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Logic and Foundations II� �
• Part 5. Models of first-order arithmetic (continued) (5 lectures)

• Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)

• Part 7. Real analysis and reverse mathematics (8.5 lectures)

• Part 8. Second order arithmetic and non-standard methods (6.5 lectures)� �
Part 8. Schedule� �
• May 21, (0) Introduction to forcing

• May 23, (1) Harrington’s conservation result on WKL0
• May 28, (2) H.Friedman’s conservation result on WKL0
• May 30, (3) Friedman’s result (continued) and a self-embedding theorem I

• June 04, (4) A self-embedding theorem II

• June 06, (5)

• June 11, (6)� �
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§8.2. Semi-Regular Cuts and Friedman’s Theorem
The goal of this section is to prove a theorem of H. Friedman that “WKL0 is Π0

2

conservative over PRA.” Primitive Recursive Arithmetic PRA consists of defining axioms
for the primitive recursive functions, together with Σ0 induction.

We fix a nonstandard model (M,F ) of PRA (i.e., M ̸= ω). Also, let p ∈ F be a primitive
recursive function that lists the prime numbers in the ascending order, i.e.,
p(0) = 2, p(1) = 3, p(2) = 5, · · · .

Definition 2.1

A set X(⊆ M) has a code c ∈ M if X = {n ∈ M : M |= ∃d < c (c = p(n) · d)}.
Such a set X is called M-finite, and the number of elements in X is denoted by |X| or |c|.

Definition 2.2

A proper initial segment I of M is called a cut of M , denoted I ⊆e M , if it is closed under
the successor function (i.e., a ∈ I ⇒ a+ 1 ∈ I).
Furthermore, a cut I ⊆e M is called a semi-regular cut, if X ∩ I is bounded within I for
any M -finite set X with |X| ∈ I.
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Let (M,F ) be a nonstandard model of PRA.

Theorem 2.3 (Kirby-Paris)

If I ⊆e M is a semi-regular cut, then (I, F ⌈I) |= PRA, where F ⌈I is the set of functions
obtained by restricting the domain of each function f in F to I.

Proof For each n ∈ ω, define the unary primitive recursive function gn as follows:

g0(x) = x+ 1, gn+1(x) =

x+2︷ ︸︸ ︷
gngn · · · gn(x)

We can show for any primitive recursive function f, there exists some n ∈ ω such that

PRA ⊢ f(x1, x2, · · · , xk) < gn(max{x1, x2, · · · , xk})

To confirm that I is closed under all gn, by way of contradiction, assume it is closed under
gn, but not gn+1. Then we can choose a ∈ I such that gMn+1(a) ̸∈ I, and define

X = {gMn (a), gMn gMn (a), · · · ,

a+2︷ ︸︸ ︷
gMn gMn · · · gMn (a)}.

Since X is an M -finite set with |X| = a+ 2 ∈ I, so X ∩ I is bounded and has a maximum
element b. However, since I is closed under gn, we have gMn (b) ∈ X ∩ I, contradicting the
maximality of b. So, (I, F ⌈I) is a substructure of (M,F ), and also satisfies Σ0-induction.2



Logic and
Foundations

K. Tanaka

Semi-Regular
Cuts and
Friedman’s
Theorem

A self-embedding
theorem of
WKL0

5

Definition 2.4

Let I ⊆e M and let S be the set of all M -finite sets. B = X ∩ I is called an M-coded set
if X ∈ S. The set of all M -coded subsets of I is denoted by S⌈I.

Note. We can consider (I, S⌈I) as a structure of second-order arithmetic, with basic
operations +I , ·I , etc., which are obtained by restricting the corresponding operations
(primitive recursive functions) on M to I.

Lemma 2.5

If I ⊆e M is a semi-regular cut, then (I, S⌈I) |= WKL0.

Proof First, for a Σ0
0 formula θ in (I, S⌈I), we construct a Σ0 formula θ∗ in (M,F ) by

replacing every atomic formula t ∈ B in θ with ∃d < cB (cB = p(t) · d), where cB is a code
of X such that B = X ∩ I. Then, for any a ∈ I, (I, S⌈I) |= θ(a) ⇔ (M,F ) |= θ∗(a).

