K. Tanaka

[Determinacy of](#page-2-0) Infinite Games

Forcing and [Harrington's](#page-11-0) Theorem

Logic and Foundations II Part 7. Real Analysis and Reverse Mathematics

Kazuyuki Tanaka

BIMSA

May 21, 2024

K. Tanaka

[Determinacy of](#page-2-0) Infinite Games

Forcing and [Harrington's](#page-11-0) Theorem

Logic and Foundations II

- Part 5. Models of first-order arithmetic (continued) (5 lectures)
- Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)
- Part 7. Real analysis and reverse mathematics (9 lectures)
- Part 8. Second order arithmetic and non-standard methods (6 lectures)

✒ ✑ Part 7. Schedule

- Apr. 16, (1) Introduction and the base system RCA_0
- Apr. 18, (2) Defining real numbers in $RCA₀$
- Apr. 23, (3) Completeness of the reals and ACA_0
- Apr. 25, (4) Continuous functions and WKL_0
- Apr. 30, (5) Continuous functions and WKL $_0$, II
- May 9, (6) König's lemma and Ramsey's theorem
- May 14, (7) Determinacy of infinite games I
- May 16, (8) Determinacy of infinite games II
- May 21, (9) Determinacy of infinite games $III + Introduction$ to Part 8

K. Tanaka

[Determinacy of](#page-2-0) Infinite Games

Forcing and [Harrington's](#page-11-0)

Gale-Stewart games

In a Gale-Stewart game G , two players I and II alternately choose natural numbers. constructing an infinite sequence (called a **play**)

> $\frac{1}{\text{II}}$ $\begin{array}{ccc} n_0 & n_2 & n_4 & \dots \ n_1 & n_2 & n_5 \end{array}$ $n_1 \qquad n_3 \qquad n_5 \qquad ...$

If the resulting sequence (n_0,n_1,n_2,\ldots) is in a predetermined $\bm{\mathsf{w}}$ inning $\bm{\mathsf{set}}\ G\subseteq\mathbb{N}^\mathbb{N}$, then player I wins; otherwise, player II wins.

A strategy for player I is a function $\sigma:\cup_{i\in\mathbb{N}}\mathbb{N}^{2i}\to\mathbb{N}$, and a strategy for player II is a function $\tau: \cup_{i\in \mathbb{N}}\mathbb{N}^{2i+1}\to \mathbb{N}$. If the players obey their strategies σ and τ , a play (n_0, n_1, n_2, \ldots) , denoted $\sigma \otimes \tau$, is uniquely determined as follows:

I
$$
n_0 = \sigma(\varnothing)
$$
 $n_2 = \sigma(n_0, n_1)$ $n_4 = \sigma(n_0, n_1, n_2, n_3)$...
\nII $n_1 = \tau(n_0)$ $n_3 = \tau(n_0, n_1, n_2)$ $n_5 = \tau(n_0, n_1, n_2, n_3, n_4)$...

Then, σ is called a winning strategy for player I if for any τ , $\sigma \otimes \tau$ belongs to G, that is, player I can win the game with σ whatever II plays. A winning strategy for player II is defined similarly. When one of the players has a winning strategy, the game G is said to be determined, or determinate.

K. Tanaka

[Determinacy of](#page-2-0) Infinite Games

Forcing and [Harrington's](#page-11-0)

Fact 1: The determinacy of Σ_1^0 games is equivalent to the determinacy of Π_1^0 games. ∵ By thinking that the first move of player I has no effect to the rest of game, the game may be considered to start with player II, which makes a \sum_{1}^{0} game a $\prod_{\nu=1}^{0}$ game, and vice versa.

Lemma 5.5 ATR₀ proves \sum_{1}^{0} -Det.

Proof If there exists a well-order \prec along which we can define a set W of sure winning positions such that $\emptyset \in \mathcal{W}$. Then, player I can win by keeping in W and eventually reaching W_0 .

If such a well-order ≺ never exists, there must exist a non-well-founded linear order ≺ and a \prec -ordered set W of sure winning positions such that $\varnothing \notin W$. Such a set W is called a **pseudo-hierarchy**. Then, player II can win by keeping out of W , which becomes player II's winning strategy. Thus, \sum_{1}^{0} games are determined in ATR $_0$.

