K. Tanaka

König's Lemn and Ramsey's theorem

Determinacy of Infinite Games

Logic and Foundations II Part 7. Real Analysis and Reverse Mathematics

Kazuyuki Tanaka

BIMSA

May 14, 2024

K. Tanaka

König's Lemm and Ramsey's theorem

Determinacy of Infinite Games - Logic and Foundations II

- Part 5. Models of first-order arithmetic (continued) (5 lectures)
- Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)
- Part 7. Real analysis and reverse mathematics (9 lectures?)
- Part 8. Second order arithmetic and non-standard methods (6 lectures?)
- Part 7. Schedule
 - Apr. 16, (1) Introduction and the base system RCA_0
 - Apr. 18, (2) Defining real numbers in RCA_0
 - Apr. 23, (3) Completeness of the reals and ACA_0
 - Apr. 25, (4) Continuous functions and WKL_0
 - Apr. 30, (5) Continuous functions and WKL₀, II
 - May 9, (6) König's lemma and Ramsey's theorem
 - May 14, (7) Determinacy of infinite games I
 - May 16, (8) Determinacy of infinite games II
 - to be continued

K. Tanaka

König's Lemma and Ramsey's theorem

Determinacy o Infinite Games

The system of **recursive comprehension axioms** (RCA₀) consists of:

- (1) first-order logic with axioms of equality for numbers plus basic arithmetic such as $\mathsf{Q}_{<}.$
- (2) Δ_1^0 comprehension axiom (Δ_1^0 -CA₀): $\forall n(\varphi(n) \leftrightarrow \psi(n)) \rightarrow \exists X \forall n(n \in X \leftrightarrow \varphi(n)),$ where $\varphi(n)$ is Σ_1^0 , $\psi(n)$ is Π_1^0 , and neither includes X as a free variable.
- (3) Σ_1^0 induction: $\varphi(0) \land \forall n(\varphi(n) \to \varphi(n+1)) \to \forall n\varphi(n)$, for any Σ_1^0 formula $\varphi(n)$.

The system of arithmetical comprehension axioms (ACA₀) is RCA₀ plus

$$(\Pi_0^1 \operatorname{\mathsf{-CA}}) : \exists X \forall n (n \in X \leftrightarrow \varphi(n)),$$

where $\varphi(n)$ is an arithmetical formula, which does not have X as a free variable. ACA₀ is a conservative extension of Peano Arithmetic PA.(Lemma 3.2) In RCA₀, the following are equivalent (Lemma 3.3) (1) ACA₀, (2) (Σ_1^0 -CA), (3) The range of any 1-1 function $f : \mathbb{N} \to \mathbb{N}$ exists.

Recap

K. Tanaka

König's Lemma and Ramsey's theorem

Determinacy of Infinite Games

The system WKL₀ is RCA₀ plus weak König's lemma: every infinite tree $T \subset Seq_2$ has an infinite path.

In RCA₀, WKL₀ is equivalent to $(\Sigma_1^0$ -SP)(Separation Principle). (Lemma 3.6) WKL₀ is strictly between RCA₀ and ACA₀. (Lemma 3.7)

Theorem 3.12. The following assertions are pairwise equivalent in RCA_0 : (1) WKL_0 ,

- (2) A continuous function $f:[0,1] \to \mathbb{R}$ is uniformly continuous,
- (3) A continuous function $f:[0,1] \to \mathbb{R}$ is bounded.

Theorem 3.1 (Shioji-T.)

Brouwer's Fixed-Point Theorem is equivalent to WKL_0 over RCA_0 .

WKL₀

K. Tanaka

König's Lemma and Ramsey's theorem

Determinacy of Infinite Games

§4. König's Lemma and Ramsey's theorem

Let Seq denote the set of finite sequences from \mathbb{N} , that is, the set of functions with domain $\{i \in \mathbb{N} : i < n\}$ for some $n \in \mathbb{N}$.

König's Lemma asserts that "every infinite, finitely branching tree in ${\rm Seq}$ has an infinite path."

