K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem

Logic and Foundations II

Part 8. Second order arithmetic and non-standard methods

Kazuyuki Tanaka

BIMSA

May 23, 2024

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem

Recapitulation and Correction

Theorem 5.6

In RCA₀, ATR₀, Δ_1^0 -Det, Σ_1^0 -Det, and \prod_1^0 -Det are pairwise equivalent.

Fact: Π_1^1 -CA₀ implies ATR₀ and Con(ATR₀).

Theorem 5.7

The determinacy of $\sum_1^0 \wedge \prod_1^0$ games and $\Pi_1^1\text{-}\mathsf{CA}_0$ are equivalent over $\mathsf{RCA}_0.$

By generalizing Theorem 5.7, we can also show that the determinacy of games defined by Boolean combinations of $\sum_{i=1}^{0}$ sets can be obtained through iterations of Π_1^1 -CA₀.

Moreover, Δ_2^0 -Det can be deduced from transfinite iterations of Π_1^1 -CA₀, i.e., Π_1^1 -TR₀. For this purpose, we need the effective version of the Hausdorff-Kuratowski theorem on ambiguous Borel sets.

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem For a well-order \prec on $\mathbb N,$ define the well-order \prec^* on $\mathbb N\times\{0,1\}$ as follows:

 $(x,i) \prec^* (y,j) \quad \text{iff} \ x \prec y \lor (x = y \land i < j).$

A Π^0_n formula $\varphi(n,i,f)$ is said to decreasing along \prec^* if it satisfies:

 $\forall f \in \mathbb{N}^{\mathbb{N}} \; \forall n \forall i \forall m \forall j \; (((m,j) \prec^* (n,i) \land \varphi(n,i,f)) \rightarrow \varphi(m,j,f)).$

Definition 5.8 (Effective Difference Hierarchy)

For $n \geq 1$, $A \subseteq \mathbb{N}^{\mathbb{N}}$ belongs to \mathcal{D}_{n+1}^0 iff there exists a Π_n^0 formula $\varphi(x, i, f)$ decreasing along a well-order \prec^* such that

$$A(f) \Leftrightarrow \exists x(\neg \varphi(x,1,f) \land \varphi(x,0,f)).$$

Theorem 5.9 (Effective Difference Hierarchy Theorem)

In ACA₀, $\mathcal{D}_n^0 = \Delta_n^0 \ (n \ge 2)$.

Theorem 5.10

```
\Delta_2^0\text{-}\mathsf{Det} is equivalent to \Pi_1^1\operatorname{-}\mathsf{TR}_0 in \mathsf{RCA}_0.
```

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem

Logic and Foundations II

- Part 5. Models of first-order arithmetic (continued) (5 lectures)
- Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)
- Part 7. Real analysis and reverse mathematics (8.5 lectures)
- Part 8. Second order arithmetic and non-standard methods (6.5 lectures)

- Part 8. Schedule

- May 21, (0) Introduction to forcing
- May 23, (1) Harrington's conservation result on WKL_0
- May 28, (2) H.Friedman's conservation result on WKL_0
- May 30, (3)
- June 04, (4)
- June 06, (5)
- June 11, (6)

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem

§8.1. Forcing and Harrington's Theorem

In this section, we introduce Harrington's theorem that "WKL₀ is a Π_1^1 conservative extension of RCA₀." The forcing argument of adding infinite paths of an infinite tree as generic paths to a ground model was invented by Jockusch and Soare (Π_1^0 classes and degrees of theories, *Trans. of the A. M. S.* 173 (1972), pp.35–56). Subsequently, Harrington cleverly applied it to non- ω models in second-order arithmetic.

The basic idea of forcing is to generate something that does not exist in the world without causing confusion. First, a set of conditions \mathbb{P} for what to generate is given, and a partial order is defined on \mathbb{P} . Ways to interpret these conditions varies depending on applications, and we first proceed without giving particular meanings.

