K. Tanaka

Self-Embeddin Theorem

§4 STY Theorem

Logic and Foundations II

Part 8. Second order arithmetic and non-standard methods

Kazuyuki Tanaka

BIMSA

June 6, 2024

K. Tanaka

Self-Embeddin Theorem

4 STY Theorem

Logic and Foundations II

- Part 5. Models of first-order arithmetic (continued) (5 lectures)
- Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)
- Part 7. Real analysis and reverse mathematics (8.5 lectures)
- Part 8. Second order arithmetic and non-standard methods (6.5 lectures)

- Part 8. Schedule

- May 21, (0) Introduction to forcing
- May 23, (1) Harrington's conservation result on WKL_0
- May 28, (2) H.Friedman's conservation result on WKL₀
- May 30, (3) Friedman's result (continued) and a self-embedding theorem I
- June 04, (4) A self-embedding theorem II
- June 06, (5) A self-embedding theorem III and STY theorem I
- June 11, (6) STY theorem II

K. Tanaka

Self-Embedding Theorem

4 STY Theorem

Theorem 3.1 (Self-Embedding Theorem)

Let $\mathfrak{M} = (M, S)$ be a countable model of WKL₀ with $M \neq \omega$. Then, there exists a proper initial segment I of M such that $\mathfrak{M} \lceil I = (I, S \lceil I)$ is isomorphic to \mathfrak{M} . Here, $S \lceil I = \{X \cap I \mid X \in S\}$.

We first prove the following lemma, which will be frequently used later.

Lemma 3.2 (Compactness in WKL₀)

(1) For any Π^0_1 formula $\varphi(X),$ there exists a Π^0_1 formula $\hat{\varphi}$ such that WKL_0 proves:

 $\hat{\varphi} \leftrightarrow \exists X \, \varphi(X).$

 $(2)~~{\rm For}~{\rm any}~\Pi^0_1~{\rm formula}~\varphi(k,X),~{\rm WKL}_0~{\rm proves:}$

 $\forall n \, \exists X \, \forall k < n \, \varphi(k, X) \rightarrow \exists X \, \forall k \, \varphi(k, X).$

K. Tanaka

Self-Embedding Theorem We define $G - \Sigma_1^0$ formulas or simply G formulas by generalizing Σ_1^0 formulas as follows. The G formulas are obtained from Σ_1^0 formulas by using \land, \lor , bounded universal quantifier $\forall x < y$ and unbounded existential quantifier $\exists x$, and set quantifiers $\forall X, \exists X$. In WKL₀, we can prove that a G formula is equivalent to a Σ_1^0 formula.

Definition 3.3 (G formulas in RCA₀)

A sequence $G_0 \subset G_1 \subset G_2 \subset \cdots$ of sets of \mathcal{L}^2_{OR} -formulas is defined inductively modulo 4 as follows: for each $e \in \mathbb{N}$,

$$\begin{split} G_0 &= \{ \text{finite disjunctions } (\vee) \text{ of atomic formulas or their negations} \}, \\ G_{4e+1} &= \{ \exists x \, \phi \mid \phi \text{ is a finite conjunction } (\wedge) \text{ of } G_{4e} \text{ formulas} \} \cup G_{4e}, \\ G_{4e+2} &= \{ \forall x < y \, \phi \mid \phi \text{ is a finite disjunction } (\vee) \text{ of } G_{4e+1} \text{ formulas} \} \cup G_{4e+1}, \\ G_{4e+3} &= \{ \exists X \, \phi \mid \phi \text{ is a finite conjunction } (\wedge) \text{ of } G_{4e+2} \text{ formulas} \} \cup G_{4e+2}, \\ G_{4e+4} &= \{ \forall X \, \phi \mid \phi \text{ is a finite disjunction } (\vee) \text{ of } G_{4e+3} \text{ formulas} \} \cup G_{4e+3}. \end{split}$$

Finally, we set $\mathbf{G} = \bigcup_{e \in \mathbb{N}} G_e$. The formulas in G are called G formulas.

In the following, we will define Sat for G formulas.

