K. Tanaka

[Self-Embedding](#page-2-0) Theorem

§[4 STY Theorem](#page-16-0)

Logic and Foundations II Part 8. Second order arithmetic and non-standard methods

Kazuyuki Tanaka

BIMSA

June 6, 2024

K. Tanaka

[Self-Embedding](#page-2-0) Theorem

§[4 STY Theorem](#page-16-0)

Logic and Foundations II

- Part 5. Models of first-order arithmetic (continued) (5 lectures)
- Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)
- Part 7. Real analysis and reverse mathematics (8.5 lectures)
- Part 8. Second order arithmetic and non-standard methods (6.5 lectures)

✒ ✑ Part 8. Schedule

- May 21, (0) Introduction to forcing
- May 23, (1) Harrington's conservation result on WKL_0
- May 28, (2) H. Friedman's conservation result on WKL_0
- May 30, (3) Friedman's result (continued) and a self-embedding theorem I

✒ ✑

- June 04, (4) A self-embedding theorem II
- June 06, (5) A self-embedding theorem III and STY theorem I
- June 11, (6) STY theorem II

K. Tanaka

[Self-Embedding](#page-2-0) Theorem

§[4 STY Theorem](#page-16-0)

Theorem 3.1 (Self-Embedding Theorem)

Let $\mathfrak{M} = (M, S)$ be a countable model of WKL₀ with $M \neq \omega$. Then, there exists a proper initial segment I of M such that $\mathfrak{M}[I=(I, S[I])]$ is isomorphic to \mathfrak{M} . Here, $S[I = \{X \cap I \mid X \in S\}.$

We first prove the following lemma, which will be frequently used later.

Lemma 3.2 (Compactness in WKL_0)

 (1) For any Π^0_1 formula $\varphi(X)$, there exists a Π^0_1 formula $\hat{\varphi}$ such that WKL_0 proves:

 $\hat{\varphi} \leftrightarrow \exists X \varphi(X).$

(2) For any Π^0_1 formula $\varphi(k,X)$, WKL₀ proves:

 $\forall n \exists X \forall k < n \varphi(k, X) \rightarrow \exists X \forall k \varphi(k, X).$

K. Tanaka

[Self-Embedding](#page-2-0) Theorem

§[4 STY Theorem](#page-16-0)

We define $G\text{-}\Sigma_1^0$ formulas or simply G formulas by generalizing Σ_1^0 formulas as follows. The G formulas are obtained from Σ^0_1 formulas by using \wedge, \vee , bounded universal quantifier $\forall x \leq y$ and unbounded existential quantifier $\exists x$, and set quantifiers $\forall X, \exists X$. In WKL $_0$, we can prove that a G formula is equivalent to a Σ^0_1 formula.

Definition 3.3 (G formulas in RCA_0)

A sequence $G_0\subset G_1\subset G_2\subset \cdots$ of sets of $\mathcal{L}^2_{\rm OR}$ -formulas is defined inductively modulo 4 as follows: for each $e \in \mathbb{N}$,

 $G_0 = \{\text{finite disjunctions }(\vee) \text{ of atomic formulas or their negations}\},\$ $G_{4e+1} = \{ \exists x \phi \mid \phi \text{ is a finite conjunction } (\wedge) \text{ of } G_{4e} \text{ formulas} \} \cup G_{4e},$ $G_{4e+2} = \{ \forall x \leq y \phi \mid \phi \text{ is a finite disjunction (V) of } G_{4e+1} \text{ formulas} \} \cup G_{4e+1},$ $G_{4e+3} = \{ \exists X \phi \mid \phi \text{ is a finite conjunction } (\wedge) \text{ of } G_{4e+2} \text{ formulas} \} \cup G_{4e+2},$ $G_{4e+4} = \{ \forall X \phi \mid \phi \text{ is a finite disjunction } (\vee) \text{ of } G_{4e+3} \text{ formulas} \} \cup G_{4e+3}.$

Finally, we set $\mathbf{G} = \bigcup_{e \in \mathbb{N}} G_e$. The formulas in G are called G formulas.

In the following, we will define Sat for G formulas.

K. Tanaka

[Self-Embedding](#page-2-0) Theorem

§[4 STY Theorem](#page-16-0)

From now on, a structure $\mathfrak{M} = (M, S)$ is denoted by V. Then, for each $p \in M$, let $M_p = \{a \in M \mid \mathfrak{M} \models a < p\}, S_p = \{X \cap M_p \mid X \in S\}$ and $V_p = (M_p, S_p)$.