Theorem 4.1

Over RCA_0 , the following are pairwise equivalent:

- (1) ACA_0
- (2) König's Lemma
- (3) An infinite tree T, such that each node $s \in T$ has at most two children $s^{\cap}m \in T$ $(m \in \mathbb{N})$, has an infinite path.

Note: In the above (3), it is crucial that m such that $s^{\cap}m \in T$ is not bounded over T. If m were bounded, the assertion would be equivalent to weak König's Lemma.

K. Tanaka

König's Lemma and Ramsey's theorem

Determinacy of Infinite Games

Ramsey's Theorem

For a set $X \subseteq \mathbb{N}$, we denote by $[X]^k$ the set of all sequences (m_1, \ldots, m_k) of k elements from X such that $m_1 < \ldots < m_k$. Ramsey's theorem RT_l^k states that for a coloring of $[\mathbb{N}]^k$ into l colors, there exists an infinite subset $X \subseteq \mathbb{N}$ such that $[X]^k$ is monochromatic¹. Such an X is called a **homogeneous** set.

Definition 4.2 (Ramsey's Theorem)

Let k, l > 0 be natural numbers. RT_l^k is the following assertion:

 $\forall f: [\mathbb{N}]^k \to \{0, 1, \dots, l-1\} \exists X \subseteq \mathbb{N}(X \text{ is infinite } \land f \text{ is constant on } [X]^k).$

If we consider the statement of painting any finite number of colors, we denote it as RT^k , i.e., $\mathsf{RT}^k \equiv \forall l \in \mathbb{N}(\mathsf{RT}_l^k)$. Although RT_l^k for any standard natural number $l \ge 2$ can be deduced from RT_2^k by meta-induction in RCA_0 , the equivalence of RT^k to RT_2^k may require Π_2^1 -induction, since RT_l^k is a Π_2^1 formula.

¹Finite Ramsey's Theorem, denoted $m \to (n)_l^k$, is the statement that if $[\{0, \ldots, n-1\}]^k$ is painted in l colors, there exists a subset $X \subseteq \{0, \ldots, n-1\}$ of m elements such that $[X]^k$ is monochromatic.

K. Tanaka

König's Lemma and Ramsey's theorem

Determinacy of Infinite Games We first consider the strength of RT^1 , which is also known as the **pigeonhole principle** (PHP). For a standard natural number $l \ge 1$, RT_l^1 obviously holds even in RCA₀.

Recall: the collection principle (B $\varphi)$ for $\varphi(x,y_1,\cdots,y_k)$ in $\mathcal{L}_{\mathsf{O}R}$ is as follows

 $\forall x < u \exists y_1 \cdots \exists y_k \varphi(x, y_1, \cdots, y_k) \to \exists v \forall x < u \exists y_1 < v \cdots \exists y_k < v \varphi(x, y_1, \cdots, y_k).$

 $\mathsf{B}\Pi_1^0 \text{ denotes } \{(\mathsf{B}\varphi) \mid \varphi \in \Pi_1^0\}. \ \mathsf{B}\Pi_1^0 \text{ is equivalent to } \mathsf{B}\Sigma_2^0 \text{, and } \mathsf{I}\Sigma_1 \subsetneq \mathsf{B}\Sigma_2 \subsetneq \mathsf{I}\Sigma_2.$

Theorem 4.3 (J. Hirst)

In RCA₀, RT¹ is equivalent to B Π_1^0 .

The above theorem indicates that the strength of RT^1 is intermediate between ACA₀ and RCA₀, and it is incomparable with WKL₀. The strength of RT^2 becomes even more difficult to specify.

K. Tanaka

König's Lemma and Ramsey's theorem

Determinacy of Infinite Games

Theorem 4.4

In ACA₀, both RT^1 and $\forall k(\mathsf{RT}^k \to \mathsf{RT}^{k+1})$ are provable.

Proof RT^1 is clear from the above theorem. We now assume RT^k , and prove RT^{k+1} . Let $f : [\mathbb{N}]^{k+1} \to \{0, 1, \dots, l-1\}$ be a coloring function. We will construct a homogeneous set X for this f by König's lemma. We first define a tree T as follows: $t \in T \Leftrightarrow$ for any n < leng(t), t(n) is the least j such that (1) $max\{t(m) : m < n\} < j$.

