
Logic and
Foundations

K. Tanaka

König’s Lemma
and Ramsey’s
theorem

Determinacy of
Infinite Games

1

Logic and Foundations II
Part 7. Real Analysis and Reverse Mathematics

Kazuyuki Tanaka

BIMSA

May 14, 2024



Logic and
Foundations

K. Tanaka

König’s Lemma
and Ramsey’s
theorem

Determinacy of
Infinite Games

2

Logic and Foundations II� �
• Part 5. Models of first-order arithmetic (continued) (5 lectures)

• Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)

• Part 7. Real analysis and reverse mathematics (9 lectures?)

• Part 8. Second order arithmetic and non-standard methods (6 lectures?)� �
Part 7. Schedule� �
• Apr. 16, (1) Introduction and the base system RCA0

• Apr. 18, (2) Defining real numbers in RCA0

• Apr. 23, (3) Completeness of the reals and ACA0

• Apr. 25, (4) Continuous functions and WKL0
• Apr. 30, (5) Continuous functions and WKL0, II

• May 9, (6) König’s lemma and Ramsey’s theorem

• May 14, (7) Determinacy of infinite games I

• May 16, (8) Determinacy of infinite games II

• to be continued� �
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Recap

The system of recursive comprehension axioms (RCA0) consists of:

(1) first-order logic with axioms of equality for numbers plus basic arithmetic such as Q<.

(2) ∆0
1 comprehension axiom (∆0

1-CA0): ∀n(φ(n) ↔ ψ(n)) → ∃X∀n(n ∈ X ↔ φ(n)),
where φ(n) is Σ0

1, ψ(n) is Π
0
1, and neither includes X as a free variable.

(3) Σ0
1 induction: φ(0) ∧ ∀n(φ(n) → φ(n+ 1)) → ∀nφ(n), for any Σ0

1 formula φ(n).

The system of arithmetical comprehension axioms (ACA0) is RCA0 plus

(Π1
0 -CA) : ∃X∀n(n ∈ X ↔ φ(n)),

where φ(n) is an arithmetical formula, which does not have X as a free variable.

ACA0 is a conservative extension of Peano Arithmetic PA.(Lemma 3.2)

In RCA0, the following are equivalent (Lemma 3.3)
(1) ACA0, (2) (Σ0

1 -CA), (3) The range of any 1-1 function f : N → N exists.
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WKL0

The system WKL0 is RCA0 plus weak König’s lemma: every infinite tree T ⊂ Seq2 has
an infinite path.

In RCA0, WKL0 is equivalent to (Σ0
1 -SP)(Separation Principle). (Lemma 3.6)

WKL0 is strictly between RCA0 and ACA0. (Lemma 3.7)

Theorem 3.12. The following assertions are pairwise equivalent in RCA0:

(1) WKL0,

(2) A continuous function f : [0, 1] → R is uniformly continuous,

(3) A continuous function f : [0, 1] → R is bounded.

Theorem 3.1 (Shioji-T.)

Brouwer’s Fixed-Point Theorem is equivalent to WKL0 over RCA0.
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§4. König’s Lemma and Ramsey’s theorem

Let Seq denote the set of finite sequences from N, that is, the set of functions with domain
{i ∈ N : i < n} for some n ∈ N.

König’s Lemma asserts that “every infinite, finitely branching tree in Seq has an infinite
path.”

Theorem 4.1

Over RCA0, the following are pairwise equivalent:

(1) ACA0

(2) König’s Lemma

(3) An infinite tree T , such that each node s ∈ T has at most two children s∩m ∈ T
(m ∈ N), has an infinite path.

Note: In the above (3), it is crucial that m such that s∩m ∈ T is not bounded over T . If
m were bounded, the assertion would be equivalent to weak König’s Lemma.
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Ramsey’s Theorem

For a set X ⊆ N, we denote by [X]k the set of all sequences (m1, . . . ,mk) of k elements
from X such that m1 < . . . < mk. Ramsey’s theorem RTk

l states that for a coloring of
[N]k into l colors, there exists an infinite subset X ⊆ N such that [X]k is monochromatic1.
Such an X is called a homogeneous set.

Definition 4.2 (Ramsey’s Theorem)

Let k, l > 0 be natural numbers. RTk
l is the following assertion:

∀f : [N]k → {0, 1, . . . , l − 1}∃X ⊆ N(X is infinite ∧ f is constant on [X]k).

If we consider the statement of painting any finite number of colors, we denote it as RTk,
i.e., RTk ≡ ∀l ∈ N(RTk

l ). Although RTk
l for any standard natural number l ≥ 2 can be

deduced from RTk
2 by meta-induction in RCA0, the equivalence of RTk to RTk

2 may require
Π1

2-induction, since RTk
l is a Π1

2 formula.

