K. Tanaka

[Semi-Regular](#page-2-0) Cuts and Friedman's Theorem

[A self-embedding](#page-11-0) theorem of $WKL₀$

Logic and Foundations II

Part 8. Second order arithmetic and non-standard methods

Kazuyuki Tanaka

BIMSA

May 30, 2024

K. Tanaka

[Semi-Regular](#page-2-0) Cuts and Theorem

[A self-embedding](#page-11-0) theorem of WKI_{Ω}

Logic and Foundations II

- Part 5. Models of first-order arithmetic (continued) (5 lectures)
- Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)
- Part 7. Real analysis and reverse mathematics (8.5 lectures)
- Part 8. Second order arithmetic and non-standard methods (6.5 lectures)

✒ ✑ Part 8. Schedule

- May 21, (0) Introduction to forcing
- May 23, (1) Harrington's conservation result on WKL_0
- May 28, (2) H. Friedman's conservation result on WKL_0
- May 30, (3) Friedman's result (continued) and a self-embedding theorem I

✒ ✑

- June 04, (4) A self-embedding theorem II
- June 06, (5)
- June 11, (6)

K. Tanaka

[Semi-Regular](#page-2-0) Cuts and Friedman's Theorem

[A self-embedding](#page-11-0) WKI_{Ω}

§8.2. Semi-Regular Cuts and Friedman's Theorem

The goal of this section is to prove a theorem of H. Friedman that "WKL $_0$ is Π^0_2 conservative over PRA." Primitive Recursive Arithmetic PRA consists of defining axioms for the primitive recursive functions, together with Σ_0 induction.

We fix a nonstandard model (M, F) of PRA (i.e., $M \neq \omega$). Also, let $p \in F$ be a primitive recursive function that lists the prime numbers in the ascending order, i.e., $p(0) = 2, p(1) = 3, p(2) = 5, \dots$

Definition 2.1

A set $X(\subseteq M)$ has a code $c \in M$ if $X = \{n \in M : M \models \exists d < c \ (c = p(n) \cdot d)\}.$ Such a set X is called M-finite, and the number of elements in X is denoted by $|X|$ or $|c|$.

Definition 2.2

A proper initial segment I of M is called a **cut** of M, denoted $I \subseteq_{e} M$, if it is closed under the successor function (i.e., $a \in I \Rightarrow a + 1 \in I$). Furthermore, a cut $I \subseteq_{e} M$ is called a **semi-regular cut**, if $X \cap I$ is bounded within I for any M-finite set X with $|X| \in I$.

K. Tanaka

[Semi-Regular](#page-2-0) Cuts and Friedman's Theorem

[A self-embedding](#page-11-0) $WKI₀$

Let (M, F) be a nonstandard model of PRA.

Theorem 2.3 (Kirby-Paris)

If $I \subseteq_{e} M$ is a semi-regular cut, then $(I, F[I]) \models PRA$, where $F[I]$ is the set of functions obtained by restricting the domain of each function f in F to I .

Proof For each $n \in \omega$, define the unary primitive recursive function g_n as follows:

$$
\mathsf{g}_0(x) = x + 1, \quad \mathsf{g}_{n+1}(x) = \overbrace{\mathsf{g}_n \mathsf{g}_n \cdots \mathsf{g}_n}^{x+2}(x)
$$

We can show for any primitive recursive function f, there exists some $n \in \omega$ such that

$$
\mathsf{PRA} \vdash \mathbf{f}(x_1, x_2, \cdots, x_k) < \mathbf{g}_n(\max\{x_1, x_2, \cdots, x_k\})
$$

To confirm that I is closed under all g_n , by way of contradiction, assume it is closed under g_n , but not $\mathsf{g}_{n+1}.$ Then we can choose $a\in I$ such that $\mathsf{g}^M_{n+1}(a)\not\in I,$ and define

$$
X = \{ \mathbf{g}_n^M(a), \mathbf{g}_n^M \mathbf{g}_n^M(a), \cdots, \overbrace{\mathbf{g}_n^M \mathbf{g}_n^M \cdots \mathbf{g}_n^M}(a) \}.
$$

