K. Tanaka

A self-embeddir theorem of WKL₀

Logic and Foundations II

Part 8. Second order arithmetic and non-standard methods

Kazuyuki Tanaka

BIMSA

June 4, 2024

K. Tanaka

A self-embeddin theorem of WKL_O Logic and Foundations II

- Part 5. Models of first-order arithmetic (continued) (5 lectures)
- Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)
- Part 7. Real analysis and reverse mathematics (8.5 lectures)
- Part 8. Second order arithmetic and non-standard methods (6.5 lectures)

- Part 8. Schedule

- May 21, (0) Introduction to forcing
- May 23, (1) Harrington's conservation result on WKL_0
- May 28, (2) H.Friedman's conservation result on WKL₀
- May 30, (3) Friedman's result (continued) and a self-embedding theorem I
- June 04, (4) A self-embedding theorem II
- June 06, (5)
- June 11, (6)

K. Tanaka

A self-embedding theorem of WKL_0

$\S8.3.$ A self-embedding theorem of WKL $_0$

In this section, we introduce a self-embedding theorem of WKL_0 , by which we can devise methods of nonstandard analysis in WKL_0 .

Gödel stated in 1973 that "nonstandard analysis is the future of analysis." However, Henson and Keisler have shown in 1986 that nonstandard arguments in *n*-th order arithmetic require (n + 1)-th order arithmetic. Therefore, conducting complete nonstandard analysis for second-order arithmetic Z₂ is impossible within the framework of second-order arithmetic alone. Nevertheless, as demonstrated in my paper¹, certain amount of nonstandard analysis can still be developed within WKL₀.

The main tool of our nonstandard method is a self-embedding theorem of WKL_0 (Theorem 3.9), which extends Friedman's self-embedding theorem (§5.3) to WKL_0 . This section primarily discusses the proof of this theorem.

¹K. Tanaka, The self-embedding theorem of WKL₀ and a non-standard method, Annals of Pure and Applied Logic 84 (1997), pp.41–49.

K. Tanaka

A self-embedding theorem of WKL₀

Theorem 3.1 (Self-Embedding Theorem)

Let $\mathfrak{M} = (M, S)$ be a countable model of WKL₀ with $M \neq \omega$. Then, there exists a proper initial segment I of M such that $\mathfrak{M} \lceil I = (I, S \lceil I)$ is isomorphic to \mathfrak{M} . Here, $S \lceil I = \{X \cap I \mid X \in S\}.$

Before proving this theorem, we need some preparations. We first prove the following lemma, which will be frequently used later.

Lemma 3.2 (Compactness in WKL₀)

 $(1)~~{\rm For}~{\rm any}~\Pi^0_1$ formula $\varphi(X),$ there exists a Π^0_1 formula $\hat{\varphi}$ such that ${\rm WKL}_0$ proves:

 $\hat{\varphi} \leftrightarrow \exists X \, \varphi(X).$

 $(2)~~{\rm For}~{\rm any}~\Pi^0_1~{\rm formula}~\varphi(k,X),~{\rm WKL}_0~{\rm proves:}$

 $\forall n\,\exists X\,\forall k < n\,\varphi(k,X) \rightarrow \exists X\,\forall k\,\varphi(k,X).$

K. Tanaka

A self-embedding theorem of WKL_0

From now on, we adopt the notation [T] for the set of all infinite paths of a tree T. Do not confuse it with [p], which represents a basic open set in the order topology.

Proof. (1) We identify a set X with its characteristic function, which is also represented as an infinite binary sequence. Then, a Π_1^0 formula $\varphi(X)$ can be expressed as $\forall x \ \theta(X \upharpoonright x)$, where θ is Σ_0^0 and $X \upharpoonright x$ is a code for a finite binary sequence. We set $T = \{t \mid \forall s \subseteq t \ \theta(s)\}$. Then T is a tree, and $X \in [T]$ iff $\varphi(X)$ holds. Thus, $\exists X \ \varphi(X)$ is equivalent to $[T] \neq \emptyset$, which is expressed as a Π_1^0 formula "T is infinite $(\forall n \exists t \in \{0, 1\}^n t \in T)$ ".