For any formula φ in ${\cal L}_{\rm OR}^2$, let φ^{V_p} be a formula obtained by restricting the ranges of variables to $V_p=(M_p,S_p).$ More precisely, in φ^{V_p} , quantification over numbers is bounded by p , and quantification over sets is also considered as ranging binary sequences of length p , which can be coded by numbers $< 2^p$. So, φ^{V_p} can be regarded as a Δ_1^0 formula in $V.$ Thus, by using $\mathsf{Sat}_{\Sigma_1^0}$, we define the $\mathsf{satisfactor\, predicate}\ \mathsf{Sat}^p(z,\xi)$ as follows:

$$
\mathsf{Sat}^{\mathbf{p}}(\ulcorner\varphi\urcorner,\xi)\equiv \mathsf{Sat}_{\Sigma_1^0}(\ulcorner\varphi^{V_p}\urcorner,\xi\upharpoonright V_p),\ \ \text{i.e.,}\ \varphi(\xi)^{V_p}.
$$

Here, ξ is a finite function that assigns elements of $M_p \cup S_p$ to free variables in φ , and $\xi \restriction V_p$ is the assignment obtained from ξ by restricting its values to V_p .

We also remark that a variable z in $\mathsf{Sat}^p(z,\xi)$ can potentially express a non-standard number. In V , we can verify that Sat^p satisfies Tarski's truth definition clauses (cf. Theorem IV.2.26 in [P. Hájek and P. Pudlák, Metamathematics of First-oder Arithmetic, Springer, 1993.]).

K. Tanaka

[Self-Embedding](#page-2-0) Theorem

§[4 STY Theorem](#page-16-0)

Next, we define the **satisfaction relation for** G **formulas** as follows:

Definition 3.4

For each $z \in G$, define the satisfaction relation $\text{Sat}(z, \xi)$ as follows:

```
\text{Sat}(z,\xi) \leftrightarrow \exists p \, \text{Sat}^p(z,\xi \restriction V_p).
```
For simplicity, we abbreviate $\operatorname{Sat}^p(z,\xi\restriction V_p)$ as $\operatorname{Sat}^p(z,\xi)$. In the following, we identify a formula with its code.

Lemma 3.5

In a model V of WKL₀, $\text{Sat}(z, \xi)$ satisfies Tarski's truth definition clauses for G formulas.

Proof idea. In fact, if z is Σ_1^0 , $\text{Sat}(z,\xi) \Leftrightarrow \exists p \, \text{Sat}^p(z,\xi) \Leftrightarrow \exists p \, z(\xi)^{V_p} \Leftrightarrow z(\xi)$. The critical case is $z = \forall X z'$ (where z' is a G formula).

$$
\text{Sat}(\forall X \, z', \xi) \Leftrightarrow \exists p \, \text{Sat}^p \, (\forall X \, z', \xi) \Leftrightarrow \exists p \, \forall U \, \text{Sat}^p \, (z', \xi \cup \{(X, U)\})
$$
\n
$$
\Leftrightarrow \forall U \, \exists p \, \text{Sat}^p \, (z', \xi \cup \{(X, U)\}) \quad (\Leftrightarrow \text{ by compactness (Lemma 3.2(2)))}
$$
\n
$$
\Leftrightarrow \forall U \, \text{Sat} \, (z', \xi \cup \{(X, U)\}),
$$

where $\xi \cup \{(X,U)\}\$ is an extension of ξ with X assigned to U.

K. Tanaka

[Self-Embedding](#page-2-0) Theorem §[4 STY Theorem](#page-16-0)

Lemma 3.6

In a model $V = (M, S)$ of WKL₀, we fix any $e \in M$ and an M-finite assignment map ξ . Then, there exists a $p \in M$ such that for all G_e formulas z whose free variables all belong to the domain of ξ , then $\text{Sat}(z,\xi) \Leftrightarrow \text{Sat}^p(z,\xi)$ holds.

Proof. Since the domain of the assignment map ξ is M-finite, the set of G_e formulas whose free variables are in the domain of ξ is essentially M-finite (disregarding repetitions of the same formulas within a disjunction or conjunction). This fact can be demonstrated by Σ^0_1 induction on e .

