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Logic and Foundations II� �
• Part 5. Models of first-order arithmetic (continued) (5 lectures)

• Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)

• Part 7. Real analysis and reverse mathematics (8.5 lectures)

• Part 8. Second order arithmetic and non-standard methods (6.5 lectures)� �
Part 8. Schedule� �
• May 21, (0) Introduction to forcing

• May 23, (1) Harrington’s conservation result on WKL0
• May 28, (2) H.Friedman’s conservation result on WKL0
• May 30, (3) Friedman’s result (continued) and a self-embedding theorem I

• June 04, (4) A self-embedding theorem II

• June 06, (5)

• June 11, (6)� �
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§8.3. A self-embedding theorem of WKL0

In this section, we introduce a self-embedding theorem of WKL0, by which we can devise
methods of nonstandard analysis in WKL0.

Gödel stated in 1973 that ”nonstandard analysis is the future of analysis.” However,
Henson and Keisler have shown in 1986 that nonstandard arguments in n-th order
arithmetic require (n+1)-th order arithmetic. Therefore, conducting complete nonstandard
analysis for second-order arithmetic Z2 is impossible within the framework of second-order
arithmetic alone. Nevertheless, as demonstrated in my paper1, certain amount of
nonstandard analysis can still be developed within WKL0.

The main tool of our nonstandard method is a self-embedding theorem of WKL0
(Theorem 3.9), which extends Friedman’s self-embedding theorem (§5.3) to WKL0. This
section primarily discusses the proof of this theorem.

1K. Tanaka, The self-embedding theorem of WKL0 and a non-standard method, Annals of Pure and
Applied Logic 84 (1997), pp.41–49.
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Theorem 3.1 (Self-Embedding Theorem)

Let M = (M,S) be a countable model of WKL0 with M ̸= ω. Then, there exists a proper
initial segment I of M such that M⌈I = (I, S⌈I) is isomorphic to M. Here,
S⌈I = {X ∩ I | X ∈ S}.

Before proving this theorem, we need some preparations. We first prove the following
lemma, which will be frequently used later.

Lemma 3.2 (Compactness in WKL0)

(1) For any Π0
1 formula φ(X), there exists a Π0

1 formula φ̂ such that WKL0 proves:

φ̂ ↔ ∃X φ(X).

(2) For any Π0
1 formula φ(k,X), WKL0 proves:

∀n∃X ∀k < nφ(k,X) → ∃X ∀k φ(k,X).
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From now on, we adopt the notation [T ] for the set of all infinite paths of a tree T . Do not
confuse it with [p], which represents a basic open set in the order topology.

Proof. (1) We identify a set X with its characteristic function, which is also represented
as an infinite binary sequence. Then, a Π0

1 formula φ(X) can be expressed as ∀x θ(X↾x),
where θ is Σ0

0 and X↾x is a code for a finite binary sequence. We set T = {t | ∀s ⊆ t θ(s)}.
Then T is a tree, and X ∈ [T ] iff φ(X) holds. Thus, ∃X φ(X) is equivalent to [T ] ̸= ∅,
which is expressed as a Π0

1 formula “T is infinite (∀n∃t ∈ {0, 1}nt ∈ T )”.

(2) Express a Π0
1 formula φ(k,X) as ∀x θ(k,X↾x) (where θ is Σ0

0), and define a tree
T = {t | ∀k ≤ leng(t)∀x ≤ leng(t) θ(k, t⌈x)}. Here, leng(t) denotes the length of the finite
binary sequence t. If ∀n∃X ∀k < nφ(k,X) holds, then ∀n ∃X ∀k < n ∀x < n θ(k,X⌈x),
so t = X⌈n ∈ T for all n, thus T is infinite. Hence, in WKL0, there exists an infinite path
X ∈ [T ] satisfying ∀k φ(k,X). 2

Here is another demonstration for (2). If we express φ(k,X) as X ∈ [Tk], then
∃X ∀k < nφ(k,X) can be expressed as

⋂
k<n[Tk] ̸= ∅. Since this is true for any n, we

have
⋂

k<∞[Tk] ̸= ∅ by the compactness of the Cantor space since [Tk]’s are closed sets.

