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Logic and Foundations II� �
• Part 5. Models of first-order arithmetic (continued) (5 lectures)

• Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)

• Part 7. Theory of reals and reverse mathematics (9 lectures?)

• Part 8. Second order arithmetic and non-standard methods (6 lectures?)� �
Part 7. Schedule� �
• Apr. 16, (1) Introduction and the base system RCA0

• Apr. 18, (2) Defining real numbers in RCA0

• Apr. 23, (3) Completeness of the reals and ACA0

• Apr. 25, (4) Continuous functions and WKL0
• Apr. 30, (5) Continuous functions and WKL0, II

• May 9, (6) König’s lemma and Ramsey’s theorem

• May 14, (7) Determinacy of infinite games I

• May 16, (8) Determinacy of infinite games II

• to be continued� �
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Recap

Reverse Mathematics: Which axioms are needed to prove a theorem?

The Reverse Mathematics Phenomenon� �
Many theorems of mathematics are either provable in RCA0, or logically equivalent
(over RCA0) to one of WKL0, ACA0, ATR0, Π

1
1-CA0.� �

Definition 1.2 The system of recursive comprehension axioms (RCA0) consists of:

(0) Axioms and inference rules of first-order logic with axioms of equality for numbers.

(1) Basic arithmetic axioms: Same as Q< (Chapter 4).

(2) ∆0
1 comprehension axiom (∆0

1-CA0): ∀n(φ(n) ↔ ψ(n)) → ∃X∀n(n ∈ X ↔ φ(n)),
where φ(n) is Σ0

1, ψ(n) is Π
0
1, and neither includes X as a free variable.

(3) Σ0
1 induction: φ(0) ∧ ∀n(φ(n) → φ(n+ 1)) → ∀nφ(n), for any Σ0

1 formula φ(n).
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ACA0
The system of arithmetical comprehension axioms (ACA0) is RCA0 plus

(Π1
0 -CA) : ∃X∀n(n ∈ X ↔ φ(n)),

where φ(n) is an arithmetical formula, which does not have X as a free variable.

ACA0 is a conservative extension of Peano Arithmetic PA.(Lemma 3.2)

In RCA0, the following are equivalent (Lemma 3.3)
(1) ACA0, (2) (Σ0

1 -CA), (3) The range of any 1-1 function f : N → N exists.

Theorem 3.4

The followings are pairwise equivalent over RCA0.

(1) ACA0,

(2) The Bolzano-Weierstrass theorem: Every bounded sequence of real numbers has a
convergent subsequence,

(3) Every Cauchy sequence converges,

(4) Every bounded sequence of real numbers has a supremum,

(5) The monotone convergence theorem: Every bounded increasing sequence converges.
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WKL0

Definition 3.5

Weak König’s lemma is the statement that every infinite tree T ⊂ Seq2 has an infinite
path. The system WKL0 is RCA0 plus weak König’s lemma.

• In RCA0, WKL0 is equivalent to (Σ0
1 -SP)(Separation Principle). (Lemma 3.6)

• WKL0 is strictly stronger than RCA0. (Lemma 3.7)

• ACA0 is strictly stronger than WKL0.

• Heine-Borel (Covering) Theorem states that if an open set U covers the closed
interval [0, 1], then there exists a finite subset U ′ of U that also covers [0, 1].

Theorem 3.9

In RCA0, the Heine-Borel Theorem is equivalent to WKL0.
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The Heine-Borel property of [0, 1] allows us to derive various properties of continuous
functions f : [0, 1] → R.

Lemma 3.10

In WKL0, a continuous function f : [0, 1] → R is uniformly continuous.

Proof Fix any n ∈ N. We want to show the existence of d > 0 such that

∀x, y ∈ [0, 1](| x− y |< d→| f(x)− f(y) |< 2−n).

Let F be the code for the continuous function f , and denote the open interval with code i
as (pi, qi). Then, define the open set U as follows:

i ∈ U ⇔ ∃j < i((pi, qi, pj , qj) ∈ F ∧ qj − pj < 2−n−1).

First, we show that U is a covering of [0, 1]. For any real number x ∈ [0, 1], since
x ∈ domf , there exists (pk, qk, pj , qj) ∈ F , such that

pk < x < qk ∧ qj − pj < 2−n−1.