Therefore, for M-finitely many G_e formulas z, if $\text{Sat}(z,\xi)$ holds, let p_z be p such that $\mathrm{Sat}^p(z,\xi)$, or otherwise let $p_z=0$. Then, if we put $q=\max\{p_z\}$, 1 then we have $\text{Sat}(z,\xi) \Leftrightarrow \text{Sat}^q(z,\xi).$ $(z,\xi).$

 1 Strictly speaking, strong Σ^0_1 collection principle $(\mathrm{S} \Sigma_1)$ is used here. (Refer to Problem 1 following Lemma 1.8 in Chapter 7.)

K. Tanaka

[Self-Embedding](#page-2-0) Theorem

§[4 STY Theorem](#page-16-0)

Definition 3.7 (reflection)

In a model V of WKL₀, for any e, p, and for two assignment maps ξ, ξ' with the same domain, the relation $\mathrm{Ref}_e^p(\xi, \xi')$ is defined as follows:

 $\text{Sat}(z,\xi) \Rightarrow \text{Sat}^p(z,\xi'),$ for each G_e formula z with free variables in the domain of $\xi.$

Lemma 3.8

In a model V of WKL_0 , supposing $\mathrm{Ref}_e^p(\xi, \xi')$ with M -finite ξ, ξ' , the following holds:

- (1) If $e = 4d + 1$, $\forall a \, \exists a' < p \, \text{Ref}_{e-1}^p(\xi \cup \{(y,a)\}, \xi' \cup \{(y,a')\})$, where y is a variable not in the domain of ξ .
- (2) If $e = 4d + 2$, for each numerical variable x belonging to ξ , $\forall a' < \xi'(x) \, \exists a < \xi(x) \, \text{Ref}_{e-1}^p(\xi \cup \{(y,a)\}, \xi' \cup \{(y,a')\})$, with y not in ξ .
- (3) If $e = 4d + 3$, $\forall U \exists U' \operatorname{Ref}_{e-1}^p({\xi \cup \{(Y,U)\}}, {\xi'} \cup \{(Y,U')\})$, where Y is a variable not belonging to the domain of ξ .
- (4) If $e = 4d + 4$, $\forall U' \exists U \operatorname{Ref}_{e-1}^p({\xi \cup \{(Y, U)\}}, {\xi' \cup \{(Y, U')\}})$, with Y not in ${\xi}$.

K. Tanaka

[Self-Embedding](#page-2-0) Theorem

§[4 STY Theorem](#page-16-0)

Proof Let $V = (M, S)$ be a model of WKL₀, and let ξ, ξ' be M-finite assignments with the same domain such that $\mathrm{Ref}_e^p(\xi, \xi')$ is satisfied.

(1) For $e = 4d + 1$. Show $\forall a \exists a' < p \operatorname{Ref}_{e-1}^p({\xi \cup \{(y,a)\}, \xi' \cup \{(y,a')\}})$. Fix any $a \in M$. Let Z be the set of all codes of G_{e-1} formulas z satisfying $\text{Sat}(z, \xi \cup \{(y, a)\})$ and in a non-redundant form (i.e., no same formula is repeated in disjunctions or conjunctions), whose free variables are either y or belong to the domain of ξ. According to the argument in the proof of Lemma [3.6,](#page-6-0) this set Z is M -finite within $V.$ Thus, by (bounded Σ^0_1 -CA) (Lemma 7.1.8), Z exists.

Now, consider a G_e -formula $z'=\exists y \; \bigwedge_{z\in Z} z$. Since $\text{Sat}(z,\xi\cup\{(y,a)\})$ for each $z\in Z$, it follows from Lemma [3.5](#page-5-0) that $\mathrm{Sat}(\bigwedge_{z\in Z}z,\xi\cup\{(y,a)\})$ and so $\mathrm{Sat}(z',\xi).$

Therefore, by the hypothesis, $\operatorname{Sat}^p(z',\xi')$ holds. Thus, there exists $a' < p$ such that $\operatorname{Sat}^p(z,\xi'\cup\{(y,a')\})$ holds for each $z\in Z$, fulfilling the requirement.

