K. Tanaka

König's Lemm and Ramsey's theorem

Logic and Foundations II Part 7. Real Anasis and Reverse Mathematics

Kazuyuki Tanaka

BIMSA

May 9, 2024

K. Tanaka

König's Lemma and Ramsey's theorem - Logic and Foundations II

- Part 5. Models of first-order arithmetic (continued) (5 lectures)
- Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)
- Part 7. Theory of reals and reverse mathematics (9 lectures?)
- Part 8. Second order arithmetic and non-standard methods (6 lectures?)

- Part 7. Schedule

- Apr. 16, (1) Introduction and the base system RCA_0
- Apr. 18, (2) Defining real numbers in RCA_0
- Apr. 23, (3) Completeness of the reals and ACA_0
- Apr. 25, (4) Continuous functions and WKL_0
- Apr. 30, (5) Continuous functions and WKL $_0$, II
- May 9, (6) König's lemma and Ramsey's theorem
- May 14, (7) Determinacy of infinite games I
- May 16, (8) Determinacy of infinite games II
- to be continued

K. Tanaka

König's Lemma and Ramsey's theorem

The system of **recursive comprehension axioms** (RCA₀) consists of:

- (1) first-order logic with axioms of equality for numbers plus basic arithmetic such as ${\sf Q}_{<}.$
- (2) Δ_1^0 comprehension axiom (Δ_1^0 -CA₀): $\forall n(\varphi(n) \leftrightarrow \psi(n)) \rightarrow \exists X \forall n(n \in X \leftrightarrow \varphi(n)),$ where $\varphi(n)$ is Σ_1^0 , $\psi(n)$ is Π_1^0 , and neither includes X as a free variable.
- (3) Σ_1^0 induction: $\varphi(0) \land \forall n(\varphi(n) \to \varphi(n+1)) \to \forall n\varphi(n)$, for any Σ_1^0 formula $\varphi(n)$.

The system of arithmetical comprehension axioms (ACA₀) is RCA₀ plus

$$(\Pi_0^1 \operatorname{\mathsf{-CA}}) : \exists X \forall n (n \in X \leftrightarrow \varphi(n)),$$

where $\varphi(n)$ is an arithmetical formula, which does not have X as a free variable. ACA₀ is a conservative extension of Peano Arithmetic PA.(Lemma 3.2) In RCA₀, the following are equivalent (Lemma 3.3) (1) ACA₀, (2) (Σ_1^0 -CA), (3) The range of any 1-1 function $f : \mathbb{N} \to \mathbb{N}$ exists.

Recap

K. Tanaka

König's Lemma and Ramsey's theorem

The system WKL_0 is RCA_0 plus weak König's lemma: every infinite tree $T \subset Seq_2$ has an infinite path.

In RCA₀, WKL₀ is equivalent to $(\Sigma_1^0$ -SP)(Separation Principle). (Lemma 3.6) WKL₀ is strictly between RCA₀ and ACA₀. (Lemma 3.7)

Theorem 3.12. The following assertions are pairwise equivalent in RCA₀: (1) WKL₀,

- (2) A continuous function $f:[0,1] \to \mathbb{R}$ is uniformly continuous,
- (3) A continuous function $f:[0,1] \to \mathbb{R}$ is bounded.

Let A be a non-empty subset of \mathbb{N} . Suppose $d: A \times A \to \mathbb{R}$ is a (pseudo) metric on A. A sequence $\{a_n\}$ from A satisfying $\forall n \forall i \ d(a_n, a_{n+i}) \leq 2^{-n}$ is called a point of \hat{A} , and we write $\{a_n\} \in \hat{A}$. \hat{A} can be viewed as a complete separable metric space.

WKL₀

K. Tanaka

König's Lemma and Ramsey's theorem **Example 1.** If $A = \mathbb{Q}$ and d(p,q) = |p-q|, then \hat{A} is nothing but \mathbb{R} . Also, if $A = \mathbb{Q}^2$ and $d((p,q), (p',q')) = \sqrt{(p-p')^2 + (q-q')^2}$, then \hat{A} is \mathbb{R}^2 .

