K. Tanaka

[A self-embedding](#page-2-0) theorem of WKL₀

Logic and Foundations II Part 8. Second order arithmetic and non-standard methods

Kazuyuki Tanaka

BIMSA

June 4, 2024

K. Tanaka

[A self-embedding](#page-2-0) $WKL₀$

Logic and Foundations II

- Part 5. Models of first-order arithmetic (continued) (5 lectures)
- Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)
- Part 7. Real analysis and reverse mathematics (8.5 lectures)
- Part 8. Second order arithmetic and non-standard methods (6.5 lectures)

✒ ✑ Part 8. Schedule

- May 21, (0) Introduction to forcing
- May 23, (1) Harrington's conservation result on WKL_0
- May 28, (2) H. Friedman's conservation result on WKL_0
- May 30, (3) Friedman's result (continued) and a self-embedding theorem I

✒ ✑

- June 04, (4) A self-embedding theorem II
- June 06, (5)
- June 11, (6)

K. Tanaka

[A self-embedding](#page-2-0) theorem of WKL_o

§8.3. A self-embedding theorem of WKL_0

In this section, we introduce a self-embedding theorem of $WKL₀$, by which we can devise methods of nonstandard analysis in WKL_0 .

Gödel stated in 1973 that "nonstandard analysis is the future of analysis." However, Henson and Keisler have shown in 1986 that nonstandard arguments in n -th order arithmetic require $(n + 1)$ -th order arithmetic. Therefore, conducting complete nonstandard analysis for second-order arithmetic Z_2 is impossible within the framework of second-order arithmetic alone. Nevertheless, as demonstrated in my paper¹, certain amount of nonstandard analysis can still be developed within WKL_0 .

The main tool of our nonstandard method is a self-embedding theorem of WKL_0 (Theorem [3.9\)](#page-3-0), which extends Friedman's self-embedding theorem ($\S5.3$) to WKL₀. This section primarily discusses the proof of this theorem.

¹K. Tanaka, The self-embedding theorem of WKL₀ and a non-standard method, Annals of Pure and Applied Logic 84 (1997), pp.41–49.

K. Tanaka

[A self-embedding](#page-2-0) theorem of WKL_0

Theorem 3.1 (Self-Embedding Theorem)

Let $\mathfrak{M} = (M, S)$ be a countable model of WKL₀ with $M \neq \omega$. Then, there exists a proper initial segment I of M such that $\mathfrak{M}[I] = (I, S[I])$ is isomorphic to \mathfrak{M} . Here, $S[I = \{X \cap I \mid X \in S\}.$

Before proving this theorem, we need some preparations. We first prove the following lemma, which will be frequently used later.

Lemma 3.2 (Compactness in WKL_0)

 (1) For any Π^0_1 formula $\varphi(X)$, there exists a Π^0_1 formula $\hat{\varphi}$ such that WKL_0 proves:

 $\hat{\varphi} \leftrightarrow \exists X \varphi(X).$

(2) For any Π^0_1 formula $\varphi(k,X)$, WKL₀ proves:

 $\forall n \exists X \forall k < n \varphi(k, X) \rightarrow \exists X \forall k \varphi(k, X).$

K. Tanaka

[A self-embedding](#page-2-0) theorem of $WKL₀$

From now on, we adopt the notation $[T]$ for the set of all infinite paths of a tree T. Do not confuse it with $[p]$, which represents a basic open set in the order topology.

Proof. (1) We identify a set X with its characteristic function, which is also represented as an infinite binary sequence. Then, a Π^0_1 formula $\varphi(X)$ can be expressed as $\forall x\;\theta(X\mathord{\restriction} x)$, where θ is Σ_0^0 and X $\upharpoonright x$ is a code for a finite binary sequence. We set $T = \{t \mid \forall s \subseteq t \; \theta(s)\}.$ Then T is a tree, and $X \in [T]$ iff $\varphi(X)$ holds. Thus, $\exists X \varphi(X)$ is equivalent to $[T] \neq \varnothing$, which is expressed as a Π^0_1 formula "T is infinite $(\forall n \exists t \in \{0,1\}^n t \in T)$ ".