(2) For any
$$m_1 < \ldots < m_k < m \le n$$
,

$$f(t(m_1), \ldots, t(m_k), j) = f(t(m_1), \ldots, t(m_k), t(m)).$$

This tree T is called the **Erdős–Rado tree**.

Hence, (3) if $\max\{t(m) : m < n\} < j < t(n)$ then there exists $m_1 < \ldots < m_k < n$ s.t.

 $f(t(m_1),\ldots,t(m_k),j) \neq f(t(m_1),\ldots,t(m_k),t(n)).$

K. Tanaka

König's Lemma and Ramsey's theorem

Determinacy of Infinite Games First, we show that T is a finitely branching tree. Choose a node $t \in T$ with leng(t) = n. For j > t(n-1), define a function $\hat{f}_j : [0, \dots, n-1]^k \to \{0, \dots, l-1\}$ by

$$\hat{f}_j(m_1, \dots, m_k) = f(t(m_1), \dots, t(m_k), j).$$

Then, for $j \neq j'$ such that $t^{\cap}j \in T$ and $t^{\cap}j' \in T$, we can show that $\hat{f}_j \neq \hat{f}_{j'}$ as follows. If t(n-1) < j < j', then by condition (3) (with t(n) = j'), we have $f_j \neq f_{j'}$. The same applies to the case t(n-1) < j' < j.

The number of functions from $[0, \dots, n-1]^k$ to $\{0, \dots, l-1\}$ is finite. This implies $t^{\cap}j \in T$ for only a finite number $(\leq l^{n^k})$ of j.

Next, to assert that T is infinite, we show that any $j \in \mathbb{N}$ appears in some sequence s in T.

So, fix a j and take a longest element t of T satisfying the following conditions:

(1°)
$$\max\{t(m) : m < \operatorname{leng}(t)\} < j,$$

(2°) For any $m_1 < ... < m_k < m < \text{leng}(t)$,

 $f(t(m_1), \ldots, t(m_k), m) = f(t(m_1), \ldots, t(m_k), j),$

K. Tanaka

König's Lemma and Ramsey's theorem

Determinacy of Infinite Games The empty sequence satisfies conditions (1°) , (2°) , and T has at most j! elements that satisfies condition (1°) , hence there exists a longest sequence t satisfying these conditions.

Let $t' = t^{\cap} j$. We will show $t' \in T$. First, we can easily see that t' satisfies conditions (1) and (2), since t satisfies conditions (1°) and (2°), respectively.

By way of contradiction, assume there exists the smallest such number j' < j. Then $t^{\cap}j'$ also satisfies conditions (1°), (2°), which contradicts the maximal length of t.

Thus, the Erdős–Rado tree T is an infinite finitely branching tree, and by König's lemma, it has an infinite path g. First note that g is a monotone increasing function $(m < n \rightarrow g(m) < g(n))$ from (1).

Now, define a function $\widehat{f}:\mathbb{N}^k\to\{0,\ldots,l-1\}$ as follows:

$$\hat{f}(m_1,\ldots,m_k) = f(g(m_1),\ldots,g(m_k),g(m)),$$

where $m_1 < \ldots < m_k < m$. This definition does not depend on the choice of m, which is ensured by condition (2).

Using the assumption RT^k , we can find an infinite homogeneous set X' for \hat{f} . Finally, setting $X = \{g(m) : m \in X'\}$, it is clear that X becomes an infinite homogeneous set for f.

K. Tanaka

König's Lemma and Ramsey's theorem

Determinacy of Infinite Games

Lemma 4.5

Within RCA₀, ACA₀ can be derived from RT_2^3 .

Theorem 4.6

For any standard natural numbers $k \ge 3$, $l \ge 2$, RT_l^k , RT^k , and ACA_0 are equivalent within RCA_0 .