(2) Express a Π_1^0 formula $\varphi(k, X)$ as $\forall x \ \theta(k, X \upharpoonright x)$ (where θ is Σ_0^0), and define a tree $T = \{t \mid \forall k \le \text{leng}(t) \forall x \le \text{leng}(t) \ \theta(k, t \upharpoonright x)\}$. Here, leng(t) denotes the length of the finite binary sequence t. If $\forall n \exists X \forall k < n \ \varphi(k, X)$ holds, then $\forall n \exists X \forall k < n \ \forall x < n \ \theta(k, X \upharpoonright x)$, so $t = X \upharpoonright n \in T$ for all n, thus T is infinite. Hence, in WKL₀, there exists an infinite path $X \in [T]$ satisfying $\forall k \ \varphi(k, X)$.

Here is another demonstration for (2). If we express $\varphi(k, X)$ as $X \in [T_k]$, then $\exists X \,\forall k < n \,\varphi(k, X)$ can be expressed as $\bigcap_{k < n} [T_k] \neq \emptyset$. Since this is true for any n, we have $\bigcap_{k < \infty} [T_k] \neq \emptyset$ by the compactness of the Cantor space since $[T_k]$'s are closed sets.

Both (1) and (2) are referred to as "compactness (of binary trees) in WKL_0 ".

K. Tanaka

A self-embedding theorem of WKL₀ We define $G-\Sigma_1^0$ formulas or simply G formulas by generalizing Σ_1^0 formulas as follows. The G formulas are obtained from Σ_1^0 formulas by using \wedge, \vee , bounded universal quantifier $\forall x < y$ and unbounded existential quantifier $\exists x$, and set quantifiers $\forall X, \exists X$.

In WKL_0, we can prove that a G formula is equivalent to a Σ^0_1 formula.

(Proof)

- The closure condition under $\forall x < y$ is nothing but the collection principle $\mathsf{B}\Sigma^0_1$ derivable from Σ^0_1 induction.
- The closure condition under $\forall X$ can be obtained from Lemma 3.2(1) by taking the negation on both sides.
- The closure condition under $\exists X$ can be demonstrated by noting that $\exists X \exists x \ \theta(x, X \lceil x)$ (where θ is Σ_0^0) can be rewritten as $\exists t \exists x \ \theta(x, t)$.
- The other closure conditions are almost obvious.

Now, we redefine the G-formulas explicitly in RCA $_0$ in the next slide.

K. Tanaka

A self-embedding theorem of WKL₀

Definition 3.3 (*G*-formulas)

A sequence $G_0 \subset G_1 \subset G_2 \subset \cdots$ of sets of \mathcal{L}^2_{OR} -formulas is defined inductively modulo 4 as follows: for each $e \in \mathbb{N}$,

$$\begin{split} G_0 &= \{ \text{finite disjunctions } (\vee) \text{ of atomic formulas or their negations} \}, \\ G_{4e+1} &= \{ \exists x \, \phi \mid \phi \text{ is a finite conjunction } (\wedge) \text{ of } G_{4e} \text{ formulas} \} \cup G_{4e}, \\ G_{4e+2} &= \{ \forall x < y \, \phi \mid \phi \text{ is a finite disjunction } (\vee) \text{ of } G_{4e+1} \text{ formulas} \} \cup G_{4e+1}, \\ G_{4e+3} &= \{ \exists X \, \phi \mid \phi \text{ is a finite conjunction } (\wedge) \text{ of } G_{4e+2} \text{ formulas} \} \cup G_{4e+2}, \\ G_{4e+4} &= \{ \forall X \, \phi \mid \phi \text{ is a finite disjunction } (\vee) \text{ of } G_{4e+3} \text{ formulas} \} \cup G_{4e+3}. \end{split}$$

Finally, we set $\mathbf{G} = \bigcup_{e \in \mathbb{N}} G_e$. The formulas in G are called G formulas.

By Lemma 5.5.3, there is no formula that defines the truth values of all formulas. But, Lemma 5.3.4 shows that if we restrict the formulas to a class like Σ_n , then there exists a formula $\operatorname{Sat}_{\Sigma_n}$ to define the truth values of formulas in the class. This is also the case for Σ_n^0 in second order arithmetic. In the following, we will define Sat for G formulas.

