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Logic and Foundations II� �
• Part 5. Models of first-order arithmetic (continued) (5 lectures)

• Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)

• Part 7. Theory of reals and reverse mathematics (9 lectures?)

• Part 8. Second order arithmetic and non-standard methods (6 lectures?)� �
Part 7. Schedule� �
• Apr. 16, (1) Introduction and the base system RCA0

• Apr. 18, (2) Defining real numbers in RCA0

• Apr. 23, (3) Completeness of the reals and ACA0

• Apr. 25, (4) Continuous functions and WKL0
• Apr. 30, (5) Continuous functions and WKL0, II

• May 9, (6) König’s lemma and Ramsey’s theorem

• May 14, (7) Determinacy of infinite games I

• May 16, (8) Determinacy of infinite games II

• to be continued� �
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Recap

The system of recursive comprehension axioms (RCA0) consists of:

(1) first-order logic with axioms of equality for numbers plus basic arithmetic such as Q<.

(2) ∆0
1 comprehension axiom (∆0

1-CA0): ∀n(φ(n) ↔ ψ(n)) → ∃X∀n(n ∈ X ↔ φ(n)),
where φ(n) is Σ0

1, ψ(n) is Π
0
1, and neither includes X as a free variable.

(3) Σ0
1 induction: φ(0) ∧ ∀n(φ(n) → φ(n+ 1)) → ∀nφ(n), for any Σ0

1 formula φ(n).

The system of arithmetical comprehension axioms (ACA0) is RCA0 plus

(Π1
0 -CA) : ∃X∀n(n ∈ X ↔ φ(n)),

where φ(n) is an arithmetical formula, which does not have X as a free variable.

ACA0 is a conservative extension of Peano Arithmetic PA.(Lemma 3.2)

In RCA0, the following are equivalent (Lemma 3.3)
(1) ACA0, (2) (Σ0

1 -CA), (3) The range of any 1-1 function f : N → N exists.
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WKL0

The system WKL0 is RCA0 plus weak König’s lemma: every infinite tree T ⊂ Seq2 has
an infinite path.

In RCA0, WKL0 is equivalent to (Σ0
1 -SP)(Separation Principle). (Lemma 3.6)

WKL0 is strictly between RCA0 and ACA0. (Lemma 3.7)

Theorem 3.12. The following assertions are pairwise equivalent in RCA0:

(1) WKL0,

(2) A continuous function f : [0, 1] → R is uniformly continuous,

(3) A continuous function f : [0, 1] → R is bounded.

Let A be a non-empty subset of N. Suppose d : A×A→ R is a (pseudo) metric on A.
A sequence {an} from A satisfying ∀n∀i d(an, an+i) ≤ 2−n is called a point of Â, and we
write {an} ∈ Â. Â can be viewed as a complete separable metric space.
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Example 1. If A = Q and d(p, q) = |p− q|, then Â is nothing but R.
Also, if A = Q2 and d((p, q), (p′, q′)) =

√
(p− p′)2 + (q − q′)2, then Â is R2.

Example 2. Given an infinite sequence of spaces Âi, i ∈ N. For simplicity, we assume that
0 ∈ Ai for all i. We then define the product space

∏
i Âi as the completion of (A, d),

A =

∞⋃
m=0

(A0 × · · · ×Am), d(⟨ai : i ≤ m⟩, ⟨bi : i ≤ n⟩ =
∞∑
i=0

di(a
′
i, b

′
i)

1 + di(a′i, b
′
i)

· 1

2i
,

where ⟨a′i : i ∈ N⟩ is ⟨ai : i ≤ m⟩ followed by infinitely many 0’s, and similarly for ⟨b′i⟩.
Then, in RCA0, we can define the Cantor space 2N = {0, 1}N, the Baire space NN, the
Hilbert cube [0, 1]N, a Fréchet space RN, etc.

In a metric space Â, an open ball Br(a) centered at a ∈ A with a rational radius r > 0 is
coded by the pair (a, r)(∈ A×Q+). An open set is a set of codes of open balls.