Finally, concerning RT^2 and RT_2^2 , it is known that both are between ACA₀ and RCA₀, and are incomparable with WKL₀. Within RCA₀, RT^2 implies BII₂⁰, but RT_2^2 does not.

K. Tanaka

König's Lemma and Ramsey's theorem

Determinacy of Infinite Games

Introducing ATR_0 and $\Pi^1_1\operatorname{\mathsf{-CA}}_0$

Definition 5.1

The system Π_j^k -CA₀ $(k = 0, 1, j \in \omega)$ is obtained from RCA₀ by adding the following Π_j^k Comprehension Axiom $(\Pi_j^k$ -CA): for any Π_j^k formula $\varphi(n)$,

 $\exists X \forall n (n \in X \Leftrightarrow \varphi(n)),$

where $\varphi(n)$ may contain set variables other than X as parameters.

In particular, Π_1^1 -CA₀ is one of the BIG FIVE. Π_1^1 Comprehension Axiom (Π_1^1 -CA) asserts the existence of sets defined by Π_1^1 formulas.

Note Since Π_2^0 sets can be defined by using $(\Pi_1^0\text{-}\mathsf{CA})$ twice, $(\Pi_1^0\text{-}\mathsf{CA})$ and $(\Pi_2^0\text{-}\mathsf{CA})$ are equivalent when set parameters are allowed. However, even if $(\Pi_1^1\text{-}\mathsf{CA})$ is used many times, only Δ_2^1 sets are defined. So, $(\Pi_1^1\text{-}\mathsf{CA})$ and $(\Pi_2^1\text{-}\mathsf{CA})$ are not equivalent.

K. Tanaka

König's Lemma and Ramsey's theorem

Determinacy of Infinite Games For a formula $\varphi(n, X)$ and a set A, define the sequence of sets $A_0 = A$, $A_{i+1} = \{n : \varphi(n, A_i)\}$ for $i \in \omega$. Then, set $A_\omega = \{(i, n) : n \in A_i\}$ and continue with $A_{\omega+i+1} = \{n : \varphi(n, A_{\omega+i})\}$ to create the sequence $A_{\omega+1}, A_{\omega+2}, \ldots$

Transfinite recursion requests such operations to be repeated up to any countable ordinal.

Definition 5.2

The system $\Pi_j^k \operatorname{-TR}_0(k = 0, 1, j \in \omega)$ is obtained from RCA₀ by adding the following Π_j^k Transfinite Recursion Axiom ($\Pi_j^k\operatorname{-TR}$): for any Π_j^k formula $\varphi(n, X)$, for any set A and any well-order \prec , there exists a set H satisfying the following conditions:

(1) If b is the minimal element in
$$\prec$$
, then $(H)_b = A$,

(2) If b is the successor of a with respect to \prec , then $\forall n(n \in (H)_b \Leftrightarrow \varphi(n, (H)_a)),$

(3) If b is a
$$\prec$$
-limit, then for all $a \prec b$
 $\forall n(n \in ((H)_b)_a \Leftrightarrow n \in (H)_a),$

where $(X)_a = \{n : (a, n) \in X\}.$

K. Tanaka

König's Lemma and Ramsey's theorem

Determinacy of Infinite Games The well-order \prec is defined as a binary relation on \mathbb{N} ($\prec \subseteq \mathbb{N} \times \mathbb{N}$) that is a linear order and contains no infinite descending sequences. In other words, it represents the order type of the countable ordinal numbers expressible within the system.

In RCA₀, it is clear that (Π_i^i) -TR $\rightarrow (\Pi_i^i)$ -CA.

 Π_1^0 -TR₀ is called the system of **arithmetical transfinite recursion** ATR₀, one of the BIG FIVE. For any non-zero natural number j, the strength of $(\Pi_j^0$ -TR) remains the same as in arithmetical comprehension axioms (see Lemma 3.3). However, this is not the case for $(\Pi_j^1$ -TR).

ATR₀ was introduced by H. Friedman in 1974. To my knowledge, its generalization $(\Pi_i^i - TR)$ was first presented in my doctoral dissertation in 1986.

 Π_1^1 -CA implies ATR₀. This fact will be proved indirectly by their equivalent statements.

