K. Tanaka

Semi-Regula Cuts and Friedman's Theorem

A self-embeddin theorem of WKL_0

Logic and Foundations II

Part 8. Second order arithmetic and non-standard methods

Kazuyuki Tanaka

BIMSA

May 30, 2024

K. Tanaka

Semi-Regular Cuts and Friedman's Theorem

A self-embedding theorem of WKL_O

Logic and Foundations II

- Part 5. Models of first-order arithmetic (continued) (5 lectures)
- Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)
- Part 7. Real analysis and reverse mathematics (8.5 lectures)
- Part 8. Second order arithmetic and non-standard methods (6.5 lectures)

- Part 8. Schedule

- May 21, (0) Introduction to forcing
- May 23, (1) Harrington's conservation result on WKL_0
- May 28, (2) H.Friedman's conservation result on WKL_0
- May 30, (3) Friedman's result (continued) and a self-embedding theorem I
- June 04, (4) A self-embedding theorem II
- June 06, (5)
- June 11, (6)

K. Tanaka

Semi-Regular Cuts and Friedman's Theorem

A self-embeddin theorem of WKL_O

§8.2. Semi-Regular Cuts and Friedman's Theorem

The goal of this section is to prove a theorem of H. Friedman that "WKL₀ is Π_2^0 conservative over PRA." Primitive Recursive Arithmetic PRA consists of defining axioms for the primitive recursive functions, together with Σ_0 induction.

We fix a nonstandard model (M,F) of PRA (i.e., $M\neq\omega$). Also, let $p\in F$ be a primitive recursive function that lists the prime numbers in the ascending order, i.e., $p(0)=2, p(1)=3, p(2)=5, \cdots$.

Definition 2.1

A set $X \subseteq M$ has a code $c \in M$ if $X = \{n \in M : M \models \exists d < c \ (c = p(n) \cdot d)\}$. Such a set X is called *M*-finite, and the number of elements in X is denoted by |X| or |c|.

Definition 2.2

A proper initial segment I of M is called a **cut** of M, denoted $I \subseteq_e M$, if it is closed under the successor function (i.e., $a \in I \Rightarrow a + 1 \in I$). Furthermore, a cut $I \subseteq_e M$ is called a **semi-regular cut**, if $X \cap I$ is bounded within I for any M-finite set X with $|X| \in I$.

K. Tanaka

Semi-Regular Cuts and Friedman's Theorem

A self-embedding theorem of WKL₀ Let (M, F) be a nonstandard model of PRA.

Theorem 2.3 (Kirby-Paris)

If $I \subseteq_e M$ is a semi-regular cut, then $(I, F \lceil I) \models \mathsf{PRA}$, where $F \lceil I$ is the set of functions obtained by restricting the domain of each function f in F to I.

Proof For each $n \in \omega$, define the unary primitive recursive function g_n as follows:

$$\mathbf{g}_0(x) = x + 1, \quad \mathbf{g}_{n+1}(x) = \overbrace{\mathbf{g}_n \mathbf{g}_n \cdots \mathbf{g}_n}^{x+2}(x)$$

We can show for any primitive recursive function f, there exists some $n\in\omega$ such that

$$\mathsf{PRA} \vdash \mathbf{f}(x_1, x_2, \cdots, x_k) < \mathbf{g}_n(\max\{x_1, x_2, \cdots, x_k\})$$

To confirm that I is closed under all g_n , by way of contradiction, assume it is closed under g_n , but not g_{n+1} . Then we can choose $a \in I$ such that $g_{n+1}^M(a) \notin I$, and define

$$X = \{\mathbf{g}_n^M(a), \mathbf{g}_n^M \mathbf{g}_n^M(a), \cdots, \overbrace{\mathbf{g}_n^M \mathbf{g}_n^M \cdots \mathbf{g}_n^M}^{a+2}(a)\}$$

Since X is an M-finite set with $|X| = a + 2 \in I$, so $X \cap I$ is bounded and has a maximum element b. However, since I is closed under g_n , we have $g_n^M(b) \in X \cap I$, contradicting the maximality of b. So, (I, F | I) is a substructure of (M, F), and also satisfies Σ_0 -induction. \Box

K. Tanaka

Semi-Regular Cuts and Friedman's Theorem

A self-embedding theorem of WKL₍₎

Definition 2.4

Let $I \subseteq_e M$ and let S be the set of all M-finite sets. $B = X \cap I$ is called an M-coded set if $X \in S$. The set of all M-coded subsets of I is denoted by $S \lceil I$.

