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Recapitulation and Correction

Theorem 5.6

In RCA0, ATR0, ∆∼
0
1-Det, Σ∼

0
1-Det, and Π∼

0
1-Det are pairwise equivalent.

Fact: Π1
1-CA0 implies ATR0 and Con(ATR0).

Theorem 5.7

The determinacy of Σ∼
0
1 ∧Π∼

0
1 games and Π1

1-CA0 are equivalent over RCA0.

By generalizing Theorem 5.7, we can also show that the determinacy of games defined by
Boolean combinations of Σ∼

0
1 sets can be obtained through iterations of Π1

1-CA0.

Moreover, ∆∼
0
2-Det can be deduced from transfinite iterations of Π1

1-CA0, i.e., Π
1
1 -TR0.

For this purpose, we need the effective version of the Hausdorff-Kuratowski theorem on
ambiguous Borel sets.
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For a well-order ≺ on N, define the well-order ≺∗ on N× {0, 1} as follows:

(x, i) ≺∗ (y, j) iff x ≺ y ∨ (x = y ∧ i < j).

A Π0
n formula φ(n, i, f) is said to decreasing along ≺∗ if it satisfies:

∀f ∈ NN ∀n∀i∀m∀j (((m, j) ≺∗ (n, i) ∧ φ(n, i, f)) → φ(m, j, f)).

Definition 5.8 (Effective Difference Hierarchy)

For n ≥ 1, A ⊆ NN belongs to D0
n+1 iff there exists a Π0

n formula φ(x, i, f) decreasing
along a well-order ≺∗ such that

A(f) ⇔ ∃x(¬φ(x, 1, f) ∧ φ(x, 0, f)).

Theorem 5.9 (Effective Difference Hierarchy Theorem)

In ACA0, D0
n = ∆0

n (n ≥ 2).

Theorem 5.10

∆∼
0
2-Det is equivalent to Π1

1 -TR0 in RCA0.
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Logic and Foundations II� �
• Part 5. Models of first-order arithmetic (continued) (5 lectures)

• Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)

• Part 7. Real analysis and reverse mathematics (8.5 lectures)

• Part 8. Second order arithmetic and non-standard methods (6.5 lectures)� �
Part 8. Schedule� �
• May 21, (0) Introduction to forcing

• May 23, (1) Harrington’s conservation result on WKL0
• May 28, (2) H.Friedman’s conservation result on WKL0
• May 30, (3)

• June 04, (4)

• June 06, (5)

• June 11, (6)� �
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§8.1. Forcing and Harrington’s Theorem

In this section, we introduce Harrington’s theorem that ”WKL0 is a Π1
1 conservative

extension of RCA0.” The forcing argument of adding infinite paths of an infinite tree as
generic paths to a ground model was invented by Jockusch and Soare (Π0

1 classes and
degrees of theories, Trans. of the A. M. S. 173 (1972), pp.35–56). Subsequently,
Harrington cleverly applied it to non-ω models in second-order arithmetic.

The basic idea of forcing is to generate something that does not exist in the world without
causing confusion. First, a set of conditions P for what to generate is given, and a partial
order is defined on P. Ways to interpret these conditions varies depending on applications,
and we first proceed without giving particular meanings.
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Fix an arbitrary partially ordered set (P, <), and let p, q, r, . . . denote elements of P.
A set G ⊆ P is called an open set, if it satisfies the following condition

∀p, q (q < p ∧ p ∈ G→ q ∈ G).

Thus, (P, <) becomes a topological space. Now, let

[p] = {q ∈ P | q ≤ p}.

Any open set G coincides with
⋃

p∈G[p], and so {[p] | p ∈ P} forms a basis for the topology.

Any set D ⊆ P is called a dense set, if it has a non-empty intersection with every
non-empty open set. The condition for D to be dense is equivalent to

∀p ∈ P [p] ∩D ̸= ∅, in other words, ∀p ∈ P ∃d ∈ D d ≤ p.

Definition 1.1

A set F ⊆ P is called a filter, if it satisfies the following conditions:
1) p ∈ F ∧ p < q → q ∈ F,
2) ∀p, q ∈ F [p] ∩ [q] ∩ F ̸= ∅.
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Definition 1.2

Given a family of sets D, a filter G is called a D-generic filter if it intersects every dense
set D ⊆ P belonging to D.