K. Tanaka

A self-embedding theorem of WKL₀ From now on, a structure $\mathfrak{M} = (M,S)$ is denoted by V. Then, for each $p \in M$, set $M_p = \{a \in M \mid \mathfrak{M} \models a < p\}, \ S_p = \{X \cap M_p \mid X \in S\}$ and denote $V_p = (M_p, S_p)$.

Since M_p may not be closed under operations such as addition, V_p may not be a substructure of V. However, just by restricting the ranges of variables to these sets, the **satisfaction predicate** $\operatorname{Sat}^p(z,\xi)$ for V_p can be naturally defined within V = (M,S). Here, z represents the code of a formula φ , and ξ is a finite function that assigns elements of $M_p \cup S_p$ to free variables appearing in φ . Thus, supposing that a formula $\varphi(\vec{x},\vec{X})$ has no free variables other than \vec{x}, \vec{X} , and $\xi(\vec{x}) = \vec{a}, \xi(\vec{X}) = \vec{U}$, we have in V,

 $\mathsf{Sat}^{\mathbf{p}}(\lceil \varphi \rceil, \xi) \equiv \varphi(\vec{a}, \vec{U})^{V_p}, \text{ roughly } V_p \models \varphi(\vec{a}, \vec{U}).$

Here, in $\varphi(\vec{a}, \vec{U})^{V_p}$, quantification over numbers is bounded by p, and quantification over sets is also considered as ranging binary sequences of length p, which can be coded by numbers $< 2^p$. Thus, $\operatorname{Sat}^p(z, \xi)$ can be defined as a Δ_1^0 formula in V (cf. Lemma 5.3.4).

We also remark that a variable z in $\operatorname{Sat}^p(z,\xi)$ can potentially express a non-standard number. In V, it can be easily verified that Sat^p satisfies Tarski's truth definition clauses for all standard formulas (cf. Theorem IV.2.26 in [P. Hájek and P. Pudlák, *Metamathematics of First-oder Arithmetic*, Springer, 1993.]).

K. Tanaka

A self-embedding theorem of WKL_0

Next, we define the satisfaction relation for G formulas as follows:

Definition 3.4

For each $z \in G$, define the satisfaction relation $Sat(z, \xi)$ as follows:

```
\operatorname{Sat}(z,\xi) \leftrightarrow \exists p \operatorname{Sat}^p(z,\xi \upharpoonright V_p).
```

Here, $\xi \upharpoonright V_p$ is the assignment obtained by restricting the values of ξ to V_p .

For simplicity, we abbreviate $\operatorname{Sat}^p(z,\xi \upharpoonright V_p)$ as $\operatorname{Sat}^p(z,\xi)$. It is provable in RCA₀ that for the code z of a Σ_1^0 formula, if $\operatorname{Sat}^p(z,\xi)$ holds, then $\operatorname{Sat}^{p'}(z,\xi)$ also holds for any $p' \ge p$.

Moreover, we will show in WKL_0 that it also the case for the codes z of G.

In the following, we identify a formula with its code.

K. Tanaka

A self-embedding theorem of WKL₀

Lemma 3.5

In a model V of WKL₀, $Sat(z, \xi)$ satisfies Tarski's truth definition clauses for G formulas.

Proof. We prove the statement by induction on the complexity of the formula z. If z is an atomic formula or its negation, $\operatorname{Sat}(z,\xi) \Leftrightarrow \exists p \operatorname{Sat}^p(z,\xi) \Leftrightarrow \exists p z(\xi)^{V_p} \Leftrightarrow z(\xi)$. If $z = \bigvee_{i < n} z_i$ (where each z_i is a G formula),

$$\operatorname{Sat}\left(\bigvee_{i < n} z_i, \xi\right) \Leftrightarrow \exists p \operatorname{Sat}^p\left(\bigvee_{i < n} z_i, \xi\right) \Leftrightarrow \exists p \bigvee_{i < n} \operatorname{Sat}^p(z_i, \xi)$$
$$\Leftrightarrow \bigvee_{i < n} \exists p \operatorname{Sat}^p(z_i, \xi) \Leftrightarrow \bigvee_{i < n} \operatorname{Sat}(z_i, \xi).$$

If z is $\exists x z'$ or $\exists X z'$ (where z' is a G formula), the proofs are analogous.