Note. We can consider (I, S | I) as a structure of second-order arithmetic, with basic operations $+^{I}, \cdot^{I}$, etc., which are obtained by restricting the corresponding operations (primitive recursive functions) on M to I.

Lemma 2.5

If $I \subseteq_e M$ is a semi-regular cut, then $(I, S \restriction I) \models \mathsf{WKL}_0$.

Proof First, for a Σ_0^0 formula θ in (I, S[I), we construct a Σ_0 formula θ^* in (M, F) by replacing every atomic formula $t \in B$ in θ with $\exists d < c_B \ (c_B = p(t) \cdot d)$, where c_B is a code of X such that $B = X \cap I$. Then, for any $a \in I$, $(I, S[I) \models \theta(a) \Leftrightarrow (M, F) \models \theta^*(a)$. To prove (I, S[I) satisfies (bounded Σ_1^0 -CA), take a $\Sigma_1^0 \ \varphi(x) = \exists y \theta(x, y)$ and any $c \in I$. Then, for all $a <_M c$, $(I, S[I) \models \varphi(a) \Leftrightarrow \exists b \in I \ (I, S[I) \models \theta(a, b) \Leftrightarrow \exists b \in I \ (M, F) \models \theta^*(a, b) \Leftrightarrow (M, F) \models \exists y < d' \ \theta^*(a, y)$ for some $d' \in I$. Thus, $\{x < c \mid \varphi(x)\} \in S[I$, since $X = \{a < c : (M, F) \models \exists y < d' \ \theta^*(a, y)\}$ has a code $\prod_{a \in X} p(a)$. Hence, (I, S[I) satisfies (bounded Σ_1^0 -CA). Similarly, $(I, S[I) \models (\Sigma_1^0$ -SP). Therefore, $(I, S[I) \models WKL_0$.

K. Tanaka

Semi-Regular Cuts and Friedman's Theorem

A self-embedding theorem of WKL_0

Lemma 2.6

Let (M, F) be a countable nonstandard model of PRA. Take $c, d \in M$ such that for all primitive recursive functions f, $f^M(c, c, \cdots, c) <_M d$. Then, there exists a semi-regular cut $I \subseteq_e M$ such that $c \in I$ and $d \notin I$.

Proof First, define the primitive recursive predicate B(x, y, z) as follows:

- $\bullet \ B(0,y,z) \ \Leftrightarrow \ y < z \text{,}$
- $B(x + 1, y, z) \Leftrightarrow$ for any M-finite set $X \subset [y, z)$ with $|X| \leq y$, there exists $[y', z') \subset [y, z)$ such that B(x, y', z') and $[y', z') \cap X = \emptyset$ Here, $[y, z) = \{w : y \leq w < z\}.$

Now, when B(x, y, z) holds, we say "the interval [y, z) is x-large." Then, the interval [y, z) is (x + 1)-large iff for any subset $X \subset [y, z)$ with $|X| \leq y$, there exists a subinterval $[y', z') \subset [y, z)$ that is x-large and disjoint from X.

We observe that the definition of B(x + 1, y, z) is Σ_0 , since a subset $X \subset [y, z)$ with cardinality at most y can be encoded by a number at most $p(z)^y$. So this makes B(x, y, z) a primitive recursive predicate.