 (2) Express a Π^0_1 formula $\varphi(k,X)$ as $\forall x \ \theta(k,X\mathord{\restriction} x)$ (where θ is Σ^0_0), and define a tree $T = \{t \mid \forall k \leq \text{length}\}$ $\forall x \leq \text{length} \theta(k, t[x])$. Here, leng(t) denotes the length of the finite binary sequence t. If $\forall n \exists X \forall k < n \varphi(k, X)$ holds, then $\forall n \exists X \forall k < n \forall x < n \theta(k, X[x])$, so $t = X[n \in T]$ for all n, thus T is infinite. Hence, in WKL₀, there exists an infinite path $X \in [T]$ satisfying $\forall k \varphi(k, X)$.

Here is another demonstration for (2). If we express $\varphi(k, X)$ as $X \in [T_k]$, then $\exists X \, \forall k < n \, \varphi(k,X)$ can be expressed as $\bigcap_{k < n} [T_k] \neq \varnothing.$ Since this is true for any n , we have $\bigcap_{k<\infty}[T_k]\neq\varnothing$ by the compactness of the Cantor space since $[T_k]$'s are closed sets. Both (1) and (2) are referred to as "compactness (of binary trees) in WKL_0 ".

K. Tanaka

[A self-embedding](#page-2-0) theorem of **WKL₀**

We define $G\text{-}\Sigma_1^0$ formulas or simply G formulas by generalizing Σ_1^0 formulas as follows. The G formulas are obtained from Σ^0_1 formulas by using \wedge, \vee , bounded universal quantifier $\forall x \leq y$ and unbounded existential quantifier $\exists x$, and set quantifiers $\forall X, \exists X$.

In WKL $_0$, we can prove that a G formula is equivalent to a Σ^0_1 formula.

(Proof)

- The closure condition under $\forall x < y$ is nothing but the collection principle $\mathsf{B}\Sigma^0_1$ derivable from Σ^0_1 induction.
- The closure condition under $\forall X$ can be obtained from Lemma [3.2](#page-3-1)(1) by taking the negation on both sides.
- The closure condition under $\exists X$ can be demonstrated by noting that $\exists X \exists x \theta(x, X[x])$ (where θ is Σ^0_0) can be rewritten as $\exists t \exists x \; \theta(x,t)$.
- The other closure conditions are almost obvious.

Now, we redefine the G-formulas explicitly in $RCA₀$ in the next slide.

K. Tanaka

[A self-embedding](#page-2-0) theorem of WKL_o

Definition 3.3 (G-formulas)

A sequence $G_0\subset G_1\subset G_2\subset \cdots$ of sets of ${\mathcal L}_{\rm OR}^2$ -formulas is defined inductively modulo 4 as follows: for each $e \in \mathbb{N}$.

 $G_0 = \{\text{finite disjunctions } (\vee) \text{ of atomic formulas or their negations}\},\$ $G_{4e+1} = \{ \exists x \phi \mid \phi \text{ is a finite conjunction } (\wedge) \text{ of } G_{4e} \text{ formulas} \} \cup G_{4e},$ $G_{4e+2} = \{ \forall x \leq y \phi \mid \phi \text{ is a finite disjunction (V) of } G_{4e+1} \text{ formulas} \} \cup G_{4e+1},$ $G_{4e+3} = \{ \exists X \phi \mid \phi \text{ is a finite conjunction } (\wedge) \text{ of } G_{4e+2} \text{ formulas} \} \cup G_{4e+2},$ $G_{4e+4} = \{ \forall X \phi \mid \phi \text{ is a finite disjunction } (\vee) \text{ of } G_{4e+3} \text{ formulas} \} \cup G_{4e+3}.$

Finally, we set $\mathbf{G} = \bigcup_{e \in \mathbb{N}} G_e$. The formulas in G are called G formulas.

By Lemma 5.5.3, there is no formula that defines the truth values of all formulas. But, Lemma 5.3.4 shows that if we restrict the formulas to a class like Σ_n , then there exists a formula Sat $_{\Sigma_n}$ to define the truth values of formulas in the class. This is also the case for Σ^0_n in second order arithmetic. In the following, we will define Sat for G formulas.

K. Tanaka

[A self-embedding](#page-2-0) theorem of WKL_o

From now on, a structure $\mathfrak{M} = (M, S)$ is denoted by V. Then, for each $p \in M$, set $M_p = \{a \in M \mid \mathfrak{M} \models a < p\}, S_p = \{X \cap M_p \mid X \in S\}$ and denote $V_p = (M_p, S_p)$.