K. Tanaka

König's Lemma and Ramsey's theorem

Determinacy of Infinite Games

Strictness of ATR_0 and Π_1^1 -CA

 Π_1^1 -CA₀ is strictly stronger than ATR₀. To see this, let's reconsider the axiom of the arithmetical transfinite recursion. Here, we omit the description of the parameter A and summarize conditions (1), (2), (3) into an arithmetic statement $\theta_{\prec}(H)$, so that the axiom asserts the existence of a set H satisfying:

 \prec is a well-ordering $\Rightarrow \theta_{\prec}(H)$.

It can be rewritten as a Σ_1^1 formula: \prec is not well-ordered $\lor \exists H\theta_{\prec}(H)$. Here \prec is a kind of set variable, and the axiom may contain other parameters, so its universal closure turns into a Π_2^1 sentence.

Let (M, S) be a model of ATR₀. $A \in S$ can express $\langle A_n \mid n \in M \rangle \subset S$. Then, A is called (a countably coded) β -model if

$$(M, \{A_n\}) \models \varphi \Leftrightarrow (M, S) \models \varphi$$

for any Σ_1^1 formula φ with parameters from $\{A_n\}$.

The existence of (a coded) β -models is ensured by Π_1^1 -CA₀ (via the strong Σ_1^1 dependent choice axiom [Simpson, Theorem VII. 6.9]). Since ATR₀ is a Σ_1^1 formula, any β -models are models of ATR₀. Hence, the consistency of ATR₀ can be derived from Π_1^1 -CA₀.

K. Tanaka

König's Lemma and Ramsey's theorem

Determinacy of Infinite Games

Gale-Stewart games

The games considered here are perfect information two-player games, similar to chess or Go. Although it's not realistic for players to continue indefinitely in real games, Zermelo argued in 1913 that it's natural to treat games like chess as infinite games in theory. Various infinite games have been conceived since then but in the 1950's, Gale and Stewart formulated a general infinite game where two players alternately choose natural numbers, and the outcome is decided by the infinite sequence produced.

Definition 5.3

In the **Gale-Stewart game** G, two players I and II alternately choose natural numbers, constructing an infinite sequence (called a **play**)

If the resulting sequence $(n_0, n_1, n_2, ...)$ is in a predetermined **winning set** $G \subseteq \mathbb{N}^{\mathbb{N}}$, then player I **wins**; otherwise, player II wins. The winning set is also referred to as the pay-off set.

K. Tanaka

König's Lemma and Ramsey's theorem

Determinacy of Infinite Games

Gale-Stewart games

A game is often identified with its winning set G and is simply treated as set. A game or set G is said to be **determined** if, given the winning set, one of the players can always win by playing smartly. Let's give a more precise definition of this concept.

Definition 5.4

A strategy for player I is a function $\sigma : \bigcup_{i \in \mathbb{N}} \mathbb{N}^{2i} \to \mathbb{N}$, and a strategy for player II is a function $\tau : \bigcup_{i \in \mathbb{N}} \mathbb{N}^{2i+1} \to \mathbb{N}$. If the players obey their strategies σ and τ , a play (n_0, n_1, n_2, \ldots) is uniquely determined as follows:

I
$$n_0 = \sigma(\emptyset)$$
 $n_2 = \sigma(n_0, n_1)$ $n_4 = \sigma(n_0, n_1, n_2, n_3)$...
II $\mathbf{n}_1 = \tau(n_0)$ $n_3 = \tau(n_0, n_1, n_2)$ $n_5 = \tau(n_0, n_1, n_2, n_3, n_4)$...

Here, the resulting play is denoted by $\sigma \otimes \tau$. Then, σ is called a **winning strategy** for player I if for any τ , $\sigma \otimes \tau$ belongs to G, that is, player I can win the game with σ whatever II plays. A **winning strategy** for player II is defined similarly. When one of the players has a winning strategy, the game G is said to be **determined**, **determinate**.

