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® Part 5. Models of first-order arithmetic (continued) (5 lectures)
® Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)
® Part 7. Real analysis and reverse mathematics (8.5 lectures)

® Part 8. Second order arithmetic and non-standard methods (6.5 lectures)

N

s Part 8. Schedule

e May 21, (0) Introduction to forcing

e May 23, (1) Harrington's conservation result on WKL,

® May 28, (2) H.Friedman's conservation result on WKLg

® May 30, (3) Friedman’s result (continued) and a self-embedding theorem |
® June 04, (4) A self-embedding theorem Il

® June 06, (5)

® June 11, (6)
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§8.3. A self-embedding theorem of WKL,

In this section, we introduce a self-embedding theorem of WKL, by which we can devise
methods of nonstandard analysis in WKL,.

Godel stated in 1973 that " nonstandard analysis is the future of analysis.” However,
Henson and Keisler have shown in 1986 that nonstandard arguments in n-th order
arithmetic require (n + 1)-th order arithmetic. Therefore, conducting complete nonstandard
analysis for second-order arithmetic Z5 is impossible within the framework of second-order
arithmetic alone. Nevertheless, as demonstrated in my paper!, certain amount of
nonstandard analysis can still be developed within WKL,.

The main tool of our nonstandard method is a self-embedding theorem of WKL,
(Theorem 3.9), which extends Friedman's self-embedding theorem (§5.3) to WKLg. This
section primarily discusses the proof of this theorem.

1K. Tanaka, The self-embedding theorem of WKLp and a non-standard method, Annals of Pure and
Applied Logic 84 (1997), pp.41-49.
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A self-embedding

) selfemby Let 9 = (M, S) be a countable model of WKL with M = w. Then, there exists a proper
Wito initial segment I of M such that 9[I = (I, S[I) is isomorphic to M. Here,
S[I={XnNnI|XeS}

Before proving this theorem, we need some preparations. We first prove the following

lemma, which will be frequently used later.

Lemma 3.2 (Compactness in WKL)

(1) For any 19 formula ¢(X), there exists a I1{ formula ¢ such that WKL proves:
¢« IX p(X).

(2) For any I19 formula ¢(k, X), WKL, proves:

Yn3IXVk <np(k,X) — IXVEp(k, X).
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From now on, we adopt the notation [T] for the set of all infinite paths of a tree T. Do not
confuse it with [p], which represents a basic open set in the order topology.

Proof. (1) We identify a set X with its characteristic function, which is also represented
as an infinite binary sequence. Then, a I1{ formula ¢(X) can be expressed as Vz 6(X |z),
where 6 is 20 and X |z is a code for a finite binary sequence. We set T' = {t | Vs C t 6(s)}.
Then T is a tree, and X € [T iff ¢(X) holds. Thus, 3X ¢(X) is equivalent to [T] # &,
which is expressed as a I19 formula “T is infinite (Yn3t € {0,1}"t € T)".

(2) Express a 119 formula ¢(k, X) as Vz 6(k, X |x) (where 6 is £3), and define a tree

T = {t| Yk <leng(t)Vx < leng(t) O(k,t[x)}. Here, leng(t) denotes the length of the finite
binary sequence t. If Vn3X Vk < ne(k, X) holds, then ¥n3IX Vk < nVz <n 0(k, X[x),
sot = X[n € T for all n, thus T is infinite. Hence, in WKL, there exists an infinite path
X € [T satisfying Yk p(k, X). O

Here is another demonstration for (2). If we express p(k, X) as X € [Tk], then
JXVk <np(k, X) can be expressed as (), _,,[Tk] # @. Since this is true for any n, we
have (. .. [Tx] # @ by the compactness of the Cantor space since [T}]'s are closed sets.

Both (1) and (2) are referred to as “compactness (of binary trees) in WKLy".
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We define G-X9 formulas or simply G' formulas by generalizing % formulas as follows.
The G formulas are obtained from X{ formulas by using A, V, bounded universal quantifier
Aselfembedding /7 < g and unbounded existential quantifier 3z, and set quantifiers V.X, 3.X.

theorem of
WKLq

K. Tanaka

In WKLo, we can prove that a G formula is equivalent to a X9 formula.

(Proof)

® The closure condition under Va < y is nothing but the collection principle BX¢
derivable from X induction.

® The closure condition under VX can be obtained from Lemma 3.2(1) by taking the
negation on both sides.

® The closure condition under 3X can be demonstrated by noting that 3X 3z 0(z, X [x)
(where 6 is ©0) can be rewritten as Jt3x 6(x,t).

® The other closure conditions are almost obvious.