To prove (I, S⌈I) satisfies (bounded Σ0
1 -CA), take a Σ0

1 φ(x) = ∃yθ(x, y) and any c ∈ I.
Then, for all a <M c, (I, S⌈I) |= φ(a) ⇔ ∃b ∈ I (I, S⌈I) |= θ(a, b) ⇔ ∃b ∈ I (M,F ) |=
θ∗(a, b) ⇔ (M,F ) |= ∃y < d′ θ∗(a, y) for some d′ ∈ I. Thus, {x < c | φ(x)} ∈ S⌈I, since
X = {a < c : (M,F ) |= ∃y < d′ θ∗(a, y)} has a code Πa∈Xp(a). Hence, (I, S⌈I) satisfies
(bounded Σ0

1 -CA). Similarly, (I, S⌈I) |= (Σ0
1-SP). Therefore, (I, S⌈I) |= WKL0. 2
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Lemma 2.6

Let (M,F ) be a countable nonstandard model of PRA. Take c, d ∈ M such that for all
primitive recursive functions f, fM (c, c, · · · , c) <M d. Then, there exists a semi-regular cut
I ⊆e M such that c ∈ I and d ̸∈ I.

Proof First, define the primitive recursive predicate B(x, y, z) as follows:

• B(0, y, z) ⇔ y < z,

• B(x+ 1, y, z) ⇔ for any M -finite set X ⊂ [y, z) with |X| ≤ y,
there exists [y′, z′) ⊂ [y, z) such that B(x, y′, z′) and [y′, z′) ∩X = ∅

Here, [y, z) = {w : y ≤ w < z}.

Now, when B(x, y, z) holds, we say “the interval [y, z) is x-large.” Then, the interval [y, z)
is (x+ 1)-large iff for any subset X ⊂ [y, z) with |X| ≤ y, there exists a subinterval
[y′, z′) ⊂ [y, z) that is x-large and disjoint from X.

We observe that the definition of B(x+ 1, y, z) is Σ0, since a subset X ⊂ [y, z) with
cardinality at most y can be encoded by a number at most p(z)y. So this makes B(x, y, z)
a primitive recursive predicate.
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For the sequence {gn} of primitive recursive functions constructed in the proof of
Theorem 2.3, it can be shown that for each n ∈ ω,

PRA ⊢ gn(y) ≤ z → B(n, y, z).

Indeed, this is clear when n = 0. Assuming it holds for n, let’s show it for n+ 1. Suppose
gn+1(y) ≤ z. Since gn+1(y) = gy+2

n (y), for any subset X ⊂ [y, z) with |X| ≤ y, there
exists some c < y + 2 such that the interval [gcn(y), g

c+1
n (y)) does not contain any element

of X. Let y′ = gcn(y) and z′ = gc+1
n (y). Then gn(y

′) = z′. So by the inductive hypothesis,
B(n, y′, z′) holds, which fulfills the definition of B(x+ 1, y, z).

Next, take c, d ∈ M as in the statement of the lemma. Then for any n ∈ ω, gMn (c) <M d,
and so B(n, c, d). By the overspill principle, there exists b ∈ M − ω such that
∀a ≤M b B(a, c, d).
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Now, since (M,F ) is a countable model of PRA, there are only countably many M -finite
sets. So, we can construct a sequence of M -finite sets {Xn}, such that each M -finite set
appears infinitely often in the sequence. Using this, we define the decreasing sequence of
intervals {[cn, dn)} as follows:

[c0, d0) = [c, d),

[cn+1, dn+1) =


[cn, dn) if |Xn| ≥M cn,

[c′, d′) otherwise, take any [c′, d′) ⊂ [cn, dn) such that
B(b− n, c′, d′) and [c′, d′) ∩Xn = ∅.