Furthermore, there are infinitely many i such that pk ≤ pi < x < qi ≤ qk, so taking such
an i > j, we have i ∈ U with pi < x < qi. Therefore, U forms an open covering of [0, 1].
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By the Heine-Borel Theorem, U has a finite subcover U ′.

Let d be the minimum width qi − pi among the intervals (pi, qi) in U
′. We shall show that

this d satisfies the uniform convergence condition.

Now, choose any real numbers x, y ∈ [0, 1] such that | x− y |< d. Then, there must exist
intervals (pi, qi), (pi′ , qi′) in U

′ such that x ∈ (pi, qi), y ∈ (pi′ , qi′) and they have a
common point z.

Otherwise, take an interval (pi, qi) ∋ x in U ′ with maximum qi, and an interval
(pi′ , qi′) ∋ y in U ′ with minimum pi′ . If there is no common point, qi < pi′ . Since U

′ is a
covering, there exists qi ∈ (pk, qk) in U

′. By the maximality of qi, x /∈ (pk, qk). From
|qk − pk| ≥ d > |x− y|, we have y ∈ (pk, qk), which contradicts with the minimality of pi′ .

By the definition of U , we have | f(x)− f(z) |< 2−n−1 and | f(y)− f(z) |< 2−n−1, thus
| f(x)− f(y) |< 2−n, which fulfills the lemma. 2
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Lemma 3.11

In WKL0, a continuous function f : [0, 1] → R attains a maximum value.

Proof First, we show that the supremum M of the range of f exists.

As in the proof of the previous lemma, we define U by a Σ0
0 formula:

i ∈ U ⇔ ∃j < i((pi, qi, pj , qj) ∈ F ∧ qj − pj < 2−n−1).

We can finitely calculate whether or not a given finite set of open rational intervals covers
[0, 1]. Therefore, by arranging all finite subsets of U and checking sequentially whether
they cover [0, 1], we eventually obtain a finite subcover U ′. That is, in WKL0, we can
construct a function extracting U ′ according to n.

For each i ∈ U ′, select ji < i such that (pi, qi, pji , qji) ∈ F ∧ qji − pji < 2−n−1, and let
Mn = max{qji : i ∈ U ′}. Then, {Mn} itself is a real number, and it is clear that it is the
supremum M of the range of f .
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What remains is to show that the existence of a point x = a such that f(a) =M . For the
sake of the following argument, we redefine Mn = max{pji : i ∈ U ′}. This ensures that for
any n, Mn ≤M = {Mn}.
By way of contradiction, assume that f(x) < M for all x ∈ [0, 1]. Then, we define an open
set V as follows:

i ∈ V ⇔ ∃j < i ∃n < i((pi, qi, pj , qj) ∈ F ∧ qj < Mn).

To show that this set forms a covering of [0, 1], take any real number x ∈ [0, 1]. Since
f(x) < M , there exists n such that f(x) < Mn ≤M , and hence there exists
(pk, qk, pj , qj) ∈ F and n such that

pk < x < qk ∧ pj ≤ f(x) ≤ qj < Mn ≤M.

As there are infinitely many i such that pk ≤ pi < x < qi ≤ qk, taking i > j, n ensures
i ∈ V with pi < x < qi. Therefore, V forms an open covering of [0, 1].

Again, by the Heine-Borel Theorem, V has a finite subcover V ′. Let M ′ be the maximum
of qi for (pi, qi) in V

′. Then, by the definition of values of a continuous function, obviously
M ′ is an upper bound of the range. However, due to the finiteness of V ′, for some n,
M ′ < Mn ≤M , which contradicts the fact that M is the supremum. 2
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Conversely, the properties described in the two lemmas above allow us to derive WKL0.
In sum, the following theorem holds:

Theorem 3.12

The following assertions are pairwise equivalent in RCA0:

(1) WKL0,

(2) A continuous function f : [0, 1] → R is uniformly continuous,

(3) A continuous function f : [0, 1] → R is bounded,

(4) A bounded continuous function f : [0, 1] → R has a supremum,

(5) A continuous function f : [0, 1] → R that has a supremum attains its maximum value.