K. Tanaka

When
$$z = \bigwedge_{i < n} z_i$$
 (where each z_i is a G formula),

$$\begin{split} \operatorname{Sat}\left(\bigwedge_{i < n} z_i, \xi\right) &\Leftrightarrow \exists p \operatorname{Sat}^p\left(\bigwedge_{i < n} z_i, \xi\right) \Leftrightarrow \exists p \bigwedge_{i < n} \operatorname{Sat}^p\left(z_i, \xi\right) \\ &\Leftrightarrow \bigwedge_{i < n} \exists p \operatorname{Sat}^p\left(z_i, \xi\right) \quad (\Leftarrow \ \text{by } \Sigma_1^0 \text{ collection principle}) \\ &\Leftrightarrow \bigwedge_{i < n} \operatorname{Sat}\left(z_i, \xi\right). \end{split}$$

If z is $\forall x < y \ z'$ (where z' is a G formula), the proof is analogous. If $z = \forall X \ z'$ (where z' is a G formula),

 $\begin{aligned} \operatorname{Sat} \left(\forall X \, z', \xi \right) &\Leftrightarrow \exists p \operatorname{Sat}^p \left(\forall X \, z', \xi \right) \Leftrightarrow \exists p \, \forall U \operatorname{Sat}^p \left(z', \xi \cup \{(X, U)\} \right) \\ &\Leftrightarrow \forall U \exists p \operatorname{Sat}^p \left(z', \xi \cup \{(X, U)\} \right) \quad (\Leftarrow \text{ by compactness (Lemma 3.2(2))}) \\ &\Leftrightarrow \forall U \operatorname{Sat} \left(z', \xi \cup \{(X, U)\} \right), \end{aligned}$

where $\xi \cup \{(X, U)\}$ is an extension of ξ with X assigned to U.

K. Tanaka

A self-embedding theorem of WKL₀

Lemma 3.6

In a model V = (M, S) of WKL₀, we fix any $e \in M$ and an M-finite assignment map ξ . Then, there exists a $p \in M$ such that for all G_e formulas z whose free variables all belong to the domain of ξ , then $\operatorname{Sat}(z,\xi) \Leftrightarrow \operatorname{Sat}^p(z,\xi)$ holds.

Proof. Since the domain of the assignment map ξ is M-finite, the set of G_e formulas whose free variables are in the domain of ξ is essentially M-finite (disregarding repetitions of the same formulas within a disjunction or conjunction). This fact can be demonstrated by Σ_1^0 induction on e.

Therefore, for *M*-finitely many G_e formulas z, if $\operatorname{Sat}(z,\xi)$ holds, let p_z be p such that $\operatorname{Sat}^p(z,\xi)$, or otherwise let $p_z = 0$. Then, if we put $q = \max\{p_z\}$, ² then we have $\operatorname{Sat}(z,\xi) \Leftrightarrow \operatorname{Sat}^q(z,\xi)$.

²Strictly speaking, strong Σ_1^0 collection principle (S Σ_1) is used here. (Refer to Problem 1 following Lemma 1.8 in Chapter 7.)

K. Tanaka

A self-embedding theorem of WKL_0

Definition 3.7 (reflection)

In a model V of WKL₀, for any e, p, and for two assignment maps ξ, ξ' with the same domain, the relation $\operatorname{Ref}_{e}^{p}(\xi, \xi')$ is defined as follows:

 $\operatorname{Sat}(z,\xi) \Rightarrow \operatorname{Sat}^p(z,\xi')$, for each G_e formula z with free variables in the domain of ξ .

