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Logic and Foundations II� �
• Part 5. Models of first-order arithmetic (continued) (5 lectures)

• Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)

• Part 7. Real analysis and reverse mathematics (9 lectures)

• Part 8. Second order arithmetic and non-standard methods (6 lectures)� �
Part 7. Schedule� �
• Apr. 16, (1) Introduction and the base system RCA0

• Apr. 18, (2) Defining real numbers in RCA0

• Apr. 23, (3) Completeness of the reals and ACA0

• Apr. 25, (4) Continuous functions and WKL0
• Apr. 30, (5) Continuous functions and WKL0, II

• May 9, (6) König’s lemma and Ramsey’s theorem

• May 14, (7) Determinacy of infinite games I

• May 16, (8) Determinacy of infinite games II

• May 21, (9) Determinacy of infinite games III + Introduction to Part 8� �
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Gale-Stewart games
In a Gale-Stewart game G, two players I and II alternately choose natural numbers,
constructing an infinite sequence (called a play)

I n0 n2 n4 . . .
II n1 n3 n5 . . .

If the resulting sequence (n0, n1, n2, . . .) is in a predetermined winning set G ⊆ NN, then
player I wins; otherwise, player II wins.

A strategy for player I is a function σ : ∪i∈NN2i → N, and a strategy for player II is a
function τ : ∪i∈NN2i+1 → N. If the players obey their strategies σ and τ , a play
(n0, n1, n2, . . .), denoted σ ⊗ τ , is uniquely determined as follows:

I n0 = σ(∅) n2 = σ(n0, n1) n4 = σ(n0, n1, n2, n3) . . .
II n1 = τ(n0) n3 = τ(n0, n1, n2) n5 = τ(n0, n1, n2, n3, n4) . . .

Then, σ is called a winning strategy for player I if for any τ , σ ⊗ τ belongs to G, that is,
player I can win the game with σ whatever II plays. A winning strategy for player II is
defined similarly. When one of the players has a winning strategy, the game G is said to be
determined, or determinate.
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Fact 1: The determinacy of Σ∼
0
1 games is equivalent to the determinacy of Π∼

0
1 games. ∵

By thinking that the first move of player I has no effect to the rest of game, the game may
be considered to start with player II, which makes a Σ∼

0
1 game a Π∼

0
1 game, and vice versa.

Lemma 5.5

ATR0 proves Σ∼
0
1-Det.

Proof If there exists a well-order ≺ along which we can define a set W of sure winning
positions such that ∅ ∈ W. Then, player I can win by keeping in W and eventually
reaching W0.

If such a well-order ≺ never exists, there must exist a non-well-founded linear order ≺ and
a ≺-ordered set W of sure winning positions such that ∅ ̸∈ W. Such a set W is called a
pseudo-hierarchy. Then, player II can win by keeping out of W, which becomes player II’s
winning strategy. Thus, Σ∼

0
1 games are determined in ATR0. 2

Fact 2: We show that Σ∼
0
1-Det implies ACA0. For any Σ0

1 formula ∃xθ(n, x), consider the
following game. Player I chooses n and player II answers Yes with a witness x, or No. If II
answers No, then I must select a witness x. Then, player II wins if he answers Yes and
θ(n, x) holds, or No and ¬θ(n, x). Since player I can not win both the cases, player II has a
winning strategy τ . Hence in RCA0, {n : ∃xθ(n, x)} = {n : τ(n) = (Yes, x)} exists.
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Theorem 5.6

In RCA0, ∆∼
0
1-Det implies ATR0, and thus ∆∼

0
1-Det, Σ∼

0
1-Det and ATR0 are equivalent.

Proof We may work within ACA0. A well-order ≺, an initial set (H)0 = A and Π0
1

formula φ(n,X) ≡ ∀x θ(n,X ↾ x) are given. Two players engage in a debate on the
hierarchy {Ha} claimed to exist by ATR0. Player II wins the game by making correct
assertions thoroughly. Since player II’s winning strategy accurately describes the hierarchy
{Ha}, the strategy allows {Ha} to be constructed within RCA0.