Now, we redefine the G-formulas explicitly in RCAg in the next slide.
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A self-embedding
i A sequence Gy C G1 C G5 C -+ of sets of LZ-formulas is defined inductively modulo 4

as follows: for each e € N,

Gy = {finite disjunctions (V) of atomic formulas or their negations},
Gaer1 = {3z ¢ | ¢ is a finite conjunction (A) of G4, formulas} U Gy,
Giero = {Vx <y | ¢ is a finite disjunction (V) of Gaeq1 formulas} U Gaeyr,
Gaer3 = {3X ¢ | ¢ is a finite conjunction (A) of Gyeyo formulas} U Gaeqa,
Giers = {VX ¢ | ¢ is a finite disjunction (V) of Gaet3 formulas} U Gyeys.

Finally, we set G = |,y Ge. The formulas in G are called G formulas.

By Lemma 5.5.3, there is no formula that defines the truth values of all formulas. But,
Lemma 5.3.4 shows that if we restrict the formulas to a class like X,,, then there exists a
formula Saty;, to define the truth values of formulas in the class. This is also the case for
Z% in second order arithmetic. In the following, we will define Sat for G formulas.



Logic and

Foundations From now on, a structure 9t = (M, S) is denoted by V. Then, for each p € M, set
K. Tanaka M,={aeM|MEa<p}, S,={XNM,|X eS}anddenote V, = (M,,S)).
A self-embeddin,
theorem of Since M,, may not be closed under operations such as addition, ¥}, may not be a

o substructure of V. However, just by restricting the ranges of variables to these sets, the
satisfaction predicate Sat”(z, &) for V, can be naturally defined within V' = (M, S).
Here, z represents the code of a formula ¢, and £ is a finite function that assigns elements
of M, U S, to free variables appearing in . Thus, supposing that a formula go(f,)?) has
no free variables other than f,)z, and &(%) = 6,5()2) — U, we have in V,

SatP("p ™, &) = (@, U)", roughly V, E (@, ).

Here, in ¢(d, U)Vf’, quantification over numbers is bounded by p, and quantification over
sets is also considered as ranging binary sequences of length p, which can be coded by
numbers < 2P. Thus, Sat?(z,&) can be defined as a AY formula in V' (cf. Lemma 5.3.4).

We also remark that a variable z in Sat”(z,£) can potentially express a non-standard
number. In V, it can be easily verified that Sat? satisfies Tarski's truth definition clauses
for all standard formulas (cf. Theorem IV.2.26 in [P. Hjek and P. Pudlék,
Metamathematics of First-oder Arithmetic, Springer, 1993.]).
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Next, we define the satisfaction relation for G formulas as follows:

Definition 3.4

For each z € G, define the satisfaction relation Sat(z, &) as follows:
Sat(z,&) <> IpSat?(z,& | Vp).

Here, £ [V}, is the assignment obtained by restricting the values of £ to V.

For simplicity, we abbreviate Sat?(z,§ [ V) as Sat?(z,§). It is provable in RCAq that for
the code z of a X{ formula, if Sat?(z, &) holds, then Sat?” (z,&) also holds for any p’ > p.

Moreover, we will show in WKL that it also the case for the codes z of G.

In the following, we identify a formula with its code.
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0
In a model V' of WKLy, Sat(z,§) satisfies Tarski's truth definition clauses for G' formulas.
Proof. We prove the statement by induction on the complexity of the formula z.

If 2 is an atomic formula or its negation, Sat(z, &) < IpSatP(z,&) < Ipz(6)Vr & 2(€).
If z=\/,_, 2z (where each z; is a G formula),

Sat (\/ z§> & JpSat? (\/ z§> & 3p \/ Sat? (z;, €)

<n <n <n

= \/ Ip Sat? (2, & \/ Sat (z;,&

i<n <n

If zis 3 2’ or 3X 2’ (where 2’ is a G formula), the proofs are analogous.
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A self-embedding
Wty Sat ( A z§> & Jp Sat? ( A z§> & 3p N Sat? (2,6
<n <n <n
& N\ IpSat? (2,6)  («= by X collection principle)
i<n
& N Sat (z,¢).

i<n

If zis Vo < y 2’ (where 2’ is a G formula), the proof is analogous.
If z=VX 2 (where 2’ is a G formula),

Sat (VX 2/, €) & JpSat? (VX 2/, &) & IpVU Sat® (2, £ U {(X,U)})
& VU FpSat? (2, £ U{(X,U)}) (& by compactness (Lemma 3.2(2)))
& VU Sat (2, U{(X,U)}),

where ¢ U {(X,U)} is an extension of £ with X assigned to U. ad
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Lemma 3.6

In a model V' = (M, S) of WKLy, we fix any e € M and an M-finite assignment map &.
Then, there exists a p € M such that for all G, formulas z whose free variables all belong
to the domain of &, then Sat(z, &) < Sat?(z, ) holds.