For any a ∈ M , obviously {a} is M -finite, so for sufficiently large n, [cn, dn) ∩ {a} = ∅,
that is, a ̸∈ [cn, dn). Therefore,

⋂
n[cn, dn) = ∅.

Now, let I = {a ∈ M : ∃n a <M cn} = {a ∈ M : ∀n a <M dn}. We show that I becomes
a semi-regular cut. If X is M -finite and |X| ∈ I, by the definition of {Xn}, there are
infinitely many n such that X = Xn. Then, there exists n such that X = Xn and
|X| <M cn. Thus, [cn+1, dn+1) ∩X = ∅. Therefore, X ∩ I is bounded by cn+1 in I.
Hence, I is a semi-regular cut. 2
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Theorem 2.7 (Friedman)

For any Π2 sentence σ, WKL0 ⊢ σ ⇒ PRA ⊢ σ.

Proof. To show the contraposition, take a Π2 sentence σ = ∀y∃zθ(y, z) with θ ∈ Σ0

that is not provable in PRA. Then, PRA∪{¬∃zθ(c, z)} ∪ {f(c, c, · · · , c) < d : f is a
symbol of a primitive recursive function} is consistent, and hence by the completeness
theorem, it has a countable model (M,F, c, d). Now, by Lemma 2.6, there exists a
semi-regular cut I ⊆e M such that c ∈ I and d ̸∈ I. Since ¬∃zθ(c, z) is a Π1 sentence and
M |= ¬∃zθ(c, z), it follows that I |= ¬∃zθ(c, z), i.e., I |= ¬σ. On the other hand, by
Lemma 2.5, we have (I, S⌈I) |= WKL0. Thus, (I, S⌈I) |= WKL0 +¬σ, and so WKL0 +¬σ
is consistent, hence σ cannot be proved in WKL0 either. 2

As we saw in part 7, a wide range of mathematics can be developed within WKL0.
Nevertheless, Friedman’s theorem shows that WKL0 is Π2-conservative over PRA, which
can be viewed as a partial realization of Hilbert’s program or his “finitistic reductionism.”
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Hilbert’s Program

The main goal of Hilbert’s program was to provide secure foundations for all mathematics,
to counteract the intuitionism, led by Brouwer who had been attacking non-constructive
methods in mathematics. Hilbert proposed the method of “proof theory” or “meta-
mathematics”, by which mathematical arguments are treated as symbolic manipulations,
and thus can be analyzed themselves mathematically.

Let T be a large system (e.g., set theory ZFC) that can develop most of mathematics.
Let t be a small system (e.g., PRA) capable of performing symbolic manipulatios of T .
Then, Hilbert considered that a Π0

1 sentence which does not assert existence (e.g., Fermat’s
Last Theorem: ∀n > 2∀x, y, z > 0(xn+ yn ̸= zn)) would be provable in t if it is provable in
T . Therefore, the validity of a Π0

1 sentence may be argued with non-constructive methods.

Hilbert’s (reductionism) program HP� �
HP: for any Π0

1 sentence φ, if T ⊢ φ then t ⊢ φ.� �
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Theorem 2.8

Suppose both T and t include PRA. Then, for any Π0
1 sentence φ, if T ⊢ φ, then

t+Con(T ) ⊢ φ. Here, Con(T ) is a Π0
1 sentence expressing the consistency of T .

Proof. Let φ ≡ ∀nθ(n) (where θ(n) is Σ0
0 or primitive recursive), and assume T ⊢ φ.

So, since BewT (⌜φ⌝) is a true Σ0
1 sentence, by the Σ0

1-completeness of t, t ⊢ BewT (⌜φ⌝).
On the other hand, from the proof of Lemma 4.5.1 D3, t ⊢ ¬θ(n) → Bewt(⌜¬θ(n̄)⌝), i.e.,
t ⊢ ¬θ(n) → Bewt(⌜¬φ⌝). Since Bewt(⌜¬φ⌝) → BewT (⌜¬φ⌝), it follows that
t ⊢ ¬θ(n) → ¬Con(T ). Therefore, t+Con(T ) ⊢ θ(n), and thus t+Con(T ) ⊢ φ. 2

By this theorem, if t ⊢ Con(T ), then HP holds. However, by Gödel’s second
incompleteness theorem, Con(T ) is not provable in T , hence also not in t.