Since X is an M-finite set with $|X| = a + 2 \in I$, so $X \cap I$ is bounded and has a maximum element $b.$ However, since I is closed under g_n , we have $\mathsf{g}_n^M(b) \in X \cap I,$ contradicting the maximality of b. So, $(I, F[I])$ is a substructure of (M, F) , and also satisfies Σ_0 -induction. \Box

K. Tanaka

[Semi-Regular](#page-2-0) Cuts and Friedman's Theorem

[A self-embedding](#page-11-0) WKI_{Ω}

Definition 2.4

Let $I \subseteq_e M$ and let S be the set of all M-finite sets. $B = X \cap I$ is called an M-coded set if $X \in S$. The set of all M-coded subsets of I is denoted by $S[I]$.

Note. We can consider $(I, S[I])$ as a structure of second-order arithmetic, with basic operations $+^I, \cdot^I$, etc., which are obtained by restricting the corresponding operations (primitive recursive functions) on M to I .

Lemma 2.5

If $I \subseteq_{e} M$ is a semi-regular cut, then $(I, S[I]) \models \mathsf{WKL}_0$.

Proof First, for a Σ_0^0 formula θ in $(I,S[I])$, we construct a Σ_0 formula θ^* in (M,F) by replacing every atomic formula $t \in B$ in θ with $\exists d < c_B$ ($c_B = p(t) \cdot d$), where c_B is a code of X such that $B = X \cap I$. Then, for any $a \in I$, $(I, S[I]) \models \theta(a) \Leftrightarrow (M, F) \models \theta^*(a)$. To prove $(I,S[I]$ satisfies (bounded Σ^0_1 -CA), take a Σ^0_1 $\varphi(x)=\exists y\theta(x,y)$ and any $c\in I.$ Then, for all $a \leq_M c$, $(I, S[I]) \models \varphi(a) \Leftrightarrow \exists b \in I$ $(I, S[I]) \models \theta(a, b) \Leftrightarrow \exists b \in I$ $(M, F) \models$ $\theta^*(a, b) \Leftrightarrow (M, F) \models \exists y < d' \theta^*(a, y)$ for some $d' \in I$. Thus, $\{x < c \mid \varphi(x)\} \in S[I]$, since $X=\{a < c : (M,F) \models \exists y < d' \; \theta^*(a,y)\}$ has a code $\Pi_{a \in X} p(a).$ Hence, $(I,S \lceil I)$ satisfies (bounded Σ_1^0 -CA). Similarly, $(I, S[I]) \models (\Sigma_1^0$ -SP). Therefore, $(I, S[I]) \models \mathsf{WKL}_0$.

K. Tanaka

[Semi-Regular](#page-2-0) Cuts and Friedman's Theorem

[A self-embedding](#page-11-0) WKI_{Ω}

Lemma 2.6

Let (M, F) be a countable nonstandard model of PRA. Take $c, d \in M$ such that for all primitive recursive functions f, $f^M(c, c, \dots, c) \leq_M d$. Then, there exists a semi-regular cut $I \subseteq_{e} M$ such that $c \in I$ and $d \notin I$.

Proof First, define the primitive recursive predicate $B(x, y, z)$ as follows:

- $B(0, y, z) \Leftrightarrow y < z$,
- $B(x+1, y, z) \Leftrightarrow$ for any M-finite set $X \subset [y, z)$ with $|X| \leq y$, there exists $[y', z') \subset [y, z)$ such that $B(x, y', z')$ and $[y', z') \cap X = \emptyset$ Here, $[y, z] = \{w : y \leq w < z\}.$

Now, when $B(x, y, z)$ holds, we say "the interval $[y, z)$ is x-large." Then, the interval $[y, z)$ is $(x + 1)$ -large iff for any subset $X \subset [y, z)$ with $|X| \leq y$, there exists a subinterval $[y', z') \subset [y, z)$ that is x-large and disjoint from X.