Since M_p may not be closed under operations such as addition, V_p may not be a substructure of V . However, just by restricting the ranges of variables to these sets, the **satisfaction predicate** Sat $P(z, \xi)$ for V_p can be naturally defined within $V = (M, S)$. Here, z represents the code of a formula φ , and ξ is a finite function that assigns elements of $M_p \cup S_p$ to free variables appearing in φ . Thus, supposing that a formula $\varphi(\vec{x}, X)$ has no free variables other than \vec{x}, \vec{X} , and $\xi(\vec{x}) = \vec{a}, \xi(\vec{X}) = \vec{U}$, we have in V.

 $\mathsf{Sat}^{\mathbf{p}}(\ulcorner\varphi\urcorner,\xi)\equiv\varphi(\vec a,\vec U)^{V_p},$ roughly $V_p\models\varphi(\vec a,\vec U).$

Here, in $\varphi(\vec{a},\vec{U})^{V_p}$, quantification over numbers is bounded by p , and quantification over sets is also considered as ranging binary sequences of length p , which can be coded by numbers $< 2^p$. Thus, Sat $^p(z,\xi)$ can be defined as a Δ^0_1 formula in V (cf. Lemma 5.3.4).

We also remark that a variable z in $\mathsf{Sat}^p(z,\xi)$ can potentially express a non-standard number. In V , it can be easily verified that Sat^p satisfies Tarski's truth definition clauses for all standard formulas (cf. Theorem IV.2.26 in [P. Hájek and P. Pudlák, Metamathematics of First-oder Arithmetic, Springer, 1993.]).

K. Tanaka

[A self-embedding](#page-2-0) theorem of WKL_0

Next, we define the **satisfaction relation for** G formulas as follows:

Definition 3.4

For each $z \in G$, define the satisfaction relation $Sat(z, \mathcal{E})$ as follows:

```
\text{Sat}(z,\xi) \leftrightarrow \exists p \, \text{Sat}^p(z,\xi \restriction V_p).
```
Here, $\xi \restriction V_p$ is the assignment obtained by restricting the values of ξ to V_p .

For simplicity, we abbreviate $\operatorname{Sat}^p(z,\xi\restriction V_p)$ as $\operatorname{Sat}^p(z,\xi)$. It is provable in RCA_0 that for the code z of a Σ^0_1 formula, if $\text{Sat}^p(z,\xi)$ holds, then $\text{Sat}^{p'}(z,\xi)$ also holds for any $p'\geq p$.

Moreover, we will show in WKL₀ that it also the case for the codes z of G .

In the following, we identify a formula with its code.

K. Tanaka

[A self-embedding](#page-2-0) theorem of $WKL₀$

Lemma 3.5

In a model V of WKL₀, $Sat(z, \xi)$ satisfies Tarski's truth definition clauses for G formulas.

Proof. We prove the statement by induction on the complexity of the formula z. If z is an atomic formula or its negation, $\text{Sat}(z,\xi) \Leftrightarrow \exists p\, \text{Sat}^p(z,\xi) \Leftrightarrow \exists p\, z(\xi)^{V_p} \Leftrightarrow z(\xi).$ If $z = \bigvee_{i \leq n} z_i$ (where each z_i is a G formula),

$$
\operatorname{Sat}\left(\bigvee_{i
$$
\Leftrightarrow \bigvee_{i
$$
$$

If z is $\exists x z'$ or $\exists X z'$ (where z' is a G formula), the proofs are analogous.

K. Tanaka

[A self-embedding](#page-2-0) theorem of WKL0

When
$$
z = \bigwedge_{i < n} z_i
$$
 (where each z_i is a G formula),

$$
\operatorname{Sat}\left(\bigwedge_{i
$$
\Leftrightarrow\bigwedge_{i
$$
\Leftrightarrow\bigwedge_{i
$$
$$
$$

If z is $\forall x < y$ z' (where z' is a G formula), the proof is analogous. If $z = \forall X z'$ (where z' is a G formula),