Lemma 1.3

If D contains at most countably many dense subsets of P, then for any p ∈ P, there exists
a D-generic filter G that contains p.

Proof Enumerate the dense subsets of P contained in D as D0, D1, · · · , Di, · · · (i ∈ ω).
For a given p ∈ P, construct a decreasing sequence p0 ≥ p1 ≥ · · · from P as follows:
p0 = p, and pn ∈ [pn−1] ∩Dn−1 for each n > 0. Then, we set G = {q | ∃i pi ≤ q}.
Thus, it is obvious that p ∈ G and G is a D-generic filter. 2
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Now, we will introduce the forcing conditions used in Harrington’s proof.
Let M = (M,S) be a countable model of RCA0. Here, M is the first-order part (the
domain corresponding to the natural numbers), and S is the second-order part consisting of
subsets of M , that is, S ⊆ P(M). Then, set

P = {T ∈ S | M |= “T (⊆ Seq 2) is an infinite binary tree”},

and define a partial order on P by

T1 ≤ T2 ⇔ T1 ⊆ T2.

For each T ∈ P, we want to generate an infinite path and put it into S. But if we bring in
an arbitrary path of T from outside, it might break the condition of M, e.g., induction
axiom. Instead, we approximate an infinite path by T ′ ≤ T , and for this purpose, the
concept of density is important, namely

D ⊆ P is dense ⇔ ∀T ∈ P ∃T ′ ∈ D T ′ ≤ T.
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E ⊆ P is said to be definable in M if there exists a formula φ(X) (with parameters from
M ∪ S) such that E = {T ∈ P | M |= φ(T )}. The totality of such sets is denoted by
Def(M). Since we only consider a countable model M = (M,S) in a countable language,
Def(M) is a countable set. By Lemma 1.3, any T ∈ P is contained in some
Def(M)-generic filter. Such a filter is simply referred to as an M-generic filter.

Lemma 1.4

If F ⊆ P is an M-generic filter, then there exists a unique infinite path G = ∩F = ∩T∈FT
common to all T ∈ F . That is, F is contained in the principal filter generated by G.

Proof For each k ∈M , let Ek = {T ∈ P | ∃!s ∈ {0, 1}k s ∈ T} be dense and definable
in M. If F is an M-generic filter, then for each k, there exists some sk ∈ {0, 1}k such that
there is Tk ∈ F with Tk ∩ {0, 1}k = {sk}. Moreover, if k < k′, then sk is an initial
segment of sk′ , and sk′ ∈ Tk. If not, [Tk] ∩ [Tk′ ] = ∅1, which would contradict the filter
condition of F . Thus, let G =

⋃
k∈M sk; then G =

⋂
k Tk as well. Finally, to show

G = ∩F , if G ̸⊆ T ∈ F , then there exists some k such that sk ̸∈ T , and [T ] ∩ [Tk] = ∅,
which contradicts the filter condition of F . 2

1Here, [T ] denotes {T ′ ∈ P | T ′ ⊂ T}. In the latter half of part 8, the same notation [T ] represents the
set of infinite paths of T . Since both are conventional, we would use both as they are.
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Definition 1.5

G(⊆M) is called an M-generic path, if for every dense set D ∈ Def(M), there exists a
tree T ∈ D such that G is an infinite path through T .

Lemma 1.6

Every T ∈ P has an M-generic path G.

Proof By Lemma 1.3, every T is contained in some M-generic filter F . Then, by
Lemma 1.4, there is a common infinite path G in the trees of F . It is clear from the
definition that this G is an M-generic path. 2

From now on, an M-generic path will simply be referred to as a generic path.

Lemma 1.7

If G is a generic path, then (M,S ∪ {G}) |= Σ0
1-induction.

Proof Let φ(i,X) be any Σ0
1 formula, and choose any b ∈M , and we will show that

A = {a ≤M b | φ(a,G)} ∈ S 2. If A ∈ S, induction on φ(n,G) can be shown as follows.