Proof. Since the domain of the assignment map £ is M-finite, the set of G, formulas
whose free variables are in the domain of £ is essentially M-finite (disregarding repetitions
of the same formulas within a disjunction or conjunction). This fact can be demonstrated
by ¢ induction on e.

Therefore, for M-finitely many G, formulas z, if Sat(z, &) holds, let p, be p such that
Sat?(z,&), or otherwise let p, = 0 . Then, if we put ¢ = max{p.}, 2 then we have
Sat(z, ) < Sat?(z, ). a

2Strictly speaking, strong ch) collection principle (SX1) is used here. (Refer to Problem 1 following
Lemma 1.8 in Chapter 7.)
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Definition 3.7 (reflection)

In a model V of WKLy, for any e, p, and for two assignment maps &, £’ with the same
domain, the relation Ref? (¢, ¢’) is defined as follows:

Sat(z, &) = SatP(z,¢'), for each G, formula z with free variables in the domain of £.

Lemma 3.8

In a model V' of WKLy, supposing Ref? (¢, &) with M-finite &, &', the following holds:

(1) fe=4d+1, Ya3ad' < pRef?_;(£U{(y,a)},& U{(y,a’)}), where y is a variable not
in the domain of &.

(2) If e =4d + 2, for each numerical variable = belonging to &,
Vo' < €(z)3a < &(x) Ref?_, (€ U{(y,a)}, € U {(y,a")}), with y not in &.

(3) If e=4d+ 3, VU IU'Refl_,(€U{(Y,U)}, & U{(Y,U")}), where Y is a variable not
belonging to the domain of &.

(4) fe=4d+4, VU U Ref?_(EU{(Y,U)}, & U{(Y,U")}), with Y not in &.
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K. Tanaka the same domain such that Ref?(&,¢’) is satisfied.
A self-embedding
e of (1) For e =4d+ 1. Show Va3a’ < pRef? (€U {(y,a)},& U{(y,a’)}).

Fix any a € M. Let Z be the set of all codes of G._; formulas z satisfying
Sat(z,£ U{(y,a)}) and in a non-redundant form (i.e., no same formula is repeated in
disjunctions or conjunctions), whose free variables are either y or belong to the
domain of £. According to the argument in the proof of Lemma 3.6, this set Z is
M-finite within V. Thus, by (bounded X¢-CA) (Lemma 7.1.8), Z exists.

Now, consider a G-formula 2’ = 3y A, 2. Since Sat(z,£ U {(y,a)}) for each
z € Z, it follows from Lemma 3.5 that Sat(A\, ., 2, U{(y,a)}) and so Sat(Z',§).

Therefore, by the hypothesis, Sat?(z’,¢’) holds. Thus, there exists a’ < p such that
Sat?(z,&" U{(y,a’)}) holds for each z € Z, fulfilling the requirement.

(2) For e =4d + 2. Show Va’' < &'(z)Ja < &(z) Ref?_ (€U {(y,a)},& U{(y,a’)}).
Fix any a’ < £'(z). To prove by contradiction, assume that for any a < £(z) there
exists a G._1 formula z such that Sat(z,£ U {(y,a)}) and =Sat?(z,&" U {(y,a’)}).
Let Z be the set of all z € G._; satisfying =Sat”(z,& U {(y,a’)}) and in a
non-redundant form, whose free variables are either y or belong to the domain of £.
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(2) (continued) Like in case (1), Z exists by (bounded X9-CA). Consider a G formula

2 =Vy <z \/,c, 2. By the other assumption, for each a < §(x), there exists z € Z
such that Sat(z,& U {(y,a)}), so Sat(z’, &) holds.

Therefore, by the hypothesis, Sat?(2’,£’) holds. Thus for each a’ < &'(x), there exists
z € Z such that Sat?(z,& U{(y,a’)}), which contradicts the definition of Z.

For e =4d + 3. YU 3U' Ref?_, (£ U{(Y,U)},& U{(Y,U’)}) can be shown like (1).

For e = 4d + 4. Show YU’ 3U Ref?_, (¢ U{(Y,U)}, & U{(Y,U")}).

Fix any U’. Let Z be the set of z € G._; satisfying =Sat?(z, & U {(Y,U’)}) and in a
non-redundant form, whose free variables are either y or belong to the domain of £.
Consider a G, formula 2/ = VY \/ZEZ z. By contradiction, assume for each U, there
exists z € Z such that Sat(z,£ U {(Y,U)}). Thus, Sat(z’,&) holds, and by the
hypothesis, Sat?(z’,£’) holds, which contradicts the definition of Z.

Thus, the lemma is proved. O
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_ Let 9 = (M, S) be a countable model of WKL with M # w. Then, there exists a proper
teoemot " initial segment I of M such that 9[I = (I, S[I) is isomorphic to 9.