K. Tanaka

Semi-Regular Cuts and Friedman's Theorem

A self-embedding theorem of WKL_0

For the sequence $\{g_n\}$ of primitive recursive functions constructed in the proof of Theorem 2.3, it can be shown that for each $n \in \omega$,

$$\mathsf{PRA} \vdash \mathsf{g}_n(y) \leq z \ \rightarrow B(n, y, z).$$

Indeed, this is clear when n = 0. Assuming it holds for n, let's show it for n + 1. Suppose $g_{n+1}(y) \leq z$. Since $g_{n+1}(y) = g_n^{y+2}(y)$, for any subset $X \subset [y, z)$ with $|X| \leq y$, there exists some c < y + 2 such that the interval $[g_n^c(y), g_n^{c+1}(y))$ does not contain any element of X. Let $y' = g_n^c(y)$ and $z' = g_n^{c+1}(y)$. Then $g_n(y') = z'$. So by the inductive hypothesis, B(n, y', z') holds, which fulfills the definition of B(x + 1, y, z).

Next, take $c, d \in M$ as in the statement of the lemma. Then for any $n \in \omega$, $g_n^M(c) <_M d$, and so B(n, c, d). By the overspill principle, there exists $b \in M - \omega$ such that $\forall a \leq_M b \ B(a, c, d)$.

K. Tanaka

Semi-Regular Cuts and Friedman's Theorem

A self-embedding theorem of WKL₀ Now, since (M, F) is a countable model of PRA, there are only countably many M-finite sets. So, we can construct a sequence of M-finite sets $\{X_n\}$, such that each M-finite set appears infinitely often in the sequence. Using this, we define the decreasing sequence of intervals $\{[c_n, d_n)\}$ as follows:

 $[c_0, d_0) = [c, d),$

 $[c_{n+1}, d_{n+1}) = \begin{cases} [c_n, d_n) & \text{if } |X_n| \ge_M c_n, \\ [c', d') & \text{otherwise, take any } [c', d') \subset [c_n, d_n) \text{ such that} \\ B(b - n, c', d') \text{ and } [c', d') \cap X_n = \varnothing. \end{cases}$

For any $a \in M$, obviously $\{a\}$ is *M*-finite, so for sufficiently large n, $[c_n, d_n) \cap \{a\} = \emptyset$, that is, $a \notin [c_n, d_n)$. Therefore, $\bigcap_n [c_n, d_n) = \emptyset$.

Now, let $I = \{a \in M : \exists n \ a <_M c_n\} = \{a \in M : \forall n \ a <_M d_n\}$. We show that I becomes a semi-regular cut. If X is M-finite and $|X| \in I$, by the definition of $\{X_n\}$, there are infinitely many n such that $X = X_n$. Then, there exists n such that $X = X_n$ and $|X| <_M c_n$. Thus, $[c_{n+1}, d_{n+1}) \cap X = \emptyset$. Therefore, $X \cap I$ is bounded by c_{n+1} in I. Hence, I is a semi-regular cut.

K. Tanaka

Semi-Regular Cuts and Friedman's Theorem

A self-embedding theorem of WKL₀

Theorem 2.7 (Friedman)

For any Π_2 sentence σ , $\mathsf{WKL}_0 \vdash \sigma \Rightarrow \mathsf{PRA} \vdash \sigma$.

Proof. To show the contraposition, take a Π_2 sentence $\sigma = \forall y \exists z \theta(y, z)$ with $\theta \in \Sigma_0$ that is not provable in PRA. Then, PRA $\cup \{\neg \exists z \theta(c, z)\} \cup \{\mathbf{f}(c, c, \cdots, c) < d : \mathbf{f} \text{ is a symbol of a primitive recursive function}\}$ is consistent, and hence by the completeness theorem, it has a countable model (M, F, c, d). Now, by Lemma 2.6, there exists a semi-regular cut $I \subseteq_e M$ such that $c \in I$ and $d \notin I$. Since $\neg \exists z \theta(c, z)$ is a Π_1 sentence and $M \models \neg \exists z \theta(c, z)$, it follows that $I \models \neg \exists z \theta(c, z)$, i.e., $I \models \neg \sigma$. On the other hand, by Lemma 2.5, we have $(I, S \lceil I) \models \mathsf{WKL}_0$. Thus, $(I, S \lceil I) \models \mathsf{WKL}_0 + \neg \sigma$, and so $\mathsf{WKL}_0 + \neg \sigma$ is consistent, hence σ cannot be proved in WKL_0 either.