K. Tanaka

Self-Embedding Theorem

§4 STY Theorem

From now on, a structure $\mathfrak{M} = (M,S)$ is denoted by V. Then, for each $p \in M$, let $M_p = \{a \in M \mid \mathfrak{M} \models a < p\}, \ S_p = \{X \cap M_p \mid X \in S\}$ and $V_p = (M_p, S_p).$

For any formula φ in \mathcal{L}^2_{OR} , let φ^{V_p} be a formula obtained by restricting the ranges of variables to $V_p = (M_p, S_p)$. More precisely, in φ^{V_p} , quantification over numbers is bounded by p, and quantification over sets is also considered as ranging binary sequences of length p, which can be coded by numbers $< 2^p$. So, φ^{V_p} can be regarded as a Δ^0_1 formula in V. Thus, by using $\operatorname{Sat}_{\Sigma^0_1}$, we define the satisfaction predicate $\operatorname{Sat}^p(z,\xi)$ as follows:

$$\mathsf{Sat}^{\mathbf{p}}(\ulcorner \varphi \urcorner, \xi) \equiv \mathsf{Sat}_{\Sigma_1^0}(\ulcorner \varphi^{V_p \urcorner}, \xi \upharpoonright V_p), \text{ i.e., } \varphi(\xi)^{V_p}.$$

Here, ξ is a finite function that assigns elements of $M_p \cup S_p$ to free variables in φ , and $\xi \upharpoonright V_p$ is the assignment obtained from ξ by restricting its values to V_p .

We also remark that a variable z in $\operatorname{Sat}^p(z,\xi)$ can potentially express a non-standard number. In V, we can verify that Sat^p satisfies Tarski's truth definition clauses (cf. Theorem IV.2.26 in [P. Hájek and P. Pudlák, *Metamathematics of First-oder Arithmetic*, Springer, 1993.]).

K. Tanaka

Self-Embedding Theorem

§4 STY Theorem

Next, we define the satisfaction relation for G formulas as follows:

Definition 3.4

For each $z \in G$, define the satisfaction relation $Sat(z, \xi)$ as follows:

 $\operatorname{Sat}(z,\xi) \leftrightarrow \exists p \operatorname{Sat}^p(z,\xi \upharpoonright V_p).$

For simplicity, we abbreviate $\operatorname{Sat}^p(z, \xi \upharpoonright V_p)$ as $\operatorname{Sat}^p(z, \xi)$. In the following, we identify a formula with its code.

Lemma 3.5

In a model V of $\mathsf{WKL}_0\text{, }\operatorname{Sat}(z,\xi)$ satisfies Tarski's truth definition clauses for G formulas.

Proof idea. In fact, if z is Σ_1^0 , $\operatorname{Sat}(z,\xi) \Leftrightarrow \exists p \operatorname{Sat}^p(z,\xi) \Leftrightarrow \exists p z(\xi)^{V_p} \Leftrightarrow z(\xi)$. The critical case is $z = \forall X z'$ (where z' is a G formula).

$$\begin{aligned} \operatorname{Sat} \left(\forall X \, z', \xi \right) &\Leftrightarrow \exists p \operatorname{Sat}^p \left(\forall X \, z', \xi \right) \Leftrightarrow \exists p \, \forall U \operatorname{Sat}^p \left(z', \xi \cup \{(X, U)\} \right) \\ &\Leftrightarrow \forall U \, \exists p \operatorname{Sat}^p \left(z', \xi \cup \{(X, U)\} \right) \quad (\Leftarrow \text{ by compactness (Lemma 3.2(2))}) \\ &\Leftrightarrow \forall U \operatorname{Sat} \left(z', \xi \cup \{(X, U)\} \right), \end{aligned}$$

where $\xi \cup \{(X, U)\}$ is an extension of ξ with X assigned to U.

K. Tanaka

Self-Embedding Theorem

Lemma 3.6

In a model V = (M, S) of WKL₀, we fix any $e \in M$ and an *M*-finite assignment map ξ . Then, there exists a $p \in M$ such that for all G_e formulas z whose free variables all belong to the domain of ξ , then $\operatorname{Sat}(z, \xi) \Leftrightarrow \operatorname{Sat}^p(z, \xi)$ holds.