 $\text{Sat}(\forall X \, z', \xi) \Leftrightarrow \exists p \, \text{Sat}^p \, (\forall X \, z', \xi) \Leftrightarrow \exists p \, \forall U \, \text{Sat}^p \, (z', \xi \cup \{(X, U)\})$ $\Leftrightarrow \forall U \exists p \, \text{Sat}^p(z', \xi \cup \{(X, U)\}) \quad \ (\Leftarrow \text{ by compactness (Lemma 3.2(2)))}$ $\Leftrightarrow \forall U \exists p \, \text{Sat}^p(z', \xi \cup \{(X, U)\}) \quad \ (\Leftarrow \text{ by compactness (Lemma 3.2(2)))}$ $\Leftrightarrow \forall U \exists p \, \text{Sat}^p(z', \xi \cup \{(X, U)\}) \quad \ (\Leftarrow \text{ by compactness (Lemma 3.2(2)))}$ $\Leftrightarrow \forall U \operatorname{Sat}(z',\xi \cup \{(X,U)\})$,

where $\xi \cup \{(X,U)\}\$ is an extension of ξ with X assigned to U.

K. Tanaka

[A self-embedding](#page-2-0) theorem of WKL_0

Lemma 3.6

In a model $V = (M, S)$ of WKL₀, we fix any $e \in M$ and an M-finite assignment map ξ . Then, there exists a $p \in M$ such that for all G_e formulas z whose free variables all belong to the domain of ξ , then $\text{Sat}(z,\xi) \Leftrightarrow \text{Sat}^p(z,\xi)$ holds.

Proof. Since the domain of the assignment map ξ is M-finite, the set of G_e formulas whose free variables are in the domain of ξ is essentially M-finite (disregarding repetitions of the same formulas within a disjunction or conjunction). This fact can be demonstrated by Σ^0_1 induction on e .

Therefore, for M-finitely many G_e formulas z, if $\text{Sat}(z,\xi)$ holds, let p_z be p such that $\mathrm{Sat}^p(z,\xi)$, or otherwise let $p_z=0$. Then, if we put $q=\max\{p_z\}$, 2 then we have $\text{Sat}(z,\xi) \Leftrightarrow \text{Sat}^q(z,\xi).$ $(z,\xi).$

 2 Strictly speaking, strong Σ_1^0 collection principle $(\mathrm{S}\Sigma_1)$ is used here. (Refer to Problem 1 following Lemma 1.8 in Chapter 7.)

K. Tanaka

[A self-embedding](#page-2-0) theorem of WKL_0

Definition 3.7 (reflection)

In a model V of WKL₀, for any e, p, and for two assignment maps ξ, ξ' with the same domain, the relation $\mathrm{Ref}_e^p(\xi, \xi')$ is defined as follows:

 $\text{Sat}(z,\xi) \Rightarrow \text{Sat}^p(z,\xi'),$ for each G_e formula z with free variables in the domain of $\xi.$

Lemma 3.8

In a model V of WKL_0 , supposing $\mathrm{Ref}_e^p(\xi, \xi')$ with M -finite ξ, ξ' , the following holds:

- (1) If $e = 4d + 1$, $\forall a \, \exists a' < p \, \text{Ref}_{e-1}^p(\xi \cup \{(y,a)\}, \xi' \cup \{(y,a')\})$, where y is a variable not in the domain of ξ .
- (2) If $e = 4d + 2$, for each numerical variable x belonging to ξ , $\forall a' < \xi'(x) \, \exists a < \xi(x) \, \text{Ref}_{e-1}^p(\xi \cup \{(y,a)\}, \xi' \cup \{(y,a')\})$, with y not in ξ .
- (3) If $e = 4d + 3$, $\forall U \exists U' \operatorname{Ref}_{e-1}^p({\xi \cup \{(Y,U)\}}, {\xi'} \cup \{(Y,U')\})$, where Y is a variable not belonging to the domain of ξ .
- (4) If $e = 4d + 4$, $\forall U' \exists U \operatorname{Ref}_{e-1}^p({\xi \cup \{(Y,U)\}}, {\xi' \cup \{(Y,U')\}})$, with Y not in ${\xi}$.

K. Tanaka

[A self-embedding](#page-2-0) theorem of $WKL₀$

Proof Let $V = (M, S)$ be a model of WKL₀, and let ξ, ξ' be M-finite assignments with the same domain such that $\mathrm{Ref}_e^p(\xi, \xi')$ is satisfied.