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem Fix an arbitrary partially ordered set $(\mathbb{P}, <)$, and let p, q, r, \ldots denote elements of \mathbb{P} . A set $G \subseteq \mathbb{P}$ is called an **open set**, if it satisfies the following condition

 $\forall p,q \ (q$

Thus, $(\mathbb{P},<)$ becomes a topological space. Now, let

 $[p] = \{q \in \mathbb{P} \mid q \leq p\}.$

Any open set G coincides with $\bigcup_{p \in G} [p]$, and so $\{[p] \mid p \in \mathbb{P}\}$ forms a basis for the topology. Any set $D \subseteq \mathbb{P}$ is called a **dense** set, if it has a non-empty intersection with every non-empty open set. The condition for D to be dense is equivalent to

 $\forall p \in \mathbb{P} \ [p] \cap D \neq \emptyset$, in other words, $\forall p \in \mathbb{P} \ \exists d \in D \ d \leq p$.

Definition 1.1

A set $F \subseteq \mathbb{P}$ is called a **filter**, if it satisfies the following conditions: 1) $p \in F \land p < q \rightarrow q \in F$, 2) $\forall p, q \in F \quad [p] \cap [q] \cap F \neq \emptyset$.

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem

Definition 1.2

Given a family of sets \mathcal{D} , a filter G is called a \mathcal{D} -generic filter if it intersects every dense set $D \subseteq \mathbb{P}$ belonging to \mathcal{D} .

Lemma 1.3

If \mathcal{D} contains at most countably many dense subsets of \mathbb{P} , then for any $p \in \mathbb{P}$, there exists a \mathcal{D} -generic filter G that contains p.

Proof Enumerate the dense subsets of \mathbb{P} contained in \mathcal{D} as $D_0, D_1, \dots, D_i, \dots (i \in \omega)$. For a given $p \in \mathbb{P}$, construct a decreasing sequence $p_0 \ge p_1 \ge \dots$ from \mathbb{P} as follows: $p_0 = p$, and $p_n \in [p_{n-1}] \cap D_{n-1}$ for each n > 0. Then, we set $G = \{q \mid \exists i \ p_i \le q\}$. Thus, it is obvious that $p \in G$ and G is a \mathcal{D} -generic filter.

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem Now, we will introduce the forcing conditions used in Harrington's proof. Let $\mathfrak{M}=(M,S)$ be a countable model of RCA₀. Here, M is the first-order part (the domain corresponding to the natural numbers), and S is the second-order part consisting of subsets of M, that is, $S\subseteq \mathcal{P}(M)$. Then, set

 $\mathbb{P} = \{ T \in S \mid \mathfrak{M} \models "T(\subseteq \operatorname{Seq}_2) \text{ is an infinite binary tree"} \},\$

and define a partial order on \mathbb{P} by

 $T_1 \leq T_2 \Leftrightarrow T_1 \subseteq T_2.$

For each $T \in \mathbb{P}$, we want to generate an infinite path and put it into S. But if we bring in an arbitrary path of T from outside, it might break the condition of \mathfrak{M} , e.g., induction axiom. Instead, we approximate an infinite path by $T' \leq T$, and for this purpose, the concept of density is important, namely

 $D \subseteq \mathbb{P}$ is dense $\Leftrightarrow \forall T \in \mathbb{P} \exists T' \in D \ T' \leq T$.

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem $E \subseteq \mathbb{P}$ is said to be **definable in** \mathfrak{M} if there exists a formula $\varphi(X)$ (with parameters from $M \cup S$) such that $E = \{T \in \mathbb{P} \mid \mathfrak{M} \models \varphi(T)\}$. The totality of such sets is denoted by $\operatorname{Def}(\mathfrak{M})$. Since we only consider a countable model $\mathfrak{M} = (M, S)$ in a countable language, $\operatorname{Def}(\mathfrak{M})$ is a countable set. By Lemma 1.3, any $T \in \mathbb{P}$ is contained in some $\operatorname{Def}(\mathfrak{M})$ -generic filter. Such a filter is simply referred to as an \mathfrak{M} -generic filter.