Proof. Since the domain of the assignment map ξ is M-finite, the set of G_e formulas whose free variables are in the domain of ξ is essentially M-finite (disregarding repetitions of the same formulas within a disjunction or conjunction). This fact can be demonstrated by Σ_1^0 induction on e.

Therefore, for *M*-finitely many G_e formulas z, if $\operatorname{Sat}(z,\xi)$ holds, let p_z be p such that $\operatorname{Sat}^p(z,\xi)$, or otherwise let $p_z = 0$. Then, if we put $q = \max\{p_z\}$, ¹ then we have $\operatorname{Sat}(z,\xi) \Leftrightarrow \operatorname{Sat}^q(z,\xi)$.

¹Strictly speaking, strong Σ_1^0 collection principle (S Σ_1) is used here. (Refer to Problem 1 following Lemma 1.8 in Chapter 7.)

K. Tanaka

Self-Embedding Theorem

4 STY Theorem

Definition 3.7 (reflection)

In a model V of WKL₀, for any e, p, and for two assignment maps ξ, ξ' with the same domain, the relation $\operatorname{Ref}_{e}^{p}(\xi, \xi')$ is defined as follows:

 $\operatorname{Sat}(z,\xi) \Rightarrow \operatorname{Sat}^p(z,\xi')$, for each G_e formula z with free variables in the domain of ξ .

Lemma 3.8

In a model V of WKL₀, supposing $\operatorname{Ref}_{e}^{p}(\xi,\xi')$ with M-finite ξ,ξ' , the following holds:

- (1) If e = 4d + 1, $\forall a \exists a' , where <math>y$ is a variable not in the domain of ξ .
- (2) If e = 4d + 2, for each numerical variable x belonging to ξ , $\forall a' < \xi'(x) \exists a < \xi(x) \operatorname{Ref}_{e-1}^{p} (\xi \cup \{(y, a)\}, \xi' \cup \{(y, a')\})$, with y not in ξ .
- (3) If e = 4d + 3, $\forall U \exists U' \operatorname{Ref}_{e-1}^{p}(\xi \cup \{(Y, U)\}, \xi' \cup \{(Y, U')\})$, where Y is a variable not belonging to the domain of ξ .
- $(4) \ \, {\rm If} \ e=4d+4, \ \, \forall U' \ \, \exists U \, {\rm Ref}_{e-1}^p(\xi \cup \{(Y,U)\},\xi' \cup \{(Y,U')\}), \ \, {\rm with} \ \, Y \ \, {\rm not} \ \, {\rm in} \ \, \xi.$

K. Tanaka

Self-Embedding Theorem

4 STY Theorem

Proof Let V = (M, S) be a model of WKL₀, and let ξ, ξ' be *M*-finite assignments with the same domain such that $\operatorname{Ref}_{e}^{p}(\xi, \xi')$ is satisfied.

 (1) For e = 4d + 1. Show ∀a ∃a' p</sup>_{e-1}(ξ ∪ {(y, a)}, ξ' ∪ {(y, a')}). Fix any a ∈ M. Let Z be the set of all codes of G_{e-1} formulas z satisfying Sat(z, ξ ∪ {(y, a)}) and in a non-redundant form (i.e., no same formula is repeated in disjunctions or conjunctions), whose free variables are either y or belong to the domain of ξ. According to the argument in the proof of Lemma 3.6, this set Z is M-finite within V. Thus, by (bounded Σ⁰₁-CA) (Lemma 7.1.8), Z exists.

Now, consider a G_e -formula $z' = \exists y \bigwedge_{z \in Z} z$. Since $\operatorname{Sat}(z, \xi \cup \{(y, a)\})$ for each $z \in Z$, it follows from Lemma 3.5 that $\operatorname{Sat}(\bigwedge_{z \in Z} z, \xi \cup \{(y, a)\})$ and so $\operatorname{Sat}(z', \xi)$.

Therefore, by the hypothesis, $\operatorname{Sat}^p(z',\xi')$ holds. Thus, there exists a' < p such that $\operatorname{Sat}^p(z,\xi' \cup \{(y,a')\})$ holds for each $z \in Z$, fulfilling the requirement.