As we saw in part 7, a wide range of mathematics can be developed within WKL₀. Nevertheless, Friedman's theorem shows that WKL₀ is Π_2 -conservative over PRA, which can be viewed as a partial realization of Hilbert's program or his "finitistic reductionism."

K. Tanaka

Semi-Regular Cuts and Friedman's Theorem

A self-embeddir theorem of WKL₀

Hilbert's Program

The main goal of Hilbert's program was to provide secure foundations for all mathematics, to counteract the intuitionism, led by Brouwer who had been attacking non-constructive methods in mathematics. Hilbert proposed the method of "proof theory" or "meta-mathematics", by which mathematical arguments are treated as symbolic manipulations, and thus can be analyzed themselves mathematically.

Let T be a large system (e.g., set theory ZFC) that can develop most of mathematics. Let t be a small system (e.g., PRA) capable of performing symbolic manipulatios of T. Then, Hilbert considered that a Π_1^0 sentence which does not assert existence (e.g., Fermat's Last Theorem: $\forall n > 2 \forall x, y, z > 0(x^n + y^n \neq z^n)$) would be provable in t if it is provable in T. Therefore, the validity of a Π_1^0 sentence may be argued with non-constructive methods.

- Hilbert's (reductionism) program HP

HP: for any Π_1^0 sentence φ , if $T \vdash \varphi$ then $t \vdash \varphi$.

K. Tanaka

Semi-Regular Cuts and Friedman's Theorem

A self-embedding theorem of WKL₀

Theorem 2.8

Suppose both T and t include PRA. Then, for any Π_1^0 sentence φ , if $T \vdash \varphi$, then $t + \operatorname{Con}(T) \vdash \varphi$. Here, $\operatorname{Con}(T)$ is a Π_1^0 sentence expressing the consistency of T.

Proof. Let $\varphi \equiv \forall n \theta(n)$ (where $\theta(n)$ is Σ_0^0 or primitive recursive), and assume $T \vdash \varphi$. So, since $\operatorname{Bew}_T(\ulcorner \varphi \urcorner)$ is a true Σ_1^0 sentence, by the Σ_1^0 -completeness of $t, t \vdash \operatorname{Bew}_T(\ulcorner \varphi \urcorner)$. On the other hand, from the proof of Lemma 4.5.1 D3, $t \vdash \neg \theta(n) \to \operatorname{Bew}_t(\ulcorner \neg \theta(\bar{n}) \urcorner)$, i.e., $t \vdash \neg \theta(n) \to \operatorname{Bew}_t(\ulcorner \neg \varphi \urcorner)$. Since $\operatorname{Bew}_t(\ulcorner \neg \varphi \urcorner) \to \operatorname{Bew}_T(\ulcorner \neg \varphi \urcorner)$, it follows that $t \vdash \neg \theta(n) \to \neg \operatorname{Con}(T)$. Therefore, $t + \operatorname{Con}(T) \vdash \theta(n)$, and thus $t + \operatorname{Con}(T) \vdash \varphi$.

By this theorem, if $t \vdash \operatorname{Con}(T)$, then HP holds. However, by Gödel's second incompleteness theorem, $\operatorname{Con}(T)$ is not provable in T, hence also not in t.

However, for $T = WKL_0$ and t = PRA, HP is shown to hold by Friedman's theorem. Observing the richness of mathematics developed in WKL₀, one can view that "Hilbert's program" has been partially realized. Those skeptical about the meaning of HP still likely agree on the importance of rewriting a proof of a Π_1^0 sentence involving non-constructive arguments like weak König's lemma into a constructive proof without them.