Example 2. Given an infinite sequence of spaces \hat{A}_i , $i \in \mathbb{N}$. For simplicity, we assume that $0 \in A_i$ for all i. We then define the product space $\prod_i \hat{A}_i$ as the completion of (A, d),

$$A = \bigcup_{m=0}^{\infty} (A_0 \times \dots \times A_m), \quad d(\langle a_i : i \le m \rangle, \langle b_i : i \le n \rangle = \sum_{i=0}^{\infty} \frac{d_i(a'_i, b'_i)}{1 + d_i(a'_i, b'_i)} \cdot \frac{1}{2^i}$$

where $\langle a'_i : i \in \mathbb{N} \rangle$ is $\langle a_i : i \leq m \rangle$ followed by infinitely many 0's, and similarly for $\langle b'_i \rangle$. Then, in RCA₀, we can define the Cantor space $2^{\mathbb{N}} = \{0,1\}^{\mathbb{N}}$, the Baire space $\mathbb{N}^{\mathbb{N}}$, the Hilbert cube $[0,1]^{\mathbb{N}}$, a Fréchet space $\mathbb{R}^{\mathbb{N}}$, etc.

In a metric space \hat{A} , an **open ball** $B_r(a)$ centered at $a \in A$ with a rational radius r > 0 is coded by the pair $(a, r) (\in A \times \mathbb{Q}^+)$. An **open set** is a set of codes of open balls. The code F of a **continuous function** f from a metric space \hat{A} to a metric space \hat{B} is a

subset of $A \times \mathbb{Q}^+ \times B \times \mathbb{Q}^+$, fulfilling conditions similar to those for a continuous function from \mathbb{R} to \mathbb{R} , by which

 $(a,r,b,s) \in F$ means $x \in B_r(a) \to f(x) \in \overline{B_s(b)}$ (closed ball).

K. Tanaka

König's Lemma and Ramsey's theorem

Brouwer's Fixed-Point Theorem

Brouwer's Fixed-Point Theorem states that any continuous function $f : [0,1]^n \to [0,1]^n$ has a fixed point, i.e., a point x such that f(x) = x.

Theorem 3.13 (Shioji-T.)

Brouwer's Fixed-Point Theorem is equivalent to WKL_0 over RCA_0 .

In WKL₀, Brouwer's Fixed-Point Theorem can be extended to the infinite-dimensional space $[0,1]^{\mathbb{N}} (\subseteq \mathbb{R}^{\mathbb{N}})$, which is known as the **Tychonoff-Schauder fixed-point theorem**.

By utilizing this fixed-point theorem, the **Cauchy-Peano theorem** for the existence of local solutions to ordinary differential equations can be derived within WKL_0 , and the converse is also provable.

Various fixed-point theorems and their applications (e.g., the Hahn-Banach theorem) have been studied by N. Shioji and K. Tanaka [Fixed point theory in weak second-order arithmetic *Ann. Pure Appl. Logic*, 47, 167-188, 1990].

K. Tanaka

König's Lemma and Ramsey's theorem

\$4. König's Lemma and Ramsey's theorem

We begin with König's Lemma, not the "weak" version.

Let Seq denote the set of finite sequences from \mathbb{N} , that is, the set of functions with domain $\{i \in \mathbb{N} : i < n\}$ for some $n \in \mathbb{N}$.

A subset T of Seq, which is closed under initial segment, is called a **tree**.

A tree T is said to be **finitely branching**, if each node $s \in T$ has at most finitely many children, i.e.,

$$\forall s (s \in T \to \exists n \forall m (s^{\cap} m \in T \to m < n))$$

A subtree of T that never branches is called a **path** of T.

König's Lemma asserts that "every infinite, finitely branching tree has an infinite path." Weak König's Lemma is König's Lemma about special trees consisting of binary sequences. As we will see, König's Lemma is equivalent to ACA₀, and thus it is properly stronger than weak König's Lemma.

K. Tanaka

König's Lemma and Ramsey's theorem

Theorem 4.1

Over RCA_0 , the following are pairwise equivalent:

- (1) ACA_0
- (2) König's Lemma
- (3) An infinite tree T, such that each node $s \in T$ has at most two children $s^{\cap}m \in T$ $(m \in \mathbb{N})$, has an infinite path.

Note: In the above (3), it is crucial that m such that $s^{\cap}m \in T$ is not bounded over T. If m were bounded, the assertion would be equivalent to weak König's Lemma.

Proof (1) \Rightarrow (2). Given an infinite finitely branching tree T, let T' be the set of $s \in T$ that have an infinitely many descendants $t \supseteq s$ (by (Π_0^1 -CA)).