However, for T = WKL0 and t = PRA, HP is shown to hold by Friedman’s theorem.
Observing the richness of mathematics developed in WKL0, one can view that “Hilbert’s
program” has been partially realized. Those skeptical about the meaning of HP still likely
agree on the importance of rewriting a proof of a Π0

1 sentence involving non-constructive
arguments like weak König’s lemma into a constructive proof without them.
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§8.3. A self-embedding theorem of WKL0

In this section, we introduce a self-embedding theorem of WKL0, by which we can devise
methods of nonstandard analysis in WKL0.

Gödel stated in 1973 that ”nonstandard analysis is the future of analysis.” However,
Henson and Keisler have shown in 1986 that nonstandard arguments in n-th order
arithmetic require (n+1)-th order arithmetic. Therefore, conducting complete nonstandard
analysis for second-order arithmetic Z2 is impossible within the framework of second-order
arithmetic alone. Nevertheless, as demonstrated in my paper1, certain amount of
nonstandard analysis can still be developed within WKL0.

The main tool of our nonstandard method is a self-embedding theorem of WKL0
(Theorem 3.1), which extends Friedman’s self-embedding theorem (§5.3) to WKL0. This
section primarily discusses the proof of this theorem.

1K. Tanaka, The self-embedding theorem of WKL0 and a non-standard method, Annals of Pure and
Applied Logic 84 (1997), pp.41–49.
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Theorem 3.1 (Self-Embedding Theorem)

Let M = (M,S) be a countable model of WKL0 with M ̸= ω. Then, there exists a proper
initial segment I of M such that M⌈I = (I, S⌈I) is isomorphic to M. Here,
S⌈I = {X ∩ I | X ∈ S}.

Before proving this theorem, we need some preparations. We first prove the following
lemma, which will be frequently used later.

Lemma 3.2 (Compactness in WKL0)

(1) For any Π0
1 formula φ(X), there exists a Π0

1 formula φ̂ such that WKL0 proves:

φ̂ ↔ ∃X φ(X).

(2) For any Π0
1 formula φ(k,X), WKL0 proves:

∀n∃X ∀k < nφ(k,X) → ∃X ∀k φ(k,X).
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From now on, we adopt the notation [T ] for the set of all infinite paths of a tree T . Do not
confuse it with [p], which represents a basic open set in the order topology.

Proof. (1) We identify a set X with its characteristic function, which is also represented
as an infinite binary sequence. Then, a Π0

1 formula φ(X) can be expressed as ∀x θ(X↾x),
where θ is Σ0

0 and X↾x is a code for a finite binary sequence. We set T = {t | ∀s ⊆ t θ(s)}.
Then T is a tree, and X ∈ [T ] iff φ(X) holds. Thus, ∃X φ(X) is equivalent to [T ] ̸= ∅,
which is expressed as a Π0

1 formula “T is infinite (∀n∃t ∈ {0, 1}nt ∈ T )”.

(2) Express a Π0
1 formula φ(k,X) as ∀x θ(k,X↾x) (where θ is Σ0

0), and define a tree
T = {t | ∀k ≤ leng(t)∀x ≤ leng(t) θ(k, t⌈x)}. Here, leng(t) denotes the length of the finite
binary sequence t. If ∀n∃X ∀k < nφ(k,X) holds, then ∀n ∃X ∀k < n ∀x < n θ(k,X⌈x),
so t = X⌈n ∈ T for all n, thus T is infinite. Hence, in WKL0, there exists an infinite path
X ∈ [T ] satisfying ∀k φ(k,X). 2

Here is another demonstration for (2). If we express φ(k,X) as X ∈ [Tk], then
∃X ∀k < nφ(k,X) can be expressed as

⋂
k<n[Tk] ̸= ∅. Since this is true for any n, we

have
⋂

k<∞[Tk] ̸= ∅ by the compactness of the Cantor space since [Tk]’s are closed sets.

