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Logic and Foundations II� �
• Part 5. Models of first-order arithmetic (continued) (5 lectures)

• Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)

• Part 7. Real analysis and reverse mathematics (9 lectures)

• Part 8. Second order arithmetic and non-standard methods (6 lectures)� �
Part 7. Schedule� �
• Apr. 16, (1) Introduction and the base system RCA0

• Apr. 18, (2) Defining real numbers in RCA0

• Apr. 23, (3) Completeness of the reals and ACA0

• Apr. 25, (4) Continuous functions and WKL0
• Apr. 30, (5) Continuous functions and WKL0, II

• May 9, (6) König’s lemma and Ramsey’s theorem

• May 14, (7) Determinacy of infinite games I

• May 16, (8) Determinacy of infinite games II

• May 21, (9) Determinacy of infinite games III� �
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Recap

The system of recursive comprehension axioms (RCA0) consists of:

(1) first-order logic with axioms of equality for numbers plus basic arithmetic Q<.

(2) ∆0
1 comprehension axiom (∆0

1-CA0).

(3) Σ0
1 induction.

The system of arithmetical comprehension axioms (ACA0) is RCA0 plus (Π1
0 -CA).

In RCA0, the following are equivalent (Lemma 3.3)
(1) ACA0, (2) (Σ0

1 -CA), (3) The range of any 1-1 function f : N → N exists.

The system WKL0 is RCA0 plus weak König’s lemma: every infinite tree T ⊂ Seq2 has
an infinite path.

In RCA0, WKL0 is equivalent to (Σ0
1 -SP)(Separation Principle). (Lemma 3.6)

WKL0 is strictly between RCA0 and ACA0. (Lemma 3.7)
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§4. König’s Lemma and Ramsey’s theorem

Theorem 4.1

Over RCA0, the following are pairwise equivalent: (1) ACA0

(2) König’s Lemma: every infinite, finitely branching tree in Seq has an infinite path.

(3) An infinite tree T , such that each node s ∈ T has at most two children s∩m ∈ T
(m ∈ N), has an infinite path.

For a set X ⊆ N, we denote by [X]k the set of all sequences (m1, . . . ,mk) of k elements
from X such that m1 < . . . < mk.

Definition 4.2 (Ramsey’s Theorem)

Let k, l > 0 be natural numbers. Ramsey’s theorem RTk
l states

∀f : [N]k → {0, 1, . . . , l − 1} ∃X ⊆ N (X is infinite ∧ f is constant on [X]k).

Such an X is called a homogeneous set for f . RTk
l for any standard l ≥ 2 is equivalent to

RTk
2 in RCA0, but equivalence between RTk ≡ ∀l ∈ N(RTk

l ) and RTk
2 does not hold in

RCA0.
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RT1 is also known as the pigeonhole principle. For a standard l ≥ 1, RT1
l holds in RCA0.

Theorem 4.3 (J. Hirst)

In RCA0, RT
1 is equivalent to BΠ0

1.

Theorem 4.4

In ACA0, both RT1 and ∀k(RTk → RTk+1) are provable.

Lemma 4.5

Within RCA0, ACA0 can be derived from RT3
2.

Theorem 4.6

For any standard natural numbers k ≥ 3, l ≥ 2, RTk
l , RT

k, and ACA0 are equivalent
within RCA0.

Finally, concerning RT2 and RT2
2, it is known that both are between ACA0 and RCA0, and

are incomparable with WKL0. Within RCA0, RT
2 implies BΠ0

2, but RT
2
2 does not.
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§5. Determinacy of Infinite Games
We introduce the remaining two of the BIG FIVE: ATR0 and Π1

1 -CA0.

Definition 5.1

The system Πk
j -CA0(k = 0, 1, j ∈ ω) is obtained from RCA0 by adding the following

Πk
j Comprehension Axiom (Πk

j -CA): for any Πk
j formula φ(n),

∃X∀n(n ∈ X ⇔ φ(n)),

where φ(n) may contain set variables other than X as parameters.

