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Logic and Foundations II� �
• Part 5. Models of first-order arithmetic (continued) (5 lectures)

• Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)

• Part 7. Real analysis and reverse mathematics (8.5 lectures)

• Part 8. Second order arithmetic and non-standard methods (6.5 lectures)� �
Part 8. Schedule� �
• May 21, (0) Introduction to forcing

• May 23, (1) Harrington’s conservation result on WKL0
• May 28, (2) H.Friedman’s conservation result on WKL0
• May 30, (3)

• June 04, (4)

• June 06, (5)

• June 11, (6)� �
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§8.1. Forcing and Harrington’s Theorem
Let (M,S) be a countable non-standard model of RCA0

Definition 1.5

G(⊆M) is called an (M-)generic path, if for every dense set D ∈ Def(M), there exists a
tree T ∈ D such that G is an infinite path through T .

Lemma 1.6

Every infinite binary tree T (∈ P) has a generic path G.

Lemma 1.7

If G is a generic path, then (M,S ∪ {G}) |= Σ0
1-induction.

Fix a generic path G for T ∈ P, and let

ST = {X ⊆M | X is definable in (M,S ∪ {G}) by a ∆0
1 formula}.

Lemma 1.8

(M,ST ) |= RCA0 + T has an infinite path.
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Lemma 1.9

For any countable model (M,S) of RCA0, there exists a countable set S∞ such that
S ⊆ S∞ ⊆ P(M) and (M,S∞) |= WKL0.

Proof Construct S0 ⊆ S1 ⊆ · · · as follows: S0 = S, and

S(n,m)+1 = ST
(n,m), where T is the m-th infinite tree in Sn(⊆ S(n,m)).

Here, (n,m) = (n+m)(n+m+1)
2 + n, and so (n,m) ≥ n. Finally, let S∞ =

⋃
i∈ω Si.

It is clear from the definition that this is the desired set. 2

Theorem 1.10 (Harrington)

For any Π1
1 sentence σ, WKL0 ⊢ σ ⇒ RCA0 ⊢ σ.

Proof Suppose σ is a Π1
1 sentence that is not provable in RCA0. By Gödel’s completeness

theorem, there exists a countable model (M,S) |= RCA0 +¬σ. Now, ¬σ can be expressed
as ∃Xφ(X) with φ ∈ Π1

0. Then there exists A ∈ S such that (M,S) |= RCA0 +φ(A). By
constructing S∞ by Lemma 1.9, we have (M,S∞) |= WKL0 +φ(A). Note that since φ(X)
is arithmetical, the truth value of φ(A) depends only on M and A. Therefore,
(M,S∞) |= WKL0 +¬σ, which implies WKL0 ̸⊢ σ. 2
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§8.2. Semi-Regular Cuts and Friedman’s Theorem
The goal of this section is to prove a theorem of H. Friedman that “WKL0 is Π0

2

conservative over PRA.” First of all, we introduce a formal system of finitistic arithmetic
PRA, which stands for Primitive Recursive Arithmetic, to handle all primitive recursive
functions on the natural numbers. Its language consists of symbols for the primitive
recursive functions, and its axioms are their defining equations, along with Σ0 induction.
A model of PRA is of the form (M, fM0 , f

M
1 , · · · ), also denoted as (M,F ) or just M .

Now, we fix a nonstandard model (M,F ) of PRA (i.e., M ̸= ω). Also, let p ∈ F be a
primitive recursive function that lists the prime numbers in the ascending order, i.e.,
p(0) = 2, p(1) = 3, p(2) = 5, · · · .

Definition 2.1

A set X(⊆M) has a code c ∈M or is coded by c, if

X = {n ∈M :M |= ∃d < c (c = p(n) · d)}.

Such a set X is called M-finite, and the number of elements in X is denoted by |X| or |c|.

Note |x| is a primitive recursive function on M , i.e., |x| ∈ F . Also, if X( ̸= ∅) has a
code c, the largest element of X can be denoted by max(X) or max(c) ∈ F .
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Definition 2.2

A proper initial segment I of M is called a cut of M , denoted I ⊆e M
1, if it is closed

under the successor function (i.e., a ∈ I ⇒ a+ 1 ∈ I).
Furthermore, a cut I ⊆e M is called a semi-regular cut, if X ∩ I is bounded within I for
any M -finite set X with |X| ∈ I.

Note. If X is an M -finite set and X ∩ I is bounded in I, then X ∩ I is also M -finite,
and so the largest element of X ∩ I exists.