Lemma 3.8

In a model V of WKL₀, supposing $\operatorname{Ref}_{e}^{p}(\xi,\xi')$ with M-finite ξ,ξ' , the following holds:

- (1) If e = 4d + 1, $\forall a \exists a' , where <math>y$ is a variable not in the domain of ξ .
- (2) If e = 4d + 2, for each numerical variable x belonging to ξ , $\forall a' < \xi'(x) \exists a < \xi(x) \operatorname{Ref}_{e-1}^{p} (\xi \cup \{(y, a)\}, \xi' \cup \{(y, a')\})$, with y not in ξ .
- (3) If e = 4d + 3, $\forall U \exists U' \operatorname{Ref}_{e-1}^{p}(\xi \cup \{(Y, U)\}, \xi' \cup \{(Y, U')\})$, where Y is a variable not belonging to the domain of ξ .
- $(4) \ \text{ If } e=4d+4, \ \forall U' \ \exists U \operatorname{Ref}_{e-1}^p(\xi \cup \{(Y,U)\}, \xi' \cup \{(Y,U')\}), \ \text{with } Y \ \text{not in } \xi.$

K. Tanaka

A self-embedding theorem of WKL_0

Proof Let V = (M, S) be a model of WKL₀, and let ξ, ξ' be *M*-finite assignments with the same domain such that $\operatorname{Ref}_{e}^{p}(\xi, \xi')$ is satisfied.

 (1) For e = 4d + 1. Show ∀a ∃a' p</sup>_{e-1}(ξ ∪ {(y, a)}, ξ' ∪ {(y, a')}). Fix any a ∈ M. Let Z be the set of all codes of G_{e-1} formulas z satisfying Sat(z, ξ ∪ {(y, a)}) and in a non-redundant form (i.e., no same formula is repeated in disjunctions or conjunctions), whose free variables are either y or belong to the domain of ξ. According to the argument in the proof of Lemma 3.6, this set Z is M-finite within V. Thus, by (bounded Σ⁰₁-CA) (Lemma 7.1.8), Z exists.

Now, consider a G_e -formula $z' = \exists y \bigwedge_{z \in Z} z$. Since $\operatorname{Sat}(z, \xi \cup \{(y, a)\})$ for each $z \in Z$, it follows from Lemma 3.5 that $\operatorname{Sat}(\bigwedge_{z \in Z} z, \xi \cup \{(y, a)\})$ and so $\operatorname{Sat}(z', \xi)$.

Therefore, by the hypothesis, $\operatorname{Sat}^p(z',\xi')$ holds. Thus, there exists a' < p such that $\operatorname{Sat}^p(z,\xi' \cup \{(y,a')\})$ holds for each $z \in Z$, fulfilling the requirement.

(2) For e = 4d + 2. Show $\forall a' < \xi'(x) \exists a < \xi(x) \operatorname{Ref}_{e-1}^{p} \{\xi \cup \{(y,a)\}, \xi' \cup \{(y,a')\}\}$. Fix any $a' < \xi'(x)$. To prove by contradiction, assume that for any $a < \xi(x)$ there exists a G_{e-1} formula z such that $\operatorname{Sat}(z, \xi \cup \{(y,a)\})$ and $\neg \operatorname{Sat}^{p}(z, \xi' \cup \{(y,a')\})$. Let Z be the set of all $z \in G_{e-1}$ satisfying $\neg \operatorname{Sat}^{p}(z, \xi' \cup \{(y,a')\})$ and in a non-redundant form, whose free variables are either y or belong to the domain of ξ .

K. Tanaka

A self-embedding theorem of WKL₀ (2) (continued) Like in case (1), Z exists by (bounded Σ_1^0 -CA). Consider a G_e formula $z' = \forall y < x \bigvee_{z \in Z} z$. By the other assumption, for each $a < \xi(x)$, there exists $z \in Z$ such that $\operatorname{Sat}(z, \xi \cup \{(y, a)\})$, so $\operatorname{Sat}(z', \xi)$ holds.

Therefore, by the hypothesis, $\operatorname{Sat}^p(z',\xi')$ holds. Thus for each $a' < \xi'(x)$, there exists $z \in Z$ such that $\operatorname{Sat}^p(z,\xi' \cup \{(y,a')\})$, which contradicts the definition of Z.