Definition 5.2

The system Πk
j -TR0(k = 0, 1, j ∈ ω) is obtained from RCA0 by adding the following

Πk
j Transfinite Recursion Axiom (Πk

j -TR): for any Πk
j formula φ(n,X), for any set A

and any well-order ≺, there exists a set H satisfying the following conditions:

(1) If b is the minimal element in ≺, then (H)b = A, where (X)a = {n : (a, n) ∈ X}.
(2) If b is the successor of a with respect to ≺, then ∀n(n ∈ (H)b ⇔ φ(n, (H)a)).

(3) If b is a ≺-limit, then for all a ≺ b, ∀n(n ∈ ((H)b)a ⇔ n ∈ (H)a).
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Π0
1 -TR0 is called the system of arithmetical transfinite recursion ATR0. For any j > 0,

the strength of (Π0
j -TR) is the same as (Π0

1-TR), but it is not the case for (Π1
j -TR).

Π1
1 -CA implies ATR0. This fact will be proved indirectly by their equivalent statements.

Π1
1-CA0 is strictly stronger than ATR0. To see this, let’s observe that the axiom of arith.

transfinite recursion can be written as a Σ1
1 formula: ≺ is well-ordered → ∃Hθ≺(H).

Let (M,S) be a model of ATR0. A ∈ S can express ⟨An | n ∈M⟩ ⊂ S. Then, A is called
(a countably coded) β-model if

(M, {An}) |= φ⇔ (M,S) |= φ

for any Σ1
1 formula φ with parameters from {An}.

The existence of (a coded) β-models is ensured by Π1
1-CA0 (via the strong Σ1

1 dependent
choice axiom [Simpson, Theorem VII. 6. 9]). Since ATR0 is a Σ1

1 formula, any β-models are
models of ATR0. Hence, the consistency of ATR0 can be derived from Π1

1-CA0.
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Gale-Stewart games

The games considered here are perfect information two-player games, similar to chess or
Go. Although it’s not realistic for players to continue indefinitely in real games, Zermelo
argued in 1913 that it’s natural to treat games like chess as infinite games in theory.
Various infinite games have been conceived since then but in the 1950’s, Gale and Stewart
formulated a general infinite game where two players alternately choose natural numbers,
and the outcome is decided by the infinite sequence produced.

Definition 5.3

In the Gale-Stewart game G, two players I and II alternately choose natural numbers,
constructing an infinite sequence (called a play)

I n0 n2 n4 . . .
II n1 n3 n5 . . .

If the resulting sequence (n0, n1, n2, . . .) is in a predetermined winning set G ⊆ NN, then
player I wins; otherwise, player II wins. The winning set is also referred to as the pay-off
set.
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Gale-Stewart games

A game is often identified with its winning set G and is simply treated as set. A game or
set G is said to be determined if, given the winning set, one of the players can always win
by playing smartly. Let’s give a more precise definition of this concept.

Definition 5.4

A strategy for player I is a function σ : ∪i∈NN2i → N, and a strategy for player II is a
function τ : ∪i∈NN2i+1 → N. If the players obey their strategies σ and τ , a play
(n0, n1, n2, . . .) is uniquely determined as follows:

I n0 = σ(∅) n2 = σ(n0, n1) n4 = σ(n0, n1, n2, n3) . . .
II n1 = τ(n0) n3 = τ(n0, n1, n2) n5 = τ(n0, n1, n2, n3, n4) . . .

Here, the resulting play is denoted by σ ⊗ τ . Then, σ is called a winning strategy for
player I if for any τ , σ ⊗ τ belongs to G, that is, player I can win the game with σ
whatever II plays. A winning strategy for player II is defined similarly. When one of the
players has a winning strategy, the game G is said to be determined, determinate.
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We treat the topology of the Baire space in second-order arithmetic.
An open subset G is a union of some basic open sets [s] = {f ∈ NN|s ⊂ f} (s ∈ Seq), that
is, there exists some W ⊆ Seq such that

G =
⋃
s∈W

[s].

Equivalently,

f ∈ G⇔ ∃n(f ↾ n ∈W ), more generally ∃n θ(f ↾ n,W ↾ n)(θ ∈ Σ0
0),

where f ↾ n is the sequence (f(0), · · · , f(n− 1)) ∈ Seq.
Subsets of the Baire space defined by a Σi

j formula with parameters are called Σ∼
i
j sets.