Then, using primitive recursion, define a path g in T' as follows:

g(0) = empty sequence,

 $g(n+1)=g(n)^{\cap}m, \text{ where }m \text{ is the smallest number such that }g(n)^{\cap}m\in T'.$

K. Tanaka

König's Lemma and Ramsey's theorem $(2) \Rightarrow (3)$ is trivial. To show $(3) \Rightarrow (1)$, assume (3) and show the existence of range of a given 1-1 function $f : \mathbb{N} \to \mathbb{N}$, which is equivalent to ACA₀, by Lemma 3.3.(3). Define a tree T as follows: $s \in T \Leftrightarrow$

(a)
$$\forall m, n < \text{leng}(s)(f(m) = n \leftrightarrow s(n) = m + 1),$$

(b) $\forall n < \text{leng}(s)(s(n) > 0 \rightarrow f(s(n) - 1) = n).$

Then, each node $t \in T$ has at most two children $t^{\cap}k \in T$. This is because letting $s = t^{\cap}k$, n = leng(s) - 1 in (b), we have k = 0 or $k = f^{-1}(n) + 1$ if $f^{-1}(n)$ exists.

Next, show that T is infinite. For this, it suffices to show that for any $k \in \mathbb{N}$, there exists a sequence $s \in T$ with leng(s) = k. First, by bounded $(\Sigma_1^0 \text{-CA})$, $Y = \text{ran} f \cap k$, that is, $\{n \in \text{ran} f : n < k\}$ exists. Then, define a sequence s of length k as follows: for n < k,

$$s(n) = \begin{cases} 0 & \text{if } n \notin Y \\ m+1 & \text{if } n \in Y \land f(m) = n \end{cases}$$

Obviously, $s \in T$. So, T satisfies the conditions of (3). Now, by (3), the tree T has an infinite path g. From the condition (a) of T,

$$\forall m, n(f(m) = n \leftrightarrow g(n) = m + 1).$$

Thus, setting $X = \{n : g(n) > 0\}$, we have $X = \operatorname{ran} f$.

K. Tanaka

König's Lemma and Ramsey's theorem

Ramsey's Theorem

Ramsey's Theorem was first invented by F. Ramsey in order to settle Hilbert's decision problem for first-order logic, though he only succeeded partially and we have no space to explain his original motivation and results.

For a set $X \subseteq \mathbb{N}$, we denote by $[X]^k$ the set of all sequences (m_1, \ldots, m_k) of k elements from X such that $m_1 < \ldots < m_k$. Somewhat naïvely, (infinite) Ramsey's theorem RT_l^k states that for a coloring of $[\mathbb{N}]^k$ into l colors, there exists an infinite subset $X \subseteq \mathbb{N}$ such that $[X]^k$ is monochromatic¹. More precisely, we state it as follows.

Definition 4.2 (Ramsey's Theorem)

Let k, l > 0 be natural numbers. Ramsey's Theorem RT_l^k is the following assertion:

 $\forall f: [\mathbb{N}]^k \to \{0, 1, \dots, l-1\} \exists X \subseteq \mathbb{N}(X \text{ is infinite } \land f \text{ is constant on } [X]^k).$

¹Finite Ramsey's Theorem, denoted $m \to (n)_l^k$, is the statement that if $[\{0, \ldots, n-1\}]^k$ is painted in l colors, there exists a subset $X \subseteq \{0, \ldots, n-1\}$ of m elements such that $[X]^k$ is monochromatic. The finite version can be derived from the infinite version by the compactness argument.

K. Tanaka

König's Lemma and Ramsey's theorem For example, RT_l^2 can be interpreted as follows: If all pairs $\{m, n\}$ of natural numbers are painted in l colors, then there always exists an infinite set X such that all pairs of elements from X are painted the same color. Such an X is called a **homogeneous** set.

If we consider the statement of painting any finite number of colors, we denote it as RT^k , i.e., $\mathsf{RT}^k \equiv \forall l \in \mathbb{N}(\mathsf{RT}_l^k)$.

Although RT_l^k for any standard natural number $l \ge 2$ can be deduced from RT_2^k by meta-induction in RCA_0 , the equivalence of RT^k to RT_2^k may require Π_2^1 -induction, since RT_l^k is a Π_2^1 formula.