Our game proceeds as follows: First, player I chooses (b, y) intending to pose a question of
whether y ∈ (H)b or not. Player II answers with Yes (”1”) or No (”0”).

The debate progresses by selecting lower elements a for (H)a according to the
well-ordering ≺, and so it always terminates in a finite number of steps. Hence, the
winning set can be written as a ∆0

1 formula.

Moreover, we can see that player I does not have a winning strategy, since it is impossible
for player I to win the debate whether player II answers Yes or No. Thus, by ∆∼

0
1-Det, player

II has a winning strategy τ , and H = {(b, y) : τ(b, y) = 1 (”yes”)} becomes the desired
set. 2
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Fact 3: We show Π1
1-CA0 implies ATR0. The axiom of arithmetical transfinite recursion

can be written as a Σ1
1 formula: ≺ is well-ordered → ∃H θ≺(H). So, this can be shown by

Σ1
1 transfinite induction over ACA0, hence also by Π1

1-CA0.

Theorem 5.7

The determinacy of Σ∼
0
1 ∧Π∼

0
1 games and Π1

1-CA0 are equivalent over RCA0.

Proof First, we demonstrate the determinacy of Σ∼
0
1 ∧Π∼

0
1 games within Π1

1-CA0. Consider

a game A(f) ≡ ψ1(f) ∧ ψ2(f), where ψ1 is ψ1(f) ≡ ∃xθ1(f ↾ x) and ψ2 ≡ ∀xθ2(f ↾ x).
Then the following set W is Σ1

1.

W = {s ∈ N<N | θ1(s) and I has a winning strategy for ψ2 at s.}

Here, ”I has a winning strategy for ψ2 at s” can be restated as ”there exists a strategy τ at
s such that all plays f following τ satisfy ψ2(f)”. Moreover, ”all plays f” can be
translated as ”all finite plays f ↾ x”. Hence, according to Π1

1-CA0, W exists.

Then consider the Σ0
1 (in W ) game W ∗ = {f ∈ NN | ∃x(f ↾ x ∈W )}. If player I has a

winning strategy for W ∗, then by following it, player I will eventually enter W , and from
the position s, using a winning strategy for ψ2, finally ψ1(f) ∧ ψ2(f) will hold.
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On the other hand, suppose player I has no winning strategy for W ∗. Then player II can
make a play out of W throughout the game. So θ1(s) never holds, i.e., ¬ψ1, or player I
does not have a winning strategy for ψ2, i.e., by Σ∼

0
1-Det, player II has a winning strategy,

and so ¬ψ1 will hold. That is, we have ¬ψ1 ∨ ¬ψ2. Thus, A(f) is determined.

Conversely, from the determinacy of Σ∼
0
1 ∧Π∼

0
1 games, we prove Π1

1-CA0. First, let φ(n) be

∀f∃xθ(n, f ↾ x), where θ is Σ0
0. Consider the following game G:

First, player I chooses n. Then, player II answers Yes or No. If player II answers Yes, she
generates an (infinite) sequence f until player I stops it. If player II answers No, player I
generates f and player II stops. If at the stopping point (step x) θ(n, f ↾ x) holds, then the
player generating f wins.

This game is in Σ∼
0
1 ∧Π∼

0
1, and it is not possible for player I to have a winning strategy.

Therefore, player II must have a winning strategy τ . Consequently, the set defined by φ(n)
will be {n : τ(n) = Yes}, and this exists in RCA0.

2
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By generalizing Theorem 5.7, we can also show that the determinacy of games defined by
Boolean combinations of Σ∼

0
1 sets can be obtained through iterations of Π1

1-CA0.

For example, consider the determinacy of a game A(f) ≡ B(f) ∨ ψ(f), where B is
Σ0

1 ∧Π0
1 and ψ ≡ ∀xθ(f ↾ x). As in the proof of the above theorem, the set W of player I’s

sure winning positions for B(f) can be written as a Σ1
1 formula, and hence it exists in

Π1
1-CA0. Next, define the following Σ1

1 (in W ) set

V = {s ∈ N<N | ¬θ(s) and II has a winning strategy for ¬W ∗ at s.}

If player II has a winning strategy for V ∗ = {f ∈ NN | ∃x(f ↾ x ∈ V )}, then by following it,
player II will eventually enter V , and from that position s, using a winning strategy for
¬W ∗, finally ¬ψ(f) ∧ ¬B(f) ≡ ¬A(f) will hold.