(2) For e = 4d + 2. Show $\forall a' < \xi'(x) \exists a < \xi(x) \operatorname{Ref}_{e-1}^{p}(\xi \cup \{(y, a)\}, \xi' \cup \{(y, a')\})$. Fix any $a' < \xi'(x)$. To prove by contradiction, assume that for any $a < \xi(x)$ there exists a G_{e-1} formula z such that $\operatorname{Sat}(z, \xi \cup \{(y, a)\})$ and $\neg \operatorname{Sat}^{p}(z, \xi' \cup \{(y, a')\})$. Let Z be the set of all $z \in G_{e-1}$ satisfying $\neg \operatorname{Sat}^{p}(z, \xi' \cup \{(y, a')\})$ and in a non-redundant form, whose free variables are either y or belong to the domain of ξ .

K. Tanaka

Self-Embedding Theorem (2) (continued) Like in case (1), Z exists by (bounded Σ_1^0 -CA). Consider a G_e formula $z' = \forall y < x \bigvee_{z \in Z} z$. By the other assumption, for each $a < \xi(x)$, there exists $z \in Z$ such that $\operatorname{Sat}(z, \xi \cup \{(y, a)\})$, so $\operatorname{Sat}(z', \xi)$ holds.

Therefore, by the hypothesis, $\operatorname{Sat}^p(z',\xi')$ holds. Thus for each $a' < \xi'(x)$, there exists $z \in Z$ such that $\operatorname{Sat}^p(z,\xi' \cup \{(y,a')\})$, which contradicts the definition of Z.

- (3) For e = 4d + 3. $\forall U \exists U' \operatorname{Ref}_{e-1}^{p}(\xi \cup \{(Y, U)\}, \xi' \cup \{(Y, U')\})$ can be shown like (1).
- (4) For e = 4d + 4. Show ∀U' ∃U Ref^p_{e-1}(ξ ∪ {(Y,U)}, ξ' ∪ {(Y,U')}). Fix any U'. Let Z be the set of z ∈ G_{e-1} satisfying ¬Sat^p(z, ξ' ∪ {(Y,U')}) and in a non-redundant form, whose free variables are either y or belong to the domain of ξ. Consider a G_e formula z' = ∀Y ∨_{z∈Z} z. By contradiction, assume for each U, there exists z ∈ Z such that Sat(z, ξ ∪ {(Y,U)}). Thus, Sat(z', ξ) holds, and by the hypothesis, Sat^p(z', ξ') holds, which contradicts the definition of Z.

Thus, the proof is complete.

K. Tanaka

Self-Embedding Theorem

§4 STY Theorem

Theorem 3.1 (Self-Embedding Theorem)

Let $\mathfrak{M} = (M, S)$ be a countable model of WKL₀ with $M \neq \omega$. Then, there exists a proper initial segment I of M such that $\mathfrak{M} \lceil I = (I, S \lceil I)$ is isomorphic to \mathfrak{M} .

Proof Let V = (M, S) be a countable nonstandard model of WKL₀, and fix $q \in M$. Since V_q is *M*-finite within *V*, we can also make an *M*-finite mapping ξ_0 that assigns each number and set in V_q to distinct variables.

Now, take any nonstandard number $e \in M$. By Lemma 3.6, for any G_e -formula z whose free variables belong to the domain of ξ_0 , there exists p such that $\operatorname{Sat}(z,\xi_0) \Leftrightarrow \operatorname{Sat}^p(z,\xi_0)$ holds.

In the following, by repeatedly using Lemma 3.8 (the back-and-forth method), we construct two ω -sequences of assignment mappings $\xi_0 \subseteq \xi_1 \subseteq \cdots \subseteq \xi_k \subseteq \ldots$ and $\xi'_0 (=\xi_0) \subseteq \xi'_1 \subseteq \cdots \subseteq \xi'_k \subseteq \ldots (k \in \omega)$, where $\operatorname{Ref}_{e-k}^p(\xi_k, \xi'_k)$ holds for all $k \in \omega$, and $\bigcup_k \operatorname{range}(\xi_k) = V$ and $\bigcup_k \operatorname{range}(\xi'_k)$ forms the desired initial segment of the model V.