So, we first consider the strength of RT^1 , which is also known as the (infinite version of) **pigeonhole principle** (PHP). For a standard natural number $l \ge 1$, RT_l^1 obviously holds even in RCA₀. The question is how much restricted induction is needed to derive $\forall l RT_l^1$.

Recall: the collection principle (B φ) for $\varphi(x,y_1,\cdots,y_k)$ in $\mathcal{L}_{\mathsf{O}R}$ is as follows

$$\forall x < u \exists y_1 \cdots \exists y_k \varphi(x, y_1, \cdots, y_k) \to \exists v \forall x < u \exists y_1 < v \cdots \exists y_k < v \varphi(x, y_1, \cdots, y_k).$$

 $\mathsf{B}\Pi_1^0$ denotes $\{(\mathsf{B}\varphi) \mid \varphi \in \Pi_1^0\}$. $\mathsf{B}\Pi_1^0$ is equivalent to $\mathsf{B}\Sigma_2^0$, and $\mathsf{I}\Sigma_1 \subsetneq \mathsf{B}\Sigma_2 \subsetneq \mathsf{I}\Sigma_2$. $\mathsf{B}\Pi_1^0$ is not provable in WKL₀, but obviously provable in ACA₀.

K. Tanaka

König's Lemma and Ramsey's theorem

Theorem 4.3 (J. Hirst)

In RCA₀, RT¹ is equivalent to B Π_1^0 .

Proof. First, we derive $B\Pi_1^0$ from RT^1 . Take a Π_1^0 formula $\forall z\varphi(x, y, z)$ (where $\varphi \in \Sigma_0^0$), and assume $\forall x < u \exists y \forall z\varphi(x, y, z)$. We want to show $\exists v \forall x < u \exists y < v \forall z\varphi(x, y, z)$.

Now, consider the Σ^0_0 function $f:\mathbb{N}\to\mathbb{N}$ defined as

$$f(w) = \mu v < w(\forall x < u \exists y < v \forall z < w \varphi(x, y, z)).$$

Here, if no such v exists that the condition holds, we set f(w) = w.

If the range of f is finite, RT^1 ensures the existence of an infinite set H where f(w) takes a constant value v_0 . Thus, $\forall w \in H(\forall x < u \exists y < v_0 \forall z < w \varphi(x, y, z))$, which yields

$$\forall w (\forall x < u \exists y < v_0 \forall z < w \varphi(x, y, z)).$$

From the contrapositive of $B\Sigma_0^0$, which holds in RCA₀,

 $\forall w \exists y < v_0 \forall z < w \varphi(x, y, z) \text{ implies } \exists y < v_0 \forall z \varphi(x, y, z).$

Therefore, we have $\forall x < u \exists y < v_0 \forall z \varphi(x, y, z)$, which proves $\mathsf{B}\Pi^0_1$.

K. Tanaka

König's Lemma and Ramsey's theorem If the range of f is infinite, we choose a monotone increasing sequence $\{t_n\}$ such that $f(t_n) < f(t_{n+1})$. We first observe that $\forall x < u \ \exists y < f(t_n) - 1 \ \forall z < t_n \ \varphi(x, y, z)$. Then, we define a function $g : \mathbb{N} \to \{0, 1, \dots, u-1\}$ as

$$g(n) = \mu x < u \forall y < f(t_n) - 1 \ \exists z < t_n \neg \varphi(x, y, z).$$

RT¹ ensures the existence of an infinite set H such that g(n) takes a constant value x_0 . Since H is infinite, for any y, there exists $n \in H$ such that $y < f(t_n) - 1$. Then, we have $\exists z < t_n \neg \varphi(x_0, y, z)$, which means $\forall y \exists z \neg \varphi(x_0, y, z)$, contradicting the initial assumption.

Next, we derive RT^1 from $\mathsf{B}\Pi^0_1$. We want to show that for any function $f: \mathbb{N} \to \{0, 1, \dots, u-1\}$, there exists an x such that $f^{-1}(x)$ is infinite.

By way of contradiction, assume for all x, $f^{-1}(x)$ is finite, that is,

$$\forall x < u \exists y \forall z (z > y \to f(z) \neq x).$$

By BII⁰₁, $\exists v \forall x < u \exists y < v \forall z (z > y \rightarrow f(z) \neq x)$, hence $\exists v \forall x < u \forall z > v - 1(f(z) \neq x)$, so $\exists v \forall x < u (f(v) \neq x)$, which is clearly absurd. Thus, the proof is completed.