2See Lemma 1.8 of part 7 for RCA0 ⊢ (bounded Σ0
1 -CA). We show (bounded Σ0

1 -CA) → Σ0
1 induction.
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Suppose A ∈ S. Then, B = {a | a ∈ A ∨ a >M b} ∈ S since M |= (∆0
1 -CA). Now,

assume φ(0, G) and ∀n(φ(n,G) → φ(n+ 1, G)). Then, we have 0 ∈ B and
∀m(m ∈ B → m+ 1 ∈ B). Since M |= Σ0

1-induction, by induction on B, we have
B =M . Therefore, b ∈ A, that is, φ(b,G). Since b ∈M is arbitrary, we get ∀nφ(n,G).

Now we show A ∈ S. Let φ(i,X) ≡ ∃jθ(i,X⌈j) (where θ ∈ Σ0
0)

3, and set

Db = {T ∈ P | M |= ∀a ≤ b (1) ∀t ∈ T¬θ(a, t)∨
(2) ∃k∀t ∈ T ∩ {0, 1}k∃s ⊆ tθ(a, s)}.

Of course, Db is definable in M. Here, note that if T ∈ Db and T ′ ⊆ T , then T ′ ∈ Db.
And as shown below, Db is dense, so there exists a tree T0 in Db that has G as an infinite
path. Fix such a T0. For simplicity, we write (1)T0 for above condition (1) with T = T0,
and (2)T0 for condition (2) with T = T0.

3X ↾ j represents the code of the initial segment (f(0), · · · , f(j − 1)) of the characteristic function f of
X. The truth value of the Σ0

0 formula θ(X) depends only on a finite part of X, so for sufficiently large j,
X can be replaced by X ↾ j. See [Simpson, Theorem II.2.7] for details.
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Then, for each a ≤M b,

M |= (1)T0 ⇒ (M,S ∪ {G}) |= ¬φ(a,G),

M |= (2)T0
⇒ (M,S ∪ {G}) |= φ(a,G).

Since M |= (1)T0
∨ (2)T0

, we have

M |= (2)T0
⇔ (M,S ∪ {G}) |= φ(a,G)

Since (2) is a Σ0
1 formula, and M |= (boundedΣ0

1 -CA) (Lemma 1.8, Chapter 7),
A = {a ≤M b | M |= (2)T0

} ∈ S.

Finally, we show that Db is dense. Choose any T̃ ∈ P. For each σ ∈ {0, 1}≤b, define a tree
Tσ inductively as follows:

T∅ = T̃ ,
Tσ∩0 = {t ∈ Tσ | ∀s ⊆ t ¬θ(a, s)}, where a = leng(σ),
Tσ∩1 = Tσ.

Here, ∅ is the empty sequence, and σ∩i denotes the sequence σ followed by i(= 0, 1).
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Next, let Sb = {σ ∈ {0, 1}b+1 | Tσ is an infinite tree}. Then, since ”Tσ is an infinite tree”
is expressed by a Π0

1 formula ∀n∃τ ∈ {0, 1}n τ ∈ Tσ, by (bounded Σ0
1 -CA), we have

Sb ∈ S. Also, since

b+1︷ ︸︸ ︷
< 1, 1, · · · , 1 > ∈ Sb, we get Sb ̸= ∅.

Thus, let σb be the lexicographically first element in Sb.

Take any a ≤M b. σb(a) = 0, then (σb⌈a)∩0 ⊂ σb, so

Tσb
⊆ T(σb⌈a)∩0 ⊆ {t | ¬θ(a, t)},

from which we have (1)Tσb
.

If σb(a) = 1, then T(σb⌈a)∩0 is finite, and thus (2)Tσb⌈a
and also (2)Tσb

holds.

From all the above, Tσb
∈ Db, which proves that Db is dense. 2
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Fix a generic path G for T ∈ P, and let

ST = {X ⊆M | X is definable in (M,S ∪ {G}) by a ∆0
1 formula}.

Lemma 1.8

(M,ST ) |= RCA0 + T has an infinite path.