(2) For $e = 4d + 2$. Show $\forall a' < \xi'(x) \exists a < \xi(x) \operatorname{Ref}_{e-1}^p(\xi \cup \{(y, a)\}, \xi' \cup \{(y, a')\})$. Fix any $a' < \xi'(x)$. To prove by contradiction, assume that for any $a < \xi(x)$ there exists a G_{e-1} formula z such that $\mathrm{Sat}(z,\xi\cup\{(y,a)\})$ and $\neg \mathrm{Sat}^p(z,\xi'\cup\{(y,a')\}).$ Let Z be the set of all $z\in G_{e-1}$ satisfying $\neg \mathrm{Sat}^p(z, \xi' \cup \{(y,a')\})$ and in a non-redundant form, whose free variables are either y or belong to the domain of ξ .

K. Tanaka

[Self-Embedding](#page-2-0) Theorem

§[4 STY Theorem](#page-16-0)

 (2) (continued) Like in case (1), Z exists by (bounded Σ^0_1 -CA). Consider a G_e formula $z' = \forall y < x\,\, \bigvee_{z \in Z} z$. By the other assumption, for each $a < \xi(x)$, there exists $z \in Z$ such that $\operatorname{Sat}(z,\overline{\xi}\cup\{(y,a)\})$, so $\operatorname{Sat}(z',\xi)$ holds.

Therefore, by the hypothesis, $\operatorname{Sat}^p(z',\xi')$ holds. Thus for each $a'<\xi'(x)$, there exists $z \in Z$ such that $\operatorname{Sat}^p(z, \xi' \cup \{(y, a')\})$, which contradicts the definition of Z .

(3) For $e = 4d + 3$. $\forall U \exists U' \operatorname{Ref}_{e-1}^p({\xi \cup \{(Y,U)\}}, {\xi'} \cup \{(Y,U')\})$ can be shown like (1).

(4) For $e = 4d + 4$. Show $\forall U' \exists U \operatorname{Ref}_{e-1}^p({\xi \cup \{(Y, U)\}}, {\xi' \cup \{(Y, U')\}}).$ Fix any U' . Let Z be the set of $z\in G_{e-1}$ satisfying $\neg \text{Sat}^p(z,\xi'\cup\{(Y,U')\})$ and in a non-redundant form, whose free variables are either y or belong to the domain of ξ . Consider a G_e formula $z' = \forall Y \bigvee_{z \in Z} z$. By contradiction, assume for each U , there exists $z\in Z$ such that $\mathrm{Sat}(z,\xi\cup\{(\bar{Y},U)\})$. Thus, $\mathrm{Sat}(z',\xi)$ holds, and by the hypothesis, $\text{Sat}^p(z', \xi')$ holds, which contradicts the definition of Z.

Thus, the proof is complete. \Box

K. Tanaka

[Self-Embedding](#page-2-0) Theorem

§[4 STY Theorem](#page-16-0)

Theorem 3.1 (Self-Embedding Theorem)

Let $\mathfrak{M} = (M, S)$ be a countable model of WKL₀ with $M \neq \omega$. Then, there exists a proper initial segment I of M such that $\mathfrak{M}[I=(I, S[I])]$ is isomorphic to \mathfrak{M} .

Proof Let $V = (M, S)$ be a countable nonstandard model of WKL₀, and fix $q \in M$. Since V_q is M-finite within V, we can also make an M-finite mapping ξ_0 that assigns each number and set in V_a to distinct variables.

Now, take any nonstandard number $e \in M$. By Lemma [3.6,](#page-6-0) for any G_e -formula z whose free variables belong to the domain of ξ_0 , there exists p such that $\text{Sat}(z,\xi_0) \Leftrightarrow \text{Sat}^p(z,\xi_0)$ holds.

In the following, by repeatedly using Lemma [3.8](#page-7-0) (the back-and-forth method), we construct two ω -sequences of assignment mappings $\xi_0 \subset \xi_1 \subset \cdots \subset \xi_k \subset \ldots$ and $\xi'_0\, (= \xi_0) \subseteq \xi'_1 \subseteq \cdots \subseteq \xi'_k \subseteq \ldots ~~(k \in \omega)$, where $\mathrm{Ref}_{e-k}^p(\xi_k,\xi'_k)$ holds for all $k \in \omega$, and $\bigcup_k \text{range}(\xi_k) = V$ and $\bigcup_k \text{range}(\xi'_k)$ forms the desired initial segment of the model $V.$