Lemma 1.4

If $F \subseteq \mathbb{P}$ is an \mathfrak{M} -generic filter, then there exists a unique infinite path $G = \cap F = \cap_{T \in F} T$ common to all $T \in F$. That is, F is contained in the principal filter generated by G.

Proof For each $k \in M$, let $E_k = \{T \in \mathbb{P} \mid \exists! s \in \{0,1\}^k \ s \in T\}$ be dense and definable in \mathfrak{M} . If F is an \mathfrak{M} -generic filter, then for each k, there exists some $s_k \in \{0,1\}^k$ such that there is $T_k \in F$ with $T_k \cap \{0,1\}^k = \{s_k\}$. Moreover, if k < k', then s_k is an initial segment of $s_{k'}$, and $s_{k'} \in T_k$. If not, $[T_k] \cap [T_{k'}] = \emptyset^1$, which would contradict the filter condition of F. Thus, let $G = \bigcup_{k \in M} s_k$; then $G = \bigcap_k T_k$ as well. Finally, to show $G = \cap F$, if $G \not\subseteq T \in F$, then there exists some k such that $s_k \notin T$, and $[T] \cap [T_k] = \emptyset$, which contradicts the filter condition of F.

¹Here, [T] denotes $\{T' \in \mathbb{P} \mid T' \subset T\}$. In the latter half of part 8, the same notation [T] represents the set of infinite paths of T. Since both are conventional, we would use both as they are.

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem

Definition 1.5

 $G(\subseteq M)$ is called an \mathfrak{M} -generic path, if for every dense set $D \in Def(\mathfrak{M})$, there exists a tree $T \in D$ such that G is an infinite path through T.

Lemma 1.6

Every $T \in \mathbb{P}$ has an \mathfrak{M} -generic path G.

Proof By Lemma 1.3, every T is contained in some \mathfrak{M} -generic filter F. Then, by Lemma 1.4, there is a common infinite path G in the trees of F. It is clear from the definition that this G is an \mathfrak{M} -generic path.

From now on, an \mathfrak{M} -generic path will simply be referred to as a generic path.

Lemma 1.7

If G is a generic path, then $(M, S \cup \{G\}) \models \Sigma_1^0$ -induction.

Proof Let $\varphi(i, X)$ be any Σ_1^0 formula, and choose any $b \in M$, and we will show that $A = \{a \leq_M b \mid \varphi(a, G)\} \in S^{-2}$. If $A \in S$, induction on $\varphi(n, G)$ can be shown as follows.

²See Lemma 1.8 of part 7 for RCA₀ \vdash (bounded Σ_1^0 -CA). We show (bounded Σ_1^0 -CA) $\rightarrow \Sigma_1^0$ induction. 10

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem Suppose $A \in S$. Then, $B = \{a \mid a \in A \lor a >_M b\} \in S$ since $\mathfrak{M} \models (\Delta_1^0 \operatorname{-CA})$. Now, assume $\varphi(0,G)$ and $\forall n(\varphi(n,G) \rightarrow \varphi(n+1,G))$. Then, we have $0 \in B$ and $\forall m(m \in B \rightarrow m+1 \in B)$. Since $\mathfrak{M} \models \Sigma_1^0$ -induction, by induction on B, we have B = M. Therefore, $b \in A$, that is, $\varphi(b,G)$. Since $b \in M$ is arbitrary, we get $\forall n\varphi(n,G)$.