Proof For a Σ0
1 formula φ with parameters from ST , there exists an equivalent Σ0

1

formula ψ with parameters only from S ∪ {G}, which is obtained from the former by
replacing a parameter X of ST with a ∆0

1 formula defining it. Recall that the same
argument was used to show that RCA0 is a conservative extension of IΣ1 (in part 7,
Lemma 1.3). Then, by Lemma 1.7, (M,ST ) |= RCA0. Also, in (M,ST ), T has an infinite
path G. 2

Notice that if (M,S) is countable, then ST is also countable. In the following lemma, this
process is repeated to construct a model (M,S∞) of WKL0, which is also countable.
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Lemma 1.9

For any countable model (M,S) of RCA0, there exists a countable set S∞ such that
S ⊆ S∞ ⊆ P(M) and (M,S∞) |= WKL0.

Proof Construct S0 ⊆ S1 ⊆ · · · as follows: S0 = S, and

S(n,m)+1 = ST
(n,m), where T is the m-th infinite tree in Sn(⊆ S(n,m)).

Here, (n,m) = (n+m)(n+m+1)
2 + n, and so (n,m) ≥ n. Finally, let S∞ =

⋃
i∈ω Si.

It is clear from the definition that this is the desired set. 2

Theorem 1.10 (Harrington)

For any Π1
1 sentence σ, WKL0 ⊢ σ ⇒ RCA0 ⊢ σ.

Proof Suppose σ is a Π1
1 sentence that is not provable in RCA0. By Gödel’s completeness

theorem, there exists a countable model (M,S) |= RCA0 +¬σ. Now, ¬σ can be expressed
as ∃Xφ(X) with φ ∈ Π1

0. Then there exists A ∈ S such that (M,S) |= RCA0 +φ(A). By
constructing S∞ by Lemma 1.9, we have (M,S∞) |= WKL0 +φ(A). Note that since φ(X)
is arithmetical, the truth value of φ(A) depends only on M and A. Therefore,
(M,S∞) |= WKL0 +¬σ, which implies WKL0 ̸⊢ σ. 2
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§8.2. Semi-Regular Cuts and Friedman’s Theorem
The goal of this section is to prove a theorem of H. Friedman that “WKL0 is Π0

2

conservative over PRA.” First of all, we introduce a formal system of finitistic arithmetic
PRA, which stands for Primitive Recursive Arithmetic, to handle all primitive recursive
functions on the natural numbers. Its language consists of symbols for the primitive
recursive functions and its axioms are their defining equations, along with Σ0 induction.
A model of PRA is of the form (M, fM0 , f

M
1 , · · · ), also denoted as (M,F ) or just M .

Now, we fix a nonstandard model (M,F ) of PRA (i.e., M ̸= ω). Also, let p ∈ F be a
primitive recursive function that lists the prime numbers in the ascending order, i.e.,
p(0) = 2, p(1) = 3, p(2) = 5, · · · .

Definition 2.1

A set X(⊆M) has a code c ∈M or is coded by c, if

X = {n ∈M :M |= ∃d < c (c = p(n) · d)}.

Such a set X is called M-finite, and the number of elements in X is denoted by |X| or |c|.

Note |x| is a primitive recursive function on M , i.e., |x| ∈ F . Also, if X( ̸= ∅) has a
code c, the largest element of X can be denoted by max(c), and max(x) ∈ F .
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Definition 2.2

A proper initial segment I of M is called a cut of M , denoted I ⊆e M
4, if it is closed

under the successor function (i.e., a ∈ I ⇒ a+ 1 ∈ I).
Furthermore, a cut I ⊆e M is called a semi-regular cut, if X ∩ I is bounded within I for
any M -finite set X with |X| ∈ I.

Note. If X is an M -finite set and X ∩ I is bounded in I, then X ∩ I is also M -finite,
and so the largest element of X ∩ I exists.

The analogy between the semi-regular cuts of nonstandard models of arithmetic and the
regular cardinals in models of set theory was discovered by Paris and his colleagues in the
UK in the mid-1970s. Recall that a regular cardinal is a cardinal such that the range of any
function from a smaller cardinal to it is always bounded.

4In Chapter 5, all initial segments were denoted by ⊆e.
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Let (M,F ) be a nonstandard model of PRA.