(1) For $e = 4d + 1$. Show $\forall a \exists a' < p \operatorname{Ref}_{e-1}^p({\xi \cup \{(y,a)\}, \xi' \cup \{(y,a')\}})$. Fix any $a \in M$. Let Z be the set of all codes of G_{e-1} formulas z satisfying $\text{Sat}(z, \xi \cup \{(y, a)\})$ and in a non-redundant form (i.e., no same formula is repeated in disjunctions or conjunctions), whose free variables are either y or belong to the domain of ξ. According to the argument in the proof of Lemma [3.6,](#page-11-0) this set Z is M -finite within $V.$ Thus, by (bounded Σ^0_1 -CA) (Lemma 7.1.8), Z exists.

Now, consider a G_e -formula $z'=\exists y \; \bigwedge_{z\in Z} z$. Since $\text{Sat}(z,\xi\cup\{(y,a)\})$ for each $z\in Z$, it follows from Lemma [3.5](#page-9-0) that $\mathrm{Sat}(\bigwedge_{z\in Z}z,\xi\cup\{(y,a)\})$ and so $\mathrm{Sat}(z',\xi).$

Therefore, by the hypothesis, $\operatorname{Sat}^p(z',\xi')$ holds. Thus, there exists $a' < p$ such that $\text{Sat}^p(z,\xi'\cup\{(y,a')\})$ holds for each $z\in Z$, fulfilling the requirement.

(2) For $e = 4d + 2$. Show $\forall a' < \xi'(x) \exists a < \xi(x) \operatorname{Ref}_{e-1}^p(\xi \cup \{(y, a)\}, \xi' \cup \{(y, a')\})$. Fix any $a' < \xi'(x)$. To prove by contradiction, assume that for any $a < \xi(x)$ there exists a G_{e-1} formula z such that $\mathrm{Sat}(z,\xi\cup\{(y,a)\})$ and $\neg \mathrm{Sat}^p(z,\xi'\cup\{(y,a')\}).$ Let Z be the set of all $z\in G_{e-1}$ satisfying $\neg \mathrm{Sat}^p(z, \xi' \cup \{(y,a')\})$ and in a non-redundant form, whose free variables are either y or belong to the domain of ξ .

K. Tanaka

[A self-embedding](#page-2-0) theorem of WKL_0

 (2) (continued) Like in case (1), Z exists by (bounded Σ^0_1 -CA). Consider a G_e formula $z' = \forall y < x\,\, \bigvee_{z \in Z} z$. By the other assumption, for each $a < \xi(x)$, there exists $z \in Z$ such that $\operatorname{Sat}(z,\overline{\xi}\cup\{(y,a)\})$, so $\operatorname{Sat}(z',\xi)$ holds.

Therefore, by the hypothesis, $\operatorname{Sat}^p(z',\xi')$ holds. Thus for each $a'<\xi'(x)$, there exists $z \in Z$ such that $\operatorname{Sat}^p(z, \xi' \cup \{(y, a')\})$, which contradicts the definition of Z .

(3) For $e = 4d + 3$. $\forall U \exists U' \operatorname{Ref}_{e-1}^p({\xi \cup \{(Y,U)\}}, {\xi'} \cup \{(Y,U')\})$ can be shown like (1).

(4) For $e = 4d + 4$. Show $\forall U' \exists U \operatorname{Ref}_{e-1}^p({\xi \cup \{(Y, U)\}}, {\xi' \cup \{(Y, U')\}}).$ Fix any U' . Let Z be the set of $z\in G_{e-1}$ satisfying $\neg \text{Sat}^p(z,\xi'\cup\{(Y,U')\})$ and in a non-redundant form, whose free variables are either y or belong to the domain of ξ . Consider a G_e formula $z' = \forall Y \bigvee_{z \in Z} z$. By contradiction, assume for each U , there exists $z\in Z$ such that $\mathrm{Sat}(z,\xi\cup\{(\bar{Y},U)\})$. Thus, $\mathrm{Sat}(z',\xi)$ holds, and by the hypothesis, $\text{Sat}^p(z', \xi')$ holds, which contradicts the definition of Z.