WKLq
Proof Let V = (M,S) be a countable nonstandard model of WKLy, and fix ¢ € M.
Since Vj is M-finite within V, we can also make an M-finite mapping &, that assigns each
number and set in V; to distinct variables.
Now, take any nonstandard number e € M. By Lemma 3.6, for any G.-formula z whose
free variables belong to the domain of £, there exists p such that Sat(z,&y) < Sat”(z, &)

holds.
In the following, by repeatedly using Lemma 3.8 (the back-and-forth method), we
construct two w-sequences of assignment mappings o C & C--- C & C ... and

& (=&) CE C--C¢& C... (kew), where Ref?_, (&,¢},) holds for all k € w, and
U, range(&x) =V and |, range(§;,) forms the desired initial segment of the model V.

To begin with, we enumerate the elements of V as M = {a; | i € w}, S ={U; | i € w}.
We inductively construct &, £}, with the same domain (k € w) by cases:
(i) Fore—k =4d+ 1. Let a be the element a; in M — range(&;) with the smallest index
i, and let o/ < p be obtained by Lemma 3.8(1). Then, let y be a new numerical
variable not in the domain of &, and set &1 = & U {(y,a)}, &40 = & U {(y,d)}.
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i Tansie Then, let a’ be the element a; in M — range(§},) and satisfying a; < &}, (zo) with the
A el smallest index 4, and let a < (o) be obtained by Lemma 3.8(2). Then, let y be a

theorem of

Wil new numerical variable, and set {41 = & U {(y,a)}, {0 = & U{(y,a')}.

(iii) For e —k =4d+ 3. Let U be U; € S with the smallest index i, that is different from
any set in range(&) with regards to the numbers in range(¢). Also, let U’ be
obtained by Lemma 3.8(3). Then, let Y be a new set variable, and set

Eer1 = U{(Y,U)}, S = & UL, U}

(iv) Fore —k =4d+4. Let U’ be U; € S, with the smallest index 7, that is different from
any set in range(&}.) with regards to the numbers in range(§},). Also, let U be
obtained by Lemma 3.8(4). Then, let Y be a new set variable, and set

S =& U{Y U}, &gy = & UL UN)}
From the above construction, it is easy to see that Ref? , (&, &},) holds for each k € w.

From (i) and (iii), it is obvious that | J, range(&x) = (M, S). Also, from (ii), we can easily
see that the set I consisting of a belonging to |, range(¢;,) forms an initial segment of M.
Then, from (iv) it follows that |, range(¢;,) = (I, S[1).
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In (i), we first extend the injective mapping & to an injective &;41, and then extend the
injective &}, to a mapping &, that satisfies Ref? _, | (&x41,&),,1). The injectivity of &1
is clear from the construction. Since the injectivity is expressed by a G formula, &, is
also injective.

Similarly for (ii), (iii) and (iv).

Thus, |J, & and |J, &, are also injective.

Let f = (Uy &) © (U &) ™', which becomes a bijection from V to V'[I. It is evident that
f acts as the identity map on V.

Furthermore, since Refh (&, &},) holds for each k € w, it is clear that f is an isomorphism.
Thus, the proof of the theorem is complete. O
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A self-embeddin, . . y
rones ® According to Godel's completeness theorem and compactness theorem,
WKLq

WKLy F ¢ < for any non-w model 9 of WKLy, M [ ¢.

® Since any infinite structure has an elementarily equivalent countable structure by the
Lowenheim-Skolem Theorem,

WKLy F ¢ < for any countable non-w model 9t of WKLy, M = .

® Choose a countable non-w model M = (M, S) of WKLg. Theorem 3.9 states that 9t
has an initial segment isomorphic to itself. But by swapping their roles of 9t and an
isomorphic initial segment, 9 is seen to have an isomorphic end-extension
*M = (*M,*S), which allows us to carry out some nonstandard analysis arguments.

® For example, in 9t = (M, S), a real number a is indeed a set in S. Thus, a is an
initial segment *a[M of some set *a € *S. Since *a may be taken bounded in *91,
it can be coded by an element of *M. Therefore, a real number in 9% can be treated
like a rational number in *91.
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WKL F Any continuous function f : [0,1] — [0,1] has a maximum value.

Proof.

Mm = (M, S) M = (*M,*S)

f:00,1]NnQ — [0,1] = f Aditica — 20
| | (a,be"M— M, f="fnM)
{gitiem 2M
I
mN M is sup f = *m = max{*f(¢;) }i<a
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WKLy - The Cauchy-Peano Theorem (Tanaka, 1997)

WKLy - The existence of Haar measure for a compact group
(Tanaka-Yamazaki, 2000)

WKLy - The Jordan curve theorem (Sakamoto-Yokoyama, 2007)



Thank you for your attention!
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