Consequently, Σ∼
0
1 sets coincide with open sets. Similarly, Π∼

0
1 sets coincide with closed

sets, and Σ∼
0
2 sets correspond to Fσ sets, which are countable unions of closed sets. Thus,

Σ∼
0
j corresponds to the finite ranks of the Borel hierarchy.

Furthermore, Σ∼
1
1 coincides with analytic sets, which are projections of Borel sets, and Σ∼

1
j

corresponds to the projective hierarchy. Additionally, ∆∼
i
j = Σ∼

i
j ∩Π∼

i
j .
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Theorem 5.5

ATR0 proves Σ∼
0
1 determincay.

Note: the determinacy of Σ∼
0
1 games is equivalent to the determinacy of Π∼

0
1 games.

Proof For a Σ∼
0
1 game G, there exists a set of finite sequences W such that,

f ∈ G⇔ ∃x f ↾ x ∈W.

Namely, W is the set of positions at which player I has already won, or she will never lose
however they play afterwards.
Now, we set W0 = {s ∈ ∪i∈NN2i : ∃x s ↾ x ∈W}, and define W1 as follows:

t ∈W1 ⇔ ∃m∀n(t∩m∩n ∈W0).

Then, W1 is the set of positions where player I chooses a next move and can get into W0

in two steps. Next, W2 is the set of player I’s positions where she can get into W1 in two
steps. And so on.
More generally, in ATR0, given a well-order ≺, we define {Wa} as follows: Initially, for the
least element 0 of ≺, set W0 as above. Then, for any a in ≺, we define Wa as

t ∈Wa ⇔ ∃m∀n∃b ≺ a(t∩m∩n ∈Wb)).



Logic and
Foundations

K. Tanaka

König’s Lemma
and Ramsey’s
theorem

Determinacy of
Infinite Games

12

Now, suppose there exists a well-order ≺ and a corresponding {Wa} such that the empty
sequence ∅ ∈Wa0

for some a0. Then, we can show that player I has a winning strategy.

If a0 = 0, then player I has already won. If a0 ̸= 0, there exists a move m by player I such
that for any move n by player II, there exists a1 ≺ a0 with m∩n ∈Wa1

. If a1 = 0, player I
wins at m∩n. If a1 ̸= 0, there exists a move m such that for any move n, there exists
a2 ≺ a1 with the sequence falling into Wa2 .

Repeating this process, since ≺ is well-founded, it eventually reaches W0, and so player I
wins. This becomes player I’s winning strategy.

Next, suppose such a well-order ≺ does not exist. Recall that the axiom of arithmetical
transfinite recursion can be written as a Σ1

1 formula: ≺ is well-ordered → ∃H θ≺(H).
Then our assumption is expressed as: ≺ is well-ordered → ∃W (θ≺(W ) ∧ ∀a ∅ ̸∈Wa).

Then, there must exist a non-well-founded linear order ≺ s.t. ∃W (θ≺(W ) ∧ ∀a ∅ ̸∈Wa)
holds. Otherwise, for a linear order ≺, we had

≺ is well-founded ⇔ ∃W (θ≺(W ) ∧ ∀a ∅ ̸∈Wa),

which implies that well-foundedness is expressed by a Σ1
1 formula. This is a contradiction.

See the lecture slides ”logic and computation II” 06-06, p.15.
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So, there must exist a non-well-founded linear order ≺ s.t. ∃W (θ≺(W ) ∧ ∀a ∅ ̸∈Wa)
holds. Such a set W is called a pseudo-hierarchy.

Now, let a0 ≻ a1 ≻ a2 ≻ · · · be an infinite descending sequence in the non-well-founded
part of W . And recall

t ∈Wa ⇔ ∃m∀n∃b ≺ a(t∩m∩n ∈Wb)).

First, note ∅ ̸∈Wa0 . Then, by the definition of W , for any move m by player I, there exists
a move n by player II such that for all a ≺ a0, m

∩n ̸∈Wa. So take a as a1 ≺ a0. Then, for
any move m′ by player I, there exists a move n′ by player II such that m∩n∩m′∩n′ ̸∈Wa1

.
Repeating this along the infinite descending sequence, it never enters W . This becomes
player II’s winning strategy, since any resulting infinite play f ̸∈ G. Thus, the determinacy
of Σ∼

0
1 games is demonstrated in ATR0. 2

The idea of the converse proof is as follows. Two players engage in a debate on the
hierarchy {Ha} claimed to exist by the transfinite recursion axiom. Player II wins the game
by making correct assertions thoroughly. Since player II’s winning strategy accurately
describes the hierarchy {Ha}, the strategy allows {Ha} to be constructed within RCA0.
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Theorem 5.6

Σ∼
1
1 determincay is equivalent to ATR0 over RCA0.