1Finite Ramsey’s Theorem, denoted m → (n)kl , is the statement that if [{0, . . . , n− 1}]k is painted in l

colors, there exists a subset X ⊆ {0, . . . , n− 1} of m elements such that [X]k is monochromatic.
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We first consider the strength of RT1, which is also known as the pigeonhole principle
(PHP). For a standard natural number l ≥ 1, RT1

l obviously holds even in RCA0.

Recall: the collection principle (Bφ) for φ(x, y1, · · · , yk) in LOR is as follows

∀x < u∃y1 · · · ∃ykφ(x, y1, · · · , yk) → ∃v∀x < u∃y1 < v · · · ∃yk < vφ(x, y1, · · · , yk).

BΠ0
1 denotes {(Bφ) | φ ∈ Π0

1}. BΠ0
1 is equivalent to BΣ0

2, and IΣ1 ⊊ BΣ2 ⊊ IΣ2.

Theorem 4.3 (J. Hirst)

In RCA0, RT
1 is equivalent to BΠ0

1.

The above theorem indicates that the strength of RT1 is intermediate between ACA0 and
RCA0, and it is incomparable with WKL0. The strength of RT2 becomes even more
difficult to specify.
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Theorem 4.4

In ACA0, both RT1 and ∀k(RTk → RTk+1) are provable.

Proof RT1 is clear from the above theorem. We now assume RTk, and prove RTk+1.
Let f : [N]k+1 → {0, 1, . . . , l− 1} be a coloring function. We will construct a homogeneous
set X for this f by König’s lemma. We first define a tree T as follows: t ∈ T ⇔
for any n < leng(t), t(n) is the least j such that

(1) max{t(m) : m < n} < j,

(2) For any m1 < . . . < mk < m ≤ n,

f(t(m1), . . . , t(mk), j) = f(t(m1), . . . , t(mk), t(m)).

This tree T is called the Erdős–Rado tree.

Hence, (3) if max{t(m) : m < n} < j < t(n) then there exists m1 < . . . < mk < n s.t.

f(t(m1), . . . , t(mk), j) ̸= f(t(m1), . . . , t(mk), t(n)).
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First, we show that T is a finitely branching tree. Choose a node t ∈ T with leng(t) = n.

For j > t(n− 1), define a function f̂j : [0, . . . , n− 1]k → {0, . . . , l − 1} by

f̂j(m1, . . . ,mk) = f(t(m1), . . . , t(mk), j).

Then, for j ̸= j′ such that t∩j ∈ T and t∩j′ ∈ T , we can show that f̂j ̸= f̂j′ as follows.
If t(n− 1) < j < j′, then by condition (3) (with t(n) = j′), we have fj ̸= fj′ . The same
applies to the case t(n− 1) < j′ < j.

The number of functions from [0, · · · , n− 1]k to {0, · · · , l − 1} is finite. This implies

t∩j ∈ T for only a finite number (≤ ln
k

) of j.

Next, to assert that T is infinite, we show that any j ∈ N appears in some sequence s in T .

So, fix a j and take a longest element t of T satisfying the following conditions:

(1◦) max{t(m) : m < leng(t)} < j,

(2◦) For any m1 < . . . < mk < m < leng(t),

f(t(m1), . . . , t(mk),m) = f(t(m1), . . . , t(mk), j),
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The empty sequence satisfies conditions (1◦), (2◦), and T has at most j! elements that
satisfies condition (1◦), hence there exists a longest sequence t satisfying these conditions.

Let t′ = t∩j. We will show t′ ∈ T . First, we can easily see that t′ satisfies conditions (1)
and (2), since t satisfies conditions (1◦) and (2◦), respectively.

By way of contradiction, assume there exists the smallest such number j′ < j. Then t∩j′

also satisfies conditions (1◦), (2◦), which contradicts the maximal length of t.

Thus, the Erdős–Rado tree T is an infinite finitely branching tree, and by König’s lemma, it
has an infinite path g. First note that g is a monotone increasing function
(m < n→ g(m) < g(n)) from (1).

Now, define a function f̂ : Nk → {0, . . . , l − 1} as follows:

f̂(m1, . . . ,mk) = f(g(m1), . . . , g(mk), g(m)),

where m1 < . . . < mk < m. This definition does not depend on the choice of m, which is
ensured by condition (2).

Using the assumption RTk, we can find an infinite homogeneous set X ′ for f̂ .
Finally, setting X = {g(m) : m ∈ X ′}, it is clear that X becomes an infinite homogeneous
set for f . 2
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Lemma 4.5

Within RCA0, ACA0 can be derived from RT3
2.

Theorem 4.6

For any standard natural numbers k ≥ 3, l ≥ 2, RTk
l , RT

k, and ACA0 are equivalent
within RCA0.