We observe that the definition of $B(x+1, y, z)$ is Σ_0 , since a subset $X \subset [y, z)$ with cardinality at most y can be encoded by a number at most $p(z)^y$. So this makes $B(x,y,z)$ a primitive recursive predicate.

K. Tanaka

[Semi-Regular](#page-2-0) Cuts and Friedman's Theorem

[A self-embedding](#page-11-0) WKI_{Ω}

For the sequence $\{g_n\}$ of primitive recursive functions constructed in the proof of Theorem [2.3,](#page-3-0) it can be shown that for each $n \in \omega$.

$$
\mathsf{PRA} \vdash \mathsf{g}_n(y) \leq z \ \to B(n, y, z).
$$

Indeed, this is clear when $n = 0$. Assuming it holds for n, let's show it for $n + 1$. Suppose $\mathsf{g}_{n+1}(y)\le z$. Since $\mathsf{g}_{n+1}(y)=\mathsf{g}_n^{y+2}(y)$, for any subset $X\subset [y,z)$ with $|X|\le y$, there exists some $c < y + 2$ such that the interval $[{\sf g}_n^c(y), {\sf g}_n^{c+1}(y))$ does not contain any element of X. Let $y' = \mathsf{g}_n^c(y)$ and $z' = \mathsf{g}_n^{c+1}(y)$. Then $\mathsf{g}_n(y') = z'$. So by the inductive hypothesis, $B(n, y', z')$ holds, which fulfills the definition of $B(x + 1, y, z)$.

Next, take $c,d\in M$ as in the statement of the lemma. Then for any $n\in\omega$, $\mathsf{g}^M_n(c)<_M d,$ and so $B(n, c, d)$. By the overspill principle, there exists $b \in M - \omega$ such that $\forall a \leq_M b B(a, c, d).$

K. Tanaka

[Semi-Regular](#page-2-0) Cuts and Friedman's Theorem

[A self-embedding](#page-11-0) WKL₀

Now, since (M, F) is a countable model of PRA, there are only countably many M-finite sets. So, we can construct a sequence of M-finite sets $\{X_n\}$, such that each M-finite set appears infinitely often in the sequence. Using this, we define the decreasing sequence of intervals $\{[c_n, d_n)\}\$ as follows:

 $[c_0, d_0] = [c, d]$.

 $[c_{n+1}, d_{n+1}) =$ $\sqrt{ }$ \int \mathcal{L} $[c_n, d_n]$ if $|X_n| \geq_M c_n$, $[c', d')$ otherwise, take any $[c', d') \subset [c_n, d_n)$ such that $B(b-n, c', d')$ and $[c', d') \cap X_n = \varnothing$.

For any $a \in M$, obviously $\{a\}$ is M-finite, so for sufficiently large n, $[c_n, d_n) \cap \{a\} = \emptyset$, that is, $a \notin [c_n, d_n)$. Therefore, $\bigcap_n [c_n, d_n) = \varnothing$.

Now, let $I = \{a \in M : \exists n \ a \leq_M c_n\} = \{a \in M : \forall n \ a \leq_M d_n\}$. We show that I becomes a semi-regular cut. If X is M-finite and $|X| \in I$, by the definition of $\{X_n\}$, there are infinitely many n such that $X = X_n$. Then, there exists n such that $X = X_n$ and $|X| \leq_M c_n$. Thus, $[c_{n+1}, d_{n+1}) \cap X = \emptyset$. Therefore, $X \cap I$ is bounded by c_{n+1} in I. Hence, I is a semi-regular cut. \Box

K. Tanaka

[Semi-Regular](#page-2-0) Cuts and Friedman's Theorem

[A self-embedding](#page-11-0) theorem of WKI_{Ω}

Theorem 2.7 (Friedman)

For any Π_2 sentence σ , WKL₀ $\vdash \sigma \Rightarrow \text{PRA} \vdash \sigma$.