K. Tanaka

König's Lemma and Ramsey's theorem The above theorem indicates that the strength of RT^1 is intermediate between ACA₀ and RCA₀, and it is incomparable with WKL₀. The strength of RT^2 becomes even more difficult to specify. First, we see the next theorem.

Theorem 4.4

In ACA₀, both RT^1 and $\forall k(\mathsf{RT}^k \to \mathsf{RT}^{k+1})$ are provable.

Proof RT^1 is clear from the above theorem. We now assume RT^k , and prove RT^{k+1} . Let $f : [\mathbb{N}]^{k+1} \to \{0, 1, \dots, l-1\}$ be a coloring function. We will construct a homogeneous set X for this f by König's lemma. We first define a tree T as follows: $t \in T \Leftrightarrow$ for any n < leng(t), the following holds,

(1)
$$\max\{t(m) : m < n\} < t(n),$$

(2) For any
$$m_1 < \ldots < m_k < m < n$$
,

$$f(t(m_1), \ldots, t(m_k), m) = f(t(m_1), \ldots, t(m_k), t(n)),$$

(3) If $\max\{t(m) : m < n\} < j < t(n)$ then there exists $m_1 < \ldots < m_k < n$ such that,

$$f(t(m_1), \ldots, t(m_k), j) \neq f(t(m_1), \ldots, t(m_k), t(n)).$$

This tree T is called the **Erdős–Rado tree**.

K. Tanaka

König's Lemma and Ramsey's theorem First, we show that T is a finitely branching tree. Choose a node $t \in T$ with leng(t) = n. For j > t(n-1), define a function $\hat{f}_j : [0, \ldots, n-1]^k \to \{0, \ldots, l-1\}$ by

$$\hat{f}_j(m_1, \dots, m_k) = f(t(m_1), \dots, t(m_k), j).$$

Then, for $j \neq j'$ such that $t^{\cap}j \in T$ and $t^{\cap}j' \in T$, we can show that $\hat{f}_j \neq \hat{f}_{j'}$ as follows. If t(n-1) < j < j', then by condition (3) (with t(n) = j'), we have $f_j \neq f_{j'}$. The same applies to the case t(n-1) < j' < j.

The number of functions from $[0, \dots, n-1]^k$ to $\{0, \dots, l-1\}$ is finite. This implies $t^{\cap}j \in T$ for only a finite number of j.

Next, to assert that T is infinite, we show that any $j \in \mathbb{N}$ appears in some sequence s in T.

So, fix j and take a longest element t of T satisfying the following conditions: (1°) max{t(m) : m < leng(t)} < j, (2°) For any $m_1 < \ldots < m_k < m < leng(t)$,

 $f(t(m_1), \ldots, t(m_k), m) = f(t(m_1), \ldots, t(m_k), j),$

K. Tanaka

König's Lemma and Ramsey's theorem The empty sequence satisfies conditions (1°) , (2°) , and T has at most j! elements that satisfies condition (1°) , hence there exists a longest sequence t satisfying these conditions.

Let $t' = t^{\cap} j$. We will show $t' \in T$. First, we can easily see that t' satisfies conditions (1) and (2), since t satisfies conditions (1°) and (2°), respectively.

By way of contradiction, we assume that t' does not satisfy condition (3). Let n = leng(t). Then, there exists j' < j such that $\max\{t(m) : m < n\} < j'$ and for any $m_1 < \ldots < m_k < n$,

$$f(t(m_1), \ldots, t(m_k), j') = f(t(m_1), \ldots, t(m_k), j).$$

Choosing j' as the smallest such number, then $t^{\cap}j'$ belongs to the tree T. Furthermore, $t^{\cap}j'$ also satisfies conditions (1°), (2°), which contradicts the maximal length of t. Therefore, T is an infinite set.

K. Tanaka

König's Lemma and Ramsey's theorem Thus, the Erdős–Rado tree T is an infinite finitely branching tree, and by König's lemma, it has an infinite path g.

First note that g is a monotone increasing function $(m < n \rightarrow g(m) < g(n))$ from (1).