Proof By Lemmas 3.10 and 3.11, we can deriving (2), (3), (4), and (5) from (1). Hence,
it suffices to obtain counterexamples for (2), (3), (4) and (5) from the negation of (1).
Now, assume the negation of (1). Then, there exists an infinite tree T ⊆ Seq2 without
infinite paths.
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As shown in the proof of Heine-Borel’s theorem, for each s ∈ Seq2, define the two rational
numbers as and bs as follows:

as =
∑

i<leng(s)

s(i)

2i+1
,

bs = as +
1

2leng(s)
.

Let B be the infinite set of all minimal binary sequences not in T ,

s ∈ B ⇔ s /∈ T ∧ ∀t ⊂ s(t ̸= s→ t ∈ T )

and J be the set of closed intervals [as, bs] for all s ∈ B.

Each real number x ∈ [0, 1] is either an interior point of exactly one interval in J or an
endpoint of one or two intervals. Such an infinite set J is called a singular closed cover.
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¬WKL0 → ¬ (3) bounded.

We will construct a counterexample for (3) using this singular closed cover J . This also
serves as a counterexample for (2) since (2) implies (3). We define a continuous function
fs for each interval [as, bs] in J as follows:

fs(x) =

 leng(s) 2(x−as)
as+bs

if as ≤ x ≤ as+bs
2 ,

leng(s) 2(bs−x)
as+bs

if as+bs
2 ≤ x ≤ bs.

That is, fs takes 0 at the endpoints x = as, bs, takes leng(s) at the midpoint x = as+bs
2 ,

and is linearly interpolated otherwise.

Let f be a function obtained by composing all such functions fs. Then, it is clearly
continuous but unbounded. (It is left as an exercise for the reader to construct a
continuous function code for f . )
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¬WKL0 → ¬ (5) a maximum value.

A counterexample for (5) can be constructed in the way similar to that for (3) in the
previous slide. We just replace the maximum value of fs from leng(s) to 1− 2−leng(s) as
follows:

fs(x) =

 (1− 2−leng(s)) 2(x−as)
as+bs

if as ≤ x ≤ as+bs
2 ,

(1− 2−leng(s)) 2(bs−x)
as+bs

if as+bs
2 ≤ x ≤ bs.

Then, a composed function f clearly has 1 as its supremum, but it can not attain the
maximum value 1 in [0, 1].



Logic and
Foundation

K. Tanaka

14

¬WKL0 → ¬ (4) a supremum.
Recall:

Theorem 3.4.(5)� �
(RCA0 ⊢) ACA0 ⇔ (4) Every bounded increasing sequence of reals has a supremum.� �

Negating WKL0, we have the negation of ACA0, which implies the existence of a bounded
increasing sequence of rational numbers {cn} that lacks a supremum.
Then, replace the maximum value of fs with cleng(s) and proceed similarly.

fs(x) =

 cleng(s)
2(x−as)
as+bs

if as ≤ x ≤ as+bs
2 ,

cleng(s)
2(bs−x)
as+bs

if as+bs
2 ≤ x ≤ bs,

Problem� �
Show that in the theorem 3.12 (4) and (5), ”continuous function” can be replaced with
”uniformly continuous function”. Hint: It is beneficial to use a singular closed cover for
the ternary set.� �
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Complete separable metric spaces

We will deal with continuous functions in more general spaces than R.
Let’s briefly look into complete separable metric spaces.

Let A be a non-empty subset of N. Suppose d : A×A→ R is a (pseudo) metric on A, i.e.,

(1) d(a, a) = 0, (2) d(a, b) = d(b, a), (3) d(a, b) + d(b, c) ≥ d(a, c).

A sequence {an} from A satisfying ∀n∀id(an, an+i) ≤ 2−n is called a point of Â, and we
write {an} ∈ Â. For x = {an}, y = {bn} define d(x, y) = limn(an, bn).

Then Â can be viewed as a complete separable metric space. Here, Â is complete in the
following sense. If {xn} is a sequence from Â such that for some sequence {rn} of reals,
d(xn, xn+i) ≤ rn and lim rn = 0, then limxn exists in RCA0. Also, Â is separable, since A
is dense in Â if a ∈ A is identified with {an} ∈ Â where an = a.
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Example 1. If A = Q and d(p, q) = |p− q|, then Â is nothing but R.
Also, if A = Q2 and d((p, q), (p′, q′)) =

√
(p− p′)2 + (q − q′)2, then Â is R2.