Both (1) and (2) are referred to as “compactness (of binary trees) in WKL0”.
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We define G-Σ0
1 formulas or simply G formulas by generalizing Σ0

1 formulas as follows.
The G formulas are obtained from Σ0

1 formulas by using ∧,∨, bounded universal quantifier
∀x < y and unbounded existential quantifier ∃x, and set quantifiers ∀X,∃X.

In WKL0, we can prove that a G formula is equivalent to a Σ0
1 formula.

(Proof)

• The closure condition under ∀x < y is nothing but the collection principle BΣ0
1

derivable from Σ0
1 induction.

• The closure condition under ∀X can be obtained from Lemma 3.2(1) by taking the
negation on both sides.

• The closure condition under ∃X can be demonstrated by noting that ∃X∃x θ(x,X⌈x)
(where θ is Σ0

0) can be rewritten as ∃t∃x θ(x, t).

• The other closure conditions are almost obvious.

Now, we redefine the G-formulas explicitly in RCA0 in the next slide.
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Definition 3.3 (G-formulas)

A sequence G0 ⊂ G1 ⊂ G2 ⊂ · · · of sets of L2
OR-formulas is defined inductively modulo 4

as follows: for each e ∈ N,

G0 = {finite disjunctions (∨) of atomic formulas or their negations},
G4e+1 = {∃xϕ | ϕ is a finite conjunction (∧) of G4e formulas} ∪G4e,

G4e+2 = {∀x < y ϕ | ϕ is a finite disjunction (∨) of G4e+1 formulas} ∪G4e+1,

G4e+3 = {∃X ϕ | ϕ is a finite conjunction (∧) of G4e+2 formulas} ∪G4e+2,

G4e+4 = {∀X ϕ | ϕ is a finite disjunction (∨) of G4e+3 formulas} ∪G4e+3.

Finally, we set G =
⋃

e∈N Ge. The formulas in G are called G formulas.

By Lemma 5.5.3, there is no formula that defines the truth values of all formulas. But,
Lemma 5.3.4 shows that if we restrict the formulas to a class like Σn, then there exists a
formula SatΣn

to define the truth values of formulas in the class. This is also the case for
Σ0

n in second order arithmetic. In the following, we will define Sat for G formulas.
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From now on, a structure M = (M,S) is denoted by V . Then, for each p ∈ M , set
Mp = {a ∈ M | M |= a < p}, Sp = {X ∩Mp | X ∈ S} and denote Vp = (Mp, Sp).

Since Mp may not be closed under operations such as addition, Vp may not be a
substructure of V . However, just by restricting the ranges of variables to these sets, the
satisfaction predicate Satp(z, ξ) for Vp can be naturally defined within V = (M,S).
Here, z represents the code of a formula φ, and ξ is a finite function that assigns elements
of Mp ∪ Sp to free variables appearing in φ. Thus, supposing that a formula φ(x⃗, X⃗) has

no free variables other than x⃗, X⃗, and ξ(x⃗) = a⃗, ξ(X⃗) = U⃗ , we have in V ,

Satp(⌜φ⌝, ξ) ≡ φ(⃗a, U⃗)Vp , roughly Vp |= φ(⃗a, U⃗).

Here, in φ(⃗a, U⃗)Vp , quantification over numbers is bounded by p, and quantification over
sets is also considered as ranging binary sequences of length p, which can be coded by
numbers < 2p. Thus, Satp(z, ξ) can be defined as a ∆0

1 formula in V (cf. Lemma 5.3.4).