Proof. To show the contraposition, take a Π_2 sentence $\sigma = \forall y \exists z \theta(y, z)$ with $\theta \in \Sigma_0$ that is not provable in PRA. Then, PRA \cup { $\neg \exists z \theta(c, z)$ } \cup { $f(c, c, \dots, c) < d$: f is a symbol of a primitive recursive function $\}$ is consistent, and hence by the completeness theorem, it has a countable model (M, F, c, d) . Now, by Lemma [2.6,](#page-5-0) there exists a semi-regular cut $I \subseteq_{\epsilon} M$ such that $c \in I$ and $d \notin I$. Since $\neg \exists z \theta(c, z)$ is a Π_1 sentence and $M \models \neg \exists z \theta(c, z)$, it follows that $I \models \neg \exists z \theta(c, z)$, i.e., $I \models \neg \sigma$. On the other hand, by Lemma [2.5,](#page-4-0) we have $(I, S[I]) \models \text{WKL}_0$. Thus, $(I, S[I]) \models \text{WKL}_0 + \neg \sigma$, and so WKL $_0 + \neg \sigma$ is consistent, hence σ cannot be proved in WKL₀ either. \Box

As we saw in part 7, a wide range of mathematics can be developed within WKL_0 . Nevertheless, Friedman's theorem shows that WKL_0 is Π_2 -conservative over PRA, which can be viewed as a partial realization of Hilbert's program or his "finitistic reductionism."

K. Tanaka

[Semi-Regular](#page-2-0) Cuts and Friedman's Theorem

[A self-embedding](#page-11-0) WKI_{Ω}

Hilbert's Program

The main goal of Hilbert's program was to provide secure foundations for all mathematics, to counteract the intuitionism, led by Brouwer who had been attacking non-constructive methods in mathematics. Hilbert proposed the method of "proof theory" or "metamathematics", by which mathematical arguments are treated as symbolic manipulations, and thus can be analyzed themselves mathematically.

Let T be a large system (e.g., set theory ZFC) that can develop most of mathematics. Let t be a small system (e.g., PRA) capable of performing symbolic manipulatios of T . Then, Hilbert considered that a Π^0_1 sentence which does not assert existence (e.g., Fermat's Last Theorem: $\forall n > 2 \forall x, y, z > 0 (x^n + y^n \neq z^n))$ would be provable in t if it is provable in $T.$ Therefore, the validity of a Π^0_1 sentence may be argued with non-constructive methods.

✒ ✑

Hilbert's (reductionism) program HP

HP: for any Π^0_1 sentence φ , if $T\vdash\varphi$ then $t\vdash\varphi.$

K. Tanaka

[Semi-Regular](#page-2-0) Cuts and Friedman's Theorem

[A self-embedding](#page-11-0) theorem of WKL₀

Theorem 2.8

Suppose both T and t include PRA. Then, for any Π^0_1 sentence φ , if $T\vdash \varphi$, then $t+\operatorname{Con}(T)\vdash\varphi.$ Here, $\operatorname{Con}(T)$ is a Π^0_1 sentence expressing the consistency of $T.$

Proof. Let $\varphi \equiv \forall n \theta(n)$ (where $\theta(n)$ is Σ^0_0 or primitive recursive), and assume $T \vdash \varphi$. So, since $\mathsf{Bew}_T(\overline{\ulcorner \varphi \urcorner})$ is a true Σ^0_1 sentence, by the Σ^0_1 -completeness of t , $t\vdash \mathsf{Bew}_T(\overline{\ulcorner \varphi \urcorner}).$ On the other hand, from the proof of Lemma 4.5.1 D3, $t \vdash \neg \theta(n) \rightarrow \text{Bew}_{t}(\overline{\ulcorner \neg \theta(n)}\urcorner)$, i.e., $t \vdash \neg \theta(n) \rightarrow \text{Bew}_t(\overline{\ulcorner \neg \varphi \urcorner})$. Since $\text{Bew}_t(\overline{\ulcorner \neg \varphi \urcorner}) \rightarrow \text{Bew}_T(\overline{\ulcorner \neg \varphi \urcorner})$, it follows that $t \vdash \neg \theta(n) \rightarrow \neg \text{Con}(T)$. Therefore, $t + \text{Con}(T) \vdash \theta(n)$, and thus $t + \text{Con}(T) \vdash \varphi$.

