where ¢ U {(X,U)} is an extension of £ with X assigned to U.
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Lemma 3.6

In a model V' = (M, S) of WKLy, we fix any e € M and an M-finite assignment map &.
Then, there exists a p € M such that for all G, formulas z whose free variables all belong
to the domain of &, then Sat(z, &) < Sat?(z, ) holds.

Proof. Since the domain of the assignment map £ is M-finite, the set of G, formulas
whose free variables are in the domain of £ is essentially M-finite (disregarding repetitions
of the same formulas within a disjunction or conjunction). This fact can be demonstrated
by ¢ induction on e.

Therefore, for M-finitely many G, formulas z, if Sat(z, &) holds, let p, be p such that
Sat?(z,&), or otherwise let p, = 0 . Then, if we put ¢ = max{p.}, ! then we have
Sat(z, ) < Sat?(z, ). a

IStrictly speaking, strong ch) collection principle (SX1) is used here. (Refer to Problem 1 following
Lemma 1.8 in Chapter 7.)
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Definition 3.7 (reflection)

In a model V of WKLy, for any e, p, and for two assignment maps &, £’ with the same
domain, the relation Ref? (¢, ¢’) is defined as follows:

Sat(z, &) = SatP(z,¢'), for each G, formula z with free variables in the domain of £.

Lemma 3.8

In a model V' of WKLy, supposing Ref? (¢, &) with M-finite &, &', the following holds:

(1) fe=4d+1, Ya3ad' < pRef?_;(£U{(y,a)},& U{(y,a’)}), where y is a variable not
in the domain of &.

(2) If e =4d + 2, for each numerical variable = belonging to &,
Vo' < €(z)3a < &(x) Ref?_, (€ U{(y,a)}, € U {(y,a")}), with y not in &.

(3) If e=4d+ 3, VU IU'Refl_,(€U{(Y,U)}, & U{(Y,U")}), where Y is a variable not
belonging to the domain of &.

(4) fe=4d+4, VU U Ref?_(EU{(Y,U)}, & U{(Y,U")}), with Y not in &.
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Proof Let V = (M,S) be a model of WKLy, and let £,&’ be M-finite assignments with
the same domain such that RefZ(¢,¢’) is satisfied.

(1)

For e = 4d + 1. Show Va3a’ < pRef?_, (€U {(y,a)},& U{(y,a’)}).

Fix any a € M. Let Z be the set of all codes of G._; formulas z satisfying
Sat(z,£ U{(y,a)}) and in a non-redundant form (i.e., no same formula is repeated in
disjunctions or conjunctions), whose free variables are either y or belong to the
domain of £. According to the argument in the proof of Lemma 3.6, this set Z is
M-finite within V. Thus, by (bounded X¢-CA) (Lemma 7.1.8), Z exists.

Now, consider a G-formula 2’ = 3y A, 2. Since Sat(z,£ U {(y,a)}) for each
z € Z, it follows from Lemma 3.5 that Sat(A ., 2, U {(y,a)}) and so Sat(Z’,§).

Therefore, by the hypothesis, Sat?(z’,£’) holds. Thus, there exists a’ < p such that
Sat?(z,&" U{(y,a’)}) holds for each z € Z, fulfilling the requirement.

For e = 4d + 2. Show Va' < &'(z) Ja < &(z) Ref?_ (€U {(y,a)},& U{(y,a’)}).
Fix any a’ < £'(z). To prove by contradiction, assume that for any a < £(z) there
exists a G._1 formula z such that Sat(z,£ U {(y,a)}) and =Sat?(z,& U {(y,a’)}).
Let Z be the set of all z € G._; satisfying =Sat”(z,& U {(y,a’)}) and in a
non-redundant form, whose free variables are either y or belong to the domain of £.
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(2) (continued) Like in case (1), Z exists by (bounded X9 -CA). Consider a G formula

2 =Vy <z \/,c, 2. By the other assumption, for each a < §(x), there exists z € Z
such that Sat(z,& U {(y,a)}), so Sat(z’, &) holds.