We also remark that a variable z in Satp(z, ξ) can potentially express a non-standard
number. In V , it can be easily verified that Satp satisfies Tarski’s truth definition clauses
for all standard formulas (cf. Theorem IV.2.26 in [P. Hájek and P. Pudlák,
Metamathematics of First-oder Arithmetic, Springer, 1993.]).
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Next, we define the satisfaction relation for G formulas as follows:

Definition 3.4

For each z ∈ G, define the satisfaction relation Sat(z, ξ) as follows:

Sat(z, ξ) ↔ ∃p Satp(z, ξ ↾ Vp).

Here, ξ ↾ Vp is the assignment obtained by restricting the values of ξ to Vp.

For simplicity, we abbreviate Satp(z, ξ ↾ Vp) as Sat
p(z, ξ). It is provable in RCA0 that for

the code z of a Σ0
1 formula, if Satp(z, ξ) holds, then Satp

′
(z, ξ) also holds for any p′ ≥ p.

Moreover, we will show in WKL0 that it also the case for the codes z of G.

In the following, we identify a formula with its code.
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Lemma 3.5

In a model V of WKL0, Sat(z, ξ) satisfies Tarski’s truth definition clauses for G formulas.

Proof. We prove the statement by induction on the complexity of the formula z.
If z is an atomic formula or its negation, Sat(z, ξ) ⇔ ∃p Satp(z, ξ) ⇔ ∃p z(ξ)Vp ⇔ z(ξ).
If z =

∨
i<n zi (where each zi is a G formula),

Sat

(∨
i<n

zi, ξ

)
⇔ ∃p Satp

(∨
i<n

zi, ξ

)
⇔ ∃p

∨
i<n

Satp (zi, ξ)

⇔
∨
i<n

∃pSatp (zi, ξ) ⇔
∨
i<n

Sat (zi, ξ) .

If z is ∃x z′ or ∃X z′ (where z′ is a G formula), the proofs are analogous.
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When z =
∧

i<n zi (where each zi is a G formula),

Sat

(∧
i<n

zi, ξ

)
⇔ ∃p Satp

(∧
i<n

zi, ξ

)
⇔ ∃p

∧
i<n

Satp (zi, ξ)

⇔
∧
i<n

∃pSatp (zi, ξ) (⇐ by Σ0
1 collection principle)

⇔
∧
i<n

Sat (zi, ξ) .

If z is ∀x < y z′ (where z′ is a G formula), the proof is analogous.
If z = ∀X z′ (where z′ is a G formula),

Sat (∀X z′, ξ) ⇔ ∃p Satp (∀X z′, ξ) ⇔ ∃p ∀U Satp (z′, ξ ∪ {(X,U)})
⇔ ∀U ∃p Satp (z′, ξ ∪ {(X,U)}) (⇐ by compactness (Lemma 3.2(2)))

⇔ ∀U Sat (z′, ξ ∪ {(X,U)}) ,

where ξ ∪ {(X,U)} is an extension of ξ with X assigned to U . 2
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Lemma 3.6

In a model V = (M,S) of WKL0, we fix any e ∈ M and an M -finite assignment map ξ.
Then, there exists a p ∈ M such that for all Ge formulas z whose free variables all belong
to the domain of ξ, then Sat(z, ξ) ⇔ Satp(z, ξ) holds.

Proof. Since the domain of the assignment map ξ is M -finite, the set of Ge formulas
whose free variables are in the domain of ξ is essentially M -finite (disregarding repetitions
of the same formulas within a disjunction or conjunction). This fact can be demonstrated
by Σ0

1 induction on e.