The code F of a continuous function f from a metric space Â to a metric space B̂ is a
subset of A×Q+ ×B ×Q+, fulfilling conditions similar to those for a continuous function
from R to R, by which

(a, r, b, s) ∈ F means x ∈ Br(a) → f(x) ∈ Bs(b) (closed ball).
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Brouwer’s Fixed-Point Theorem

Brouwer’s Fixed-Point Theorem states that any continuous function f : [0, 1]n → [0, 1]n

has a fixed point, i.e., a point x such that f(x) = x.

Theorem 3.13 (Shioji-T.)

Brouwer’s Fixed-Point Theorem is equivalent to WKL0 over RCA0.

In WKL0, Brouwer’s Fixed-Point Theorem can be extended to the infinite-dimensional
space [0, 1]N(⊆ RN), which is known as the Tychonoff-Schauder fixed-point theorem.

By utilizing this fixed-point theorem, the Cauchy-Peano theorem for the existence of
local solutions to ordinary differential equations can be derived within WKL0, and the
converse is also provable.

Various fixed-point theorems and their applications (e.g., the Hahn-Banach theorem) have
been studied by N. Shioji and K. Tanaka [Fixed point theory in weak second-order
arithmetic Ann. Pure Appl. Logic, 47, 167-188, 1990].
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§4. König’s Lemma and Ramsey’s theorem

We begin with König’s Lemma, not the ”weak” version.

Let Seq denote the set of finite sequences from N, that is, the set of functions with domain
{i ∈ N : i < n} for some n ∈ N.

A subset T of Seq, which is closed under initial segment, is called a tree.

A tree T is said to be finitely branching, if each node s ∈ T has at most finitely many
children, i.e.,

∀s(s ∈ T → ∃n∀m(s∩m ∈ T → m < n))

A subtree of T that never branches is called a path of T .

König’s Lemma asserts that “every infinite, finitely branching tree has an infinite path.”
Weak König’s Lemma is König’s Lemma about special trees consisting of binary sequences.
As we will see, König’s Lemma is equivalent to ACA0, and thus it is properly stronger than
weak König’s Lemma.
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Theorem 4.1

Over RCA0, the following are pairwise equivalent:

(1) ACA0

(2) König’s Lemma

(3) An infinite tree T , such that each node s ∈ T has at most two children s∩m ∈ T
(m ∈ N), has an infinite path.

Note: In the above (3), it is crucial that m such that s∩m ∈ T is not bounded over T . If
m were bounded, the assertion would be equivalent to weak König’s Lemma.

Proof (1) ⇒ (2). Given an infinite finitely branching tree T , let T ′ be the set of s ∈ T
that have an infinitely many descendants t ⊇ s (by (Π1

0-CA)).

Then, using primitive recursion, define a path g in T ′ as follows:

g(0) = empty sequence,

g(n+ 1) = g(n)∩m, where m is the smallest number such that g(n)∩m ∈ T ′.
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(2) ⇒ (3) is trivial. To show (3) ⇒ (1), assume (3) and show the existence of range of a
given 1-1 function f : N → N, which is equivalent to ACA0, by Lemma 3.3.(3).

Define a tree T as follows: s ∈ T ⇔
(a) ∀m,n < leng(s)(f(m) = n↔ s(n) = m+ 1),

(b) ∀n < leng(s)(s(n) > 0 → f(s(n)− 1) = n).

Then, each node t ∈ T has at most two children t∩k ∈ T . This is because letting s = t∩k,
n = leng(s)− 1 in (b), we have k = 0 or k = f−1(n) + 1 if f−1(n) exists.

Next, show that T is infinite. For this, it suffices to show that for any k ∈ N, there exists a
sequence s ∈ T with leng(s) = k. First, by bounded (Σ0

1 -CA), Y = ranf ∩ k, that is,
{n ∈ ranf : n < k} exists. Then, define a sequence s of length k as follows: for n < k,

s(n) =

{
0 if n /∈ Y

m+ 1 if n ∈ Y ∧ f(m) = n

Obviously, s ∈ T . So, T satisfies the conditions of (3).
Now, by (3), the tree T has an infinite path g. From the condition (a) of T ,

∀m,n(f(m) = n↔ g(n) = m+ 1).