Therefore, by the hypothesis, Sat?(2’,£’) holds. Thus for each a’ < &'(x), there exists
z € Z such that Sat?(z,& U{(y,a’)}), which contradicts the definition of Z.

For e =4d + 3. YU 3U' Ref?_, (£ U{(Y,U)},& U{(Y,U’)}) can be shown like (1).

For e = 4d + 4. Show YU’ 3U Ref?_, (¢ U{(Y,U)}, & U{(Y,U")}).

Fix any U’. Let Z be the set of z € G._; satisfying =Sat?(z, & U {(Y,U’)}) and in a
non-redundant form, whose free variables are either y or belong to the domain of £.
Consider a G, formula 2/ = VY \/ZEZ z. By contradiction, assume for each U, there
exists z € Z such that Sat(z,£ U {(Y,U)}). Thus, Sat(z’,&) holds, and by the
hypothesis, Sat?(z’,£’) holds, which contradicts the definition of Z.

Thus, the proof is complete. O
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Theorem 3.1 (Self-Embedding Theorem)

Let 9 = (M, S) be a countable model of WKL with M # w. Then, there exists a proper
initial segment I of M such that 9[I = (I, S[I) is isomorphic to M.

Proof Let V = (M,S) be a countable nonstandard model of WKLy, and fix ¢ € M.
Since Vj is M-finite within V, we can also make an M-finite mapping &, that assigns each
number and set in V; to distinct variables.

Now, take any nonstandard number e € M. By Lemma 3.6, for any G.-formula z whose
free variables belong to the domain of £, there exists p such that Sat(z,&y) < Sat”(z, &)
holds.

In the following, by repeatedly using Lemma 3.8 (the back-and-forth method), we
construct two w-sequences of assignment mappings o C & C--- C & C ... and
& (=&) CE C--C¢& C... (kew), where Ref?_, (&,¢},) holds for all k € w, and
U, range(&x) =V and |, range(§;,) forms the desired initial segment of the model V.

To begin with, we enumerate the elements of V as M = {a; | i € w}, S ={U; | i € w}.
We inductively construct &, £}, with the same domain (k € w) by cases:
(i) Fore—k =4d+ 1. Let a be the element a; in M — range(&;) with the smallest index
i, and let o/ < p be obtained by Lemma 3.8(1). Then, let y be a new numerical
variable not in the domain of &, and set &1 = & U {(y,a)}, &40 = & U {(y,d)}.
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(i) For e —k =4d+ 2. Let },(xo) be the largest in the order in M among all £ (z)'s.
Then, let a’ be the element a; in M — range(§},) and satisfying a; < &}, (zo) with the
smallest index 4, and let a < (o) be obtained by Lemma 3.8(2). Then, let y be a
new numerical variable, and set {41 = & U {(y,a)}, {0 = & U{(y,a')}.

(iii) For e —k =4d+ 3. Let U be U; € S with the smallest index i, that is different from
any set in range(&) with regards to the numbers in range(¢). Also, let U’ be
obtained by Lemma 3.8(3). Then, let Y be a new set variable, and set

Eer1 = U{(Y,U)}, S = & UL, U}

(iv) Fore —k =4d+4. Let U’ be U; € S, with the smallest index 7, that is different from
any set in range(&}.) with regards to the numbers in range(§},). Also, let U be
obtained by Lemma 3.8(4). Then, let Y be a new set variable, and set

S =& U{Y U}, &gy = & UL UN)}
From the above construction, it is easy to see that Ref? , (&, &},) holds for each k € w.

From (i) and (iii), it is obvious that | J, range(&x) = (M, S). Also, from (ii), we can easily
see that the set I consisting of a belonging to |, range(¢;,) forms an initial segment of M.
Then, from (iv) it follows that |, range(¢;,) = (I, S[1).
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In (i), we first extend the injective mapping & to an injective &;41, and then extend the
injective &}, to a mapping &, that satisfies Ref? _, | (&x41,&),,1). The injectivity of &1
is clear from the construction. Since the injectivity is expressed by a G formula, &, is
also injective.

Similarly for (ii), (iii) and (iv).