Proof We have proved ATR0 implies Σ∼
0
1 determincy by Lemma 5.5. Before demonstrating

the converse, we note the following. As we will see later that Σ∼
1
1 determinacy implies

ACA0, we may work within ACA0. A well-order ≺ and an initial set (H)0 = A are given.
The Π0

1 formula φ(n,X) is expressed as ∀x θ(n,X ↾ x) with a Σ0
0 formula θ(n, h).

Our game proceeds as follows: First, player I chooses (b, y) intending to pose a question of
whether y ∈ (H)b or not. Player II answers with Yes (”1”) or No (”0”).

First, consider the case that b is the minimum element.

If the answer is Yes, then player II wins iff y ∈ A.
If the answer is No, then player II wins iff y ̸∈ A.

Then, the winner is decided, although the players continue to play meaninglessly.
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Next, consider the case that b is the successor of a with respect to ≺.

Player II answers ”Yes” to mean y ∈ (H)b, that is, φ(y, (H)a), i.e., ∀x θ(y, (H)a ↾ x)).
So, if for any finite h ⊆ (H)a player I selects, θ(y, h) holds, then player II wins.
Alternatively, player I may cheat by selecting h ̸⊆ (H)a. In such a case, player II chooses
y′ ∈ dom h and asserts y′ ∈ (H)a if h(y′) = 0, or y′ ̸∈ (H)a if h(y′) = 1. Then, the
players begin the next debate round on y′ ∈ (H)a.

Player II answers ”No” to mean y ̸∈ (H)b, that is, ¬φ(y, (H)a)), i.e., ∃x¬θ(y, (H)a ↾ x).
Then, Player II must choose a finite sequence h ⊆ (H)a and they begin the next debate
round on y′ ∈ (H)a for I’s move y′.

Finally, consider the case where b is a limit. In this case, if there does not exist an a ≺ b
such that y = (a, z), then Player I immediately loses. If y = (a, z), then they begin the
next debate round on z ∈ (H)a, that is, y = (a, z) ∈ (H)b.

This game always terminates in a finite number of steps, since the debate progresses by
selecting lower elements a for (H)a according to the well-ordering ≺. From this, it follows
that the winning set is ∆0

1.
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Moreover, we can show that Player I does not have a winning strategy as follows.
By way of contradiction, Player I had a winning strategy σ. At the first move, Player I
chooses (b, y) following σ. Then, Player I must win whether Player II answers Yes or No.
However, we show this is impossible.

First, if b is a minimal element, II can win by answering Yes if y ∈ A, and No if y ̸∈ A. If b
is a limit, we may assume that there exists an a ≺ b such that y = (a, z), and then the
problem reduces to z ∈ (H)a. Hence, we can assume that b is the successor of a.

In this case, if Player II answers Yes, then Player I selects a finite h∗ according to σ.
On the other hand, if Player II answers No, Player II can choose the finite h∗. Then, Player
I chooses y∗ ∈ dom h∗ following σ for the next round of the question y∗ ∈ (H)a.
Now, consider the case that Player II chooses the same y∗ after Player II answers Yes and
Player I selects a finite h∗ in the first round. Then, Player I must still win whether Player II
answers Yes or No for y∗ ∈ (H)a.

Continuing this way, we can construct two plays in which Player I must defend opposite
claims. Since the game will terminate in a finite steps, it leads to a contradiction.
Therefore, Player I cannot have a winning strategy.
Thus, by ∆∼

0
1 determinacy, Player II has a winning strategy τ , and

H = {(b, y) : τ(b, y) = 1 (”yes”)} becomes the desired set.
2
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Next, we prove that determinacy of Σ∼
0
1 ∧Π∼

0
1 games is equivalent to Π1

1-CA0. Here, a

Σ∼
0
1 ∧Π∼

0
1 game is defined by a formula φ ∧ ψ where φ is a Σ0

1 formula and ψ a Π0
1 formula

both with parameters.