Therefore, for M -finitely many Ge formulas z, if Sat(z, ξ) holds, let pz be p such that
Satp(z, ξ), or otherwise let pz = 0 . Then, if we put q = max{pz}, 2 then we have
Sat(z, ξ) ⇔ Satq(z, ξ). 2

2Strictly speaking, strong Σ0
1 collection principle (SΣ1) is used here. (Refer to Problem 1 following

Lemma 1.8 in Chapter 7.)
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Definition 3.7 (reflection)

In a model V of WKL0, for any e, p, and for two assignment maps ξ, ξ′ with the same
domain, the relation Refpe(ξ, ξ

′) is defined as follows:

Sat(z, ξ) ⇒ Satp(z, ξ′), for each Ge formula z with free variables in the domain of ξ.

Lemma 3.8

In a model V of WKL0, supposing Refpe(ξ, ξ
′) with M -finite ξ, ξ′, the following holds:

(1) If e = 4d+ 1, ∀a∃a′ < pRefpe−1(ξ ∪ {(y, a)}, ξ′ ∪ {(y, a′)}), where y is a variable not
in the domain of ξ.

(2) If e = 4d+ 2, for each numerical variable x belonging to ξ,
∀a′ < ξ′(x)∃a < ξ(x)Refpe−1(ξ ∪ {(y, a)}, ξ′ ∪ {(y, a′)}), with y not in ξ.

(3) If e = 4d+ 3, ∀U ∃U ′ Refpe−1(ξ ∪ {(Y,U)}, ξ′ ∪ {(Y, U ′)}), where Y is a variable not
belonging to the domain of ξ.

(4) If e = 4d+ 4, ∀U ′ ∃U Refpe−1(ξ ∪ {(Y,U)}, ξ′ ∪ {(Y, U ′)}), with Y not in ξ.
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Proof Let V = (M,S) be a model of WKL0, and let ξ, ξ′ be M -finite assignments with
the same domain such that Refpe(ξ, ξ

′) is satisfied.

(1) For e = 4d+ 1. Show ∀a∃a′ < pRefpe−1(ξ ∪ {(y, a)}, ξ′ ∪ {(y, a′)}).
Fix any a ∈ M . Let Z be the set of all codes of Ge−1 formulas z satisfying
Sat(z, ξ ∪ {(y, a)}) and in a non-redundant form (i.e., no same formula is repeated in
disjunctions or conjunctions), whose free variables are either y or belong to the
domain of ξ. According to the argument in the proof of Lemma 3.6, this set Z is
M -finite within V . Thus, by (bounded Σ0

1 -CA) (Lemma 7.1.8), Z exists.

Now, consider a Ge-formula z′ = ∃y
∧

z∈Z z. Since Sat(z, ξ ∪ {(y, a)}) for each
z ∈ Z, it follows from Lemma 3.5 that Sat(

∧
z∈Z z, ξ ∪ {(y, a)}) and so Sat(z′, ξ).

Therefore, by the hypothesis, Satp(z′, ξ′) holds. Thus, there exists a′ < p such that
Satp(z, ξ′ ∪ {(y, a′)}) holds for each z ∈ Z, fulfilling the requirement.

(2) For e = 4d+ 2. Show ∀a′ < ξ′(x)∃a < ξ(x)Refpe−1(ξ ∪ {(y, a)}, ξ′ ∪ {(y, a′)}).
Fix any a′ < ξ′(x). To prove by contradiction, assume that for any a < ξ(x) there
exists a Ge−1 formula z such that Sat(z, ξ ∪ {(y, a)}) and ¬Satp(z, ξ′ ∪ {(y, a′)}).
Let Z be the set of all z ∈ Ge−1 satisfying ¬Satp(z, ξ′ ∪ {(y, a′)}) and in a
non-redundant form, whose free variables are either y or belong to the domain of ξ.
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(2) (continued) Like in case (1), Z exists by (bounded Σ0
1 -CA). Consider a Ge formula

z′ = ∀y < x
∨

z∈Z z. By the other assumption, for each a < ξ(x), there exists z ∈ Z
such that Sat(z, ξ ∪ {(y, a)}), so Sat(z′, ξ) holds.