Fact 2: We show that $\sum_{i=1}^{0}$ Det implies ACA₀. For any $\sum_{i=1}^{0}$ formula $\exists x \theta(n, x)$, consider the following game. Player I chooses n and player II answers Yes with a witness x , or No. If II answers No, then I must select a witness x . Then, player II wins if he answers Yes and $\theta(n,x)$ holds, or No and $\neg \theta(n,x)$. Since player I can not win both the cases, player II has a winning strategy τ . Hence in RCA₀, $\{n : \exists x \theta(n,x)\} = \{n : \tau(n) = (\text{Yes}, x)\}\$ exists.

K. Tanaka

[Determinacy of](#page-2-0) Infinite Games

Forcing and [Harrington's](#page-11-0)

Theorem 5.6

In RCA $_0$, \triangle^{0}_{1} -Det implies ATR $_0$, and thus \triangle^{0}_{1} -Det, Σ^{0}_{1} -Det and ATR $_0$ are equivalent.

Proof We may work within ACA₀. A well-order \prec , an initial set $(H)_0 = A$ and Π^0_1 formula $\varphi(n, X) \equiv \forall x \theta(n, X \mid x)$ are given. Two players engage in a debate on the hierarchy ${H_a}$ claimed to exist by ATR₀. Player II wins the game by making correct assertions thoroughly. Since player II's winning strategy accurately describes the hierarchy ${H_a}$, the strategy allows ${H_a}$ to be constructed within RCA₀.

Our game proceeds as follows: First, player I chooses (b, y) intending to pose a question of whether $y \in (H)_b$ or not. Player II answers with Yes ("1") or No ("0").

The debate progresses by selecting lower elements a for (H) _a according to the well-ordering ≺, and so it always terminates in a finite number of steps. Hence, the winning set can be written as a Δ^0_1 formula.

Moreover, we can see that player I does not have a winning strategy, since it is impossible for player I to win the debate whether player II answers Yes or No. Thus, by ∆⁰-Det, player II has a winning strategy τ , and $H = \{(b, y) : \tau(b, y) = 1 \,(\text{``yes''})\}$ becomes the desired set. \square

K. Tanaka

[Determinacy of](#page-2-0) Infinite Games

Forcing and [Harrington's](#page-11-0) Fact 3: We show $\Pi^1_1\text{-}\mathsf{CA}_0$ implies ATR_0 . The axiom of arithmetical transfinite recursion can be written as a Σ^1_1 formula: \prec is well-ordered $\to \exists H\; \theta_\prec(H).$ So, this can be shown by Σ^1_1 transfinite induction over ACA $_0$, hence also by $\Pi^1_1\text{-}\mathsf{CA}_0.$

Theorem 5.7

The determinacy of $\sum_{1}^{0} \wedge \prod_{2}^{0}$ games and Π^{1}_{1} -CA $_{0}$ are equivalent over RCA $_{0}.$

Proof First, we demonstrate the determinacy of $\sum_{1}^{0} \wedge \prod_{2}^{0}$ games within Π_1^1 -CA₀. Consider a game $A(f) \equiv \psi_1(f) \wedge \psi_2(f)$, where ψ_1 is $\psi_1(f) \equiv \exists x \theta_1(f \upharpoonright x)$ and $\psi_2 \equiv \forall x \theta_2(f \upharpoonright x)$. Then the following set W is Σ^1_1 .

 $W = \{s \in \mathbb{N}^{<\mathbb{N}} \mid \theta_1(s) \text{ and } \mathsf{I} \text{ has a winning strategy for } \psi_2 \text{ at } s.\}$

Here, "I has a winning strategy for ψ_2 at s" can be restated as "there exists a strategy τ at s such that all plays f following τ satisfy $\psi_2(f)$ ". Moreover, "all plays f" can be translated as "all finite plays $f \restriction x$ ". Hence, according to $\Pi^1_1\textsf{-CA}_0$, W exists.