Thus, setting X = {n : g(n) > 0}, we have X = ranf . 2
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Ramsey’s Theorem

Ramsey’s Theorem was first invented by F. Ramsey in order to settle Hilbert’s decision
problem for first-order logic, though he only succeeded partially and we have no space to
explain his original motivation and results.

For a set X ⊆ N, we denote by [X]k the set of all sequences (m1, . . . ,mk) of k elements
from X such that m1 < . . . < mk. Somewhat näıvely, (infinite) Ramsey’s theorem RTk

l

states that for a coloring of [N]k into l colors, there exists an infinite subset X ⊆ N such
that [X]k is monochromatic1. More precisely, we state it as follows.

Definition 4.2 (Ramsey’s Theorem)

Let k, l > 0 be natural numbers. Ramsey’s Theorem RTk
l is the following assertion:

∀f : [N]k → {0, 1, . . . , l − 1}∃X ⊆ N(X is infinite ∧ f is constant on [X]k).

1Finite Ramsey’s Theorem, denoted m → (n)kl , is the statement that if [{0, . . . , n− 1}]k is painted in l

colors, there exists a subset X ⊆ {0, . . . , n− 1} of m elements such that [X]k is monochromatic.
The finite version can be derived from the infinite version by the compactness argument.
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For example, RT2
l can be interpreted as follows: If all pairs {m,n} of natural numbers are

painted in l colors, then there always exists an infinite set X such that all pairs of elements
from X are painted the same color. Such an X is called a homogeneous set.

If we consider the statement of painting any finite number of colors, we denote it as RTk,
i.e., RTk ≡ ∀l ∈ N(RTk

l ).

Although RTk
l for any standard natural number l ≥ 2 can be deduced from RTk

2 by
meta-induction in RCA0, the equivalence of RTk to RTk

2 may require Π1
2-induction, since

RTk
l is a Π1

2 formula.

So, we first consider the strength of RT1, which is also known as the (infinite version of )
pigeonhole principle (PHP). For a standard natural number l ≥ 1, RT1

l obviously holds
even in RCA0. The question is how much restricted induction is needed to derive ∀lRT1

l .

Recall: the collection principle (Bφ) for φ(x, y1, · · · , yk) in LOR is as follows

∀x < u∃y1 · · · ∃ykφ(x, y1, · · · , yk) → ∃v∀x < u∃y1 < v · · · ∃yk < vφ(x, y1, · · · , yk).

BΠ0
1 denotes {(Bφ) | φ ∈ Π0

1}. BΠ0
1 is equivalent to BΣ0

2, and IΣ1 ⊊ BΣ2 ⊊ IΣ2.
BΠ0

1 is not provable in WKL0, but obviously provable in ACA0.
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Theorem 4.3 (J. Hirst)

In RCA0, RT
1 is equivalent to BΠ0

1.

Proof. First, we derive BΠ0
1 from RT1. Take a Π0

1 formula ∀zφ(x, y, z) (where φ ∈ Σ0
0),

and assume ∀x < u∃y∀zφ(x, y, z). We want to show ∃v∀x < u∃y < v∀zφ(x, y, z).

Now, consider the Σ0
0 function f : N → N defined as

f(w) = µv < w(∀x < u∃y < v∀z < wφ(x, y, z)).

Here, if no such v exists that the condition holds, we set f(w) = w.

If the range of f is finite, RT1 ensures the existence of an infinite set H where f(w) takes
a constant value v0. Thus, ∀w ∈ H(∀x < u∃y < v0∀z < wφ(x, y, z)), which yields

∀w(∀x < u∃y < v0∀z < wφ(x, y, z)).

From the contrapositive of BΣ0
0, which holds in RCA0,

∀w∃y < v0∀z < wφ(x, y, z) implies ∃y < v0∀zφ(x, y, z).