Now we show $A \in S$. Let $\varphi(i, X) \equiv \exists j \theta(i, X \lceil j)$ (where $\theta \in \Sigma_0^0)^3$, and set

$$D_{b} = \{ T \in \mathbb{P} \mid \mathfrak{M} \models \forall a \leq b \ (1) \ \forall t \in T \neg \theta(a, t) \lor$$
$$(2) \ \exists k \forall t \in T \cap \{0, 1\}^{k} \exists s \subseteq t \theta(a, s) \}.$$

Of course, D_b is definable in \mathfrak{M} . Here, note that if $T \in D_b$ and $T' \subseteq T$, then $T' \in D_b$. And as shown below, D_b is dense, so there exists a tree T_0 in D_b that has G as an infinite path. Fix such a T_0 . For simplicity, we write $(1)_{T_0}$ for above condition (1) with $T = T_0$, and $(2)_{T_0}$ for condition (2) with $T = T_0$.

 $^{{}^{3}}X \upharpoonright j$ represents the code of the initial segment $(f(0), \dots, f(j-1))$ of the characteristic function f of X. The truth value of the Σ_{0}^{0} formula $\theta(X)$ depends only on a finite part of X, so for sufficiently large j, X can be replaced by $X \upharpoonright j$. See [Simpson, Theorem II.2.7] for details.

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem Then, for each $a \leq_M b$,

$$\begin{split} \mathfrak{M} &\models (1)_{T_0} \Rightarrow (M, S \cup \{G\}) \models \neg \varphi(a, G), \\ \mathfrak{M} &\models (2)_{T_0} \Rightarrow (M, S \cup \{G\}) \models \varphi(a, G). \end{split}$$

Since $\mathfrak{M} \models (1)_{T_0} \lor (2)_{T_0}$, we have

$$\mathfrak{M}\models (2)_{T_0}\Leftrightarrow (M,S\cup\{G\})\models \varphi(a,G)$$

Since (2) is a Σ_1^0 formula, and $\mathfrak{M} \models (bounded \Sigma_1^0 - CA)$ (Lemma 1.8, Chapter 7), $A = \{a \leq_M b \mid \mathfrak{M} \models (2)_{T_0}\} \in S.$

Finally, we show that D_b is dense. Choose any $\tilde{T} \in \mathbb{P}$. For each $\sigma \in \{0, 1\}^{\leq b}$, define a tree T_{σ} inductively as follows:

$$\begin{split} T_{\varnothing} &= \tilde{T}, \\ T_{\sigma \cap 0} &= \{t \in T_{\sigma} \mid \forall s \subseteq t \ \neg \theta(a,s)\}, \text{ where } a = \text{leng}(\sigma), \\ T_{\sigma \cap 1} &= T_{\sigma}. \end{split}$$

Here, \varnothing is the empty sequence, and $\sigma^{\cap i}$ denotes the sequence σ followed by i(=0,1).

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem Next, let $S_b = \{\sigma \in \{0,1\}^{b+1} \mid T_{\sigma} \text{ is an infinite tree}\}$. Then, since " T_{σ} is an infinite tree" is expressed by a Π_1^0 formula $\forall n \exists \tau \in \{0,1\}^n \ \tau \in T_{\sigma}$, by (bounded Σ_1^0 -CA), we have $S_b \in S$. Also, since $\langle 1,1,\cdots,1 \rangle \in S_b$, we get $S_b \neq \emptyset$. Thus, let σ_b be the lexicographically first element in S_b . Take any $a \leq_M b$. $\sigma_b(a) = 0$, then $(\sigma_b \lceil a)^{\cap} 0 \subset \sigma_b$, so

 $T_{\sigma_b} \subseteq T_{(\sigma_b \lceil a) \cap 0} \subseteq \{t \mid \neg \theta(a, t)\},\$

from which we have $(1)_{T_{\sigma_h}}$.

If $\sigma_b(a) = 1$, then $T_{(\sigma_b \lceil a) \cap 0}$ is finite, and thus $(2)_{T_{\sigma_b \lceil a}}$ and also $(2)_{T_{\sigma_b}}$ holds. From all the above, $T_{\sigma_b} \in D_b$, which proves that D_b is dense.