- (3) For e = 4d + 3. $\forall U \exists U' \operatorname{Ref}_{e-1}^{p}(\xi \cup \{(Y, U)\}, \xi' \cup \{(Y, U')\})$ can be shown like (1).
- (4) For e = 4d + 4. Show ∀U' ∃U Ref^p_{e-1}(ξ ∪ {(Y,U)}, ξ' ∪ {(Y,U')}). Fix any U'. Let Z be the set of z ∈ G_{e-1} satisfying ¬Sat^p(z, ξ' ∪ {(Y,U')}) and in a non-redundant form, whose free variables are either y or belong to the domain of ξ. Consider a G_e formula z' = ∀Y ∨_{z∈Z} z. By contradiction, assume for each U, there exists z ∈ Z such that Sat(z, ξ ∪ {(Y,U)}). Thus, Sat(z', ξ) holds, and by the hypothesis, Sat^p(z', ξ') holds, which contradicts the definition of Z.

Thus, the lemma is proved.

K. Tanaka

A self-embedding theorem of WKL_0

Theorem 3.9 (Self-Embedding Theorem)

Let $\mathfrak{M} = (M, S)$ be a countable model of WKL₀ with $M \neq \omega$. Then, there exists a proper initial segment I of M such that $\mathfrak{M} \lceil I = (I, S \lceil I)$ is isomorphic to \mathfrak{M} .

Proof Let V = (M, S) be a countable nonstandard model of WKL₀, and fix $q \in M$. Since V_q is *M*-finite within *V*, we can also make an *M*-finite mapping ξ_0 that assigns each number and set in V_q to distinct variables.

Now, take any nonstandard number $e \in M$. By Lemma 3.6, for any G_e -formula z whose free variables belong to the domain of ξ_0 , there exists p such that $\operatorname{Sat}(z,\xi_0) \Leftrightarrow \operatorname{Sat}^p(z,\xi_0)$ holds.

In the following, by repeatedly using Lemma 3.8 (the back-and-forth method), we construct two ω -sequences of assignment mappings $\xi_0 \subseteq \xi_1 \subseteq \cdots \subseteq \xi_k \subseteq \ldots$ and $\xi'_0 (=\xi_0) \subseteq \xi'_1 \subseteq \cdots \subseteq \xi'_k \subseteq \ldots (k \in \omega)$, where $\operatorname{Ref}_{e-k}^p(\xi_k, \xi'_k)$ holds for all $k \in \omega$, and $\bigcup_k \operatorname{range}(\xi_k) = V$ and $\bigcup_k \operatorname{range}(\xi'_k)$ forms the desired initial segment of the model V.

To begin with, we enumerate the elements of V as $M = \{a_i \mid i \in \omega\}$, $S = \{U_i \mid i \in \omega\}$. We inductively construct ξ_k, ξ'_k with the same domain $(k \in \omega)$ by cases:

(i) For e - k = 4d + 1. Let a be the element a_i in $M - \operatorname{range}(\xi_k)$ with the smallest index i, and let a' < p be obtained by Lemma 3.8(1). Then, let y be a new numerical variable not in the domain of ξ_k , and set $\xi_{k+1} = \xi_k \cup \{(y, a)\}, \ \xi'_{k+1} = \xi_k \cup \{(y, a')\}.$

K. Tanaka

A self-embedding theorem of WKL_0

- (ii) For e k = 4d + 2. Let $\xi'_k(x_0)$ be the largest in the order in M among all $\xi'_k(x)$'s. Then, let a' be the element a_i in $M - \operatorname{range}(\xi'_k)$ and satisfying $a_i < \xi'_k(x_0)$ with the smallest index i, and let $a < \xi(x_0)$ be obtained by Lemma 3.8(2). Then, let y be a new numerical variable, and set $\xi_{k+1} = \xi_k \cup \{(y,a)\}, \ \xi'_{k+1} = \xi_k \cup \{(y,a')\}.$
- (iii) For e k = 4d + 3. Let U be $U_i \in S$ with the smallest index i, that is different from any set in range (ξ_k) with regards to the numbers in range (ξ_k) . Also, let U' be obtained by Lemma 3.8(3). Then, let Y be a new set variable, and set $\xi_{k+1} = \xi_k \cup \{(Y,U)\}, \ \xi'_{k+1} = \xi_k \cup \{(Y,U')\}.$
- (iv) For e k = 4d + 4. Let U' be $U_i \in S$, with the smallest index i, that is different from any set in range (ξ'_k) with regards to the numbers in range (ξ'_k) . Also, let U be obtained by Lemma 3.8(4). Then, let Y be a new set variable, and set $\xi_{k+1} = \xi_k \cup \{(Y,U)\}, \ \xi'_{k+1} = \xi'_k \cup \{(Y,U')\}$

From the above construction, it is easy to see that $\operatorname{Ref}_{e-k}^{p}(\xi_{k},\xi'_{k})$ holds for each $k \in \omega$.