Thus, |J, & and |, &, are also injective.

Let f = (Uy &) © (Ug &)™, which becomes a bijection from V to V'[I. It is evident that
f acts as the identity map on V.

Furthermore, since Refh (&, &},) holds for each k € w, it is clear that f is an isomorphism.
Thus, the proof of the theorem is complete. O
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Theorem ¢ ® According to Godel's completeness theorem and compactness theorem,

WKLy F ¢ < for any non-w model 9 of WKLy, M [ ¢.

® Since any infinite structure has an elementarily equivalent countable structure by the
Lowenheim-Skolem Theorem,

WKLy F ¢ < for any countable non-w model 9t of WKLy, M = .

® Choose a countable non-w model M = (M, S) of WKLj. Theorem 3.1 states that 9t
has an initial segment isomorphic to itself. But by swapping their roles of 9t and an
isomorphic initial segment, 9 is seen to have an isomorphic end-extension
*M = (*M,*S), which allows us to carry out some nonstandard analysis arguments.

® For example, in 9t = (M, S), a real number a is indeed a set in S. Thus, a is an
initial segment *a[M of some set *a € *S. Since *a may be taken bounded in *91,
it can be coded by an element of *M. Therefore, a real number in 9% can be treated
like a rational number in *91.
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WKL F Any continuous function f : [0,1] — [0,1] has a maximum value.

Proof.

m = (M, S) M = ("M,*S)

f:00,1]NnQ — [0,1] = f Aditica — 20
| I (a,be*M — M, f=*fNM)
{gitiem 2M
I
mN M is sup f = *m = max{*f(¢;) }i<a



Logic and
Foundations

K. Tanaka Other App|icatiOnS

Self-Embedding
Theorem

WKLy - The Cauchy-Peano Theorem (Tanaka, 1997)

WKLy - The existence of Haar measure for a compact group
(Tanaka-Yamazaki, 2000)

WKLy - The Jordan curve theorem (Sakamoto-Yokoyama, 2007)
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§4. STY Theorem

In §1, we proved Harrington's theorem that WKL is conservative over RCA; with respect
to IT} sentences. The proof utilized the tree forcing argument.

The STY theorem, standing for Simpson-T .-Yamazaki, extends Harrington’s conservation
result to the class of senteces in the form VX3!Y p(X,Y) (where ¢(X,Y) is arithmetic) 2

In the original proof of the STY theorem, the forcing argument over so-called universal
trees is devised to enable the construction of models with stronger properties. However,
due to its technical complexity, we here adopt a new method of symmetric models
composed of generic set sequences, also introduced by Simpson (2000).

2A formula in this form is called “Tanaka” and a formula obtained from Tanaka formulas applying
V,A,Vz,Jy and VX is called “G-Tanaka.” Shore (JSL 2023) further extended the conservation to the
G-Tanaka formulas.
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For any sentence o in the form VX3!Y o (X,Y) (where o(X,Y) is arithmetic),

§4 STY Theorem

WKLy = o = RCAg F o,

where Y (X, Y) means 3Y (X, Y) A VY] VYa (0(X, Y1) A o(X,Ya) = Vi = Ya).

A key to the proof of this theorem is the following lemma.

Lemma 4.2

Let O = (M, S) be a countable nonstandard model of RCAg with A € S. Then, there
exist sets S7 and Sy satisfying the following conditions:

1. NSy =Rec™(A)={X C M |ME X <p A}
2. (M, S;) = WKLy, for i = 1,2.
3. (M, S1) and (M, Ss) satisfies the same sentences in Lo(M U {A}).
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In the above lemma, it is not necessary that S contains S; U S5. Also, since elements of S
other than A are not essentially used, it is sufficient for the lemma that (M, {A}) is a
countable model of 3V induction. We first assume the lemma to prove the main theorem.

Proof of Theorem 4.1 Suppose WKLy - VX3Yp(X,Y) with an arithmetic formula
»(X,Y). For contradiction, assume RCAq ¥ VX3V p(X,Y). By the completeness
theorem, there exists a countable model 9t = (M, S) of RCA such that

(M, S) = VXY (X, Y).