K. Tanaka

Semi-Regular Cuts and Friedman's Theorem

A self-embedding theorem of WKL₀

$\S8.3.$ A self-embedding theorem of WKL $_0$

In this section, we introduce a self-embedding theorem of $\mathsf{WKL}_0,$ by which we can devise methods of nonstandard analysis in $\mathsf{WKL}_0.$

Gödel stated in 1973 that "nonstandard analysis is the future of analysis." However, Henson and Keisler have shown in 1986 that nonstandard arguments in *n*-th order arithmetic require (n + 1)-th order arithmetic. Therefore, conducting complete nonstandard analysis for second-order arithmetic Z₂ is impossible within the framework of second-order arithmetic alone. Nevertheless, as demonstrated in my paper¹, certain amount of nonstandard analysis can still be developed within WKL₀.

The main tool of our nonstandard method is a self-embedding theorem of WKL_0 (Theorem 3.1), which extends Friedman's self-embedding theorem (§5.3) to WKL_0 . This section primarily discusses the proof of this theorem.

¹K. Tanaka, The self-embedding theorem of WKL₀ and a non-standard method, Annals of Pure and Applied Logic 84 (1997), pp.41–49.

K. Tanaka

Semi-Regular Cuts and Friedman's Theorem

A self-embedding theorem of WKL_0

Theorem 3.1 (Self-Embedding Theorem)

Let $\mathfrak{M} = (M, S)$ be a countable model of WKL₀ with $M \neq \omega$. Then, there exists a proper initial segment I of M such that $\mathfrak{M} \lceil I = (I, S \lceil I)$ is isomorphic to \mathfrak{M} . Here, $S \lceil I = \{X \cap I \mid X \in S\}.$

Before proving this theorem, we need some preparations. We first prove the following lemma, which will be frequently used later.

Lemma 3.2 (Compactness in WKL₀)

 $(1)~~{\rm For}~{\rm any}~\Pi^0_1$ formula $\varphi(X),$ there exists a Π^0_1 formula $\hat{\varphi}$ such that ${\rm WKL}_0$ proves:

 $\hat{\varphi} \leftrightarrow \exists X \, \varphi(X).$

 $(2)~~{\rm For}~{\rm any}~\Pi^0_1~{\rm formula}~\varphi(k,X),~{\rm WKL}_0~{\rm proves:}$

 $\forall n \, \exists X \, \forall k < n \, \varphi(k, X) \rightarrow \exists X \, \forall k \, \varphi(k, X).$

K. Tanaka

Semi-Regular Cuts and Friedman's Theorem

A self-embedding theorem of WKL_0

From now on, we adopt the notation [T] for the set of all infinite paths of a tree T. Do not confuse it with [p], which represents a basic open set in the order topology.

Proof. (1) We identify a set X with its characteristic function, which is also represented as an infinite binary sequence. Then, a Π_1^0 formula $\varphi(X)$ can be expressed as $\forall x \ \theta(X \upharpoonright x)$, where θ is Σ_0^0 and $X \upharpoonright x$ is a code for a finite binary sequence. We set $T = \{t \mid \forall s \subseteq t \ \theta(s)\}$. Then T is a tree, and $X \in [T]$ iff $\varphi(X)$ holds. Thus, $\exists X \ \varphi(X)$ is equivalent to $[T] \neq \emptyset$, which is expressed as a Π_1^0 formula "T is infinite $(\forall n \exists t \in \{0, 1\}^n t \in T)$ ".

(2) Express a Π_1^0 formula $\varphi(k, X)$ as $\forall x \ \theta(k, X \upharpoonright x)$ (where θ is Σ_0^0), and define a tree $T = \{t \mid \forall k \le \text{leng}(t) \forall x \le \text{leng}(t) \ \theta(k, t \upharpoonright x)\}$. Here, leng(t) denotes the length of the finite binary sequence t. If $\forall n \exists X \forall k < n \ \varphi(k, X)$ holds, then $\forall n \exists X \forall k < n \ \forall x < n \ \theta(k, X \upharpoonright x)$, so $t = X \upharpoonright n \in T$ for all n, thus T is infinite. Hence, in WKL₀, there exists an infinite path $X \in [T]$ satisfying $\forall k \ \varphi(k, X)$.