Therefore, by the hypothesis, Satp(z′, ξ′) holds. Thus for each a′ < ξ′(x), there exists
z ∈ Z such that Satp(z, ξ′ ∪ {(y, a′)}), which contradicts the definition of Z.

(3) For e = 4d+ 3. ∀U ∃U ′ Refpe−1(ξ ∪ {(Y, U)}, ξ′ ∪ {(Y,U ′)}) can be shown like (1).

(4) For e = 4d+ 4. Show ∀U ′ ∃U Refpe−1(ξ ∪ {(Y,U)}, ξ′ ∪ {(Y, U ′)}).
Fix any U ′. Let Z be the set of z ∈ Ge−1 satisfying ¬Satp(z, ξ′ ∪ {(Y,U ′)}) and in a
non-redundant form, whose free variables are either y or belong to the domain of ξ.
Consider a Ge formula z′ = ∀Y

∨
z∈Z z. By contradiction, assume for each U , there

exists z ∈ Z such that Sat(z, ξ ∪ {(Y,U)}). Thus, Sat(z′, ξ) holds, and by the
hypothesis, Satp(z′, ξ′) holds, which contradicts the definition of Z.

Thus, the lemma is proved. 2
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Theorem 3.9 (Self-Embedding Theorem)

Let M = (M,S) be a countable model of WKL0 with M ̸= ω. Then, there exists a proper
initial segment I of M such that M⌈I = (I, S⌈I) is isomorphic to M.

Proof Let V = (M,S) be a countable nonstandard model of WKL0, and fix q ∈ M .
Since Vq is M -finite within V , we can also make an M -finite mapping ξ0 that assigns each
number and set in Vq to distinct variables.
Now, take any nonstandard number e ∈ M . By Lemma 3.6, for any Ge-formula z whose
free variables belong to the domain of ξ0, there exists p such that Sat(z, ξ0) ⇔ Satp(z, ξ0)
holds.

In the following, by repeatedly using Lemma 3.8 (the back-and-forth method), we
construct two ω-sequences of assignment mappings ξ0 ⊆ ξ1 ⊆ · · · ⊆ ξk ⊆ . . . and
ξ′0 (= ξ0) ⊆ ξ′1 ⊆ · · · ⊆ ξ′k ⊆ . . . (k ∈ ω), where Refpe−k(ξk, ξ

′
k) holds for all k ∈ ω, and⋃

k range(ξk) = V and
⋃

k range(ξ
′
k) forms the desired initial segment of the model V .

To begin with, we enumerate the elements of V as M = {ai | i ∈ ω}, S = {Ui | i ∈ ω}.
We inductively construct ξk, ξ

′
k with the same domain (k ∈ ω) by cases:

(i) For e− k = 4d+ 1. Let a be the element ai in M − range(ξk) with the smallest index
i, and let a′ < p be obtained by Lemma 3.8(1). Then, let y be a new numerical
variable not in the domain of ξk, and set ξk+1 = ξk ∪ {(y, a)}, ξ′k+1 = ξk ∪ {(y, a′)}.
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(ii) For e− k = 4d+ 2. Let ξ′k(x0) be the largest in the order in M among all ξ′k(x)’s.
Then, let a′ be the element ai in M − range(ξ′k) and satisfying ai < ξ′k(x0) with the
smallest index i, and let a < ξ(x0) be obtained by Lemma 3.8(2). Then, let y be a
new numerical variable, and set ξk+1 = ξk ∪ {(y, a)}, ξ′k+1 = ξk ∪ {(y, a′)}.

(iii) For e− k = 4d+ 3. Let U be Ui ∈ S with the smallest index i, that is different from
any set in range(ξk) with regards to the numbers in range(ξk). Also, let U

′ be
obtained by Lemma 3.8(3). Then, let Y be a new set variable, and set
ξk+1 = ξk ∪ {(Y,U)}, ξ′k+1 = ξk ∪ {(Y, U ′)}.