Thus, the lemma is proved. \Box

K. Tanaka

[A self-embedding](#page-2-0) theorem of $WKL₀$

Theorem 3.9 (Self-Embedding Theorem)

Let $\mathfrak{M} = (M, S)$ be a countable model of WKL₀ with $M \neq \omega$. Then, there exists a proper initial segment I of M such that $\mathfrak{M}[I=(I, S[I])]$ is isomorphic to \mathfrak{M} .

Proof Let $V = (M, S)$ be a countable nonstandard model of WKL₀, and fix $q \in M$. Since V_q is M-finite within V, we can also make an M-finite mapping ξ_0 that assigns each number and set in V_a to distinct variables.

Now, take any nonstandard number $e \in M$. By Lemma [3.6,](#page-11-0) for any G_e -formula z whose free variables belong to the domain of ξ_0 , there exists p such that $\text{Sat}(z,\xi_0) \Leftrightarrow \text{Sat}^p(z,\xi_0)$ holds.

In the following, by repeatedly using Lemma [3.8](#page-12-0) (the back-and-forth method), we construct two ω -sequences of assignment mappings $\xi_0 \subset \xi_1 \subset \cdots \subset \xi_k \subset \ldots$ and $\xi'_0\, (= \xi_0) \subseteq \xi'_1 \subseteq \cdots \subseteq \xi'_k \subseteq \ldots ~~(k \in \omega)$, where $\mathrm{Ref}_{e-k}^p(\xi_k,\xi'_k)$ holds for all $k \in \omega$, and $\bigcup_k \text{range}(\xi_k) = V$ and $\bigcup_k \text{range}(\xi'_k)$ forms the desired initial segment of the model $V.$

To begin with, we enumerate the elements of V as $M=\{a_i\mid i\in\omega\},\,S=\{U_i\mid i\in\omega\}.$ We inductively construct ξ_k, ξ'_k with the same domain $(k \in \omega)$ by cases:

(i) For $e-k=4d+1.$ Let a be the element a_i in $M-\mathrm{range}(\xi_k)$ with the smallest index i , and let $a^{\prime} < p$ be obtained by Lemma [3.8\(](#page-12-0)1). Then, let y be a new numerical variable not in the domain of ξ_k , and set $\xi_{k+1} = \xi_k \cup \{(y,a)\}, \, \xi'_{k+1} = \xi_k \cup \{(y,a')\}.$

K. Tanaka

[A self-embedding](#page-2-0) theorem of $WKL₀$

- (ii) For $e k = 4d + 2$. Let $\xi'_k(x_0)$ be the largest in the order in M among all $\xi'_k(x)$'s. Then, let a' be the element a_i in $M-\text{range}(\xi_k')$ and satisfying $a_i<\xi_k'(x_0)$ with the smallest index i, and let $a < \xi(x_0)$ be obtained by Lemma [3.8\(](#page-12-0)2). Then, let y be a new numerical variable, and set $\xi_{k+1} = \xi_k \cup \{(y, a)\}, \, \xi'_{k+1} = \xi_k \cup \{(y, a')\}.$
- (iii) For $e k = 4d + 3$. Let U be $U_i \in S$ with the smallest index i, that is different from any set in $\mathrm{range}(\xi_k)$ with regards to the numbers in $\mathrm{range}(\xi_k)$. Also, let U' be obtained by Lemma [3.8\(](#page-12-0)3). Then, let Y be a new set variable, and set $\xi_{k+1} = \xi_k \cup \{(Y, U)\}, \, \xi'_{k+1} = \xi_k \cup \{(Y, U')\}.$
- (iv) For $e k = 4d + 4$. Let U' be $U_i \in S$, with the smallest index i, that is different from any set in $\mathrm{range}(\xi_k')$ with regards to the numbers in $\mathrm{range}(\xi_k')$. Also, let U be obtained by Lemma [3.8\(](#page-12-0)4). Then, let Y be a new set variable, and set $\xi_{k+1} = \xi_k \cup \{(Y, U)\}, \, \xi'_{k+1} = \xi'_k \cup \{(Y, U')\}$

From the above construction, it is easy to see that $\mathrm{Ref}_{e-k}^p(\xi_k,\xi_k')$ holds for each $k\in\omega.$

From (i) and (iii), it is obvious that $\bigcup_k \mathrm{range}(\xi_k) = (M, S)$. Also, from (ii), we can easily see that the set I consisting of a belonging to $\bigcup_k \text{range}(\xi_k')$ forms an initial segment of $M.$ Then, from (iv) it follows that $\bigcup_k \mathrm{range}(\xi_k') = (I, S \lceil I).$

K. Tanaka

[A self-embedding](#page-2-0) theorem of $WKL₀$

Next, we prove by induction that both ξ_k, ξ'_k are injective for all $k \in \omega$. It is clear from the definition that $\xi_0 = \xi_0'$ is injective.