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regula Cuts and Friedman's Theorem

Fix a generic path G for $T\in\mathbb{P},$ and let

 $S^T = \{ X \subseteq M \mid X \text{ is definable in } (M, S \cup \{G\}) \text{ by a } \Delta^0_1 \text{ formula} \}.$

Lemma 1.8

 $(M, S^T) \models \mathsf{RCA}_0 + T$ has an infinite path.

Proof For a Σ_1^0 formula φ with parameters from S^T , there exists an equivalent Σ_1^0 formula ψ with parameters only from $S \cup \{G\}$, which is obtained from the former by replacing a parameter X of S^T with a Δ_1^0 formula defining it. Recall that the same argument was used to show that RCA₀ is a conservative extension of $I\Sigma_1$ (in part 7, Lemma 1.3). Then, by Lemma 1.7, $(M, S^T) \models \text{RCA}_0$. Also, in (M, S^T) , T has an infinite path G.

Notice that if (M,S) is countable, then S^T is also countable. In the following lemma, this process is repeated to construct a model (M, S_{∞}) of WKL₀, which is also countable.

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem

Lemma 1.9

For any countable model (M, S) of RCA₀, there exists a countable set S_{∞} such that $S \subseteq S_{\infty} \subseteq \mathcal{P}(M)$ and $(M, S_{\infty}) \models \mathsf{WKL}_0$.

Proof Construct $S_0 \subseteq S_1 \subseteq \cdots$ as follows: $S_0 = S$, and

 $S_{(n,m)+1} = S_{(n,m)}^T, \text{ where } T \text{ is the } m\text{-th infinite tree in } S_n (\subseteq S_{(n,m)}).$

Here, $(n,m) = \frac{(n+m)(n+m+1)}{2} + n$, and so $(n,m) \ge n$. Finally, let $S_{\infty} = \bigcup_{i \in \omega} S_i$. It is clear from the definition that this is the desired set.

Theorem 1.10 (Harrington)

For any Π_1^1 sentence σ , $\mathsf{WKL}_0 \vdash \sigma \Rightarrow \mathsf{RCA}_0 \vdash \sigma$.

Proof Suppose σ is a Π_1^1 sentence that is not provable in RCA₀. By Gödel's completeness theorem, there exists a countable model $(M, S) \models \operatorname{RCA}_0 + \neg \sigma$. Now, $\neg \sigma$ can be expressed as $\exists X \varphi(X)$ with $\varphi \in \Pi_0^1$. Then there exists $A \in S$ such that $(M, S) \models \operatorname{RCA}_0 + \varphi(A)$. By constructing S_∞ by Lemma 1.9, we have $(M, S_\infty) \models \operatorname{WKL}_0 + \varphi(A)$. Note that since $\varphi(X)$ is arithmetical, the truth value of $\varphi(A)$ depends only on M and A. Therefore, $(M, S_\infty) \models \operatorname{WKL}_0 + \neg \sigma$, which implies $\operatorname{WKL}_0 \not = \sigma$.

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem

§8.2. Semi-Regular Cuts and Friedman's Theorem

The goal of this section is to prove a theorem of H. Friedman that "WKL₀ is Π_2^0 conservative over PRA." First of all, we introduce a formal system of finitistic arithmetic PRA, which stands for Primitive Recursive Arithmetic, to handle all primitive recursive functions on the natural numbers. Its language consists of symbols for the primitive recursive functions and its axioms are their defining equations, along with Σ_0 induction. A model of PRA is of the form $(M, \mathbf{f}_0^M, \mathbf{f}_1^M, \cdots)$, also denoted as (M, F) or just M.

Now, we fix a nonstandard model (M, F) of PRA (i.e., $M \neq \omega$). Also, let $p \in F$ be a primitive recursive function that lists the prime numbers in the ascending order, i.e., $p(0) = 2, p(1) = 3, p(2) = 5, \cdots$.