By this theorem, if $t \vdash \text{Con}(T)$, then HP holds. However, by Gödel's second incompleteness theorem, $Con(T)$ is not provable in T, hence also not in t.

However, for $T = WKL_0$ and $t = PRA$, HP is shown to hold by Friedman's theorem. Observing the richness of mathematics developed in $WKL₀$, one can view that "Hilbert's program" has been partially realized. Those skeptical about the meaning of HP still likely agree on the importance of rewriting a proof of a Π^0_1 sentence involving non-constructive arguments like weak König's lemma into a constructive proof without them.

K. Tanaka

[Semi-Regular](#page-2-0) Cuts and Friedman's Theorem

[A self-embedding](#page-11-0) theorem of $WKI₀$

§8.3. A self-embedding theorem of WKL $₀$ </sub>

In this section, we introduce a self-embedding theorem of $WKL₀$, by which we can devise methods of nonstandard analysis in WKL_0 .

Gödel stated in 1973 that "nonstandard analysis is the future of analysis." However, Henson and Keisler have shown in 1986 that nonstandard arguments in n -th order arithmetic require $(n + 1)$ -th order arithmetic. Therefore, conducting complete nonstandard analysis for second-order arithmetic Z_2 is impossible within the framework of second-order arithmetic alone. Nevertheless, as demonstrated in my paper¹, certain amount of nonstandard analysis can still be developed within WKL_0 .

The main tool of our nonstandard method is a self-embedding theorem of WKL_0 (Theorem [3.1\)](#page-12-0), which extends Friedman's self-embedding theorem ($\S5.3$) to WKL₀. This section primarily discusses the proof of this theorem.

¹K. Tanaka, The self-embedding theorem of WKL₀ and a non-standard method, Annals of Pure and Applied Logic 84 (1997), pp.41–49.

K. Tanaka

[Semi-Regular](#page-2-0) Cuts and

[A self-embedding](#page-11-0) theorem of $WKI₀$

Theorem 3.1 (Self-Embedding Theorem)

Let $\mathfrak{M} = (M, S)$ be a countable model of WKL₀ with $M \neq \omega$. Then, there exists a proper initial segment I of M such that $\mathfrak{M}[I=(I, S[I])]$ is isomorphic to \mathfrak{M} . Here, $S[I = \{X \cap I \mid X \in S\}.$

Before proving this theorem, we need some preparations. We first prove the following lemma, which will be frequently used later.

Lemma 3.2 (Compactness in WKL_0)

 (1) For any Π^0_1 formula $\varphi(X)$, there exists a Π^0_1 formula $\hat{\varphi}$ such that WKL_0 proves:

 $\hat{\varphi} \leftrightarrow \exists X \varphi(X).$

(2) For any Π^0_1 formula $\varphi(k,X)$, WKL₀ proves:

 $\forall n \exists X \forall k < n \varphi(k, X) \rightarrow \exists X \forall k \varphi(k, X).$

K. Tanaka

[Semi-Regular](#page-2-0) Cuts and

[A self-embedding](#page-11-0) theorem of $WKI₀$

From now on, we adopt the notation $[T]$ for the set of all infinite paths of a tree T. Do not confuse it with $[p]$, which represents a basic open set in the order topology.

Proof. (1) We identify a set X with its characteristic function, which is also represented as an infinite binary sequence. Then, a Π^0_1 formula $\varphi(X)$ can be expressed as $\forall x\;\theta(X\mathord{\restriction} x)$, where θ is Σ_0^0 and X $\upharpoonright x$ is a code for a finite binary sequence. We set $T = \{t \mid \forall s \subseteq t \; \theta(s)\}.$ Then T is a tree, and $X \in [T]$ iff $\varphi(X)$ holds. Thus, $\exists X \varphi(X)$ is equivalent to $[T] \neq \varnothing$, which is expressed as a Π^0_1 formula "T is infinite $(\forall n \exists t \in \{0,1\}^n t \in T)$ ".