Here is another demonstration for (2). If we express $\varphi(k, X)$ as $X \in [T_k]$, then $\exists X \, \forall k < n \, \varphi(k, X)$ can be expressed as $\bigcap_{k < n} [T_k] \neq \emptyset$. Since this is true for any n, we have $\bigcap_{k < \infty} [T_k] \neq \emptyset$ by the compactness of the Cantor space since $[T_k]$'s are closed sets.

Both (1) and (2) are referred to as "compactness (of binary trees) in WKL_0 ".

K. Tanaka

Semi-Regular Cuts and Friedman's Theorem

A self-embedding theorem of WKL₀ We define $G_{-}\Sigma_{1}^{0}$ formulas or simply G formulas by generalizing Σ_{1}^{0} formulas as follows. The G formulas are obtained from Σ_{1}^{0} formulas by using \wedge, \vee , bounded universal quantifier $\forall x < y$ and unbounded existential quantifier $\exists x$, and set quantifiers $\forall X, \exists X$.

In WKL₀, we can prove that a G formula is equivalent to a Σ_1^0 formula. To prove it, it suffices to show that the class of Σ_1^0 formulas is closed under set quantifiers $\forall X, \exists X$, because the closure condition under $\forall x < y$ is nothing but the collection principle $B\Sigma_1^0$ derivable from Σ_1^0 induction, and the other closure conditions are almost obvious.

The closure condition under $\forall X$ can be obtained from Lemma 3.2(1) by taking the negation on both sides. The closure condition under $\exists X$ can be demonstrated by noting that $\exists X \exists x \ \theta(x, X \lceil x)$ (where θ is Σ_0^0) can be rewritten as $\exists t \exists x \ \theta(x, t)$.

Now, we redefine the G-formulas explicitly in RCA₀ in the next slide.

K. Tanaka

Semi-Regular Cuts and Friedman's Theorem

A self-embedding theorem of WKL_0

Definition 3.3 (*G*-formulas)

A sequence $G_0 \subset G_1 \subset G_2 \subset \cdots$ of sets of \mathcal{L}^2_{OR} -formulas is defined inductively modulo 4 as follows: for each $e \in \mathbb{N}$,

$$\begin{split} G_0 &= \{ \text{finite disjunctions } (\vee) \text{ of atomic formulas or their negations} \}, \\ G_{4e+1} &= \{ \exists x \, \phi \mid \phi \text{ is a finite conjunction } (\wedge) \text{ of } G_{4e} \text{ formulas} \} \cup G_{4e}, \\ G_{4e+2} &= \{ \forall x < y \, \phi \mid \phi \text{ is a finite disjunction } (\vee) \text{ of } G_{4e+1} \text{ formulas} \} \cup G_{4e+1}, \\ G_{4e+3} &= \{ \exists X \, \phi \mid \phi \text{ is a finite conjunction } (\wedge) \text{ of } G_{4e+2} \text{ formulas} \} \cup G_{4e+2}, \\ G_{4e+4} &= \{ \forall X \, \phi \mid \phi \text{ is a finite disjunction } (\vee) \text{ of } G_{4e+3} \text{ formulas} \} \cup G_{4e+3}. \end{split}$$

Finally, we set $\mathbf{G} = \bigcup_{e \in \mathbb{N}} G_e$. The formulas in G are called *G*-formulas.

By Lemma 5.5.3, there is no formula that defines the truth values of all formulas. But, Lemma 5.3.4 shows that if we restrict the formulas to a class like Σ_n , then there exists a formula $\operatorname{Sat}_{\Sigma_n}$ to define the truth values of formulas in the class. This is also the case for Σ_n^0 in second order arithmetic. In the following, we will define Sat for *G*-formulas.