Finally, concerning RT2 and RT2
2, it is known that both are between ACA0 and RCA0, and

are incomparable with WKL0. Within RCA0, RT
2 implies BΠ0

2, but RT
2
2 does not.
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Introducing ATR0 and Π1
1 -CA0

Definition 5.1

The system Πk
j -CA0(k = 0, 1, j ∈ ω) is obtained from RCA0 by adding the following

Πk
j Comprehension Axiom (Πk

j -CA): for any Πk
j formula φ(n),

∃X∀n(n ∈ X ⇔ φ(n)),

where φ(n) may contain set variables other than X as parameters.

In particular, Π1
1-CA0 is one of the BIG FIVE. Π1

1 Comprehension Axiom (Π1
1 -CA) asserts

the existence of sets defined by Π1
1 formulas.

Note Since Π0
2 sets can be defined by using (Π0

1-CA) twice, (Π
0
1-CA) and (Π0

2-CA) are
equivalent when set parameters are allowed. However, even if (Π1

1-CA) is used many times,
only ∆1

2 sets are defined. So, (Π1
1-CA) and (Π1

2-CA) are not equivalent.
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For a formula φ(n,X) and a set A, define the sequence of sets A0 = A,
Ai+1 = {n : φ(n,Ai)} for i ∈ ω. Then, set Aω = {(i, n) : n ∈ Ai} and continue with
Aω+i+1 = {n : φ(n,Aω+i)} to create the sequence Aω+1, Aω+2, . . ..
Transfinite recursion requests such operations to be repeated up to any countable ordinal.

Definition 5.2

The system Πk
j -TR0(k = 0, 1, j ∈ ω) is obtained from RCA0 by adding the following

Πk
j Transfinite Recursion Axiom (Πk

j -TR): for any Πk
j formula φ(n,X), for any set A

and any well-order ≺, there exists a set H satisfying the following conditions:

(1) If b is the minimal element in ≺, then
(H)b = A,

(2) If b is the successor of a with respect to ≺, then
∀n(n ∈ (H)b ⇔ φ(n, (H)a)),

(3) If b is a ≺-limit, then for all a ≺ b
∀n(n ∈ ((H)b)a ⇔ n ∈ (H)a),

where (X)a = {n : (a, n) ∈ X}.
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The well-order ≺ is defined as a binary relation on N (≺⊆ N×N) that is a linear order and
contains no infinite descending sequences. In other words, it represents the order type of
the countable ordinal numbers expressible within the system.

In RCA0, it is clear that (Π
i
j)-TR → (Πi

j) -CA.

Π0
1 -TR0 is called the system of arithmetical transfinite recursion ATR0, one of the BIG

FIVE. For any non-zero natural number j, the strength of (Π0
j -TR) remains the same as in

arithmetical comprehension axioms (see Lemma 3.3). However, this is not the case for
(Π1

j -TR).

ATR0 was introduced by H. Friedman in 1974. To my knowledge, its generalization
(Πi

j-TR) was first presented in my doctoral dissertation in 1986.

Π1
1 -CA implies ATR0. This fact will be proved indirectly by their equivalent statements.
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Strictness of ATR0 and Π1
1 -CA

Π1
1-CA0 is strictly stronger than ATR0. To see this, let’s reconsider the axiom of the

arithmetical transfinite recursion. Here, we omit the description of the parameter A and
summarize conditions (1), (2), (3) into an arithmetic statement θ≺(H), so that the axiom
asserts the existence of a set H satisfying:

≺ is a well-ordering ⇒ θ≺(H).

It can be rewritten as a Σ1
1 formula: ≺ is not well-ordered ∨ ∃Hθ≺(H). Here ≺ is a kind

of set variable, and the axiom may contain other parameters, so its universal closure turns
into a Π1

2 sentence.
Let (M,S) be a model of ATR0. A ∈ S can express ⟨An | n ∈M⟩ ⊂ S. Then, A is called
(a countably coded) β-model if

(M, {An}) |= φ⇔ (M,S) |= φ

for any Σ1
1 formula φ with parameters from {An}.

The existence of (a coded) β-models is ensured by Π1
1-CA0 (via the strong Σ1

1 dependent
choice axiom [Simpson, Theorem VII. 6. 9]). Since ATR0 is a Σ1

1 formula, any β-models are
models of ATR0. Hence, the consistency of ATR0 can be derived from Π1

1-CA0.
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Gale-Stewart games

The games considered here are perfect information two-player games, similar to chess or
Go. Although it’s not realistic for players to continue indefinitely in real games, Zermelo
argued in 1913 that it’s natural to treat games like chess as infinite games in theory.
Various infinite games have been conceived since then but in the 1950’s, Gale and Stewart
formulated a general infinite game where two players alternately choose natural numbers,
and the outcome is decided by the infinite sequence produced.

Definition 5.3

In the Gale-Stewart game G, two players I and II alternately choose natural numbers,
constructing an infinite sequence (called a play)

I n0 n2 n4 . . .
II n1 n3 n5 . . .