To begin with, we enumerate the elements of V as $M=\{a_i\mid i\in\omega\},\,S=\{U_i\mid i\in\omega\}.$ We inductively construct ξ_k, ξ'_k with the same domain $(k \in \omega)$ by cases:

(i) For $e-k=4d+1.$ Let a be the element a_i in $M-\mathrm{range}(\xi_k)$ with the smallest index i , and let $a^{\prime} < p$ be obtained by Lemma [3.8\(](#page-7-0)1). Then, let y be a new numerical variable not in the domain of ξ_k , and set $\xi_{k+1} = \xi_k \cup \{(y,a)\}, \, \xi'_{k+1} = \xi_k \cup \{(y,a')\}.$

K. Tanaka

[Self-Embedding](#page-2-0) Theorem

§[4 STY Theorem](#page-16-0)

- (ii) For $e k = 4d + 2$. Let $\xi'_k(x_0)$ be the largest in the order in M among all $\xi'_k(x)$'s. Then, let a' be the element a_i in $M-\text{range}(\xi_k')$ and satisfying $a_i<\xi_k'(x_0)$ with the smallest index i, and let $a < \xi(x_0)$ be obtained by Lemma [3.8\(](#page-7-0)2). Then, let y be a new numerical variable, and set $\xi_{k+1} = \xi_k \cup \{(y, a)\}, \, \xi'_{k+1} = \xi_k \cup \{(y, a')\}.$
- (iii) For $e k = 4d + 3$. Let U be $U_i \in S$ with the smallest index i, that is different from any set in $\mathrm{range}(\xi_k)$ with regards to the numbers in $\mathrm{range}(\xi_k)$. Also, let U' be obtained by Lemma [3.8\(](#page-7-0)3). Then, let Y be a new set variable, and set $\xi_{k+1} = \xi_k \cup \{(Y, U)\}, \, \xi'_{k+1} = \xi_k \cup \{(Y, U')\}.$
- (iv) For $e k = 4d + 4$. Let U' be $U_i \in S$, with the smallest index i, that is different from any set in $\mathrm{range}(\xi_k')$ with regards to the numbers in $\mathrm{range}(\xi_k')$. Also, let U be obtained by Lemma [3.8\(](#page-7-0)4). Then, let Y be a new set variable, and set $\xi_{k+1} = \xi_k \cup \{(Y, U)\}, \, \xi'_{k+1} = \xi'_k \cup \{(Y, U')\}$

From the above construction, it is easy to see that $\mathrm{Ref}_{e-k}^p(\xi_k,\xi_k')$ holds for each $k\in\omega.$

From (i) and (iii), it is obvious that $\bigcup_k \mathrm{range}(\xi_k) = (M, S)$. Also, from (ii), we can easily see that the set I consisting of a belonging to $\bigcup_k \text{range}(\xi_k')$ forms an initial segment of $M.$ Then, from (iv) it follows that $\bigcup_k \mathrm{range}(\xi_k') = (I, S \lceil I).$

K. Tanaka

[Self-Embedding](#page-2-0) Theorem

§[4 STY Theorem](#page-16-0)

Next, we prove by induction that both ξ_k, ξ'_k are injective for all $k \in \omega$. It is clear from the definition that $\xi_0 = \xi_0'$ is injective.

In (i), we first extend the injective mapping ξ_k to an injective ξ_{k+1} , and then extend the injective ξ'_k to a mapping ξ'_{k+1} that satisfies ${\rm Ref}_{e-k-1}^p(\xi_{k+1},\xi'_{k+1})$. The injectivity of ξ_{k+1} is clear from the construction. Since the injectivity is expressed by a G_2 formula, ξ'_{k+1} is also injective.

Similarly for (ii), (iii) and (iv).

Thus, $\bigcup_{k} \xi_{k}$ and $\bigcup_{k} \xi'_{k}$ are also injective. Let $f=(\bigcup_k \xi'_k)\circ (\bigcup_k \xi_k)^{-1}$, which becomes a bijection from V to $V\lceil I.$ It is evident that f acts as the identity map on V_a . Furthermore, since $\mathrm{Ref}_0^p(\xi_k,\xi'_k)$ holds for each $k\in\omega$, it is clear that f is an isomorphism. Thus, the proof of the theorem is complete. \Box

K. Tanaka

[Self-Embedding](#page-2-0) Theorem

§[4 STY Theorem](#page-16-0)

Let's briefly describe how the Self-Embedding Theorem [3.1](#page-2-2) can be applied to nonstandard analysis.