To begin with, we enumerate the elements of V as $M = \{a_i \mid i \in \omega\}$, $S = \{U_i \mid i \in \omega\}$. We inductively construct ξ_k, ξ'_k with the same domain $(k \in \omega)$ by cases:

(i) For e - k = 4d + 1. Let a be the element a_i in $M - \operatorname{range}(\xi_k)$ with the smallest index i, and let a' < p be obtained by Lemma 3.8(1). Then, let y be a new numerical variable not in the domain of ξ_k , and set $\xi_{k+1} = \xi_k \cup \{(y, a)\}, \ \xi'_{k+1} = \xi_k \cup \{(y, a')\}.$

K. Tanaka

Self-Embedding Theorem

4 STY Theorem

- (ii) For e k = 4d + 2. Let $\xi'_k(x_0)$ be the largest in the order in M among all $\xi'_k(x)$'s. Then, let a' be the element a_i in $M - \operatorname{range}(\xi'_k)$ and satisfying $a_i < \xi'_k(x_0)$ with the smallest index i, and let $a < \xi(x_0)$ be obtained by Lemma 3.8(2). Then, let y be a new numerical variable, and set $\xi_{k+1} = \xi_k \cup \{(y,a)\}, \ \xi'_{k+1} = \xi_k \cup \{(y,a')\}.$
- (iii) For e k = 4d + 3. Let U be $U_i \in S$ with the smallest index i, that is different from any set in range (ξ_k) with regards to the numbers in range (ξ_k) . Also, let U' be obtained by Lemma 3.8(3). Then, let Y be a new set variable, and set $\xi_{k+1} = \xi_k \cup \{(Y,U)\}, \ \xi'_{k+1} = \xi_k \cup \{(Y,U')\}.$
- (iv) For e k = 4d + 4. Let U' be $U_i \in S$, with the smallest index i, that is different from any set in range (ξ'_k) with regards to the numbers in range (ξ'_k) . Also, let U be obtained by Lemma 3.8(4). Then, let Y be a new set variable, and set $\xi_{k+1} = \xi_k \cup \{(Y,U)\}, \ \xi'_{k+1} = \xi'_k \cup \{(Y,U')\}$

From the above construction, it is easy to see that $\operatorname{Ref}_{e-k}^p(\xi_k,\xi'_k)$ holds for each $k \in \omega$.

From (i) and (iii), it is obvious that $\bigcup_k \operatorname{range}(\xi_k) = (M, S)$. Also, from (ii), we can easily see that the set I consisting of a belonging to $\bigcup_k \operatorname{range}(\xi'_k)$ forms an initial segment of M. Then, from (iv) it follows that $\bigcup_k \operatorname{range}(\xi'_k) = (I, S | I)$.

K. Tanaka

Self-Embedding Theorem

4 STY Theorem

Next, we prove by induction that both ξ_k, ξ'_k are injective for all $k \in \omega$. It is clear from the definition that $\xi_0 = \xi'_0$ is injective.

In (i), we first extend the injective mapping ξ_k to an injective ξ_{k+1} , and then extend the injective ξ'_k to a mapping ξ'_{k+1} that satisfies $\operatorname{Ref}_{e-k-1}^p(\xi_{k+1},\xi'_{k+1})$. The injectivity of ξ_{k+1} is clear from the construction. Since the injectivity is expressed by a G_2 formula, ξ'_{k+1} is also injective.

Similarly for (ii), (iii) and (iv).

Thus, $\bigcup_k \xi_k$ and $\bigcup_k \xi'_k$ are also injective. Let $f = (\bigcup_k \xi'_k) \circ (\bigcup_k \xi_k)^{-1}$, which becomes a bijection from V to $V \lceil I$. It is evident that f acts as the identity map on V_q . Furthermore, since $\operatorname{Ref}_0^p(\xi_k, \xi'_k)$ holds for each $k \in \omega$, it is clear that f is an isomorphism. Thus, the proof of the theorem is complete. \Box

K. Tanaka

Self-Embedding Theorem

§4 STY Theorem

Let's briefly describe how the Self-Embedding Theorem 3.1 can be applied to nonstandard analysis.