Then consider the Σ^0_1 (in $W)$ game $W^*=\{f\in{\Bbb N}^{\Bbb N}\mid \exists x(f\restriction x\in W)\}.$ If player I has a winning strategy for W^* , then by following it, player I will eventually enter W , and from the position s, using a winning strategy for ψ_2 , finally $\psi_1(f) \wedge \psi_2(f)$ will hold.

K. Tanaka

[Determinacy of](#page-2-0) Infinite Games

Forcing and [Harrington's](#page-11-0) Theorem

On the other hand, suppose player I has no winning strategy for W^* . Then player II can make a play out of W throughout the game. So $\theta_1(s)$ never holds, i.e., $\neg \psi_1$, or player I does not have a winning strategy for ψ_2 , i.e., by $\sum_{i=1}^{0}$ -Det, player II has a winning strategy, and so $\neg \psi_1$ will hold. That is, we have $\neg \psi_1 \vee \neg \psi_2$. Thus, $A(f)$ is determined.

Conversely, from the determinacy of $\sum_{1}^{0} \wedge \prod_{2}^{0}$ games, we prove Π_1^1 -CA₀. First, let $\varphi(n)$ be $\forall f \exists x \theta(n, f \restriction x)$, where θ is Σ^0_0 . Consider the following game G :

First, player I chooses n . Then, player II answers Yes or No. If player II answers Yes, she generates an (infinite) sequence f until player I stops it. If player II answers No, player I generates f and player II stops. If at the stopping point (step x) $\theta(n, f \mid x)$ holds, then the player generating f wins.

This game is in $\sum_{1}^{0} \wedge \prod_{2}^{0}$, and it is not possible for player I to have a winning strategy. Therefore, player II must have a winning strategy τ . Consequently, the set defined by $\varphi(n)$ will be $\{n : \tau(n) = \text{Yes}\}\$, and this exists in RCA₀.

 \Box

K. Tanaka

[Determinacy of](#page-2-0) Infinite Games

Forcing and [Harrington's](#page-11-0) By generalizing Theorem [5.7,](#page-5-0) we can also show that the determinacy of games defined by Boolean combinations of \sum_{1}^{0} sets can be obtained through iterations of $\Pi^1_1\textsf{-CA}_0$.

For example, consider the determinacy of a game $A(f) \equiv B(f) \vee \psi(f)$, where B is $\Sigma^0_1\wedge \Pi^0_1$ and $\psi\equiv\forall x\theta (f\restriction x).$ As in the proof of the above theorem, the set W of player l's sure winning positions for $B(f)$ can be written as a Σ^1_1 formula, and hence it exists in $\Pi^1_1\textsf{-CA}_0$. Next, define the following Σ^1_1 (in $W)$ set

 $V = \{s \in \mathbb{N}^{\leq \mathbb{N}} \mid \neg \theta(s) \text{ and } \mathsf{II} \text{ has a winning strategy for } \neg W^* \text{ at } s.\}$

If player II has a winning strategy for $V^* = \{f \in \mathbb{N}^\mathbb{N} \mid \exists x (f \restriction x \in V)\}$, then by following it, player II will eventually enter V , and from that position s , using a winning strategy for $\neg W^*$, finally $\neg \psi(f) \land \neg B(f) \equiv \neg A(f)$ will hold.

If player I has a winning strategy for $\neg V^*$, then $\neg \theta(s)$ never holds, or I has a winning strategy for W. So $\psi(f) \vee B(f) \equiv A(f)$ holds. As we will see in the following slides, \triangle^0_2 sets are expressed as transfinite combinations of

 Σ^0_1 sets, and so Δ^0_2 -Det can be deduced from transfinite iterations of Π^1_1 -CA₀, i.e., Π^1_1 -TR₀

For this purpose, I introduced the effective version of the Hausdorff-Kuratowski theorem on ambiguous Borel sets in my dissertation in 1986.