 (2) Express a Π^0_1 formula $\varphi(k,X)$ as $\forall x \ \theta(k,X\mathord{\restriction} x)$ (where θ is Σ^0_0), and define a tree $T = \{t \mid \forall k \leq \text{length}\ \forall x \leq \text{length}\ \theta(k, t[x])\}.$ Here, leng(t) denotes the length of the finite binary sequence t. If $\forall n \exists X \forall k < n \varphi(k, X)$ holds, then $\forall n \exists X \forall k < n \forall x < n \theta(k, X[x])$, so $t = X[n \in T]$ for all n, thus T is infinite. Hence, in WKL₀, there exists an infinite path $X \in [T]$ satisfying $\forall k \varphi(k, X)$.

Here is another demonstration for (2). If we express $\varphi(k, X)$ as $X \in [T_k]$, then $\exists X \, \forall k < n \, \varphi(k,X)$ can be expressed as $\bigcap_{k < n} [T_k] \neq \varnothing.$ Since this is true for any n , we have $\bigcap_{k<\infty}[T_k]\neq\varnothing$ by the compactness of the Cantor space since $[T_k]$'s are closed sets.

Both (1) and (2) are referred to as "compactness (of binary trees) in WKL_0 ".

K. Tanaka

[Semi-Regular](#page-2-0) Cuts and Theorem

[A self-embedding](#page-11-0) theorem of $WKI₀$

We define $G\text{-}\Sigma_1^0$ formulas or simply G formulas by generalizing Σ_1^0 formulas as follows. The G formulas are obtained from Σ^0_1 formulas by using \wedge, \vee , bounded universal quantifier $\forall x \leq y$ and unbounded existential quantifier $\exists x$, and set quantifiers $\forall X, \exists X$.

In WKL $_0$, we can prove that a G formula is equivalent to a Σ^0_1 formula. To prove it, it suffices to show that the class of Σ^0_1 formulas is closed under set quantifiers $\forall X, \exists X,$ because the closure condition under $\forall x < y$ is nothing but the collection principle $\mathsf{B}\Sigma^0_1$ derivable from Σ^0_1 induction, and the other closure conditions are almost obvious.

The closure condition under $\forall X$ can be obtained from Lemma [3.2](#page-12-1)(1) by taking the negation on both sides. The closure condition under $\exists X$ can be demonstrated by noting that $\exists X \exists x \ \theta(x,X\lceil x)$ (where θ is Σ^0_0) can be rewritten as $\exists t \exists x \ \theta(x,t).$

Now, we redefine the G-formulas explicitly in $RCA₀$ in the next slide.

K. Tanaka

[Semi-Regular](#page-2-0) Cuts and

[A self-embedding](#page-11-0) theorem of $WKI₀$

Definition 3.3 (G-formulas)

A sequence $G_0\subset G_1\subset G_2\subset \cdots$ of sets of ${\mathcal L}_{\rm OR}^2$ -formulas is defined inductively modulo 4 as follows: for each $e \in \mathbb{N}$.

 $G_0 = \{\text{finite disjunctions }(\vee) \text{ of atomic formulas or their negations}\},\$ $G_{4e+1} = \{ \exists x \phi \mid \phi \text{ is a finite conjunction } (\wedge) \text{ of } G_{4e} \text{ formulas} \} \cup G_{4e},$ $G_{4e+2} = \{ \forall x \leq y \phi \mid \phi \text{ is a finite disjunction (V) of } G_{4e+1} \text{ formulas} \} \cup G_{4e+1},$ $G_{4e+3} = \{ \exists X \phi \mid \phi \text{ is a finite conjunction } (\wedge) \text{ of } G_{4e+2} \text{ formulas} \} \cup G_{4e+2},$ $G_{4e+4} = \{ \forall X \phi \mid \phi \text{ is a finite disjunction } (\vee) \text{ of } G_{4e+3} \text{ formulas} \} \cup G_{4e+3}.$

Finally, we set $\mathbf{G} = \bigcup_{e \in \mathbb{N}} G_e$. The formulas in G are called G -formulas.