If the resulting sequence (n0, n1, n2, . . .) is in a predetermined winning set G ⊆ NN, then
player I wins; otherwise, player II wins. The winning set is also referred to as the pay-off
set.
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Gale-Stewart games

A game is often identified with its winning set G and is simply treated as set. A game or
set G is said to be determined if, given the winning set, one of the players can always win
by playing smartly. Let’s give a more precise definition of this concept.

Definition 5.4

A strategy for player I is a function σ : ∪i∈NN2i → N, and a strategy for player II is a
function τ : ∪i∈NN2i+1 → N. If the players obey their strategies σ and τ , a play
(n0, n1, n2, . . .) is uniquely determined as follows:

I n0 = σ(∅) n2 = σ(n0, n1) n4 = σ(n0, n1, n2, n3) . . .
II n1 = τ(n0) n3 = τ(n0, n1, n2) n5 = τ(n0, n1, n2, n3, n4) . . .

Here, the resulting play is denoted by σ ⊗ τ . Then, σ is called a winning strategy for
player I if for any τ , σ ⊗ τ belongs to G, that is, player I can win the game with σ
whatever II plays. A winning strategy for player II is defined similarly. When one of the
players has a winning strategy, the game G is said to be determined, determinate.
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Until now, formulas in second-order arithmetic are mainly used to define subsets of N, but
they can also define classes of subsets of N. Indeed, R has been defined by a formula, and
subsets of R, the Cantor space {0, 1}n, and the Baire space NN can also be handled in
second-order arithmetic.

We treat the topology of the Baire space in second-order arithmetic. An open subset G of
the Baire space can be expressed as a union of some basic open sets [s] = {f ∈ NN|s ⊂ f}
(s ∈ Seq), that is, there exists some W ⊆ Seq such that

G =
⋃
s∈W

[s]

or
f ∈ G⇔ ∃n(f ↾ n ∈W )

where f ↾ n is the sequence (f(0), · · · , f(n− 1)) ∈ Seq2. Thus, an open set G can be
described by a Σ0

1 formula including a parameter W . Conversely, a Σ0
1 formula containing a

parameter A, written as ∃nθ(f ↾ n,A ↾ n), defines an open set.

2Strictly speaking, L2
OR does not include function variable f , so it is necessary to translate this into a

set variable.
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Subsets of the Baire space defined by a Σi
j formula containing any parameter are called Σ∼

i
j

sets3. Consequently, Σ∼
0
1 sets coincide with open sets. Similarly, Π∼

0
1 sets coincide with

closed sets, and Σ∼
0
2 sets correspond to Fσ sets, which are countable unions of closed sets.

Thus, Σ∼
0
j corresponds to the finite ranks of the Borel hierarchy.

Furthermore, Σ∼
1
1 coincides with analytic sets, which are projections of Borel sets, and Σ∼

1
j

corresponds to the projective hierarchy. Additionally, ∆∼
i
j = Σ∼

i
j ∩Π∼

i
j .

Gale and Stewart (1953) showed that all Σ∼
0
1 games are determined, followed by

determinacy of Σ∼
0
2, Σ∼

0
3, Σ∼

0
4 games proved by Wolff (1955), Davis (1964), and Paris (1972),

respectively. Finally, Martin (1975) proved the determinacy of Borel(∆∼
1
1) games within

ZFC set theory. On the other hand, Harrington showed (1978) that the determinacy of
analytic sets (Σ∼

1
1) requires the assumption of large cardinals, which is independent of ZFC

set theory. Furthermore, the existence of undecidable games can be demonstrated from the
axiom of choice.

3It is common to represent Σ∼ in boldface Σ. However, to clearly distinguish between lightface Σ and

boldface Σ, we adopt Σ∼ instead of Σ, which is commonly used in blackboard notation.
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Propositions asserting such determinacy can be expressed in second-order arithmetic.
Therefore, it is natural to consider what axioms of second-order arithmetic are necessary for
their proof. The first step in this direction was taken by J. Steel in his thesis (1976),
namely, the equivalence between determinacy of Σ∼

0
1 games and ATR0. However, he

discussed this equivalence over the system RCA with full induction.

Subsequently, I developed a proof method based on the game semantics (a debate between
Pro and Con) to derive ATR0 from Σ∼

0
1 games within RCA0 (discussed later).

To demonstrate the determinacy of Σ∼
0
1 games from ATR0, the method of the

pseudo-hierarchy used in Steel’s proof can be directly applied, so I will first give a brief
explanation of this proof.

Theorem 5.5

ATR0 proves Σ∼
0
1 determincay.

Note: the determinacy of Σ∼
0
1 games is equivalent to the determinacy of Π∼

0
1 games.

Proof ...
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Thank you for your attention!
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