Consequently, there exists some A € S such that either

(i) (M,5) = 13a(p(A, Y1) A p(A,Y2) AYL # Ya), or

(i) (M,S) VY =p(A,Y).
Case (i) There exist By, B2 € S such that (M, S) = ¢(A, B1) A (A, B2) A By # By, By
Lemma 1.9 (Harrington's lemma), there exists S’ O S such that (M, S") = WKLg. Since
(M, S) and (M, S") agree on first-order parts, they validate the same arithmetic formulas.
Hence, (M,S") = ¢(A, B1) A ¢(A, By) A By # Ba. However, since
WKLy FVX3Y(X,Y), we have (M, S") EVX3Yp(X,Y), a contradiction.
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§4 STY Theorem (a) S1NSy = Rec™ (4),
(b) (M, S;) = WKLy,
(c) (M,S1) and (M, S2) satisfy the same sentences of Lo(M U {A}).

From (b) and WKLy F VX3!Y(X,Y), there exists a unique B; € S; such that
(M, S;) E (A, B;) for each i = 1,2. By (c), for any n € M,

ne€ B < (MS)EIW (A, Y)AneY)
& (M,S2) Y (p(A,Y)AneEY)
S n € By

Therefore, By = By and thus B; € S; NSy. From (a), By € Recm(A). Since (M, S) is a
model of RCAg and B; € S, (M, S) =3Y p(A,Y), a contradiction. a
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In the following, we will introduce several new concepts such as a generic sequence, to
proceed with the proof of Lemma 4.2.

First, let us consider 9 = (M, S) as a countable nonstandard model of WKL, 3. Take any
A € S and consider the formulas involving it. If (X, A) is a I1{ formula with a unique free
variable X and a parameter A, the set {X € S| M = (X, A)} is called a H?’A class in

M. Note that aset PC S isa H?’A class iff there exists a binary tree T C 2<M recursive
in A such that P = [T]. Here, [T represents the set of all infinite paths through a tree T.

From now on, the display of parameter A is omitted due to complexity in description. By
(P. | e € M), we denote a computable enumeration of all II{ classes. Formally, using the
I19 satisfaction predicate Satro(z, X), we define it as: for any e € M, X € S,

X € P. & M |= Satypo (e, X).

We also write P.(X) for X € P..

3Note that in the claim of Lemma 4.2, M = (M, S) was a countable nonstandard model of RCAy.
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Definition 4.3
For an M-finite subset p C M x M<M (denoted as p Cg,n M x M<M) 4. a sequence of
sets (X,, | n € M) meets p, if for every (e, (n1,--- ,nk)) € p,

an@"'@Xnk GPm

where X,,, @ --- @ X,,, = {(z,1) |z € X;,, } U{(x,2) |z € Xy, }-- - U{(z, k) |z € X, }
The condition X,,, @ --- @ X,,, € P, is also expressed as P,(X,,,, -+, Xpn,).

Definition 4.4
Define a p.o. set (P, <) as follows:

PP = {p Can M x M<M | there exists (X,, | n € M) € SM that meets p},

and the order p < ¢ on P™ is defined as p D ¢. °

AM<M e, Seqm, includes all M-finite sequences from M.
5The reason why the order is the reverse inclusion is that when ¢ C p, p has more conditions, hence
fewer sequences meet it.
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rephrased as the existence of an infinite path in an infinite tree, since the part
“(something) meets p" is a 119 condition. Thus by compactness, the whole condition can

§4 STY Theorem 0
be expressed by a IIj formula.

Furthermore, p(Cg, M x M<M) can be considered an element of M, so P can be
regarded as a I} subset of M.

Henceforth, unless otherwise stated, P™ will simply be referred to as P.

A sequence (G,, | n € M) is said to be a generic sequence if for any dense subset
D € Def(9M) of P, there exists a p € D that (G,, | n € M) meets. ©

5Even if some G, does not belong to S, the definition remains valid as long as their existence does not
violate the E? induction.



Thank you for your attention!
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