If player I has a winning strategy for ¬V ∗, then ¬θ(s) never holds, or I has a winning
strategy for W . So ψ(f) ∨B(f) ≡ A(f) holds.
As we will see in the following slides, ∆∼

0
2 sets are expressed as transfinite combinations of

Σ∼
0
1 sets, and so ∆∼

0
2-Det can be deduced from transfinite iterations of Π1

1-CA0, i.e., Π
1
1 -TR0

For this purpose, I introduced the effective version of the Hausdorff-Kuratowski theorem on
ambiguous Borel sets in my dissertation in 1986.
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Now, we define the effective difference hierarchy over Π0
n formulas. For a well-order ≺ on

N, define the well-order ≺∗ on N× {0, 1} as follows:

(x, i) ≺∗ (y, j) iff x ≺ y ∨ (x = y ∧ i < j).

A formula φ(n, i, f) is said to decreasing along ≺∗ if it satisfies:

∀f ∈ NN ∀n∀i∀m∀j (((m, j) ≺∗ (n, i) ∧ φ(n, i, f)) → φ(m, j, f)).

Then, the difference hierarchy D0
n+1 is defined as follows.

Definition 5.8 (Effective Difference Hierarchy)

For n ≥ 1, A ⊆ NN belongs to D0
n+1 iff there exists a Π0

n formula φ(x, i, f) decreasing
along a well-order ≺∗ such that

A(f) ⇔ ∃x(¬φ(x, 1, f) ∧ φ(x, 0, f)).

For effective hierarchies, a well-order ≺ may be assumed to be recursive. But for instance,
when you consider ∆∼

0
2-Det, ≺ must be recursive in existing parameters.
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Theorem 5.9 (Effective Difference Hierarchy Theorem)

In ACA0, D0
n = ∆0

n (n ≥ 2).

Theorem 5.10

∆∼
0
2-Det is equivalent to Π1

1 -TR0 in RCA0.

For the details and proof of the above definition and theorems, see: K.Tanaka, Weak
axioms of determinacy and subsystems of analysis I: ∆0

2 games, Zeitschr. f. math. Logik
und Grundlaten d. Math., 36, 481-491,1990.
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Logic and Foundations II� �
• Part 5. Models of first-order arithmetic (continued) (5 lectures)

• Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)

• Part 7. Real analysis and reverse mathematics (8.5 lectures)

• Part 8. Second order arithmetic and non-standard methods (6.5 lectures)� �
Part 8. Schedule� �
• May 21, (1) Introduction to forcing

• May 23, (2) Harrington’s conservation result on WKL0
• May 28, (3) H.Fridman’s conservation result on WKL0
• May 30, (4)

• June 04, (5)

• June 06, (6)

• June 11, (7)� �
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§8.1. Forcing and Harrington’s Theorem

In this section, we introduce Harrington’s theorem that ”WKL0 is a Π1
1 conservative

extension of RCA0.” The forcing argument of adding infinite paths of an infinite tree as
generic paths to a ground model was invented by Jockusch and Soare (Π0

1 classes and
degrees of theories, Trans. of the A. M. S. 173 (1972), pp.35–56). Subsequently,
Harrington cleverly applied it to non-ω models in second-order arithmetic.

The basic idea of forcing is to generate something that does not exist in the world without
causing confusion. First, a set of conditions P for what to generate is given, and a partial
order is defined on P. Ways to interpret these conditions varies depending on applications,
and we first proceed without giving particular meanings.
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Fix an arbitrary partially ordered set (P, <), and let p, q, r, . . . denote elements of P.
A set G ⊆ P is called an open set, if it satisfies the following condition

∀p, q (q < p ∧ p ∈ G→ q ∈ G).

Thus, (P, <) becomes a topological space. Now, let

[p] = {q ∈ P | q ≤ p}.

Any open set G coincides with
⋃

p∈G[p], and so {[p] | p ∈ P} forms a basis for the topology.