• According to Gödel's completeness theorem and compactness theorem,

 $\mathsf{WKL}_0 \vdash \varphi \Leftrightarrow \mathsf{for any non-}\omega \mathsf{ model } \mathfrak{M} \mathsf{ of } \mathsf{WKL}_0, \mathfrak{M} \models \varphi.$

• Since any infinite structure has an elementarily equivalent countable structure by the Löwenheim-Skolem Theorem,

 $\mathsf{WKL}_0 \vdash \varphi \Leftrightarrow \mathsf{for any countable non-}\omega \mod \mathfrak{M} \mathsf{ of } \mathsf{WKL}_0, \mathfrak{M} \models \varphi.$

- Choose a countable non-ω model M = (M, S) of WKL₀. Theorem 3.1 states that M has an initial segment isomorphic to itself. But by swapping their roles of M and an isomorphic initial segment, M is seen to have an isomorphic end-extension
 *M = (*M, *S), which allows us to carry out some nonstandard analysis arguments.
- For example, in $\mathfrak{M} = (M, S)$, a real number a is indeed a set in S. Thus, a is an initial segment $*a\lceil M$ of some set $*a \in *S$. Since *a may be taken bounded in $*\mathfrak{M}$, it can be coded by an element of *M. Therefore, a real number in \mathfrak{M} can be treated like a rational number in $*\mathfrak{M}$.

K. Tanaka

Self-Embedding Theorem

§4 STY Theorem

Application (The Maximum Principle)

 $\mathsf{WKL}_0 \vdash \mathsf{Any} \text{ continuous function } f: [0,1] \to [0,1]$ has a maximum value.

Proof.

Other Applications

Logic and Foundations

K. Tanaka

Self-Embedding Theorem

§4 STY Theorem

$\mathsf{WKL}_0 \vdash$ The Cauchy-Peano Theorem (Tanaka, 1997)

$\mathsf{WKL}_0 \vdash \text{ The existence of Haar measure for a compact group} \\ (\mathsf{Tanaka}\text{-}\mathsf{Yamazaki, 2000})$

WKL₀ \vdash The Jordan curve theorem (Sakamoto-Yokoyama, 2007)

K. Tanaka

Self-Embedding Theorem

§4 STY Theorem

§4. STY Theorem

In §1, we proved Harrington's theorem that WKL_0 is conservative over RCA_0 with respect to Π_1^1 sentences. The proof utilized the tree forcing argument.

The STY theorem, standing for Simpson-T.-Yamazaki, extends Harrington's conservation result to the class of senteces in the form $\forall X \exists ! Y \varphi(X, Y)$ (where $\varphi(X, Y)$ is arithmetic)²

In the original proof of the STY theorem, the forcing argument over so-called universal trees is devised to enable the construction of models with stronger properties. However, due to its technical complexity, we here adopt a new method of **symmetric models** composed of generic set sequences, also introduced by Simpson (2000).

²A formula in this form is called "Tanaka" and a formula obtained from Tanaka formulas applying $\lor, \land, \forall x, \exists y$ and $\forall X$ is called "G-Tanaka." Shore (JSL 2023) further extended the conservation to the G-Tanaka formulas.

K. Tanaka

Self-Embedding Theorem

§4 STY Theorem

Theorem 4.1 (STY theorem)

For any sentence σ in the form $\forall X \exists ! Y \varphi(X,Y)$ (where $\varphi(X,Y)$ is arithmetic),

 $\mathsf{WKL}_0 \vdash \sigma \Rightarrow \mathsf{RCA}_0 \vdash \sigma,$

where $\exists ! Y \varphi(X, Y)$ means $\exists Y \varphi(X, Y) \land \forall Y_1 \forall Y_2 (\varphi(X, Y_1) \land \varphi(X, Y_2) \rightarrow Y_1 = Y_2).$

A key to the proof of this theorem is the following lemma.