Definition 2.1

A set $X(\subseteq M)$ has a ${\bf code}\ c\in M$ or is coded by c, if

 $X = \{ n \in M : M \models \exists d < c \ (c = p(n) \cdot d) \}.$

Such a set X is called *M*-finite, and the number of elements in X is denoted by |X| or |c|.

Note |x| is a primitive recursive function on M, i.e., $|x| \in F$. Also, if $X \neq \emptyset$ has a code c, the largest element of X can be denoted by $\max(c)$, and $\max(x) \in F$.

K. Tanaka

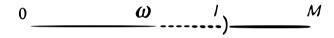
Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem

Definition 2.2

A proper initial segment I of M is called a **cut** of M, denoted $I \subseteq_e M^4$, if it is closed under the successor function (i.e., $a \in I \Rightarrow a + 1 \in I$). Furthermore, a cut $I \subseteq_e M$ is called a **semi-regular cut**, if $X \cap I$ is bounded within I for

any *M*-finite set *X* with $|X| \in I$.



Note. If X is an M-finite set and $X \cap I$ is bounded in I, then $X \cap I$ is also M-finite, and so the largest element of $X \cap I$ exists.

The analogy between the semi-regular cuts of nonstandard models of arithmetic and the regular cardinals in models of set theory was discovered by Paris and his colleagues in the UK in the mid-1970s. Recall that a regular cardinal is a cardinal such that the range of any function from a smaller cardinal to it is always bounded.

⁴In Chapter 5, all initial segments were denoted by \subseteq_e .

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem Let (M, F) be a nonstandard model of PRA.

Theorem 2.3 (Kirby-Paris)

If $I \subseteq_e M$ is a semi-regular cut, then $(I, F \upharpoonright I) \models \mathsf{PRA}$, where $F \upharpoonright I$ is the set of functions obtained by restricting the domain of each function f in F to I.

Proof First, we show that *I* is closed under primitive recursive functions. For each $n \in \omega$, define the unary primitive recursive function g_n as follows:

$$\mathbf{g}_0(x) = x + 1,$$

$$\mathbf{g}_{n+1}(x) = \overbrace{\mathbf{g}_n \mathbf{g}_n \cdots \mathbf{g}_n}^{x+2} (x)^5$$

For any primitive recursive function symbol f, there exists some $n\in\omega$ such that

$$\mathsf{PRA} \vdash \mathbf{f}(x_1, x_2, \cdots, x_k) < \mathsf{g}_n(\max\{x_1, x_2, \cdots, x_k\})$$

(where for k = 0, the value of max is taken as 0). Let's briefly demonstrate this fact.

⁵To see $g_{n+1}(x)$ is primitive recursive, we first introduce a two-variable function $g'_{n+1}(x,y)$ as follows: $g'_{n+1}(x,0) = 0, g'_{n+1}(x,y+1) = g_n(g'_{n+1}(x,y))$. Then $g_{n+1}(x) = g'_{n+1}(x,x+2)$ is primitive recursive. Compare with the Ackermann function in part 1.

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem For the three initial functions of primitive recursion, we have $Z() = 0 < g_0(0)$, $S(x) = x + 1 < 2x + 2 = g_1(x)$, and $P_i^n(x_1, \ldots, x_n) = x_i < g_0(\max\{x_1, x_2, \ldots, x_k\})$. For function composition, we consider one-variable functions for simplicity. If $h_1(x) < g_n(x)$ and $h_2(x) < g_n(x)$, then their composite function $h_1(h_2(x)) < g_n(g_n(x)) \le g_{n+1}(x)$. For primitive recursion f(x, y + 1) = h(x, y, f(x, y)) defined by $f(x, 0) < g_n(x)$ and $h(x, y, z) < g_n(\max\{x, y, z\})$, we have $f(x, y) < g_n^{y+2}(\max\{x, y\}) \le g_{n+1}(\max\{x, y\})$. Hence, every primitive recursive function is bounded by some g_n .