Theorem 2.3 (Kirby-Paris)

If I ⊆e M is a semi-regular cut, then (I, F ⌈I) |= PRA, where F ⌈I is the set of functions
obtained by restricting the domain of each function f in F to I.

Proof First, we show that I is closed under primitive recursive functions. For each n ∈ ω,
define the unary primitive recursive function gn as follows:

g0(x) = x+ 1,

gn+1(x) =

x+2︷ ︸︸ ︷
gngn · · · gn(x)5

For any primitive recursive function symbol f, there exists some n ∈ ω such that

PRA ⊢ f(x1, x2, · · · , xk) < gn(max{x1, x2, · · · , xk})

(where for k = 0, the value of max is taken as 0). Let’s briefly demonstrate this fact.
5To see gn+1(x) is primitive recursive, we first introduce a two-variable function g′n+1(x, y) as follows:

g′n+1(x, 0) = 0, g′n+1(x, y + 1) = gn(g′n+1(x, y)). Then gn+1(x) = g′n+1(x, x+ 2) is primitive recursive.
Compare with the Ackermann function in part 1.
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For the three initial functions of primitive recursion, we have Z() = 0 < g0(0),
S(x) = x+ 1 < 2x+ 2 = g1(x), and Pn

i (x1, . . . , xn) = xi < g0(max{x1, x2, . . . , xk}). For
function composition, we consider one-variable functions for simplicity. If h1(x) < gn(x)
and h2(x) < gn(x), then their composite function h1(h2(x)) < gn(gn(x)) ≤ gn+1(x). For
primitive recursion f(x, y + 1) = h(x, y, f(x, y)) defined by f(x, 0) < gn(x) and
h(x, y, z) < gn(max{x, y, z}), we have f(x, y) < gy+2

n (max{x, y}) ≤ gn+1(max{x, y}).
Hence, every primitive recursive function is bounded by some gn.

To confirm that I is closed under all primitive recursive functions, it suffices to show
closure for each gn. By definition 2.2, I is closed under the successor function, so the case
n = 0 holds. Now, by way of contradiction, assume it is closed under gn, but not gn+1.
Then choose a ∈ I such that gMn+1(a) ̸∈ I, and define

X = {gMn (a), gMn gMn (a), · · · ,

a+2︷ ︸︸ ︷
gMn gMn · · · gMn (a)}.

Since X is an M -finite set with |X| = a+ 2 ∈ I, so X ∩ I is bounded and has a maximum
element b. However, since I is closed under gn, we have gMn (b) ∈ X ∩ I, contradicting the
maximality of b.
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From the above, (I, F ⌈I) can be considered a substructure of (M,F ), and thus the truth
values of Σ0 formulas are the same in both structures. Finally, to show (I, F ⌈I) |= Σ0-ind.,
let φ(x) be a Σ0 formula and assume (I, F ⌈I) |= φ(0) ∧ ∀x(φ(x) → φ(x+ 1)). Choose
any c ∈ I and let ψ(x) = φ(x) ∨ c < x. Then, ψ(x) is also Σ0 and it is easy to see
(M,F ) |= ψ(0) ∧ ∀x(ψ(x) → ψ(x+ 1)). Since (M,F ) |= Σ0-induction, (M,F ) |= ∀xψ(x)
and so (M,F ) |= ψ(c), which means (M,F ) |= φ(c), and thus (I, F ⌈I) |= φ(c). Since
c ∈ I is arbitrary, we obtain (I, F ⌈I) |= ∀xφ(x). Therefore, (I, F ⌈I) |= Σ0-induction, and
so (I, F ⌈I) |= PRA. 2

Definition 2.4

Let I ⊆e M and let S be the set of all M -finite sets. A set B ⊆ I is called an M-coded
set if there exists a X ∈ S such that B = X ∩ I. Then, B is also coded by a code c of X.
We denote the set of all M -coded subsets of I by S⌈I.

Note. We can consider (I, S⌈I) as a structure of second-order arithmetic, with basic
operations +I , ·I , etc., which are obtained by restricting the corresponding operations
(primitive recursive functions) on M to I.
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Lemma 2.5

If I ⊆e M is a semi-regular cut, then (I, S⌈I) |= WKL0.