Lemma 4.2

Let $\mathfrak{M} = (M, S)$ be a countable nonstandard model of RCA₀ with $A \in S$. Then, there exist sets S_1 and S_2 satisfying the following conditions:

- 1. $S_1 \cap S_2 = \mathsf{Rec}^{\mathfrak{M}}(A) = \{X \subseteq M \mid \mathfrak{M} \models X \leq_T A\}$
- 2. $(M, S_i) \models \mathsf{WKL}_0$, for i = 1, 2.
- 3. (M, S_1) and (M, S_2) satisfies the same sentences in $\mathcal{L}_2(M \cup \{A\})$.

K. Tanaka

Self-Embedding Theorem

§4 STY Theorem

In the above lemma, it is not necessary that S contains $S_1 \cup S_2$. Also, since elements of S other than A are not essentially used, it is sufficient for the lemma that $(M, \{A\})$ is a countable model of Σ_1^0 induction. We first assume the lemma to prove the main theorem.

Proof of Theorem 4.1 Suppose WKL₀ $\vdash \forall X \exists ! Y \varphi(X, Y)$ with an arithmetic formula $\varphi(X, Y)$. For contradiction, assume RCA₀ $\nvDash \forall X \exists ! Y \varphi(X, Y)$. By the completeness theorem, there exists a countable model $\mathfrak{M} = (M, S)$ of RCA₀ such that

 $(M,S) \models \neg \forall X \exists ! Y \varphi(X,Y).$

Consequently, there exists some $A \in S$ such that either

(i)
$$(M,S) \models \exists Y_1 \exists Y_2(\varphi(A,Y_1) \land \varphi(A,Y_2) \land Y_1 \neq Y_2)$$
, or

(ii) $(M, S) \models \forall Y \neg \varphi(A, Y).$

Case (i) There exist $B_1, B_2 \in S$ such that $(M, S) \models \varphi(A, B_1) \land \varphi(A, B_2) \land B_1 \neq B_2$. By Lemma 1.9 (Harrington's lemma), there exists $S' \supseteq S$ such that $(M, S') \models \mathsf{WKL}_0$. Since (M, S) and (M, S') agree on first-order parts, they validate the same arithmetic formulas. Hence, $(M, S') \models \varphi(A, B_1) \land \varphi(A, B_2) \land B_1 \neq B_2$. However, since $\mathsf{WKL}_0 \vdash \forall X \exists ! Y \varphi(X, Y)$, we have $(M, S') \models \forall X \exists ! Y \varphi(X, Y)$, a contradiction.

K. Tanaka

Self-Embeddin Theorem

§4 STY Theorem

Case (ii) By Lemma 4.2, there exist sets S_1 and S_2 such that (a) $S_1 \cap S_2 = \operatorname{Rec}^{\mathfrak{M}}(A)$, (b) $(M, S_i) \models \mathsf{WKL}_0$, (c) (M, S_1) and (M, S_2) satisfy the same sentences of $\mathcal{L}_2(M \cup \{A\})$. From (b) and $\mathsf{WKL}_0 \vdash \forall X \exists ! Y \varphi(X, Y)$, there exists a unique $B_i \in S_i$ such that $(M, S_i) \models \varphi(A, B_i)$ for each i = 1, 2. By (c), for any $n \in M$, $n \in B_1 \Leftrightarrow (M, S_1) \models \exists Y(\varphi(A, Y) \land n \in Y)$

$$a \in B_1 \Leftrightarrow (M, S_1) \models \exists Y (\varphi(A, Y) \land n \in Y) \\ \Leftrightarrow (M, S_2) \models \exists Y (\varphi(A, Y) \land n \in Y) \\ \Leftrightarrow n \in B_2$$

Therefore, $B_1 = B_2$ and thus $B_1 \in S_1 \cap S_2$. From (a), $B_1 \in \text{Rec}^{\mathfrak{M}}(A)$. Since (M, S) is a model of RCA₀ and $B_1 \in S$, $(M, S) \models \exists Y \varphi(A, Y)$, a contradiction.

K. Tanaka

Self-Embedding Theorem

§4 STY Theorem

In the following, we will introduce several new concepts such as a generic sequence, to proceed with the proof of Lemma 4.2.