Example 2. Given an infinite sequence of spaces Âi, i ∈ N. For simplicity, we assume that
0 ∈ Ai for all i. We then define the product space

∏
i Âi as the completion of (A, d),

A =

∞⋃
m=0

(A0 × · · · ×Am), d(⟨ai : i ≤ m⟩, ⟨bi : i ≤ n⟩ =
∞∑
i=0

di(a
′
i, b

′
i)

1 + di(a′i, b
′
i)

· 1

2i
,

where ⟨a′i : i ∈ N⟩ is ⟨ai : i ≤ m⟩ followed by infinitely many 0’s, and similarly for ⟨b′i⟩.
Then, in RCA0, we can define the Cantor space 2N = {0, 1}N, the Baire space NN, the
Hilbert cube [0, 1]N, a Fréchet space RN, etc.

In a metric space Â, an open ball Br(a) centered at a ∈ A with a rational radius r > 0 is
coded by the pair (a, r)(∈ A×Q+). An open set is a set of codes of open balls.

The code F of a continuous function f from a metric space Â to a metric space B̂ is a
subset of A×Q+ ×B ×Q+, fulfilling conditions similar to those for a continuous function
from R to R, by which

(a, r, b, s) ∈ F means x ∈ Br(a) → f(x) ∈ Bs(b) (closed ball).
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Brouwer’s Fixed-Point Theorem

Brouwer’s Fixed-Point Theorem states that any continuous function f : [0, 1]n → [0, 1]n

has a fixed point, i.e., a point x such that f(x) = x.

While the case n = 1 can be directly derived from the Intermediate Value Theorem and
thus holds in RCA0, the case n > 1 is not provable within RCA0.

Theorem 3.13

Brouwer’s Fixed-Point Theorem is equivalent to WKL0 over RCA0.

Proof idea There are various proofs known for Brouwer’s Fixed-Point Theorem, most of
which utilize the uniform continuity of a given function f to reduce the problem to a finite
combinatorial issue (e.g., Sperner’s Lemma).

In WKL0, it can be proved that any continuous function f : [0, 1]n → [0, 1]n is uniform
continuous, in a way similar to the proof for Theorem 3.12. So, the rest of a proof can
proceed as a standard argument for Brouwer’s theorem.
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For the converse direction, it is enough to show that the case n = 2 implies WKL0, since
the other cases obviously implies that of n = 2. So, we negate WKL0, and construct a
continuous function h : [0, 1]2 → [0, 1]2 that does not have a fixed point.

By the negation of WKL0, we have a singular closed cover J for [0, 1], which is given in the
proof of Theorem 3.12. Using this, we construct a retraction f from [0, 1]2 to its
boundary B (a continuous function invariant on B). If such an f exists, combining it with
the operation g that rotates B by 90◦ results in a continuous function h = g ◦ f without
fixed points.

Let J = {Ii : i ∈ N} be a singular closed cover J for [0, 1]. For convenience, we assume
the left end of I0 is 0 and the right end of I1 is 1.

Set Ak =
⋃

i≤k(Ii × Ik ∪ Ik × Ii). Then, [0, 1]
2 =

⋃
k Ak.

We construct a retraction f by induction on a subset Ak of its domain. Assuming f is
defined on

⋃
i<k Ai, we show how to define it on Ak.
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Divide Ak into connected rectangular parts P0, P1, . . . , Pm. If Pl (l ≤ m) adjoins
⋃

i<k Ai

or the boundary B of [0, 1]2, f should map the adjoining edge of Pl to B as already
determined. However, we can easily observe that at least one edge of Pl does not adjoin⋃

i<k Ai or B. So, we can construct a retraction of Pl onto the sides on which the values
of f are determined.

Thus, we can define a continuous mapping from each Pl to B by composition of such a
retraction of Pl and f on

⋃
i<k Ai ∪B. If Pl has no constrained edge, f can map Pl to B

anyway continuously.

Combining all such functions on Pl’s, we have a continuous mapping from Ak to the
boundary B.

Finally, f thus defined is a retraction from [0, 1]2 to its boundary B. Therefore, by
negating WKL0, a counterexample to the fixed-point theorem is obtained. 2
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In WKL0, Brouwer’s Fixed-Point Theorem can be extended to the infinite-dimensional
space [0, 1]N(⊆ RN), which is known as the Tychonoff-Schauder fixed-point theorem.