By Lemma 5.5.3, there is no formula that defines the truth values of all formulas. But, Lemma 5.3.4 shows that if we restrict the formulas to a class like Σ_n , then there exists a formula Sat $_{\Sigma_n}$ to define the truth values of formulas in the class. This is also the case for Σ^0_n in second order arithmetic. In the following, we will define Sat for G -formulas.

K. Tanaka

[Semi-Regular](#page-2-0) Cuts and

[A self-embedding](#page-11-0) theorem of $WKI₀$

From now on, a structure $\mathfrak{M} = (M, S)$ is denoted by V. Then, for each $p \in M$, set $M_p = \{a \in M \mid \mathfrak{M} \models a < p\}, S_p = \{X \cap M_p \mid X \in S\}$ and denote $V_p = (M_p, S_p)$.

Since M_n may not be closed under operations such as addition, V_n may not be a substructure of V . However, just by restricting the ranges of variables to these sets, the **satisfaction predicate** Sat $P(z, \xi)$ for V_p can be naturally defined within $V = (M, S)$. Here, z represents the code of a formula φ , and ξ is a finite function that assigns elements of $M_p \cup S_p$ to free variables appearing in φ . Thus, supposing that a formula $\varphi(\vec{x}, X)$ has no free variables other than \vec{x}, \vec{X} , and $\xi(\vec{x}) = \vec{a}, \xi(\vec{X}) = \vec{U}$, we have in V.

 $\mathsf{Sat}^{\mathbf{p}}(\ulcorner\varphi\urcorner,\xi)\equiv\varphi(\tilde{\mathbf{a}},\tilde{\mathbf{U}})^{\mathbf{V}_{\mathbf{p}}},\,\,\text{\rm roughly}\,\,V_p\models\varphi(\vec{a},\vec{U}).$

Here, in $\varphi(\vec{a},\vec{U})^{V_p}$, quantification over numbers is bounded by p , and quantification over sets is also considered as ranging binary sequences of length p , which can be coded by numbers $< 2^p$. Thus, Sat $^p(z,\xi)$ can be defined as a Δ^0_1 formula in V (cf. Lemma 5.3.4).

We also remark that z in $\mathsf{Sat}^p(z,\xi)$ is a variable which can potentially express a non-standard number. In V , it can be easily verified that Sat^p satisfies Tarski's truth definition clauses for all standard formulas (cf. Theorem IV.2.26 in [P. Hájek and P. Pudlák, Metamathematics of First-oder Arithmetic, Springer, 1993.]).

K. Tanaka

[Semi-Regular](#page-2-0) Cuts and

[A self-embedding](#page-11-0) theorem of $WKI₀$

Next, we define the **satisfaction relation for** G -**formulas** as follows:

Definition 3.4

For each $z \in G$, define the satisfaction relation $Sat(z, \mathcal{E})$ as follows:

```
\text{Sat}(z,\xi) \leftrightarrow \exists p \, \text{Sat}^p(z,\xi \restriction V_p).
```
Here, $\xi \restriction V_p$ is the assignment obtained by restricting the values of ξ to V_p .

For simplicity, we abbreviate $\operatorname{Sat}^p(z,\xi\restriction V_p)$ as $\operatorname{Sat}^p(z,\xi)$. It is provable in RCA_0 that for the code z of a Σ^0_1 formula, if $\text{Sat}^p(z,\xi)$ holds, then $\text{Sat}^{p'}(z,\xi)$ also holds for any $p'\geq p$.

Moreover, we will show in WKL₀ that it also the case for the codes z of G .

In the following, we identify a formula with its code.

K. Tanaka

[Semi-Regular](#page-2-0) Cuts and

[A self-embedding](#page-11-0) theorem of $WKI₀$

Lemma 3.5

In a model V of WKL₀, $Sat(z, \xi)$ satisfies Tarski's truth definition clauses for G formulas.

