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Logic and Foundations II� �
• Part 5. Models of first-order arithmetic (continued) (5 lectures)

• Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)

• Part 7. Theory of reals and reverse mathematics (9 lectures?)

• Part 8. Second order arithmetic and non-standard methods (6 lectures?)� �
Part 7. Schedule� �
• Apr. 16, (1) Introduction and the base system RCA0

• Apr. 18, (2) Defining real numbers in RCA0

• Apr. 23, (3) Completeness of the reals and ACA0

• Apr. 25, (4) Continuous functions and WKL0
• Apr. 30, (5) König’s lemma and Ramsey’s theorem

• May 9, (6) Determinacy of infinite games I

• May 14, (7) Determinacy of infinite games II

• to be continued� �
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Recap

Reverse Mathematics: Which axioms are needed to prove a theorem?

The Reverse Mathematics Phenomenon� �
Many theorems of mathematics are either provable in RCA0, or logically equivalent
(over RCA0) to one of WKL0, ACA0, ATR0, Π

1
1-CA0.� �

Definition 1.2 The system of recursive comprehension axioms (RCA0) consists of:

(0) Axioms and inference rules of first-order logic with axioms of equality for numbers.

(1) Basic arithmetic axioms: Same as Q< (Chapter 4).

(2) ∆0
1 comprehension axiom (∆0

1-CA0): ∀n(φ(n) ↔ ψ(n)) → ∃X∀n(n ∈ X ↔ φ(n)),
where φ(n) is Σ0

1, ψ(n) is Π
0
1, and neither includes X as a free variable.

(3) Σ0
1 induction: φ(0) ∧ ∀n(φ(n) → φ(n+ 1)) → ∀nφ(n), for any Σ0

1 formula φ(n).
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Real numbers and continuous functions
Primitive recursive functions (e.g., sequence numbers and Gödel numbers) are available in
RCA0. Note that RCA0 is a conservative extension of first-order arithmetic IΣ1.

So, N, Z, Q and their arithmetical operations are naturally defined in RCA0.

A sequence of rational numbers {qn} is a real number, {qn} ∈ R, if it satisfies

∀n∀i(|qn − qn+i| ≤ 2−n).

A set Φ ⊆ Q4 that satisfies the following conditions is called the code for a continuous
function f : dom f(⊆ R) → R.
(1) (p, q, r, s) ∈ Φ → p < q ∧ r ≤ s,

(2) (p, q, r, s), (p′, q′, r′, s′) ∈ Φ, p′ < q ∧ p < q′ → r′ ≤ s ∧ r ≤ s′.

Intuitively, (p, q, r, s) ∈ Φ means ∀x(p < x < q → r ≤ f(x) ≤ s).
A real number x belongs to the domain of a continuous function f coded by Φ, if

∀n∃(p, q, r, s) ∈ Φ(p < x < q ∧ s− r < 2−n), denoted x ∈ domf.

It is provable in RCA0 that if x ∈ domf , there exists a unique real y such that
∀(p, q, r, s) ∈ Φ(p < x < q → r ≤ y ≤ s). We denote this y as f(x).
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ACA0
The system of arithmetical comprehension axioms (ACA0) is RCA0 plus

(Π1
0 -CA) : ∃X∀n(n ∈ X ↔ φ(n)),

where φ(n) is an arithmetical formula, which does not have X as a free variable.

ACA0 is a conservative extension of Peano Arithmetic PA.(Lemma 3.2)

In RCA0, the following are equivalent (Lemma 3.3)
(1) ACA0, (2) (Σ0

1 -CA), (3) The range of any 1-1 function f : N → N exists.

Theorem 3.4

The followings are pairwise equivalent over RCA0.

(1) ACA0,

(2) The Bolzano-Weierstrass theorem: Every bounded sequence of real numbers has a
convergent subsequence,

(3) Every Cauchy sequence converges,

(4) Every bounded sequence of real numbers has a supremum,

(5) The monotone convergence theorem: Every bounded increasing sequence converges.
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WKL0

Definition 3.5

Weak König’s lemma is the statement that every infinite tree T ⊂ Seq2 has an infinite
path. The system WKL0 is RCA0 plus weak König’s lemma.

Lemma 3.6

In RCA0, WKL0 is equivalent to the following statement:

(Σ0
1 -SP) : ∀n(φ(n) → ψ(n)) → ∃X∀n{(φ(n) → n ∈ X) ∧ (n ∈ X → ψ(n))},

where φ(n) is Σ0
1 and ψ(n) is Π0

1. SP stands for the Separation Principle.

Corollary 3.7

WKL0 is strictly stronger than RCA0.

There are various ways to show that ACA0 is strictly stronger than WKL0.

WKL0 and RCA0 are conservative over IΣ1, whereas ACA0 is over PA.
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Hine-Borel theorem in WKL0
An open interval with rational endpoints p, q (p < q) is represented by the natural number
code for (p, q).