Proof It is clear that (I, S⌈I) satisfies the basic axioms of arithmetic. Therefore, what
we need to show is that it satisfies (∆0

1 -CA), weak König’s lemma (WKL), and Σ0
1

induction. Let’s start with Σ0
1 induction. Similarly to Lemma 8.1.7 1.7, it suffices to show

(bounded Σ0
1 -CA).

First, we consider how to transform a formula θ in (I, S⌈I) into a formula θ∗ in (M,F ).
For each set parameter B ∈ S⌈I in θ, let cB be a code of B or equivalently a code of X
such that B = X ∩ I. θ∗ is obtained from θ by replacing every subformula “t ∈ B” with
“∃d < cB (cB = p(t) · d)”. Then, if θ is Σ0

0, also is θ∗. It is easy to see that for any a ∈ I,

(I, S⌈I) |= θ(a) ⇔ (M,F ) |= θ∗(a)
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Next, consider a Σ0
1 formula φ(x) = ∃yθ(x, y) (where θ is Σ0

0 in (I, S⌈I)). The goal is to
show that for arbitrary c ∈ I, {x < c | φ(x)} ∈ S⌈I. Take any d ∈M − I and define

Z = {(a, b) : a <M c, b <M d and (M,F ) |= θ∗(a, b) ∧ ∀x < b¬θ∗(a, x)}.

That is, if (a, b) ∈ Z, b is the smallest element in M such that θ∗(a, b) holds. It is evident
that Z is M -finite with |Z| ≤M c. From the semi-regularity of I, Z ∩ (I × I) is bounded,
and so there exists d′ ∈ I, such that for all a <M c,

∃b ∈ I (a, b) ∈ Z ⇔ ∃b <M d′ (a, b) ∈ Z.

Since (M,F ) satisfies Σ0 induction (the least number principle), for all a <M c,

∃b ∈ I (M,F ) |= θ∗(a, b) ⇔ ∃b ∈ I (a, b) ∈ Z
⇔ ∃b <M d′ (a, b) ∈ Z ⇔ ∃b <M d′ (M,F ) |= θ∗(a, b)
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Therefore, for all a <M c,

(I, S⌈I) |= φ(a) ⇔ ∃b ∈ I (I, S⌈I) |= θ(a, b)

⇔ ∃b ∈ I (M,F ) |= θ∗(a, b)

⇔ ∃b <M d′ (M,F ) |= θ∗(a, b)

⇔ (M,F ) |= ∃y < d′ θ∗(a, y)

Since the last expression ∃y < d′ θ∗(a, y) is a Σ0 formula,

{a < c : (I, S⌈I) |= φ(a)} = {a < c : (M,F ) |= ∃y < d′ θ∗(a, y)}

is an M -coded set, belonging to S⌈I.
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Since (∆0
1 -CA) + weak König’s lemma is equivalent to (Σ0

1-SP) combined6, it suffices to
show that (I, S⌈I) |= (Σ0

1-SP). Let φi(x) = ∃yθi(x, y), θi(x, y) ∈ Σ0
0 (i = 0, 1), and

assume (I, S⌈I) |= ¬∃x(φ0(x) ∧ φ1(x)). Similar to the above, let θ∗i be the Σ0 formula
obtained by replacing the set parameters of θi with their definitions. Now, fix any
d ∈M − I, and define

Y = {a <M d | ∃b <M d (M,F ) |= θ∗0(a, b) ∧ ∀x < b¬θ∗1(a, x)}

That is, Y is the set of element a such that, when b increases from below, θ∗0(a, b) holds
before θ∗1(a, b). Obviously, Y is M -finite, so Y ∩ I ∈ S⌈I. Then, it is easy to see

(I, S⌈I) |= ∀a[(φ0(a) → a ∈ Y ∩ I) ∧ (φ1(a) → a ̸∈ Y ∩ I)].

Hence, (I, S⌈I) |= (Σ0
1 SP). From all the above, (I, S⌈I) |= WKL0 is proved. 2

6See Lemma 3.6 in part 7



Logic and
Foundations

K. Tanaka

Forcing and
Harrington’s
Theorem

Semi-Regular
Cuts and
Friedman’s
Theorem

25

Thank you for your attention!
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