The analogy between the semi-regular cuts of nonstandard models of arithmetic and the
regular cardinals in models of set theory was discovered by Paris and his colleagues in the
UK in the mid-1970s. Recall that a regular cardinal is a cardinal such that the range of any
function from a smaller cardinal to it is always bounded.

1In Chapter 5, all initial segments were denoted by ⊆e.
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Let (M,F ) be a nonstandard model of PRA.

Theorem 2.3 (Kirby-Paris)

If I ⊆e M is a semi-regular cut, then (I, F ⌈I) |= PRA, where F ⌈I is the set of functions
obtained by restricting the domain of each function f in F to I.

Proof First, we show that I is closed under primitive recursive functions. For each n ∈ ω,
define the unary primitive recursive function gn as follows:

g0(x) = x+ 1,

gn+1(x) =

x+2︷ ︸︸ ︷
gngn · · · gn(x)2

For any primitive recursive function symbol f, there exists some n ∈ ω such that

PRA ⊢ f(x1, x2, · · · , xk) < gn(max{x1, x2, · · · , xk})

(where for k = 0, the value of max is set as 0). Let’s briefly demonstrate this fact.
2To see gn+1(x) is primitive recursive, we first introduce a two-variable function g′n+1(x, y) as follows:

g′n+1(x, 0) = 0, g′n+1(x, y + 1) = gn(g′n+1(x, y)). Then gn+1(x) = g′n+1(x, x+ 2) is primitive recursive.
Compare with the Ackermann function in part 1.
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For the three initial functions of primitive recursion, we have Z() = 0 < g0(0),
S(x) = x+ 1 < 2x+ 2 = g1(x), and Pn

i (x1, . . . , xn) = xi < g0(max{x1, x2, . . . , xk}). For
function composition, we consider one-variable functions for simplicity. If h1(x) < gn(x)
and h2(x) < gn(x), then their composite function h1(h2(x)) < gn(gn(x)) ≤ gn+1(x). For
primitive recursion f(x, y + 1) = h(x, y, f(x, y)) defined by f(x, 0) < gn(x) and
h(x, y, z) < gn(max{x, y, z}), we have f(x, y) < gy+2

n (max{x, y}) ≤ gn+1(max{x, y}).
Hence, every primitive recursive function is bounded by some gn.

To confirm that I is closed under all primitive recursive functions, it suffices to show
closure for each gn. By definition 2.2, I is closed under the successor function, so the case
n = 0 holds. Now, by way of contradiction, assume it is closed under gn, but not gn+1.
Then choose a ∈ I such that gMn+1(a) ̸∈ I, and define

X = {gMn (a), gMn gMn (a), · · · ,

a+2︷ ︸︸ ︷
gMn gMn · · · gMn (a)}.

Since X is an M -finite set with |X| = a+ 2 ∈ I, so X ∩ I is bounded and has a maximum
element b. However, since I is closed under gn, we have gMn (b) ∈ X ∩ I, contradicting the
maximality of b.
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From the above, (I, F ⌈I) can be considered a substructure of (M,F ), and thus the truth
values of Σ0 formulas are the same in both structures. Finally, to show (I, F ⌈I) |= Σ0-ind.,
let φ(x) be a Σ0 formula and assume (I, F ⌈I) |= φ(0) ∧ ∀x(φ(x) → φ(x+ 1)). Choose
any c ∈ I and let ψ(x) = φ(x) ∨ c < x. Then, ψ(x) is also Σ0 and it is easy to see
(M,F ) |= ψ(0) ∧ ∀x(ψ(x) → ψ(x+ 1)). Since (M,F ) |= Σ0-induction, (M,F ) |= ∀xψ(x)
and so (M,F ) |= ψ(c), which means (M,F ) |= φ(c), and thus (I, F ⌈I) |= φ(c). Since
c ∈ I is arbitrary, we obtain (I, F ⌈I) |= ∀xφ(x). Therefore, (I, F ⌈I) |= Σ0-induction, and
so (I, F ⌈I) |= PRA. 2

Definition 2.4

Let I ⊆e M and let S be the set of all M -finite sets. A set B ⊆ I is called an M-coded
set if there exists a X ∈ S such that B = X ∩ I. Then, B is also coded by a code c of X.
We denote the set of all M -coded subsets of I by S⌈I.