In (i), we first extend the injective mapping ξ_k to an injective ξ_{k+1} , and then extend the injective ξ'_k to a mapping ξ'_{k+1} that satisfies ${\rm Ref}_{e-k-1}^p(\xi_{k+1},\xi'_{k+1})$. The injectivity of ξ_{k+1} is clear from the construction. Since the injectivity is expressed by a G_2 formula, ξ'_{k+1} is also injective.

Similarly for (ii), (iii) and (iv).

Thus, $\bigcup_{k} \xi_{k}$ and $\bigcup_{k} \xi'_{k}$ are also injective. Let $f=(\bigcup_k \xi'_k)\circ (\bigcup_k \xi_k)^{-1}$, which becomes a bijection from V to $V\lceil I.$ It is evident that f acts as the identity map on V_a . Furthermore, since $\mathrm{Ref}_0^p(\xi_k,\xi'_k)$ holds for each $k\in\omega$, it is clear that f is an isomorphism. Thus, the proof of the theorem is complete. \Box

K. Tanaka

[A self-embedding](#page-2-0) theorem of WKL_0

Let's briefly describe how the Self-Embedding Theorem [3.9](#page-3-0) can be applied to nonstandard analysis.

• According to Gödel's completeness theorem and compactness theorem,

 $WKL_0 \vdash \varphi \Leftrightarrow$ for any non- ω model \mathfrak{M} of $WKL_0, \mathfrak{M} \models \varphi$.

• Since any infinite structure has an elementarily equivalent countable structure by the Löwenheim-Skolem Theorem.

 $WKL_0 \vdash \varphi \Leftrightarrow$ for any countable non- ω model \mathfrak{M} of $WKL_0, \mathfrak{M} \models \varphi$.

- Choose a countable non- ω model $\mathfrak{M} = (M, S)$ of WKL₀. Theorem [3.9](#page-3-0) states that \mathfrak{M} has an initial segment isomorphic to itself. But by swapping their roles of \mathfrak{M} and an isomorphic initial segment, M is seen to have an isomorphic end-extension * $\mathfrak{M} = (*M, *S)$, which allows us to carry out some nonstandard analysis arguments.
- For example, in $\mathfrak{M} = (M, S)$, a real number a is indeed a set in S. Thus, a is an initial segment $^*a[M$ of some set $^*a \in {^*S}$. Since *a may be taken bounded in $^*\mathfrak M,$ it can be coded by an element of *M . Therefore, a real number in $\mathfrak M$ can be treated like a rational number in [∗]M.

K. Tanaka

[A self-embedding](#page-2-0) theorem of **WKL₀**

Application (The Maximum Principle)

WKL₀ ⊢ Any continuous function $f : [0,1] \rightarrow [0,1]$ has a maximum value.

Proof.

 $\mathfrak{M} = (M, S)$ $^* \mathfrak{M} = (^*M, ^*S)$ $f : [0,1] \cap \mathbb{Q} \to [0,1] \implies \qquad \qquad \star f : \{q_i\}_{i$ $\|$ (a, b ∈ * M − M, f = * f ∩ M) ${q_i}_{i \in M}$ 2^M ⇓ ${}^*m \cap M$ is sup $f \qquad \Longleftarrow \qquad {}^*m = \max\{{}^*f(q_i)\}_{i < a}$

Other Applications

Logic and [Foundations](#page-0-0)

K. Tanaka

[A self-embedding](#page-2-0) theorem of $WKL₀$

 WKL_0 \vdash The Cauchy-Peano Theorem (Tanaka, 1997)

WKL₀ \vdash The existence of Haar measure for a compact group (Tanaka-Yamazaki, 2000)

WKL $_0$ \vdash The Jordan curve theorem (Sakamoto-Yokoyama, 2007)

K. Tanaka

[A self-embedding](#page-2-0) theorem of $WKL₀$

Thank you for your attention!