K. Tanaka

[Determinacy of](#page-2-0) Infinite Games

Forcing and [Harrington's](#page-11-0)

Now, we define the effective difference hierarchy over Π^0_n formulas. For a well-order \prec on N, define the well-order \prec^* on $\mathbb{N} \times \{0, 1\}$ as follows:

$$
(x,i)\prec^*(y,j)\quad\text{iff}\ \ x\prec y\lor(x=y\land i
$$

A formula $\varphi(n,i,f)$ is said to **decreasing** along \prec^* if it satisfies:

 $\forall f \in \mathbb{N}^{\mathbb{N}} \forall n \forall i \forall m \forall j \ (((m, j) \prec^* (n, i) \land \varphi(n, i, f)) \rightarrow \varphi(m, j, f)).$

Then, the difference hierarchy \mathcal{D}_{n+1}^0 is defined as follows.

Definition 5.8 (Effective Difference Hierarchy)

For $n\geq 1$, $A\subseteq{\mathbb{N}}^{\mathbb{N}}$ belongs to \mathcal{D}_{n+1}^0 iff there exists a Π_n^0 formula $\varphi(x,i,f)$ decreasing along a well-order \prec^* such that

$$
A(f) \Leftrightarrow \exists x (\neg \varphi(x, 1, f) \land \varphi(x, 0, f)).
$$

For effective hierarchies, a well-order \prec may be assumed to be recursive. But for instance, when you consider $\frac{\Delta_{0}^{0}}{\sim}$ -Det, \prec must be recursive in existing parameters.

K. Tanaka

[Determinacy of](#page-2-0) Infinite Games

Forcing and [Harrington's](#page-11-0) Theorem

Theorem 5.9 (Effective Difference Hierarchy Theorem)

In ACA₀, $\mathcal{D}_n^0 = \Delta_n^0$ $(n \geq 2)$.

Theorem 5.10 \triangle^0_2 -Det is equivalent to Π^1_1 -TR₀ in RCA₀.

For the details and proof of the above definition and theorems, see: K.Tanaka, Weak axioms of determinacy and subsystems of analysis I: Δ^0_2 games, Zeitschr. f. math. Logik und Grundlaten d. Math., 36, 481-491,1990.

K. Tanaka

[Determinacy of](#page-2-0) Infinite Games

Forcing and [Harrington's](#page-11-0) Theorem

Logic and Foundations II

- Part 5. Models of first-order arithmetic (continued) (5 lectures)
- Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)

✒ ✑

- Part 7. Real analysis and reverse mathematics (8.5 lectures)
- Part 8. Second order arithmetic and non-standard methods (6.5 lectures)

✒ ✑ Part 8. Schedule

- May 21, (1) Introduction to forcing
- May 23, (2) Harrington's conservation result on WKL_0
- May 28, (3) H. Fridman's conservation result on WKL_0
- May 30, (4)
- June 04, (5)
- June 06, (6)
- June 11, (7)

K. Tanaka

[Determinacy of](#page-2-0) Infinite Games

Forcing and [Harrington's](#page-11-0) Theorem

§8.1. Forcing and Harrington's Theorem

In this section, we introduce Harrington's theorem that $"\mathsf{WKL}_0$ is a Π^1_1 conservative extension of RCA_0 ." The forcing argument of adding infinite paths of an infinite tree as generic paths to a ground model was invented by Jockusch and Soare $(\Pi^0_1$ classes and degrees of theories, Trans. of the A. M. S. 173 (1972), pp.35–56). Subsequently, Harrington cleverly applied it to non- ω models in second-order arithmetic.

The basic idea of forcing is to generate something that does not exist in the world without causing confusion. First, a set of conditions $\mathbb P$ for what to generate is given, and a partial order is defined on $\mathbb P$. Ways to interpret these conditions varies depending on applications, and we first proceed without giving particular meanings.