Note. We can consider (I, S⌈I) as a structure of second-order arithmetic, with basic
operations +I , ·I , etc., which are obtained by restricting the corresponding operations
(primitive recursive functions) on M to I.
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Lemma 2.5

If I ⊆e M is a semi-regular cut, then (I, S⌈I) |= WKL0.

Proof It is clear that (I, S⌈I) satisfies the basic axioms of arithmetic. Therefore, what
we need to show is that it satisfies (∆0

1 -CA), weak König’s lemma (WKL), and Σ0
1

induction. Let’s start with Σ0
1 induction. It suffices to show (bounded Σ0

1 -CA).

First, we consider how to transform a formula θ in (I, S⌈I) into a formula θ∗ in (M,F ).
For each set parameter B ∈ S⌈I in θ, let cB be a code of B, that is, a code of X such
that B = X ∩ I. θ∗ is obtained from θ by replacing every subformula “t ∈ B” with
“∃d < cB (cB = p(t) · d)”. Then, if θ is Σ0

0, also is θ∗. It is easy to see that for any a ∈ I,

(I, S⌈I) |= θ(a) ⇔ (M,F ) |= θ∗(a).
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Next, consider a Σ0
1 formula φ(x) = ∃yθ(x, y) (where θ is Σ0

0 in (I, S⌈I)). The goal is to
show that for arbitrary c ∈ I, {x < c | φ(x)} ∈ S⌈I. Take any d ∈M − I and define

Z = {(a, b) : a <M c, b <M d and (M,F ) |= θ∗(a, b) ∧ ∀x < b¬θ∗(a, x)}.

That is, for (a, b) ∈ Z, b is the smallest element in M such that θ∗(a, b) holds. It is evident
that Z is M -finite with |Z| ≤M c. From the semi-regularity of I, Z ∩ (I × I) is bounded,
and so there exists d′ ∈ I, such that for all a <M c,

∃b ∈ I (a, b) ∈ Z ⇔ ∃b <M d′ (a, b) ∈ Z.

Since (M,F ) satisfies Σ0 induction (the least number principle), for all a <M c,

∃b ∈ I (M,F ) |= θ∗(a, b) ⇔ ∃b ∈ I (a, b) ∈ Z (∵⇒ by the least number principle)
⇔ ∃b <M d′ (a, b) ∈ Z ⇔ ∃b <M d′ (M,F ) |= θ∗(a, b) (∵⇐ by the same principle)
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Therefore, for all a <M c,

(I, S⌈I) |= φ(a) ⇔ ∃b ∈ I (I, S⌈I) |= θ(a, b)

⇔ ∃b ∈ I (M,F ) |= θ∗(a, b)

⇔ ∃b <M d′ (M,F ) |= θ∗(a, b)

⇔ (M,F ) |= ∃y < d′ θ∗(a, y)

Since ∃y < d′ θ∗(a, y) is a Σ0 formula, we can show by Σ0 induction that
X = {a < c : (M,F ) |= ∃y < d′ θ∗(a, y)} has a code Πa∈Xp(a). That is,
{a < c : (I, S⌈I) |= φ(a)} is an M -coded set X, and hence it belongs to S⌈I.
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Since (∆0
1 -CA) + (WKL) is equivalent to (Σ0

1-SP)
3, it suffices to show that

(I, S⌈I) |= (Σ0
1-SP). Let φi(x) = ∃yθi(x, y), θi(x, y) ∈ Σ0

0 (i = 0, 1), and assume
(I, S⌈I) |= ¬∃x(φ0(x) ∧ φ1(x)). Similar to the above, let θ∗i be the Σ0 formula obtained
by replacing the set parameters of θi with their definitions. Now, fix any d ∈M − I, and
define

Y = {a <M d | ∃b <M d (M,F ) |= θ∗0(a, b) ∧ ∀x < b¬θ∗1(a, x)}

That is, Y is the set of element a such that, when b increases from below, θ∗0(a, b) holds
before θ∗1(a, b). Obviously, Y is M -finite, so Y ∩ I ∈ S⌈I. Then, it is easy to see

(I, S⌈I) |= ∀a[(φ0(a) → a ∈ Y ∩ I) ∧ (φ1(a) → a ̸∈ Y ∩ I)].

Hence, (I, S⌈I) |= (Σ0
1-SP). Therefore, (I, S⌈I) |= WKL0 has been proved. 2

3See Lemma 3.6 in part 7
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The following lemma is crucial to Friedman’s proof.