Any set D ⊆ P is called a dense set, if it has a non-empty intersection with every
non-empty open set. The condition for D to be dense is equivalent to

∀p ∈ P [p] ∩D ̸= ∅, in other words, ∀p ∈ P ∃d ∈ D d ≤ p.

Definition 1.1

A set F ⊆ P is called a filter, if it satisfies the following conditions:
1) p ∈ F ∧ p < q → q ∈ F,
2) ∀p, q ∈ F [p] ∩ [q] ∩ F ̸= ∅.
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Definition 1.2

Given a family of sets D, a filter G is called a D-generic filter if it intersects every dense
set D ⊆ P belonging to D.

Lemma 1.3

If D contains at most countably many dense subsets of P, then for any p ∈ P, there exists
a D-generic filter G that contains p.

Proof Enumerate the dense subsets of P contained in D as D0, D1, · · · , Di, · · · (i ∈ ω).
For a given p ∈ P, construct a decreasing sequence p0 ≥ p1 ≥ · · · from P as follows:
p0 = p, and pn ∈ [pn−1] ∩Dn−1 for each n > 0. Then, we set G = {q | ∃i pi ≤ q}.
Thus, it is obvious that p ∈ G and G is a D-generic filter. 2
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Now, we will introduce the forcing conditions used in Harrington’s proof.
Let M = (M,S) be a countable model of RCA0. Here, M is the first-order part (the
domain corresponding to the natural numbers), and S is the second-order part consisting of
subsets of M , that is, S ⊆ P(M). Then, set

P = {T ∈ S | M |= “T (⊆ Seq 2) is an infinite binary tree”},

and define a partial order on P by

T1 ≤ T2 ⇔ T1 ⊆ T2.

For each T ∈ P, we want to generate an infinite path and put it into S. But if we bring in
an arbitrary path of T from outside, it might break the condition of P(M) such as
induction axiom. Instead, we approximate an infinite path by T ′ ≤ T , and for this purpose,
the concept of density is important, namely

D ⊆ P is dense ⇔ ∀T ∈ P ∃T ′ ∈ D T ′ ≤ T.
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E ⊆ P is said to be definable in M if there exists a formula φ(X) (with parameters from
M ∪ S) such that E = {T ∈ P | M |= φ(T )}. The totality of such sets is denoted by
Def(M). Since we only consider a countable model M = (M,S) in a countable language,
Def(M) is a countable set. By Lemma 1.3, any T ∈ P is contained in some
Def(M)-generic filter. Such a filter is simply referred to as an M-generic filter.

Lemma 1.4

If F ⊆ P is an M-generic filter, then there exists a unique infinite path G = ∩F = ∩T∈FT
common to all T ∈ F . That is, F is contained in the principal filter generated by G.

Proof For each k ∈M , let Ek = {T ∈ P | ∃!s ∈ {0, 1}k s ∈ T} be dense and definable
in M. If F is an M-generic filter, then for each k, there exists some sk ∈ {0, 1}k such that
there is Tk ∈ F with Tk ∩ {0, 1}k = {sk}. Moreover, if k < k′, then sk is an initial
segment of sk′ , and sk′ ∈ Tk. If not, [Tk] ∩ [Tk′ ] = ∅1, which would contradict the filter
condition of F . Thus, let G =

⋃
k∈M sk; then G =

⋂
k Tk as well. Finally, to show

G = ∩F , if G ̸⊆ T ∈ F , then there exists some k such that sk ̸∈ T , and [T ] ∩ [Tk] = ∅,
which contradicts the filter condition of F . 2

1Here, [T ] denotes {T ′ ∈ P | T ′ ⊂ T}. In the latter half of part 8, the same notation [T ] represents the
set of infinite paths of T . Since both are conventional, we would use both as they are.
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Definition 1.5

G(⊆M) is called an M-generic path, if for every dense set D ∈ Def(M), there exists a
tree T ∈ D such that G is an infinite path through T .

Lemma 1.6

Every T ∈ P has an M-generic path G.

Proof By Lemma 1.3, every T is contained in some M-generic filter F . Furthermore, by
Lemma 1.4, there is a common infinite path G in the trees of F . It is clear from the
definition that this G is an M-generic path. 2

From now on, an M-generic path will simply be referred to as a generic path.