K. Tanaka

[Determinacy of](#page-2-0) Infinite Games

Forcing and [Harrington's](#page-11-0) Theorem

Fix an arbitrary partially ordered set $(\mathbb{P}, \langle \rangle)$, and let p, q, r, \dots denote elements of \mathbb{P} . A set $G \subseteq \mathbb{P}$ is called an **open set**, if it satisfies the following condition

 $\forall p, q \ (q < p \land p \in G \rightarrow q \in G).$

Thus, $(\mathbb{P}, <)$ becomes a topological space. Now, let

 $[p] = \{q \in \mathbb{P} \mid q \leq p\}.$

Any open set G coincides with $\bigcup_{p\in G}[p]$, and so $\{[p]\mid p\in\mathbb{P}\}$ forms a basis for the topology. Any set $D \subseteq \mathbb{P}$ is called a **dense** set, if it has a non-empty intersection with every non-empty open set. The condition for D to be dense is equivalent to

 $\forall p \in \mathbb{P}$ $[p] \cap D \neq \emptyset$, in other words, $\forall p \in \mathbb{P}$ $\exists d \in D$ $d \leq p$.

Definition 1.1

A set $F \subseteq \mathbb{P}$ is called a **filter**, if it satisfies the following conditions: 1) $p \in F \wedge p < q \rightarrow q \in F$, 2) $\forall p, q \in F$ $[p] \cap [q] \cap F \neq \emptyset$.

K. Tanaka

[Determinacy of](#page-2-0) Infinite Games

Forcing and [Harrington's](#page-11-0) Theorem

Definition 1.2

Given a family of sets D, a filter G is called a \mathcal{D} -generic filter if it intersects every dense set $D \subseteq \mathbb{P}$ belonging to \mathcal{D} .

Lemma 1.3

If D contains at most countably many dense subsets of P, then for any $p \in \mathbb{P}$, there exists a D -generic filter G that contains p .

Proof Enumerate the dense subsets of $\mathbb P$ contained in $\mathcal D$ as $D_0, D_1, \cdots, D_i, \cdots (i \in \omega)$. For a given $p \in \mathbb{P}$, construct a decreasing sequence $p_0 > p_1 > \cdots$ from $\mathbb P$ as follows: $p_0 = p$, and $p_n \in [p_{n-1}] \cap D_{n-1}$ for each $n > 0$. Then, we set $G = \{q \mid \exists i \ p_i \leq q\}$. Thus, it is obvious that $p \in G$ and G is a D-generic filter.

K. Tanaka

[Determinacy of](#page-2-0) Infinite Games

Forcing and [Harrington's](#page-11-0) Theorem

Now, we will introduce the forcing conditions used in Harrington's proof. Let $\mathfrak{M} = (M, S)$ be a countable model of RCA₀. Here, M is the first-order part (the domain corresponding to the natural numbers), and S is the second-order part consisting of subsets of M, that is, $S \subseteq \mathcal{P}(M)$. Then, set

 $\mathbb{P} = \{T \in S \mid \mathfrak{M} \models \text{``}T(\subseteq \text{Seq}_2) \text{ is an infinite binary tree''}\},\$

and define a partial order on $\mathbb P$ by

 $T_1 \leq T_2 \Leftrightarrow T_1 \subseteq T_2$.

For each $T \in \mathbb{P}$, we want to generate an infinite path and put it into S. But if we bring in an arbitrary path of T from outside, it might break the condition of $\mathcal{P}(M)$ such as induction axiom. Instead, we approximate an infinite path by $T' \leq T$, and for this purpose, the concept of density is important, namely

 $D \subseteq \mathbb{P}$ is dense $\Leftrightarrow \forall T \in \mathbb{P} \exists T' \in D \ T' \leq T$.

K. Tanaka

[Determinacy of](#page-2-0) Infinite Games

Forcing and [Harrington's](#page-11-0) Theorem

 $E \subseteq \mathbb{P}$ is said to be **definable in** \mathfrak{M} if there exists a formula $\varphi(X)$ (with parameters from $M \cup S$) such that $E = \{T \in \mathbb{P} \mid \mathfrak{M} \models \varphi(T)\}.$ The totality of such sets is denoted by Def(\mathfrak{M}). Since we only consider a countable model $\mathfrak{M} = (M, S)$ in a countable language, Def(\mathfrak{M}) is a countable set. By Lemma [1.3,](#page-13-0) any $T \in \mathbb{P}$ is contained in some $Def(\mathfrak{M})$ -generic filter. Such a filter is simply referred to as an \mathfrak{M} -generic filter.