Lemma 2.6

Let (M,F ) be a countable nonstandard model of PRA. Take c, d ∈M such that for all
primitive recursive functions f, fM (c, c, · · · , c) <M d. Then, there exists a semi-regular cut
I ⊆e M such that c ∈ I and d ̸∈ I.

Note If we take c ∈M − ω and consider the smallest cut J that contains c and is closed
under all primitive recursive functions, J will not be a semi-regular cut. The reason is as
follows. Let {gn} be the sequence of primitive recursive functions constructed in the proof
of Theorem 2.3, and let B(x, y, z) ⇔ gx(y) ≤ z. (The precise definition of the primitive
recursive predicate B(x, y, z) is given in the proof below.) Since J =
{a ∈M : ∃n ∈ ω a <M gMn (c)}, we have J |= ¬∃zB(c, c, z). If J were a semi-regular cut,
then by the lemma above, J |= Σ0

1 induction, so there would be a smallest a ∈ J such that
J |= ¬∃zB(a, c, z). Then J |= ∃zB(a− 1, c, z), that is, ga−1(c) ∈ J , and so there exists
n ∈ ω such that ga−1(c) < gn(c), which is impossible since a− 1 ̸∈ ω. Therefore, J is not
a semi-regular cut. On the other hand, since J is a model of PRA, it has been shown that
PRA ̸⊢ Σ0

1 induction.
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Proof First, define the primitive recursive predicate B(x, y, z) as follows:

• B(0, y, z) ⇔ y < z,

• B(x+ 1, y, z) ⇔ for any M -finite set X ⊂ [y, z) with |X| ≤ y,
there exists [y′, z′) ⊂ [y, z) such that B(x, y′, z′) and [y′, z′) ∩X = ∅

Here, [y, z) = {w : y ≤ w < z}.

Now, when B(x, y, z) holds, we say ”the interval [y, z) is x-large.” Then, the interval [y, z)
is (x+ 1)-large iff for any subset X ⊂ [y, z) with |X| ≤ y, there exists a subinterval
[y′, z′) ⊂ [y, z) that is x-large and disjoint from X.

We observe that the definition of B(x+ 1, y, z) is Σ0, since a subset X ⊂ [y, z) with
cardinality at most y can be encoded by a number at most p(z)y. So this makes B(x, y, z)
a primitive recursive predicate.
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For the sequence {gn} of primitive recursive functions constructed in the proof of
Theorem 2.3, it can be shown that for each n ∈ ω,

PRA ⊢ gn(y) ≤ z → B(n, y, z).

Indeed, this is clear when n = 0. Assuming it holds for n, let’s show it for n+ 1. Suppose
gn+1(y) ≤ z. Since gn+1(y) = gy+2

n (y), for any subset X ⊂ [y, z) with |X| ≤ y, there
exists some c < y + 2 such that the interval [gcn(y), g

c+1
n (y)) does not contain any element

of X. Let y′ = gcn(y) and z
′ = gc+1

n (y). Then gn(y
′) = z′. So by the inductive hypothesis,

B(n, y′, z′) holds, which fulfills the definition of B(x+ 1, y, z).

Next, take c, d ∈M as in the statement of the lemma. Then for any n ∈ ω, gMn (c) <M d,
and so B(n, c, d). By the overspill principle, there exists b ∈M − ω such that
∀a ≤M b B(a, c, d).4

4Using Σ0 induction in PRA, one can take the smallest x such that ¬B(x, c, d) and set b = x− 1.
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Now, since (M,F ) is a countable model of PRA, there are only countably many M -finite
sets. So, we can construct a sequence of M -finite sets {Xn}, such that each M -finite set
appears infinitely often in the sequence. Using this, we define the decreasing sequence of
intervals {[cn, dn)} as follows:

[c0, d0) = [c, d),

[cn+1, dn+1) =


[cn, dn) if |Xn| ≥M cn,

[c′, d′) otherwise, take any [c′, d′) ⊂ [cn, dn) such that
B(b− n, c′, d′) and [c′, d′) ∩X = ∅.

For any a ∈M , obviously {a} is M -finite, so for sufficiently large n, [cn, dn) ∩ {a} = ∅,
that is, a ̸∈ [cn, dn). Therefore,

⋂
n[cn, dn) = ∅.