Theorem 5.7

The determinacy of Σ∼
0
1 ∧Π∼

0
1 games and Π1

1-CA0 are equivalent over RCA0.

Proof First, we demonstrate the determinacy of Σ∼
0
1 ∧Π∼

0
1 games within Π1

1-CA0.

Consider a game A(f) in the form ψ1(f) ∧ ψ2(f), where ¬ψ1 is a Π0
1 and ψ2 is a Σ0

1

formula (both including parameters). For ψ2, there exists a Π0
0 formula θ2 such that,

ψ2(f) ≡ ∃xθ2(f ↾ x). Hence, according to Π1
1-CA0, there exists a Σ1

1 set W .1

W = {s ∈ N<N | θ2(s) and I has a winning strategy for ψ1 at s.}

Here, ”I has a winning strategy for ψ1 at s” means starting the game from the position s
and ensuring a win in ψ1.

1The statement ”I has a winning strategy in the Π1
1 game ψ1 at s” can be restated as ”there exists a

strategy τ such that following τ all plays f satisfy ψ1(f)”. Since ψ1(f) ≡ ∀xθ1(f ↾ x), ”all plays f” can
be translated as ”all finite plays f ↾ x”, which makes the statement Σ1

1.
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Then consider the following Σ0
1 game

W ∗ = {f ∈ NN | ∃x(f ↾ x ∈W )}.

If Player I has a winning strategy for W ∗, then by following it, Player I will eventually enter
W , and from the position s, using a winning strategy for ψ1, ψ1(f) ∧ ψ2(f) will hold.

On the other hand, suppose Player I has no winning strategy for W ∗. Then Player II can
make a play out of W throughout the game. So θ2(s) will not hold forever, or Player I
does not have a winning strategy for ψ1. Therefore, by ATR0, Player II has a winning
strategy, and by following that strategy from then on, ¬ψ1 will hold. That is, it is possible
to ensure that ¬ψ1 ∨ ¬ψ2 holds. Thus, the game A(f) is determined.
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Conversely, from the determinacy of Σ∼
0
1 ∧Π∼

0
1 games, we prove Π1

1-CA0. First, let φ(n) be

a Π1
1 logical formula of the form ∀f∃xθ(n, f ↾ x), where θ is a Σ0

0 logical formula.
Consider the following game G:

First, Player I chooses n. Then,

if player II believes that φ(n) holds, II answers 1 (Yes),

and

if player II believes that ¬φ(n) holds, II answer 0 (No).

If Player II answers Yes, Player I generates an (infinite) sequence f until Player II stops it.
If at the stopping point (step x) θ(n, f ↾ x) holds, then Player II wins; if it does not hold,
or if Player II never stops the sequence, then Player I wins.

If Player II answers No, the roles of the players are reversed, and Player II generates an
infinite sequence.

This game is in Σ∼
0
1 ∧Π∼

0
1, and it is not possible for Player I to have a winning strategy.

Therefore, Player II must have a winning strategy τ . Consequently, the set defined by φ(n)
will be {n : τ(n) = 1}, and this exists in RCA0.

2
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From Theorem 5.7, we can see that the determinacy of games defined by the Boolean
combination of Σ∼

0
1 sets can also be obtained through iterations of Π1

1-CA0.

Therefore, when analyzing ∆∼
0
2 games, if we consider ∆∼

0
2 sets as transfinite combinations of

Σ∼
0
1 sets, it works well. For this purpose, we make the Hausdorff-Kuratowski Theorem on

the difference hierarchy of ∆∼
0
n sets applicable within second-order arithmetic.2

Remark. We show that Σ∼
0
1 determinacy implies ACA0. For any Σ0

1 formula ∃xθ(n, x),
consider the following game. Player I chooses n and player II answers Yes with a witness x,
or No. If II answers No, then I must select a witness x. Then, Player II wins if he answers
Yes and θ(n, x) holds, or No and ¬θ(n, x). Obviously, Player I can not have a winning
strategy. By Σ0

1 determinacy, Player II has a winning strategy τ , and in RCA0,
{n : ∃xθ(n, x)} = {n : τ(n) = (Yes, x)} exists.

2K. Kuratowski, Topology, vol.1, Academic Press, 1966
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Thank you for your attention!
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