Lemma 1.4

If $F \subseteq \mathbb{P}$ is an \mathfrak{M} -generic filter, then there exists a unique infinite path $G = \cap F = \cap_{T \in F} T$ common to all $T \in F$. That is, F is contained in the principal filter generated by G.

Proof For each $k \in M$, let $E_k = \{T \in \mathbb{P} \mid \exists ! s \in \{0,1\}^k \ s \in T\}$ be dense and definable in $\mathfrak M.$ If F is an $\mathfrak M$ -generic filter, then for each k , there exists some $s_k\in\{0,1\}^k$ such that there is $T_k \in F$ with $T_k \cap \{0,1\}^k = \{s_k\}.$ Moreover, if $k < k'$, then s_k is an initial segment of $s_{k'}$, and $s_{k'}\in T_k.$ If not, $[T_k]\cap [T_{k'}]=\emptyset^1$, which would contradict the filter condition of $F.$ Thus, let $G = \bigcup_{k \in M} s_k$; then $G = \bigcap_k T_k$ as well. Finally, to show $G = \cap F$, if $G \nsubseteq T \in F$, then there exists some k such that $s_k \notin T$, and $[T] \cap [T_k] = \emptyset$, which contradicts the filter condition of F .

 1 Here, $[T]$ denotes $\{T'\in \mathbb{P}~|~T'\subset T\}.$ In the latter half of part 8, the same notation $[T]$ represents the set of infinite paths of T . Since both are conventional, we would use both as they are.

K. Tanaka

[Determinacy of](#page-2-0) Infinite Games

Forcing and [Harrington's](#page-11-0) Theorem

Definition 1.5

 $G(\subseteq M)$ is called an \mathfrak{M} -generic path, if for every dense set $D \in \mathrm{Def}(\mathfrak{M})$, there exists a tree $T \in D$ such that G is an infinite path through T.

Lemma 1.6

Every $T \in \mathbb{P}$ has an \mathfrak{M} -generic path G .

Proof By Lemma [1.3,](#page-13-0) every T is contained in some \mathfrak{M} -generic filter F. Furthermore, by Lemma [1.4,](#page-15-0) there is a common infinite path G in the trees of F . It is clear from the definition that this G is an \mathfrak{M} -generic path. \Box

From now on, an \mathfrak{M} -generic path will simply be referred to as a generic path.

Lemma 1.7

If G is a generic path, then $(M, S \cup \{G\}) \models \Sigma^0_1$ -induction.

Proof Let $\varphi(i,X)$ be any Σ^0_1 formula, and choose any $b\in M$, and we will show that $A=\{a\le_M b\mid \varphi(a,G)\}\in S$ $^2.$ If $A\in S,$ induction on $\varphi(n,G)$ can be shown as follows.

²See Lemma 1.8 of part 7 for (bounded Σ^0_1 -CA).

K. Tanaka

[Determinacy of](#page-2-0) Infinite Games

Forcing and [Harrington's](#page-11-0) Theorem

Suppose $A \in S$. Then, $B = \{a \mid a \in A \lor a >_M b\} \in S$ since $\mathfrak{M} \models (\Delta_1^0 \text{-CA})$. Now, assume $\varphi(0, G)$ and $\forall n(\varphi(n, G) \rightarrow \varphi(n+1, G))$. Then, we have $0 \in B$ and $\forall m (m \in B \ {\rightarrow}\ m+1 \in B)$. Since $\mathfrak{M} \models \Sigma^0_1$ -induction, by induction on B , we have $B = M$. Therefore, $b \in A$, that is, $\varphi(b, G)$. Since $b \in M$ is arbitrary, we get $\forall n \varphi(n, G)$.