Therefore, we have ∀x < u∃y < v0∀zφ(x, y, z), which proves BΠ0
1.
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If the range of f is infinite, we choose a monotone increasing sequence {tn} such that
f(tn) < f(tn+1). We first observe that ∀x < u ∃y < f(tn)− 1 ∀z < tn φ(x, y, z). Then,
we define a function g : N → {0, 1, . . . , u− 1} as

g(n) = µx < u∀y < f(tn)− 1 ∃z < tn¬φ(x, y, z).

RT1 ensures the existence of an infinite set H such that g(n) takes a constant value x0.
Since H is infinite, for any y, there exists n ∈ H such that y < f(tn)− 1. Then, we have
∃z < tn¬φ(x0, y, z), which means ∀y∃z¬φ(x0, y, z), contradicting the initial assumption.

Next, we derive RT1 from BΠ0
1. We want to show that for any function

f : N → {0, 1, . . . , u− 1}, there exists an x such that f−1(x) is infinite.

By way of contradiction, assume for all x, f−1(x) is finite, that is,

∀x < u∃y∀z(z > y → f(z) ̸= x).

By BΠ0
1, ∃v∀x < u∃y < v∀z(z > y → f(z) ̸= x), hence ∃v∀x < u∀z > v − 1(f(z) ̸= x),

so ∃v∀x < u(f(v) ̸= x), which is clearly absurd. Thus, the proof is completed. 2
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The above theorem indicates that the strength of RT1 is intermediate between ACA0 and
RCA0, and it is incomparable with WKL0. The strength of RT2 becomes even more
difficult to specify. First, we see the next theorem.

Theorem 4.4

In ACA0, both RT1 and ∀k(RTk → RTk+1) are provable.

Proof RT1 is clear from the above theorem. We now assume RTk, and prove RTk+1.
Let f : [N]k+1 → {0, 1, . . . , l− 1} be a coloring function. We will construct a homogeneous
set X for this f by König’s lemma. We first define a tree T as follows: t ∈ T ⇔
for any n < leng(t), the following holds,

(1) max{t(m) : m < n} < t(n),

(2) For any m1 < . . . < mk < m < n,

f(t(m1), . . . , t(mk),m) = f(t(m1), . . . , t(mk), t(n)),

(3) If max{t(m) : m < n} < j < t(n) then there exists m1 < . . . < mk < n such that,

f(t(m1), . . . , t(mk), j) ̸= f(t(m1), . . . , t(mk), t(n)).

This tree T is called the Erdős–Rado tree.
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First, we show that T is a finitely branching tree. Choose a node t ∈ T with leng(t) = n.

For j > t(n− 1), define a function f̂j : [0, . . . , n− 1]k → {0, . . . , l − 1} by

f̂j(m1, . . . ,mk) = f(t(m1), . . . , t(mk), j).

Then, for j ̸= j′ such that t∩j ∈ T and t∩j′ ∈ T , we can show that f̂j ̸= f̂j′ as follows.
If t(n− 1) < j < j′, then by condition (3) (with t(n) = j′), we have fj ̸= fj′ . The same
applies to the case t(n− 1) < j′ < j.

The number of functions from [0, · · · , n− 1]k to {0, · · · , l − 1} is finite. This implies
t∩j ∈ T for only a finite number of j.

Next, to assert that T is infinite, we show that any j ∈ N appears in some sequence s in T .

So, fix j and take a longest element t of T satisfying the following conditions:

(1◦) max{t(m) : m < leng(t)} < j,

(2◦) For any m1 < . . . < mk < m < leng(t),

f(t(m1), . . . , t(mk),m) = f(t(m1), . . . , t(mk), j),
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The empty sequence satisfies conditions (1◦), (2◦), and T has at most j! elements that
satisfies condition (1◦), hence there exists a longest sequence t satisfying these conditions.

Let t′ = t∩j. We will show t′ ∈ T . First, we can easily see that t′ satisfies conditions (1)
and (2), since t satisfies conditions (1◦) and (2◦), respectively.

By way of contradiction, we assume that t′ does not satisfy condition (3).
Let n = leng(t). Then, there exists j′ < j such that max{t(m) : m < n} < j′ and for any
m1 < . . . < mk < n,

f(t(m1), . . . , t(mk), j
′) = f(t(m1), . . . , t(mk), j).