• According to Gödel's completeness theorem and compactness theorem,

 $WKL_0 \vdash \varphi \Leftrightarrow$ for any non- ω model \mathfrak{M} of $WKL_0, \mathfrak{M} \models \varphi$.

• Since any infinite structure has an elementarily equivalent countable structure by the Löwenheim-Skolem Theorem.

 $WKL_0 \vdash \varphi \Leftrightarrow$ for any countable non- ω model \mathfrak{M} of $WKL_0, \mathfrak{M} \models \varphi$.

- Choose a countable non- ω model $\mathfrak{M} = (M, S)$ of WKL₀. Theorem [3.1](#page-2-2) states that \mathfrak{M} has an initial segment isomorphic to itself. But by swapping their roles of \mathfrak{M} and an isomorphic initial segment, M is seen to have an isomorphic end-extension * $\mathfrak{M} = (*M, *S)$, which allows us to carry out some nonstandard analysis arguments.
- For example, in $\mathfrak{M} = (M, S)$, a real number a is indeed a set in S. Thus, a is an initial segment $^*a[M$ of some set $^*a \in {^*S}$. Since *a may be taken bounded in $^*\mathfrak M,$ it can be coded by an element of *M . Therefore, a real number in $\mathfrak M$ can be treated like a rational number in [∗]M.

K. Tanaka

[Self-Embedding](#page-2-0) Theorem

§[4 STY Theorem](#page-16-0)

Application (The Maximum Principle)

WKL₀ \vdash Any continuous function $f : [0, 1] \rightarrow [0, 1]$ has a maximum value.

Proof.

 $\mathfrak{M} = (M, S)$ $^* \mathfrak{M} = (^*M, ^*S)$ $f : [0,1] \cap \mathbb{Q} \to [0,1] \implies \qquad \qquad \star f : \{q_i\}_{i$ $\|$ (a, b ∈ * M − M, f = * f ∩ M) ${q_i}_{i \in M}$ 2^M ⇓ ${}^*m \cap M$ is sup $f \qquad \Longleftarrow \qquad {}^*m = \max\{{}^*f(q_i)\}_{i < a}$

Other Applications

Logic and [Foundations](#page-0-0)

K. Tanaka

[Self-Embedding](#page-2-0) Theorem

§[4 STY Theorem](#page-16-0)

$WKL₀$ \vdash The Cauchy-Peano Theorem (Tanaka, 1997)

WKL₀ \vdash The existence of Haar measure for a compact group (Tanaka-Yamazaki, 2000)

WKL $_0$ \vdash The Jordan curve theorem (Sakamoto-Yokoyama, 2007)

K. Tanaka

[Self-Embedding](#page-2-0)

§[4 STY Theorem](#page-16-0)

§4. STY Theorem

In §1, we proved Harrington's theorem that $WKL₀$ is conservative over RCA₀ with respect to Π^1_1 sentences. The proof utilized the tree forcing argument.

The STY theorem, standing for Simpson-T.-Yamazaki, extends Harrington's conservation result to the class of senteces in the form $\forall X \exists! Y \varphi(X, Y)$ (where $\varphi(X, Y)$ is arithmetic) ²

In the original proof of the STY theorem, the forcing argument over so-called universal trees is devised to enable the construction of models with stronger properties. However, due to its technical complexity, we here adopt a new method of symmetric models composed of generic set sequences, also introduced by Simpson (2000).

 $2A$ formula in this form is called "Tanaka" and a formula obtained from Tanaka formulas applying \vee , \wedge , $\forall x$, $\exists y$ and $\forall X$ is called "G-Tanaka." Shore (JSL 2023) further extended the conservation to the G-Tanaka formulas.

K. Tanaka

[Self-Embedding](#page-2-0)

§[4 STY Theorem](#page-16-0)

Theorem 4.1 (STY theorem)

For any sentence σ in the form $\forall X \exists! Y \varphi(X, Y)$ (where $\varphi(X, Y)$ is arithmetic),

WKL $_0$ $\vdash \sigma \Rightarrow$ RCA $_0$ $\vdash \sigma$.

where $\exists! Y \varphi(X,Y)$ means $\exists Y \varphi(X,Y) \wedge \forall Y_1 \forall Y_2 (\varphi(X,Y_1) \wedge \varphi(X,Y_2) \rightarrow Y_1 = Y_2).$

A key to the proof of this theorem is the following lemma.