K. Tanaka

Semi-Regular Cuts and Friedman's Theorem

A self-embedding theorem of WKL₀ From now on, a structure $\mathfrak{M} = (M, S)$ is denoted by V. Then, for each $p \in M$, set $M_p = \{a \in M \mid \mathfrak{M} \models a < p\}, \ S_p = \{X \cap M_p \mid X \in S\}$ and denote $V_p = (M_p, S_p)$.

Since M_p may not be closed under operations such as addition, V_p may not be a substructure of V. However, just by restricting the ranges of variables to these sets, the **satisfaction predicate** $\operatorname{Sat}^p(z,\xi)$ for V_p can be naturally defined within V = (M,S). Here, z represents the code of a formula φ , and ξ is a finite function that assigns elements of $M_p \cup S_p$ to free variables appearing in φ . Thus, supposing that a formula $\varphi(\vec{x},\vec{X})$ has no free variables other than \vec{x}, \vec{X} , and $\xi(\vec{x}) = \vec{a}, \xi(\vec{X}) = \vec{U}$, we have in V,

 $\mathsf{Sat}^{\mathbf{p}}(\ulcorner \varphi \urcorner, \xi) \equiv \varphi(\tilde{\mathbf{a}}, \tilde{\mathbf{U}})^{\mathbf{V}_{\mathbf{p}}}, \text{ roughly } V_p \models \varphi(\vec{a}, \vec{U}).$

Here, in $\varphi(\vec{a}, \vec{U})^{V_p}$, quantification over numbers is bounded by p, and quantification over sets is also considered as ranging binary sequences of length p, which can be coded by numbers $< 2^p$. Thus, $\operatorname{Sat}^p(z, \xi)$ can be defined as a Δ_1^0 formula in V (cf. Lemma 5.3.4).

We also remark that z in $\operatorname{Sat}^{p}(z,\xi)$ is a variable which can potentially express a non-standard number. In V, it can be easily verified that Sat^{p} satisfies Tarski's truth definition clauses for all standard formulas (cf. Theorem IV.2.26 in [P. Hájek and P. Pudlák, *Metamathematics of First-oder Arithmetic*, Springer, 1993.]).

K. Tanaka

Semi-Regular Cuts and Friedman's Theorem

A self-embedding theorem of WKL₀

Next, we define the satisfaction relation for G-formulas as follows:

Definition 3.4

For each $z \in G$, define the satisfaction relation $Sat(z, \xi)$ as follows:

```
\operatorname{Sat}(z,\xi) \leftrightarrow \exists p \operatorname{Sat}^p(z,\xi \upharpoonright V_p).
```

Here, $\xi \upharpoonright V_p$ is the assignment obtained by restricting the values of ξ to V_p .

For simplicity, we abbreviate $\operatorname{Sat}^p(z,\xi \upharpoonright V_p)$ as $\operatorname{Sat}^p(z,\xi)$. It is provable in RCA₀ that for the code z of a Σ_1^0 formula, if $\operatorname{Sat}^p(z,\xi)$ holds, then $\operatorname{Sat}^{p'}(z,\xi)$ also holds for any $p' \ge p$.

Moreover, we will show in WKL_0 that it also the case for the codes z of G.

In the following, we identify a formula with its code.

K. Tanaka

Semi-Regular Cuts and Friedman's Theorem

A self-embedding theorem of WKL_0

Lemma 3.5

In a model V of WKL₀, $Sat(z,\xi)$ satisfies Tarski's truth definition clauses for G formulas.