Both (1) and (2) are referred to as “compactness (of binary trees) in WKL0”.
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We define G-Σ0
1 formulas or simply G formulas by generalizing Σ0

1 formulas as follows.
The G formulas are obtained from Σ0

1 formulas by using ∧,∨, bounded universal quantifier
∀x < y and unbounded existential quantifier ∃x, and set quantifiers ∀X,∃X.

In WKL0, we can prove that a G formula is equivalent to a Σ0
1 formula. To prove it, it

suffices to show that the class of Σ0
1 formulas is closed under set quantifiers ∀X,∃X,

because the closure condition under ∀x < y is nothing but the collection principle BΣ0
1

derivable from Σ0
1 induction, and the other closure conditions are almost obvious.

The closure condition under ∀X can be obtained from Lemma 3.2(1) by taking the
negation on both sides. The closure condition under ∃X can be demonstrated by noting
that ∃X∃x θ(x,X⌈x) (where θ is Σ0

0) can be rewritten as ∃t∃x θ(x, t).

Now, we redefine the G-formulas explicitly in RCA0 in the next slide.
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Definition 3.3 (G-formulas)

A sequence G0 ⊂ G1 ⊂ G2 ⊂ · · · of sets of L2
OR-formulas is defined inductively modulo 4

as follows: for each e ∈ N,

G0 = {finite disjunctions (∨) of atomic formulas or their negations},
G4e+1 = {∃xϕ | ϕ is a finite conjunction (∧) of G4e formulas} ∪G4e,

G4e+2 = {∀x < y ϕ | ϕ is a finite disjunction (∨) of G4e+1 formulas} ∪G4e+1,

G4e+3 = {∃X ϕ | ϕ is a finite conjunction (∧) of G4e+2 formulas} ∪G4e+2,

G4e+4 = {∀X ϕ | ϕ is a finite disjunction (∨) of G4e+3 formulas} ∪G4e+3.

Finally, we set G =
⋃

e∈N Ge. The formulas in G are called G-formulas.

By Lemma 5.5.3, there is no formula that defines the truth values of all formulas. But,
Lemma 5.3.4 shows that if we restrict the formulas to a class like Σn, then there exists a
formula SatΣn

to define the truth values of formulas in the class. This is also the case for
Σ0

n in second order arithmetic. In the following, we will define Sat for G-formulas.
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From now on, a structure M = (M,S) is denoted by V . Then, for each p ∈ M , set
Mp = {a ∈ M | M |= a < p}, Sp = {X ∩Mp | X ∈ S} and denote Vp = (Mp, Sp).

Since Mp may not be closed under operations such as addition, Vp may not be a
substructure of V . However, just by restricting the ranges of variables to these sets, the
satisfaction predicate Satp(z, ξ) for Vp can be naturally defined within V = (M,S).
Here, z represents the code of a formula φ, and ξ is a finite function that assigns elements
of Mp ∪ Sp to free variables appearing in φ. Thus, supposing that a formula φ(x⃗, X⃗) has

no free variables other than x⃗, X⃗, and ξ(x⃗) = a⃗, ξ(X⃗) = U⃗ , we have in V ,

Satp(⌜φ⌝, ξ) ≡ φ(ã, Ũ)Vp , roughly Vp |= φ(⃗a, U⃗).

Here, in φ(⃗a, U⃗)Vp , quantification over numbers is bounded by p, and quantification over
sets is also considered as ranging binary sequences of length p, which can be coded by
numbers < 2p. Thus, Satp(z, ξ) can be defined as a ∆0

1 formula in V (cf. Lemma 5.3.4).

We also remark that z in Satp(z, ξ) is a variable which can potentially express a
non-standard number. In V , it can be easily verified that Satp satisfies Tarski’s truth
definition clauses for all standard formulas (cf. Theorem IV.2.26 in [P. Hájek and P.
Pudlák, Metamathematics of First-oder Arithmetic, Springer, 1993.]).