By this fixed-point theorem, the Cauchy-Peano theorem for the existence of local
solutions to ordinary differential equations can be proved within WKL0, and the converse is
also provable.

It is worth mentioning that the standard proof of the Cauchy-Peano Theorem involves
constructing a sequence of piecewise linear approximations to the solution and using the
Ascoli-Arzelà Lemma to argue for the existence of the solution; however, since the
Ascoli-Arzelà Lemma cannot be proved in WKL0

1, this approach does not fit within WKL0.

Various fixed-point theorems in WKL0 and their applications have been developed by N.
Shioji and K. Tanaka [Fixed point theory in weak second-order arithmetic Ann. Pure Appl.
Logic, 47, 167-188, 1990].

1In Theorem 3.4, the Bolzano-Weierstrass theorem, which has been shown to be equivalent to ACA0,
can be derived as a special case from the Ascoli-Arzelà lemma. Indeed, it is known that the Ascoli-Arzelà
lemma is equivalent to ACA0.
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König’s Lemma

Let’s begin with the general König’s Lemma, not the ”weak” version.

The set of natural number sequences of length n, that is, the set of functions (or their
codes) with domain {i ∈ N : i < n}, is denoted by Seq.

A subset T of Seq, which is closed under initial segment, is called a tree.

A tree T where each element s ∈ T has at most finitely many immediate successors
s∩m ∈ T (m ∈ N), or

∀s(s ∈ T → ∃n∀m(s∩m→ m < n))

is called a finitely branching tree. In Seq2, the ”tree” is also a special tree in Seq.

Moreover, a subtree of T that does not branch is called a path of T .

König’s Lemma asserts that ”every infinite, finitely branching tree has at least on path.”
Of course, a tree consisting only of binary sequences is a finitely branching tree, so the
weak König’s Lemma is a special case of König’s Lemma. However, as will be shown,
König’s Lemma is equivalent to ACA0, and thus, it is not possible to derive König’s Lemma
from the weak König’s Lemma.
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Theorem 3.14

Over RCA0, the following are pairwise equivalent:

(1) ACA0

(2) König’s Lemma

(3) An infinite tree T , where each element s ∈ T has at most two immediate successors
s∩m ∈ T (m ∈ N), has an infinite path.

Note: In the above (3), it is crucial that the size of m for immediate successors s∩m ∈ T is
not bounded. If the size of m were bounded across the tree, it would result in an assertion
equivalent to the weak König’s Lemma.
Proof (1) ⇒ (2). Given an infinite finitely branching tree T , collect the points s ∈ T
that have an infinite number of descendants t ⊇ s to form T ′ (by (Π1

0-CA)).

Then, using primitive recursion, define a path g in T ′ as follows:

g(0) = empty sequence, g(n+ 1) = g(n)∩m,

where m is the smallest number such that g(n)∩m ∈ T ′.
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(2) ⇒ (3) is trivial. To show (3) ⇒ (1), assume (3) and show the existence of range of a
given 1-1 function f : N → N, which is equivalent to ACA0, Lemma 3.3.(3).

Define a tree T as follows: s ∈ T ⇔
(a) ∀m,n < leng(s)(f(m) = n↔ s(n) = m+ 1),

(b) ∀n < leng(s)(s(n) > 0 → f(s(n)− 1) = n).

Then, each element s ∈ T has at most two immediate successors s∩k ∈ T . That is, from
(b), k = 0 or, for f(m) = leng(s), k = m+ 1.

Next, show that the tree T is an infinite set. For this, it suffices to show that for any
k ∈ N, there exists a sequence s ∈ T with leng(s) = k. First, by bounded (Σ0

1 -CA), the
subset Y = {n ∈ ranf : n < k} exists. Then, define a sequence s of length k as follows.
For n < k,

s(n) =

{
0 if n /∈ Y

m+ 1 if n ∈ Y ∧ f(m) = n

In this case, it is clear that s ∈ T .
Now, by assumption (3), the tree T has an infinite path g. From the definition of T (a),

∀m,n(f(m) = n↔ g(n) = m+ 1).

Thus, setting X = {n : g(n) > 0}, we have X = ranf . 2
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Thank you for your attention!