Proof. We prove the statement by induction on the complexity of the formula z. If z is an atomic formula or its negation, $\operatorname{Sat}(z,\xi) \Leftrightarrow \exists p \operatorname{Sat}^p(z,\xi) \Leftrightarrow \exists p z(\xi)^{V_p} \Leftrightarrow z(\xi)$. If $z = \bigvee_{i < n} z_i$ (where each z_i is a G formula),

$$\operatorname{Sat}\left(\bigvee_{i < n} z_i, \xi\right) \Leftrightarrow \exists p \operatorname{Sat}^p\left(\bigvee_{i < n} z_i, \xi\right) \Leftrightarrow \exists p \bigvee_{i < n} \operatorname{Sat}^p(z_i, \xi)$$
$$\Leftrightarrow \bigvee_{i < n} \exists p \operatorname{Sat}^p(z_i, \xi) \Leftrightarrow \bigvee_{i < n} \operatorname{Sat}(z_i, \xi).$$

If z is $\exists x z'$ or $\exists X z'$ (where z' is a G formula), the proof follows analogously.

K. Tanaka

ľ

Semi-Regular Cuts and Friedman's Theorem

A self-embedding theorem of WKL_0

When
$$z = igwedge_{i < n} z_i$$
 (where each z_i is a G formula),

$$\operatorname{Sat}\left(\bigwedge_{i < n} z_{i}, \xi\right) \Leftrightarrow \exists p \operatorname{Sat}^{p}\left(\bigwedge_{i < n} z_{i}, \xi\right) \Leftrightarrow \exists p \bigwedge_{i < n} \operatorname{Sat}^{p}(z_{i}, \xi)$$
$$\Leftrightarrow \bigwedge_{i < n} \exists p \operatorname{Sat}^{p}(z_{i}, \xi) \quad (\Leftarrow \text{ by } \Sigma_{1} \text{ collection principle})$$
$$\Leftrightarrow \bigwedge_{i < n} \operatorname{Sat}(z_{i}, \xi).$$

If z is $\forall x < y \ z'$ (where z' is a G formula), the proof is analogous. If $z = \forall X \ z'$ (where z' is a G formula),

 $\begin{aligned} \operatorname{Sat} \left(\forall X \, z', \xi \right) &\Leftrightarrow \exists p \operatorname{Sat}^p \left(\forall X \, z', \xi \right) \Leftrightarrow \exists p \, \forall U \operatorname{Sat}^p \left(z', \xi \cup \{(X, U)\} \right) \\ &\Leftrightarrow \forall U \exists p \operatorname{Sat}^p \left(z', \xi \cup \{(X, U)\} \right) \quad (\Leftarrow \text{ by compactness (Lemma 3.2(2))}) \\ &\Leftrightarrow \forall U \operatorname{Sat} \left(z', \xi \cup \{(X, U)\} \right), \end{aligned}$

where $\xi \cup \{(X, U)\}$ is an extension of ξ with X assigned to U.

K. Tanaka

Semi-Regular Cuts and Friedman's Theorem

A self-embedding theorem of WKL_0

In a model V = (M, S) of WKL₀, we take any $e \in M$ and an M-finite assignment map ξ . Then, there exists a $p \in M$ such that for all G_e formulas z whose free variables all belong to the domain of ξ , then $\operatorname{Sat}(z, \xi) \Leftrightarrow \operatorname{Sat}^p(z, \xi)$ holds.

Proof. Since the domain of the assignment map ξ is *M*-finite, the set of G_e formulas whose free variables belong to its domain of ξ is essentially *M*-finite (disregarding repetitions of the same formula within disjunctions or conjunctions). This fact can be demonstrated by Σ_1^0 induction on *e*.

Therefore, for *M*-finitely many G_e formulas z where $\operatorname{Sat}(z,\xi)$ holds, let p_z be such that $\operatorname{Sat}^p(z,\xi)$, or set $p_z = 0$ otherwise. Then, if $q = \max\{p_z\}$, $\operatorname{Sat}(z,\xi) \Leftrightarrow \operatorname{Sat}^q(z,\xi)$ holds. ²

To be continued.

Lemma 3.6

²Strictly speaking, strong Σ_1^0 collection principle (S Σ_1) is used here. (Refer to Problem 1 following Lemma 1.8 in Chapter 7.)

K. Tanaka

Semi-Regular Cuts and Friedman's Theorem

A self-embedding theorem of WKL_0

Thank you for your attention!