First, let us consider $\mathfrak{M} = (M, S)$ as a countable nonstandard model of WKL₀³. Take any $A \in S$ and consider the formulas involving it. If $\varphi(X, A)$ is a Π_1^0 formula with a unique free variable X and a parameter A, the set $\{X \in S \mid \mathfrak{M} \models \varphi(X, A)\}$ is called a $\Pi_1^{0,A}$ class in \mathfrak{M} . Note that a set $P \subseteq S$ is a $\Pi_1^{0,A}$ class iff there exists a binary tree $T \subseteq 2^{\leq M}$ recursive in A such that P = [T]. Here, [T] represents the set of all infinite paths through a tree T.

From now on, the display of parameter A is omitted due to complexity in description. By $\langle P_e \mid e \in M \rangle$, we denote a computable enumeration of all Π_1^0 classes. Formally, using the Π_1^0 satisfaction predicate $\operatorname{Sat}_{\Pi_1^0}(x, X)$, we define it as: for any $e \in M, X \in S$,

 $X \in P_e \Leftrightarrow \mathfrak{M} \models \operatorname{Sat}_{\Pi_1^0}(e, X).$

We also write $P_e(X)$ for $X \in P_e$.

³Note that in the claim of Lemma 4.2, $\mathfrak{M} = (M, S)$ was a countable nonstandard model of RCA₀.

K. Tanaka

Self-Embedding Theorem

§4 STY Theorem

Definition 4.3

For an *M*-finite subset $p \subseteq M \times M^{< M}$ (denoted as $p \subseteq_{\text{fin}} M \times M^{< M}$)⁴, a sequence of sets $\langle X_n \mid n \in M \rangle$ meets p, if for every $(e, \langle n_1, \cdots, n_k \rangle) \in p$,

$$X_{n_1} \oplus \cdots \oplus X_{n_k} \in P_e,$$

where $X_{n_1} \oplus \cdots \oplus X_{n_k} = \{(x, 1) \mid x \in X_{n_1}\} \cup \{(x, 2) \mid x \in X_{n_2}\} \cdots \cup \{(x, k) \mid x \in X_{n_k}\}.$ The condition $X_{n_1} \oplus \cdots \oplus X_{n_k} \in P_e$ is also expressed as $P_e(X_{n_1}, \cdots, X_{n_k}).$

Definition 4.4

Define a p.o. set $(\mathbb{P}^{\mathfrak{M}},\leq)$ as follows:

 $\mathbb{P}^{\mathfrak{M}} = \{ p \subseteq_{\text{fin}} M \times M^{< M} \mid \text{there exists } \langle X_n \mid n \in M \rangle \in S^M \text{ that meets } p \},\$

and the order $p\leq q$ on $\mathbb{P}^{\mathfrak{M}}$ is defined as $p\supseteq q.$ $^{\mathbf{5}}$

 $^{{}^{4}}M^{< M}$, i.e., Seq^{\mathfrak{M}}, includes all *M*-finite sequences from *M*.

⁵The reason why the order is the reverse inclusion is that when $q \subseteq p$, p has more conditions, hence fewer sequences meet it.

K. Tanaka

Self-Embeddin Theorem

§4 STY Theorem

In WKL₀, the condition that "there exists $\langle X_n \mid n \in M \rangle \in S^M$ that meets p" can be rephrased as the existence of an infinite path in an infinite tree, since the part "(something) meets p" is a Π_1^0 condition. Thus by compactness, the whole condition can be expressed by a Π_1^0 formula.

Furthermore, $p(\subseteq_{\text{fin}} M \times M^{< M})$ can be considered an element of M, so $\mathbb{P}^{\mathfrak{M}}$ can be regarded as a Π_1^0 subset of M.

Henceforth, unless otherwise stated, $\mathbb{P}^{\mathfrak{M}}$ will simply be referred to as \mathbb{P} .

A sequence $\langle G_n \mid n \in M \rangle$ is said to be a **generic sequence** if for any dense subset $D \in \text{Def}(\mathfrak{M})$ of \mathbb{P} , there exists a $p \in D$ that $\langle G_n \mid n \in M \rangle$ meets.⁶

⁶Even if some G_n does not belong to S, the definition remains valid as long as their existence does not violate the Σ_1^0 induction.

K. Tanaka

Self-Embedding Theorem

§4 STY Theorem

Thank you for your attention!