K. Tanaka

König's Lemm and Ramsey's theorem

Determinacy of Infinite Games Until now, formulas in second-order arithmetic are mainly used to define subsets of \mathbb{N} , but they can also define classes of subsets of \mathbb{N} . Indeed, \mathbb{R} has been defined by a formula, and subsets of \mathbb{R} , the **Cantor space** $\{0,1\}^n$, and the **Baire space** $\mathbb{N}^{\mathbb{N}}$ can also be handled in second-order arithmetic.

We treat the topology of the Baire space in second-order arithmetic. An open subset G of the Baire space can be expressed as a union of some basic open sets $[s] = \{f \in \mathbb{N}^{\mathbb{N}} | s \subset f\}$ ($s \in$ Seq), that is, there exists some $W \subseteq$ Seq such that

$$G = \bigcup_{s \in W} [s]$$

or

$$f\in G\Leftrightarrow \exists n(f\restriction n\in W)$$

where $f \upharpoonright n$ is the sequence $(f(0), \dots, f(n-1)) \in \text{Seq}^2$. Thus, an open set G can be described by a Σ_1^0 formula including a parameter W. Conversely, a Σ_1^0 formula containing a parameter A, written as $\exists n\theta(f \upharpoonright n, A \upharpoonright n)$, defines an open set.

²Strictly speaking, \mathcal{L}_{OR}^2 does not include function variable f, so it is necessary to translate this into a set variable.

K. Tanaka

König's Lemm and Ramsey's theorem

Determinacy of Infinite Games Subsets of the Baire space defined by a Σ_j^i formula containing any parameter are called Σ_j^i sets³. Consequently, Σ_1^0 sets coincide with **open sets**. Similarly, Π_1^0 sets coincide with closed sets, and Σ_2^0 sets correspond to \mathcal{F}_{σ} sets, which are countable unions of closed sets. Thus, Σ_j^0 corresponds to the finite ranks of the **Borel hierarchy**.

Furthermore, \sum_{1}^{1} coincides with analytic sets, which are projections of Borel sets, and \sum_{j}^{1} corresponds to the projective hierarchy. Additionally, $\Delta_{j}^{i} = \sum_{j}^{i} \cap \prod_{j}^{i}$.

Gale and Stewart (1953) showed that all Σ_1^0 games are determined, followed by determinacy of Σ_2^0 , Σ_3^0 , Σ_4^0 games proved by Wolff (1955), Davis (1964), and Paris (1972), respectively. Finally, Martin (1975) proved the determinacy of Borel(Δ_1^1) games within ZFC set theory. On the other hand, Harrington showed (1978) that the determinacy of analytic sets (Σ_1^1) requires the assumption of large cardinals, which is independent of ZFC set theory. Furthermore, the existence of undecidable games can be demonstrated from the axiom of choice.

³It is common to represent Σ in boldface Σ . However, to clearly distinguish between lightface Σ and boldface Σ , we adopt Σ instead of Σ , which is commonly used in blackboard notation.

K. Tanaka

König's Lemma and Ramsey's theorem

Determinacy of Infinite Games Propositions asserting such determinacy can be expressed in second-order arithmetic. Therefore, it is natural to consider what axioms of second-order arithmetic are necessary for their proof. The first step in this direction was taken by J. Steel in his thesis (1976), namely, the equivalence between determinacy of $\sum_{i=1}^{0}$ games and ATR₀. However, he discussed this equivalence over the system RCA with full induction.

Subsequently, I developed a proof method based on the game semantics (a debate between Pro and Con) to derive ATR₀ from $\sum_{i=1}^{0}$ games within RCA₀ (discussed later).

To demonstrate the determinacy of \sum_{1}^{0} games from ATR_{0} , the method of the pseudo-hierarchy used in Steel's proof can be directly applied, so I will first give a brief explanation of this proof.

Theorem 5.5 ATR₀ proves $\sum_{n=1}^{0}$ determincay.

Note: the determinacy of Σ^0_1 games is equivalent to the determinacy of Π^0_1 games. Proof …

K. Tanaka

König's Lemm and Ramsey's theorem

Determinacy of Infinite Games

Thank you for your attention!