Now we show $A\in S$. Let $\varphi(i,X)\equiv \exists j\theta(i,X\lceil j)$ (where $\theta\in\Sigma^0_0)^3$, and set

$$
D_b = \{ T \in \mathbb{P} \mid \mathfrak{M} \models \forall a \le b \ (1) \ \forall t \in T \neg \theta(a, t) \vee
$$

$$
(2) \ \exists k \forall t \in T \cap \{0, 1\}^k \exists s \subseteq t\theta(a, s) \}.
$$

Of course, D_b is definable in $\mathfrak M$. Here, note that if $T\in D_b$ and $T'\subseteq T$, then $T'\in D_b.$ And as shown below, D_b is dense, so there exists a tree T_0 in D_b that has G as an infinite path. Fix such a $T_0.$ For simplicity, we write $(1)_{T_0}$ for above condition (1) with $T=T_0,$ and $(2)_{T_0}$ for condition (2) with $T=T_0.$

 $3X \restriction j$ represents the code of the initial segment $(f(0), \dots, f(j-1))$ of the characteristic function f of $X.$ The truth value of the Σ^0_0 formula $\theta(X)$ depends only on a finite part of $X,$ so for sufficiently large $j,$ X can be replaced by $X \restriction j$. See [Simpson, Theorem II.2.7] for details.

K. Tanaka

[Determinacy of](#page-2-0) Infinite Games

Forcing and [Harrington's](#page-11-0) Theorem

Then, for each $a \leq_M b$,

$$
\mathfrak{M} \models (1)_{T_0} \Rightarrow (M, S \cup \{G\}) \models \neg \varphi(a, G),
$$

$$
\mathfrak{M} \models (2)_{T_0} \Rightarrow (M, S \cup \{G\}) \models \varphi(a, G).
$$

Since $\mathfrak{M} \models (1)_{T_0} \vee (2)_{T_0}$, we have

$$
\mathfrak{M} \models (2)_{T_0} \Leftrightarrow (M, S \cup \{G\}) \models \varphi(a, G)
$$

Since (2) is a Σ_1^0 formula, and $\mathfrak{M} \models$ (bounded Σ_1^0 -CA) (Lemma 1.8, Chapter 7), $A = \{a \leq_M b \mid \mathfrak{M} \models (2)_{T_0}\}\in S.$

Finally, we show that D_b is dense. Choose any $\tilde{T}\in\mathbb{P}.$ For each $\sigma\in\{0,1\}^{\leq b}$, define a tree T_{σ} inductively as follows:

$$
T_{\varnothing} = \tilde{T},
$$

\n
$$
T_{\sigma \cap 0} = \{ t \in T_{\sigma} \mid \forall s \subseteq t \neg \theta(a, s) \}, \text{ where } a = \text{leng}(\sigma),
$$

\n
$$
T_{\sigma \cap 1} = T_{\sigma}.
$$

Here, \varnothing is the empty sequence, and $\sigma^{\cap}i$ denotes the sequence σ followed by $i(=0,1)$.

K. Tanaka

[Determinacy of](#page-2-0) Infinite Games

Forcing and [Harrington's](#page-11-0) Theorem

Next, let $S_b=\{\sigma\in\{0,1\}^{b+1}\mid T_{\sigma}$ is an infinite tree}. Then, since " T_{σ} is an infinite tree" is expressed by a Π^0_1 formula $\forall n \exists \tau \in \{0,1\}^n$ $\tau \in T_{\sigma}$, by (bounded Σ^0_1 -CA), we have $S_b \in S$. Also, since $\overline{<1,1,\cdots,1>} \in S_b$, we get $S_b \neq \varnothing$. $b+1$ Thus, let σ_b be the lexicographically first element in S_b . Take any $a \leq_M b$. If $\sigma_b(a) = 0$, then $(\sigma_b[a)^{\cap}0 \subset \sigma_b$, so

$$
T_{\sigma_b} \subseteq T_{(\sigma_b \lceil a) \cap 0} \subseteq \{t \mid \neg \theta(a, t)\},\
$$

from which we have $(1)_{T_{\sigma_b}}.$

If $\sigma_b(a)=1$, then $T_{(\sigma_b\lceil a)\cap 0}$ is finite, so $(2)_{T_{\sigma_b}\lceil a}$ and hence $(2)_{T_{\sigma_b}}$ also holds.

From all the above, $T_{\sigma_b} \in D_b$, and it has been shown that D_b is dense.

K. Tanaka

[Determinacy of](#page-2-0) Infinite Games

Forcing and [Harrington's](#page-11-0) Theorem

Thank you for your attention!