Lemma 4.2

Let $\mathfrak{M} = (M, S)$ be a countable nonstandard model of RCA₀ with $A \in S$. Then, there exist sets S_1 and S_2 satisfying the following conditions:

1.
$$
S_1 \cap S_2 = \text{Rec}^{\mathfrak{M}}(A) = \{ X \subseteq M \mid \mathfrak{M} \models X \leq_T A \}
$$

2.
$$
(M, S_i) \models \mathsf{WKL}_0
$$
, for $i = 1, 2$.

3. (M, S_1) and (M, S_2) satisfies the same sentences in $\mathcal{L}_2(M \cup \{A\})$.

K. Tanaka

§[4 STY Theorem](#page-16-0)

In the above lemma, it is not necessary that S contains $S_1 \cup S_2$. Also, since elements of S other than A are not essentially used, it is sufficient for the lemma that $(M, \{A\})$ is a countable model of Σ^0_1 induction. We first assume the lemma to prove the main theorem.

Proof of Theorem [4.1](#page-17-0) Suppose WKL₀ $\vdash \forall X \exists! Y \varphi(X, Y)$ with an arithmetic formula $\varphi(X, Y)$. For contradiction, assume RCA₀ $\nvdash \forall X \exists! Y \varphi(X, Y)$. By the completeness theorem, there exists a countable model $\mathfrak{M} = (M, S)$ of RCA₀ such that

 $(M, S) \models \neg \forall X \exists! Y \varphi(X, Y).$

Consequently, there exists some $A \in S$ such that either

(i)
$$
(M, S) \models \exists Y_1 \exists Y_2 (\varphi(A, Y_1) \land \varphi(A, Y_2) \land Y_1 \neq Y_2)
$$
, or

(ii) $(M, S) \models \forall Y \neg \varphi(A, Y)$.

Case (i) There exist $B_1, B_2 \in S$ such that $(M, S) \models \varphi(A, B_1) \land \varphi(A, B_2) \land B_1 \neq B_2$. By Lemma 1.9 (Harrington's lemma), there exists $S'\supseteq S$ such that $(M,S')\models \mathsf{WKL}_0.$ Since (M, S) and (M, S') agree on first-order parts, they validate the same arithmetic formulas. Hence, $(M, S') \models \varphi(A, B_1) \land \varphi(A, B_2) \land B_1 \neq B_2$. However, since $\mathsf{WKL}_0 \vdash \forall X \exists ! Y \varphi(X, Y)$, we have $(M, S') \models \forall X \exists ! Y \varphi(X, Y)$, a contradiction.

K. Tanaka

§[4 STY Theorem](#page-16-0)

Case (ii) By Lemma [4.2,](#page-17-1) there exist sets S_1 and S_2 such that (a) $S_1 \cap S_2 = \text{Rec}^{\mathfrak{M}}(A)$. (b) $(M, S_i) \models \mathsf{WKL}_0$, (c) (M, S_1) and (M, S_2) satisfy the same sentences of $\mathcal{L}_2(M \cup \{A\})$. From (b) and WKL₀ $\vdash \forall X \exists! Y \varphi(X, Y)$, there exists a unique $B_i \in S_i$ such that $(M, S_i) \models \varphi(A, B_i)$ for each $i = 1, 2$. By (c), for any $n \in M$,

$$
n \in B_1 \Leftrightarrow (M, S_1) \models \exists Y (\varphi(A, Y) \land n \in Y)
$$

$$
\Leftrightarrow (M, S_2) \models \exists Y (\varphi(A, Y) \land n \in Y)
$$

$$
\Leftrightarrow n \in B_2
$$

Therefore, $B_1 = B_2$ and thus $B_1 \in S_1 \cap S_2$. From (a), $B_1 \in \text{Rec}^{\mathfrak{M}}(A)$. Since (M, S) is a model of RCA₀ and $B_1 \in S$, $(M, S) \models \exists Y \varphi(A, Y)$, a contradiction.