Proof. We prove the statement by induction on the complexity of the formula z. If z is an atomic formula or its negation, $\text{Sat}(z,\xi) \Leftrightarrow \exists p\, \text{Sat}^p(z,\xi) \Leftrightarrow \exists p\, z(\xi)^{V_p} \Leftrightarrow z(\xi).$ If $z = \bigvee_{i \leq n} z_i$ (where each z_i is a G formula),

$$
\operatorname{Sat}\left(\bigvee_{i
$$
\Leftrightarrow \bigvee_{i
$$
$$

If z is $\exists x\,z'$ or $\exists X\,z'$ (where z' is a G formula), the proof follows analogously.

K. Tanaka

[Semi-Regular](#page-2-0) Cuts and

[A self-embedding](#page-11-0) theorem of $WKI₀$

When
$$
z = \bigwedge_{i < n} z_i
$$
 (where each z_i is a G formula),

$$
\operatorname{Sat}\left(\bigwedge_{i
$$
\Leftrightarrow \bigwedge_{i
$$
\Leftrightarrow \bigwedge_{i
$$
$$
$$

If z is $\forall x < y$ z' (where z' is a G formula), the proof is analogous. If $z = \forall X z'$ (where z' is a G formula),

 $\text{Sat}(\forall X \, z', \xi) \Leftrightarrow \exists p \, \text{Sat}^p \, (\forall X \, z', \xi) \Leftrightarrow \exists p \, \forall U \, \text{Sat}^p \, (z', \xi \cup \{(X, U)\})$ $\Leftrightarrow \forall U \exists p \, \text{Sat}^p(z', \xi \cup \{(X, U)\}) \quad \ (\Leftarrow \text{ by compactness (Lemma 3.2(2)))}$ $\Leftrightarrow \forall U \exists p \, \text{Sat}^p(z', \xi \cup \{(X, U)\}) \quad \ (\Leftarrow \text{ by compactness (Lemma 3.2(2)))}$ $\Leftrightarrow \forall U \exists p \, \text{Sat}^p(z', \xi \cup \{(X, U)\}) \quad \ (\Leftarrow \text{ by compactness (Lemma 3.2(2)))}$ $\Leftrightarrow \forall U \operatorname{Sat}(z',\xi \cup \{(X,U)\})$,

where $\xi \cup \{(X,U)\}\$ is an extension of ξ with X assigned to U.

K. Tanaka

[Semi-Regular](#page-2-0) Cuts and

[A self-embedding](#page-11-0) theorem of $WKI₀$

Lemma 3.6

In a model $V = (M, S)$ of WKL₀, we take any $e \in M$ and an M-finite assignment map ξ . Then, there exists a $p \in M$ such that for all G_e formulas z whose free variables all belong to the domain of ξ , then $\text{Sat}(z,\xi) \Leftrightarrow \text{Sat}^p(z,\xi)$ holds.

Proof. Since the domain of the assignment map ξ is M-finite, the set of G_e formulas whose free variables belong to its domain of ξ is essentially M-finite (disregarding repetitions of the same formula within disjunctions or conjunctions). This fact can be demonstrated by Σ^0_1 induction on $e.$

Therefore, for M-finitely many G_e formulas z where $\text{Sat}(z,\xi)$ holds, let p_z be such that $\text{Sat}^p(z,\xi)$, or set $p_z=0$ otherwise. Then, if $q=\max\{p_z\}$, $\text{Sat}(z,\xi) \Leftrightarrow \text{Sat}^q(z,\xi)$ holds. ² \Box

To be continued.

 2 Strictly speaking, strong Σ_1^0 collection principle $(\mathrm{S}\Sigma_1)$ is used here. (Refer to Problem 1 following Lemma 1.8 in Chapter 7.)

K. Tanaka

[Semi-Regular](#page-2-0) Cuts and Friedman's Theorem

[A self-embedding](#page-11-0) theorem of $WKL₀$

Thank you for your attention!