Logic and
Foundations

K. Tanaka

Semi-Regular
Cuts and
Friedman’s
Theorem

A self-embedding
theorem of
WKL0

18

Next, we define the satisfaction relation for G-formulas as follows:

Definition 3.4

For each z ∈ G, define the satisfaction relation Sat(z, ξ) as follows:

Sat(z, ξ) ↔ ∃p Satp(z, ξ ↾ Vp).

Here, ξ ↾ Vp is the assignment obtained by restricting the values of ξ to Vp.

For simplicity, we abbreviate Satp(z, ξ ↾ Vp) as Sat
p(z, ξ). It is provable in RCA0 that for

the code z of a Σ0
1 formula, if Satp(z, ξ) holds, then Satp

′
(z, ξ) also holds for any p′ ≥ p.

Moreover, we will show in WKL0 that it also the case for the codes z of G.

In the following, we identify a formula with its code.
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Lemma 3.5

In a model V of WKL0, Sat(z, ξ) satisfies Tarski’s truth definition clauses for G formulas.

Proof. We prove the statement by induction on the complexity of the formula z.
If z is an atomic formula or its negation, Sat(z, ξ) ⇔ ∃p Satp(z, ξ) ⇔ ∃p z(ξ)Vp ⇔ z(ξ).
If z =

∨
i<n zi (where each zi is a G formula),

Sat

(∨
i<n

zi, ξ

)
⇔ ∃p Satp

(∨
i<n

zi, ξ

)
⇔ ∃p

∨
i<n

Satp (zi, ξ)

⇔
∨
i<n

∃pSatp (zi, ξ) ⇔
∨
i<n

Sat (zi, ξ) .

If z is ∃x z′ or ∃X z′ (where z′ is a G formula), the proof follows analogously.
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When z =
∧

i<n zi (where each zi is a G formula),

Sat

(∧
i<n

zi, ξ

)
⇔ ∃p Satp

(∧
i<n

zi, ξ

)
⇔ ∃p

∧
i<n

Satp (zi, ξ)

⇔
∧
i<n

∃pSatp (zi, ξ) (⇐ by Σ1 collection principle)

⇔
∧
i<n

Sat (zi, ξ) .

If z is ∀x < y z′ (where z′ is a G formula), the proof is analogous.
If z = ∀X z′ (where z′ is a G formula),

Sat (∀X z′, ξ) ⇔ ∃p Satp (∀X z′, ξ) ⇔ ∃p ∀U Satp (z′, ξ ∪ {(X,U)})
⇔ ∀U ∃p Satp (z′, ξ ∪ {(X,U)}) (⇐ by compactness (Lemma 3.2(2)))

⇔ ∀U Sat (z′, ξ ∪ {(X,U)}) ,

where ξ ∪ {(X,U)} is an extension of ξ with X assigned to U . 2
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Lemma 3.6

In a model V = (M,S) of WKL0, we take any e ∈ M and an M -finite assignment map ξ.
Then, there exists a p ∈ M such that for all Ge formulas z whose free variables all belong
to the domain of ξ, then Sat(z, ξ) ⇔ Satp(z, ξ) holds.

Proof. Since the domain of the assignment map ξ is M -finite, the set of Ge formulas
whose free variables belong to its domain of ξ is essentially M -finite (disregarding
repetitions of the same formula within disjunctions or conjunctions). This fact can be
demonstrated by Σ0

1 induction on e.

Therefore, for M -finitely many Ge formulas z where Sat(z, ξ) holds, let pz be such that
Satp(z, ξ), or set pz = 0 otherwise. Then, if q = max{pz}, Sat(z, ξ) ⇔ Satq(z, ξ) holds. 2

2

To be continued.

2Strictly speaking, strong Σ0
1 collection principle (SΣ1) is used here. (Refer to Problem 1 following

Lemma 1.8 in Chapter 7.)
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Thank you for your attention!
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