Now, define a function $\widehat{f}:\mathbb{N}^k\to\{0,\ldots,l-1\}$ as follows:

$$\hat{f}(m_1,\ldots,m_k) = f(g(m_1),\ldots,g(m_k),g(m)),$$

where $m_1 < \ldots < m_k < m$. This definition does not depend on the choice of m, which is ensured by condition (2).

Using the assumption RT^k , we can find an infinite homogeneous set X' for \hat{f} . Finally, setting $X = \{g(m) : m \in X'\}$, it is clear that X becomes an infinite homogeneous set for f.

K. Tanaka

König's Lemma and Ramsey's theorem Since RT^k is a Π_2^1 statement, the theorem above does not allow us to derive $\forall k RT^k$ within induction of ACA₀. Paris and Harrington formulated a proposition PH in the language of first-order arithmetic to express something like $\forall k RT^k$, and proved that PH is independent from PA.

Lemma 4.5

Within RCA₀, ACA₀ can be derived from RT_2^3 .

Proof Assuming RT_2^3 , we prove $(\Sigma_1^0 \operatorname{-CA})$. Let $\varphi(m)$ be any Σ_1^0 formula $\exists n\theta(m,n)$ with $\theta(m,n) \in \Sigma_0^0$.

Now, define a 2-color function $f: \mathbb{N}^3 \to \{0, 1\}$ as follows:

$$f(a, b, c) = \begin{cases} 1 & \text{if } \forall m < a(\exists n < c \ \theta(m, n) \to \exists n < b \ \theta(m, n)) \\ 0 & \text{otherwise} \end{cases}$$

This definition is Σ_0^0 and the existence of function f is assured within RCA₀.

K. Tanaka

König's Lemma and Ramsey's theorem By RT_2^3 , there exists an infinite homogeneous set X for f. Then, the value of f on $[X]^3$ is either always 1 or always 0.

By contradiction, we show that it cannot be always 0. Select any element a from X, and choose a + 2 elements from X larger than a, denoted as $a < b_0 < b_1 < \ldots < b_{a+1}$. For each i < a + 1, since $f(a, b_i, b_{i+1}) = 0$, there exists some m < a such that $\exists n < b_{i+1}\theta(m, n)$ and $\neg \exists n < b_i\theta(m, n)$. Let m_{i+1} be the smallest such m.

If i < j, then $\exists n < b_j \theta(m_{i+1}, n)$ since $\exists n < b_{i+1} \theta(m_{i+1}, n)$. Then, $m_{i+1} \neq m_{j+1}$ since $\neg \exists n < b_j \theta(m_{j+1}, n)$. Namely, if $i \neq j$, then $m_{i+1} \neq m_{j+1}$.

However, there are only a elements less than a, so m_1, \ldots, m_{a+1} cannot be all distinct. Thus, f cannot always take the value 0.

K. Tanaka

König's Lemma and Ramsey's theorem Therefore, for any $(a, b, c) \in [X]^3$, it holds that $\forall m < a(\exists n < c\theta(m, n) \rightarrow \exists n < b\theta(m, n))$. Since c can be arbitrarily large, we finally have $\forall m < a(\exists n\theta(m, n) \rightarrow \exists n < b\theta(m, n))$. Consequently, we have

$$\exists n\theta(m,n) \leftrightarrow \forall a \forall b ((a \in X \land b \in X \land m < a < b) \rightarrow \exists n < b\theta(m,n)).$$

The above shows that $\exists n\theta(m,n)$ is Δ_1^0 . Hence, from $(\Delta_1^0$ -CA), there exists a set Y such that $\forall m(m \in Y \leftrightarrow \varphi(m))$.

Theorem 4.6

For any standard natural numbers $k \ge 3$, $l \ge 2$, RT_l^k , RT^k , and ACA_0 are equivalent within RCA_0 .

Proof This follows immediately from Theorem4.4 and Lemma4.5.

Finally, concerning RT^2 and RT_2^2 , it is known that both are between ACA₀ and RCA₀, and are incomparable with WKL₀. Within RCA₀, RT^2 implies $B\Pi_2^0$, but RT_2^2 does not. The intricate web of propositions between ACA₀ and RCA₀ is displayed as the "Reverse Mathematics Zoo" on websites such as that of Damir Dzhafarov.

K. Tanaka

König's Lemma and Ramsey's theorem

Thank you for your attention!