(iv) For e− k = 4d+ 4. Let U ′ be Ui ∈ S, with the smallest index i, that is different from
any set in range(ξ′k) with regards to the numbers in range(ξ′k). Also, let U be
obtained by Lemma 3.8(4). Then, let Y be a new set variable, and set
ξk+1 = ξk ∪ {(Y,U)}, ξ′k+1 = ξ′k ∪ {(Y, U ′)}

From the above construction, it is easy to see that Refpe−k(ξk, ξ
′
k) holds for each k ∈ ω.

From (i) and (iii), it is obvious that
⋃

k range(ξk) = (M,S). Also, from (ii), we can easily
see that the set I consisting of a belonging to

⋃
k range(ξ

′
k) forms an initial segment of M .

Then, from (iv) it follows that
⋃

k range(ξ
′
k) = (I, S⌈I).
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Next, we prove by induction that both ξk, ξ
′
k are injective for all k ∈ ω. It is clear from the

definition that ξ0 = ξ′0 is injective.

In (i), we first extend the injective mapping ξk to an injective ξk+1, and then extend the
injective ξ′k to a mapping ξ′k+1 that satisfies Refpe−k−1(ξk+1, ξ

′
k+1). The injectivity of ξk+1

is clear from the construction. Since the injectivity is expressed by a G2 formula, ξ′k+1 is
also injective.

Similarly for (ii), (iii) and (iv).

Thus,
⋃

k ξk and
⋃

k ξ
′
k are also injective.

Let f = (
⋃

k ξ
′
k) ◦ (

⋃
k ξk)

−1, which becomes a bijection from V to V ⌈I. It is evident that
f acts as the identity map on Vq.
Furthermore, since Refp0(ξk, ξ

′
k) holds for each k ∈ ω, it is clear that f is an isomorphism.

Thus, the proof of the theorem is complete. 2
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Let’s briefly describe how the Self-Embedding Theorem 3.9 can be applied to nonstandard
analysis.

• According to Gödel’s completeness theorem and compactness theorem,

WKL0 ⊢ φ ⇔ for any non-ω model M of WKL0,M |= φ.

• Since any infinite structure has an elementarily equivalent countable structure by the
Löwenheim-Skolem Theorem,

WKL0 ⊢ φ ⇔ for any countable non-ω model M of WKL0,M |= φ.

• Choose a countable non-ω model M = (M,S) of WKL0. Theorem 3.9 states that M
has an initial segment isomorphic to itself. But by swapping their roles of M and an
isomorphic initial segment, M is seen to have an isomorphic end-extension
∗M = (∗M, ∗S), which allows us to carry out some nonstandard analysis arguments.

• For example, in M = (M,S), a real number a is indeed a set in S. Thus, a is an
initial segment ∗a⌈M of some set ∗a ∈ ∗S. Since ∗a may be taken bounded in ∗M,
it can be coded by an element of ∗M . Therefore, a real number in M can be treated
like a rational number in ∗M.
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Application (The Maximum Principle)

WKL0 ⊢ Any continuous function f : [0, 1] → [0, 1] has a maximum value.

Proof.

M = (M,S) ∗M = (∗M,∗S)

f : [0, 1] ∩Q → [0, 1] =⇒ ∗f : {qi}i<a → 2b

∥ ∥ (a, b ∈∗M −M,f =∗ f ∩M)
{qi}i∈M 2M

⇓
∗m ∩M is sup f ⇐= ∗m = max{∗f(qi)}i<a



Logic and
Foundations

K. Tanaka

A self-embedding
theorem of
WKL0

21

Other Applications

WKL0 ⊢ The Cauchy-Peano Theorem (Tanaka, 1997)

WKL0 ⊢ The existence of Haar measure for a compact group

(Tanaka-Yamazaki, 2000)

WKL0 ⊢ The Jordan curve theorem (Sakamoto-Yokoyama, 2007)
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Thank you for your attention!
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