To confirm that I is closed under all primitive recursive functions, it suffices to show closure for each g_n . By definition 2.2, I is closed under the successor function, so the case n = 0 holds. Now, by way of contradiction, assume it is closed under g_n , but not g_{n+1} . Then choose $a \in I$ such that $g_{n+1}^M(a) \notin I$, and define

$$X = \{\mathbf{g}_n^M(a), \mathbf{g}_n^M \mathbf{g}_n^M(a), \cdots, \overbrace{\mathbf{g}_n^M \mathbf{g}_n^M \cdots \mathbf{g}_n^M}^{a+2}(a)\}$$

Since X is an *M*-finite set with $|X| = a + 2 \in I$, so $X \cap I$ is bounded and has a maximum element b. However, since I is closed under g_n , we have $g_n^M(b) \in X \cap I$, contradicting the maximality of b.

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem From the above, $(I, F \lceil I)$ can be considered a substructure of (M, F), and thus the truth values of Σ_0 formulas are the same in both structures. Finally, to show $(I, F \lceil I) \models \Sigma_0$ -ind., let $\varphi(x)$ be a Σ_0 formula and assume $(I, F \lceil I) \models \varphi(0) \land \forall x(\varphi(x) \to \varphi(x+1))$. Choose any $c \in I$ and let $\psi(x) = \varphi(x) \lor c < x$. Then, $\psi(x)$ is also Σ_0 and it is easy to see $(M, F) \models \psi(0) \land \forall x(\psi(x) \to \psi(x+1))$. Since $(M, F) \models \Sigma_0$ -induction, $(M, F) \models \forall x\psi(x)$ and so $(M, F) \models \psi(c)$, which means $(M, F) \models \varphi(c)$, and thus $(I, F \lceil I) \models \varphi(c)$. Since $c \in I$ is arbitrary, we obtain $(I, F \lceil I) \models \forall x\varphi(x)$. Therefore, $(I, F \lceil I) \models \Sigma_0$ -induction, and so $(I, F \lceil I) \models \mathsf{PRA}$.

Definition 2.4

Let $I \subseteq_e M$ and let S be the set of all M-finite sets. A set $B \subseteq I$ is called an M-coded set if there exists a $X \in S$ such that $B = X \cap I$. Then, B is also coded by a code c of X. We denote the set of all M-coded subsets of I by $S \lceil I$.

Note. We can consider (I, S | I) as a structure of second-order arithmetic, with basic operations $+^{I}, \cdot^{I}$, etc., which are obtained by restricting the corresponding operations (primitive recursive functions) on M to I.

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem

Lemma 2.5

If $I \subseteq_e M$ is a semi-regular cut, then $(I, S \restriction I) \models \mathsf{WKL}_0$.

Proof It is clear that $(I, S \lceil I)$ satisfies the basic axioms of arithmetic. Therefore, what we need to show is that it satisfies $(\Delta_1^0 - CA)$, weak König's lemma (WKL), and Σ_1^0 induction. Let's start with Σ_1^0 induction. Similarly to Lemma 8.1.7 1.7, it suffices to show (bounded $\Sigma_1^0 - CA$).