From (i) and (iii), it is obvious that $\bigcup_k \operatorname{range}(\xi_k) = (M, S)$. Also, from (ii), we can easily see that the set I consisting of a belonging to $\bigcup_k \operatorname{range}(\xi'_k)$ forms an initial segment of M. Then, from (iv) it follows that $\bigcup_k \operatorname{range}(\xi'_k) = (I, S | I)$.

K. Tanaka

A self-embedding theorem of WKL₀ Next, we prove by induction that both ξ_k, ξ'_k are injective for all $k \in \omega$. It is clear from the definition that $\xi_0 = \xi'_0$ is injective.

In (i), we first extend the injective mapping ξ_k to an injective ξ_{k+1} , and then extend the injective ξ'_k to a mapping ξ'_{k+1} that satisfies $\operatorname{Ref}_{e-k-1}^p(\xi_{k+1},\xi'_{k+1})$. The injectivity of ξ_{k+1} is clear from the construction. Since the injectivity is expressed by a G_2 formula, ξ'_{k+1} is also injective.

Similarly for (ii), (iii) and (iv).

Thus, $\bigcup_k \xi_k$ and $\bigcup_k \xi'_k$ are also injective. Let $f = (\bigcup_k \xi'_k) \circ (\bigcup_k \xi_k)^{-1}$, which becomes a bijection from V to $V \lceil I$. It is evident that f acts as the identity map on V_q . Furthermore, since $\operatorname{Ref}_0^p(\xi_k, \xi'_k)$ holds for each $k \in \omega$, it is clear that f is an isomorphism. Thus, the proof of the theorem is complete. \Box

K. Tanaka

A self-embedding theorem of WKL₀ Let's briefly describe how the Self-Embedding Theorem 3.9 can be applied to nonstandard analysis.

• According to Gödel's completeness theorem and compactness theorem,

 $\mathsf{WKL}_0 \vdash \varphi \Leftrightarrow \mathsf{for any non-}\omega \mathsf{ model } \mathfrak{M} \mathsf{ of } \mathsf{WKL}_0, \mathfrak{M} \models \varphi.$

• Since any infinite structure has an elementarily equivalent countable structure by the Löwenheim-Skolem Theorem,

 $\mathsf{WKL}_0 \vdash \varphi \Leftrightarrow \mathsf{for any countable non-}\omega \mod \mathfrak{M} \mathsf{ of } \mathsf{WKL}_0, \mathfrak{M} \models \varphi.$

- Choose a countable non-ω model M = (M, S) of WKL₀. Theorem 3.9 states that M has an initial segment isomorphic to itself. But by swapping their roles of M and an isomorphic initial segment, M is seen to have an isomorphic end-extension
 *M = (*M, *S), which allows us to carry out some nonstandard analysis arguments.
- For example, in $\mathfrak{M} = (M, S)$, a real number a is indeed a set in S. Thus, a is an initial segment $*a\lceil M$ of some set $*a \in *S$. Since *a may be taken bounded in $*\mathfrak{M}$, it can be coded by an element of *M. Therefore, a real number in \mathfrak{M} can be treated like a rational number in $*\mathfrak{M}$.

K. Tanaka

A self-embedding theorem of WKL_0

Application (The Maximum Principle)

 $\mathsf{WKL}_0 \vdash \mathsf{Any} \text{ continuous function } f: [0,1] \to [0,1]$ has a maximum value.

Proof.

Other Applications

Logic and Foundations

K. Tanaka

A self-embedding theorem of WKL_0

$\mathsf{WKL}_0 \vdash$ The Cauchy-Peano Theorem (Tanaka, 1997)

$\mathsf{WKL}_0 \vdash$ The existence of Haar measure for a compact group (Tanaka-Yamazaki, 2000)

WKL₀ \vdash The Jordan curve theorem (Sakamoto-Yokoyama, 2007)

K. Tanaka

A self-embedding theorem of WKL_0

Thank you for your attention!