K. Tanaka

§[4 STY Theorem](#page-16-0)

In the following, we will introduce several new concepts such as a generic sequence, to proceed with the proof of Lemma [4.2.](#page-17-1)

First, let us consider $\mathfrak{M}=(M,S)$ as a countable nonstandard model of WKL_0 $^3.$ Take any $A\in S$ and consider the formulas involving it. If $\varphi(X,A)$ is a Π^0_1 formula with a unique free variable X and a parameter A , the set $\{X\in S\mid \mathfrak{M}\models\varphi(X,A)\}$ is called a $\Pi^{0,A}_1$ class in $\mathfrak M.$ Note that a set $P\subseteq S$ is a $\Pi^{0,A}_1$ class iff there exists a binary tree $T\subseteq 2^{< M}$ recursive in A such that $P = [T]$. Here, $[T]$ represents the set of all infinite paths through a tree T.

From now on, the display of parameter A is omitted due to complexity in description. By $\langle P_{e} \mid e \in M \rangle$, we denote a computable enumeration of all Π^{0}_{1} classes. Formally, using the Π^0_1 satisfaction predicate $\text{Sat}_{\Pi^0_1}(x,X)$, we define it as: for any $e\in M, X\in S,$

 $X \in P_e \Leftrightarrow \mathfrak{M} \models \mathrm{Sat}_{\Pi_1^0}(e,X).$

We also write $P_e(X)$ for $X \in P_e$.

²¹ ³Note that in the claim of Lemma [4.2,](#page-17-1) $\mathfrak{M} = (M, S)$ was a countable nonstandard model of RCA₀.

K. Tanaka

§[4 STY Theorem](#page-16-0)

Definition 4.3

For an M -finite subset $p\subseteq M\times M^{< M}$ (denoted as $p\subseteq_\textrm{fin} M\times M^{< M})$ 4 , a sequence of sets $\langle X_n | n \in M \rangle$ meets p, if for every $(e, \langle n_1, \dots, n_k \rangle) \in p$,

 $X_n, \oplus \cdots \oplus X_n \in P_e$

where $X_{n_1} \oplus \cdots \oplus X_{n_k} = \{(x,1) \mid x \in X_{n_1}\} \cup \{(x,2) \mid x \in X_{n_2}\} \cdots \cup \{(x,k) \mid x \in X_{n_k}\}.$ The condition $X_{n_1}\oplus\cdots\oplus X_{n_k}\in P_e$ is also expressed as $P_e(X_{n_1},\cdots,X_{n_k}).$

Definition 4.4

Define a p.o. set $(\mathbb{P}^{\mathfrak{M}},<)$ as follows:

 $\mathbb{P}^{\mathfrak{M}} = \{p \subseteq_{\text{fin}} M \times M^{$

and the order $p\leq q$ on $\mathbb{P}^{\mathfrak{M}}$ is defined as $p\supseteq q$. $^{\mathbf{5}}$

 $^{4}M^{, i.e., Seq⁹⁰¹, includes all *M*-finite sequences from *M*.$

⁵The reason why the order is the reverse inclusion is that when $q \subseteq p$, p has more conditions, hence fewer sequences meet it.

K. Tanaka

§[4 STY Theorem](#page-16-0)

In WKL₀, the condition that "there exists $\langle X_n | n \in M \rangle \in S^M$ that meets p" can be rephrased as the existence of an infinite path in an infinite tree, since the part "(something) meets p " is a Π^0_1 condition. Thus by compactness, the whole condition can be expressed by a Π^0_1 formula.

Furthermore, $p(\subseteq_{fin} M \times M^{ can be considered an element of M, so $\mathbb{P}^{\mathfrak{M}}$ can be$ regarded as a Π^0_1 subset of $M.$

Henceforth, unless otherwise stated, $\mathbb{P}^{\mathfrak{M}}$ will simply be referred to as \mathbb{P} .

A sequence $\langle G_n | n \in M \rangle$ is said to be a **generic sequence** if for any dense subset $D \in \text{Def}(\mathfrak{M})$ of $\mathbb P$, there exists a $p \in D$ that $\langle G_n | n \in M \rangle$ meets. ⁶

⁶Even if some G_n does not belong to S, the definition remains valid as long as their existence does not violate the Σ^0_1 induction.

K. Tanaka

[Self-Embedding](#page-2-0) Theorem

§[4 STY Theorem](#page-16-0)

Thank you for your attention!