First, we consider how to transform a formula θ in $(I, S \lceil I)$ into a formula θ^* in (M, F). For each set parameter $B \in S \lceil I \text{ in } \theta$, let c_B be a code of B or equivalently a code of X such that $B = X \cap I$. θ^* is obtained from θ by replacing every subformula " $t \in B$ " with " $\exists d < c_B \ (c_B = p(t) \cdot d)$ ". Then, if θ is Σ_0^0 , also is θ^* . It is easy to see that for any $a \in I$,

 $(I,S \restriction I) \models \theta(a) \Leftrightarrow (M,F) \models \theta^*(a)$

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem Next, consider a Σ_1^0 formula $\varphi(x) = \exists y \theta(x, y)$ (where θ is Σ_0^0 in $(I, S \lceil I)$). The goal is to show that for arbitrary $c \in I$, $\{x < c \mid \varphi(x)\} \in S \lceil I$. Take any $d \in M - I$ and define

$$Z = \{(a,b) : a <_M c, \ b <_M d \text{ and } (M,F) \models \theta^*(a,b) \land \forall x < b \neg \theta^*(a,x) \}.$$

That is, if $(a,b) \in Z$, b is the smallest element in M such that $\theta^*(a,b)$ holds. It is evident that Z is M-finite with $|Z| \leq_M c$. From the semi-regularity of I, $Z \cap (I \times I)$ is bounded, and so there exists $d' \in I$, such that for all $a <_M c$,

$$\exists b \in I \ (a,b) \in Z \ \Leftrightarrow \ \exists b <_M d' \ (a,b) \in Z.$$

Since (M, F) satisfies Σ_0 induction (the least number principle), for all $a <_M c$,

 $\exists b \in I \ (M,F) \models \theta^*(a,b) \Leftrightarrow \exists b \in I \ (a,b) \in Z \\ \Leftrightarrow \exists b <_M d' \ (a,b) \in Z \iff \exists b <_M d' \ (M,F) \models \theta^*(a,b)$

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem Therefore, for all $a <_M c$,

 $(I, S \lceil I) \models \varphi(a) \Leftrightarrow \exists b \in I \ (I, S \lceil I) \models \theta(a, b)$ $\Leftrightarrow \exists b \in I \ (M, F) \models \theta^*(a, b)$ $\Leftrightarrow \exists b <_M d' \ (M, F) \models \theta^*(a, b)$ $\Leftrightarrow (M, F) \models \exists y < d' \ \theta^*(a, y)$

Since the last expression $\exists y < d' \ \theta^*(a, y)$ is a Σ_0 formula,

 $\{a < c : (I, S \lceil I) \models \varphi(a)\} = \{a < c : (M, F) \models \exists y < d' \ \theta^*(a, y)\}$

is an *M*-coded set, belonging to $S \lceil I$.

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem Since $(\Delta_1^0 - CA)$ + weak König's lemma is equivalent to $(\Sigma_1^0 - SP)$ combined⁶, it suffices to show that $(I, S \lceil I) \models (\Sigma_1^0 - SP)$. Let $\varphi_i(x) = \exists y \theta_i(x, y)$, $\theta_i(x, y) \in \Sigma_0^0$ (i = 0, 1), and assume $(I, S \lceil I) \models \neg \exists x (\varphi_0(x) \land \varphi_1(x))$. Similar to the above, let θ_i^* be the Σ_0 formula obtained by replacing the set parameters of θ_i with their definitions. Now, fix any $d \in M - I$, and define

$$Y = \{a <_M d \mid \exists b <_M d \ (M, F) \models \theta_0^*(a, b) \land \forall x < b \neg \theta_1^*(a, x)\}$$

That is, Y is the set of element a such that, when b increases from below, $\theta_0^*(a, b)$ holds before $\theta_1^*(a, b)$. Obviously, Y is M-finite, so $Y \cap I \in S \lceil I$. Then, it is easy to see

$$(I,S[I) \models \forall a[(\varphi_0(a) \to a \in Y \cap I) \land (\varphi_1(a) \to a \notin Y \cap I)].$$

Hence, $(I, S \upharpoonright I) \models (\Sigma_1^0 SP)$. From all the above, $(I, S \upharpoonright I) \models WKL_0$ is proved.

⁶See Lemma 3.6 in part 7

K. Tanaka

Forcing and Harrington's Theorem

Semi-Regular Cuts and Friedman's Theorem

Thank you for your attention!