Lemma 1.7

If G is a generic path, then (M,S ∪ {G}) |= Σ0
1-induction.

Proof Let φ(i,X) be any Σ0
1 formula, and choose any b ∈M , and we will show that

A = {a ≤M b | φ(a,G)} ∈ S 2. If A ∈ S, induction on φ(n,G) can be shown as follows.

2See Lemma 1.8 of part 7 for (bounded Σ0
1 -CA).
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Suppose A ∈ S. Then, B = {a | a ∈ A ∨ a >M b} ∈ S since M |= (∆0
1 -CA). Now,

assume φ(0, G) and ∀n(φ(n,G) → φ(n+ 1, G)). Then, we have 0 ∈ B and
∀m(m ∈ B → m+ 1 ∈ B). Since M |= Σ0

1-induction, by induction on B, we have
B =M . Therefore, b ∈ A, that is, φ(b,G). Since b ∈M is arbitrary, we get ∀nφ(n,G).

Now we show A ∈ S. Let φ(i,X) ≡ ∃jθ(i,X⌈j) (where θ ∈ Σ0
0)

3, and set

Db = {T ∈ P | M |= ∀a ≤ b (1) ∀t ∈ T¬θ(a, t)∨
(2) ∃k∀t ∈ T ∩ {0, 1}k∃s ⊆ tθ(a, s)}.

Of course, Db is definable in M. Here, note that if T ∈ Db and T ′ ⊆ T , then T ′ ∈ Db.
And as shown below, Db is dense, so there exists a tree T0 in Db that has G as an infinite
path. Fix such a T0. For simplicity, we write (1)T0 for above condition (1) with T = T0,
and (2)T0 for condition (2) with T = T0.

3X ↾ j represents the code of the initial segment (f(0), · · · , f(j − 1)) of the characteristic function f of
X. The truth value of the Σ0

0 formula θ(X) depends only on a finite part of X, so for sufficiently large j,
X can be replaced by X ↾ j. See [Simpson, Theorem II.2.7] for details.
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Then, for each a ≤M b,

M |= (1)T0 ⇒ (M,S ∪ {G}) |= ¬φ(a,G),

M |= (2)T0
⇒ (M,S ∪ {G}) |= φ(a,G).

Since M |= (1)T0
∨ (2)T0

, we have

M |= (2)T0
⇔ (M,S ∪ {G}) |= φ(a,G)

Since (2) is a Σ0
1 formula, and M |= (boundedΣ0

1 -CA) (Lemma 1.8, Chapter 7),
A = {a ≤M b | M |= (2)T0

} ∈ S.

Finally, we show that Db is dense. Choose any T̃ ∈ P. For each σ ∈ {0, 1}≤b, define a tree
Tσ inductively as follows:

T∅ = T̃ ,
Tσ∩0 = {t ∈ Tσ | ∀s ⊆ t ¬θ(a, s)}, where a = leng(σ),
Tσ∩1 = Tσ.

Here, ∅ is the empty sequence, and σ∩i denotes the sequence σ followed by i(= 0, 1).
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Next, let Sb = {σ ∈ {0, 1}b+1 | Tσ is an infinite tree}. Then, since ”Tσ is an infinite tree”
is expressed by a Π0

1 formula ∀n∃τ ∈ {0, 1}n τ ∈ Tσ, by (bounded Σ0
1 -CA), we have

Sb ∈ S. Also, since

b+1︷ ︸︸ ︷
< 1, 1, · · · , 1 > ∈ Sb, we get Sb ̸= ∅.

Thus, let σb be the lexicographically first element in Sb. Take any a ≤M b.

If σb(a) = 0, then (σb⌈a)∩0 ⊂ σb, so

Tσb
⊆ T(σb⌈a)∩0 ⊆ {t | ¬θ(a, t)},

from which we have (1)Tσb
.

If σb(a) = 1, then T(σb⌈a)∩0 is finite, so (2)Tσb⌈a
and hence (2)Tσb

also holds.

From all the above, Tσb
∈ Db, and it has been shown that Db is dense. 2
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Thank you for your attention!
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