Choosing j′ as the smallest such number, then t∩j′ belongs to the tree T . Furthermore,
t∩j′ also satisfies conditions (1◦), (2◦), which contradicts the maximal length of t.
Therefore, T is an infinite set.
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Thus, the Erdős–Rado tree T is an infinite finitely branching tree, and by König’s lemma, it
has an infinite path g.

First note that g is a monotone increasing function (m < n→ g(m) < g(n)) from (1).

Now, define a function f̂ : Nk → {0, . . . , l − 1} as follows:

f̂(m1, . . . ,mk) = f(g(m1), . . . , g(mk), g(m)),

where m1 < . . . < mk < m. This definition does not depend on the choice of m, which is
ensured by condition (2).

Using the assumption RTk, we can find an infinite homogeneous set X ′ for f̂ .
Finally, setting X = {g(m) : m ∈ X ′}, it is clear that X becomes an infinite homogeneous
set for f . 2
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Since RTk is a Π1
2 statement, the theorem above does not allow us to derive ∀k RTk within

induction of ACA0. Paris and Harrington formulated a proposition PH in the language of
first-order arithmetic to express something like ∀k RTk, and proved that PH is independent
from PA.

Lemma 4.5

Within RCA0, ACA0 can be derived from RT3
2.

Proof Assuming RT3
2, we prove (Σ0

1 -CA). Let φ(m) be any Σ0
1 formula ∃nθ(m,n) with

θ(m,n) ∈ Σ0
0.

Now, define a 2-color function f : N3 → {0, 1} as follows:

f(a, b, c) =

{
1 if ∀m < a(∃n < c θ(m,n) → ∃n < b θ(m,n))
0 otherwise

This definition is Σ0
0 and the existence of function f is assured within RCA0.
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By RT3
2, there exists an infinite homogeneous set X for f . Then, the value of f on [X]3 is

either always 1 or always 0.

By contradiction, we show that it cannot be always 0. Select any element a from X, and
choose a+ 2 elements from X larger than a, denoted as a < b0 < b1 < . . . < ba+1.
For each i < a+ 1, since f(a, bi, bi+1) = 0, there exists some m < a such that
∃n < bi+1θ(m,n) and ¬∃n < biθ(m,n). Let mi+1 be the smallest such m.

If i < j, then ∃n < bjθ(mi+1, n) since ∃n < bi+1θ(mi+1, n). Then, mi+1 ̸= mj+1 since
¬∃n < bjθ(mj+1, n). Namely, if i ̸= j, then mi+1 ̸= mj+1.

However, there are only a elements less than a, so m1, . . . ,ma+1 cannot be all distinct.
Thus, f cannot always take the value 0.
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Therefore, for any (a, b, c) ∈ [X]3, it holds that ∀m < a(∃n < cθ(m,n) → ∃n < bθ(m,n)).

Since c can be arbitrarily large, we finally have ∀m < a(∃nθ(m,n) → ∃n < bθ(m,n)).
Consequently, we have

∃nθ(m,n) ↔ ∀a∀b((a ∈ X ∧ b ∈ X ∧m < a < b) → ∃n < bθ(m,n)).

The above shows that ∃nθ(m,n) is ∆0
1. Hence, from (∆0

1 -CA), there exists a set Y such
that ∀m(m ∈ Y ↔ φ(m)).

2

Theorem 4.6

For any standard natural numbers k ≥ 3, l ≥ 2, RTk
l , RT

k, and ACA0 are equivalent
within RCA0.

Proof This follows immediately from Theorem4.4 and Lemma4.5. 2

Finally, concerning RT2 and RT2
2, it is known that both are between ACA0 and RCA0, and

are incomparable with WKL0. Within RCA0, RT
2 implies BΠ0

2, but RT
2
2 does not. The

intricate web of propositions between ACA0 and RCA0 is displayed as the ”Reverse
Mathematics Zoo” on websites such as that of Damir Dzhafarov.
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Thank you for your attention!
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