Now, let I = {a ∈M : ∃n a <M cn} = {a ∈M : ∀n a <M dn}. We show that I becomes
a semi-regular cut. If X is M -finite and |X| ∈ I, by the definition of {Xn}, there are
infinitely many n such that X = Xn. Then, there exists n such that X = Xn and
|X| <M cn. Thus, [cn+1, dn+1) ∩X = ∅. Therefore, X ∩ I is bounded by cn+1 in I.
Hence, I is a semi-regular cut. 2
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Theorem 2.7 (Friedman)

For any Π2 sentence σ, WKL0 ⊢ σ ⇒ PRA ⊢ σ.

Proof. To show the contraposition, take a Π2 sentence σ = ∀y∃zθ(y, z) with θ ∈ Σ0

that is not provable in PRA. Then, PRA∪{¬∃zθ(c, z)} ∪ {f(c, c, · · · , c) < d : f is a
symbol of a primitive recursive function} is consistent, and hence by the completeness
theorem, it has a countable model (M,F, c, d). Now, by Lemma 2.6, there exists a
semi-regular cut I ⊆e M such that c ∈ I and d ̸∈ I. Since ¬∃zθ(c, z) is a Π1 sentence and
M |= ¬∃zθ(c, z), it follows that I |= ¬∃zθ(c, z), i.e., I |= ¬σ. On the other hand, by
Lemma 2.5, we have (I, S⌈I) |= WKL0. Thus, (I, S⌈I) |= WKL0 +¬σ, and so WKL0 +¬σ
is consistent, hence σ cannot be proved in WKL0 either. 2

As we saw in part 7, a wide range of mathematics can be developed within WKL0.
Nevertheless, Friedman’s theorem shows that WKL0 is Π2-conservative over PRA, which
can be viewed as a partial realization of Hilbert’s ”finitistic reductionism” or an essence of
the ”Hilbert Program.”
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Hilbert’s Program

The main goal of Hilbert’s program was to provide secure foundations for all mathematics,
to counteract the intuitionism, led by Brouwer who had been attacking non-constructive
methods in mathematics. Hilbert proposed the method of “proof theory” or “meta-
mathematics”, by which mathematical arguments are treated as symbolic manipulations,
and thus can be analyzed themselves mathematically.

Let T be a large system (e.g., set theory ZFC) that can develop most of mathematics.
Let t be a small system (e.g., PRA) capable of performing symbolic manipulatios of T .
Then, Hilbert considered that a Π0

1 sentence which does not assert existence (e.g.,
Fermat’s Last Theorem: ∀n > 2∀x, y, z > 0(xn + yn ̸= zn)) would be provable in t if it is
provable in T . Therefore, the validity of a Π0

1 sentence could be recognized by any
non-constructive methods.

In the following, we assume that both T and t include at least PRA. Then,

Hilbert’s (reductionism) program HP� �
HP: for any Π0

1 sentence φ, if T ⊢ φ then t ⊢ φ.� �
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Theorem 2.8

For any Π0
1 sentence φ, if T ⊢ φ, then t+Con(T ) ⊢ φ. Here, Con(T ) is a Π0

1 sentence
representing the consistency of T .

Proof. Let φ ≡ ∀nθ(n) (where θ(n) is Σ0
0 or primitive recursive), and assume T ⊢ φ.

So, since BewT (⌜φ⌝) is a true Σ0
1 sentence, by the Σ0

1-completeness of t, t ⊢ BewT (⌜φ⌝).
On the other hand, from the proof of Lemma 4.5.1 D3, t ⊢ ¬θ(n) → Bewt(⌜¬θ(n̄)⌝), i.e.,
t ⊢ ¬θ(n) → Bewt(⌜¬φ⌝). Since Bewt(⌜¬φ⌝) → BewT (⌜¬φ⌝), it follows that
t ⊢ ¬θ(n) → ¬Con(T ). Therefore, t+Con(T ) ⊢ θ(n), and thus t+Con(T ) ⊢ φ. 2

By this theorem, if t ⊢ Con(T ), then HP holds. However, by Gödel’s second
incompleteness theorem, Con(T ) is be not provable in T , so of course not in t.

However, for T = WKL0 and t = PRA, HP is shown to hold by Friedman’s theorem.
Observing the richness of mathematics developed in WKL0, one can view that “Hilbert’s
program” has been partially realized. Those skeptical about the meaning of HP still likely
agree on the importance of rewriting a proof of a Π0

1 sentence involving non-constructive
arguments like weak König’s lemma into a constructive proof without them.



Logic and
Foundations

K. Tanaka

Forcing and
Harrington’s
Theorem

Semi-Regular
Cuts and
Friedman’s
Theorem

21

Thank you for your attention!
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