An open set of R is defined (encoded) as a set of codes of open intervals.

Now, we say an open set U of R covers the closed interval [0, 1] if, for any real number
x ∈ [0, 1], there exists a code (p, q) ∈ U such that p < x < q.

Heine-Borel (Covering) Theorem states that if an open set U covers the closed interval
[0, 1], then there exists a finite subset U ′ of U that also covers [0, 1].

Lemma 3.8

The Heine-Borel Theorem can be proved in WKL0.

Proof. For each s ∈ Seq2, we associate the rational open interval (as, bs) defined as:

as =
∑

i<leng(s)

s(i)

2i+1
, bs = as +

1

2leng(s)
.

In this case, if s ⊆ t, then (at, bt) ⊆ (as, bs).
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Now, consider an open covering U of [0, 1]. For intuition, let’s denote the open interval
with code i as (pi, qi). Then, define a tree T ⊆ Seq2 as follows:

s ∈ T ↔ ¬∃i ≤ leng(s)(i ∈ U ∧ pi < as < bs < qi).

We first show that T has no infinite path. By way of contradiction, we suppose there exists
a path f ⊆ T . By the nested interval property, there exists a (unique) real number x such
that as ≤ x ≤ bs for all s ∈ f . Since the open set U covers [0, 1], there exists some i ∈ U
such that the real number x is contained in the open interval (pi, qi). Then, there exists an
s ∈ f with leng(s) ≥ i such that pi < as ≤ x ≤ bs < qi, which implies s ̸∈ T , a
contradiction.

If T has no infinite path, then by weak König’s lemma, T is a finite set. This means that
there exists a sufficiently large n such that all sequences in T have a length shorter than n.
Thus,

∀s(leng(s) = n→ ∃i ≤ n(i ∈ U ∧ pi < as < bs < qi)).

Therefore, {i ∈ U : i ≤ n} forms a finite covering of [0, 1]. 2
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Theorem 3.9

In RCA0, the Heine-Borel Theorem is equivalent to WKL0.

Proof We have already shown that the Heine-Borel Theorem holds in WKL0. Now, we
assume the Heine-Borel Theorem and derive the weak König’s lemma.

First, let’s discuss the idea behind the proof. The Heine-Borel Theorem implies the
compactness of [0, 1], which leads to the compactness of a closed subset{ ∞∑

i=0

f(i) · 3−i−1 | f ∈ {0, 2}N
}

(the ternary set), and hence also the compactness of the Cantor space {0, 1}N since it is
homeomorphic to the ternary set. Finally, the compactness of {0, 1}N implies WKL0.
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For preparation, for each s ∈ Seq2, we associate the rational open interval (as, bs) defined
as follows:

as =
∑

i<leng(s)

2s(i)

3i+1
,

bs = as +
1

3leng(s)
.

Let s∩i simply denote the binary sequence s followed by i = 0, 1, i.e., s ∪ {(leng(s), i)}.

Then, the closed intervals [as∩0, bs∩0] and [as∩1, bs∩1] respectively become the left and
right thirds of the closed interval [as, bs].

Thus, for any real number x not belonging to the ternary set
{
∑∞

i=0 f(i) · 3−i−1 : f ∈ {0, 2}N}, there exists exactly one open interval (bs∩0, as∩1)
containing it. Especially, ⋃

{(bs∩0, as∩1) | s ∈ Seq2}

is the complement of the ternary set.
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Furthermore, for each s ∈ Seq2, define

a′s = as −
1

3leng(s)+1
,

b′s = bs +
1

3leng(s)+1
.

Then, for any real number x in the ternary set, there exists a unique f ∈ {0, 1}N such that:
for any finite initial sequence s ⊂ f, x ∈ (a′s, b

′
s). Note that two open intervals (a′s, b

′
s) and

(a′t, b
′
t) intersect only if either s or t is an initial segment of the other.

Now, let’s consider any (nonempty) tree T ⊆ Seq2 without infinite paths and show that T
is finite.

Let B be the set of minimal binary sequences not in T , that is,

s ∈ B ⇔ s /∈ T ∧ ∀t ⊂ s(t ̸= s→ t ∈ T ).

It’s clear that any infinite path f ⊆ T shares exactly one element s ∈ B and s ⊂ f .
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Thus, if we set

U =
⋃

{(a′s, b′s) : s ∈ B} ∪
⋃

{(bs∩0, as∩1) : s ∈ Seq2},

then, it forms an open cover of [0, 1].

By the Heine-Borel Theorem, there exists a finite subcover U ′.

Since for any s ∈ B, (a′s, b
′
s) does not intersect with any other (a′t, b

′
t) ∈ U and is not a

subset of
⋃
{(bs∩0, as∩1) : s ∈ Seq2}, U ′ must contain {(a′s, b′s) : s ∈ B}. Therefore, B is

finite.

Since T is obtained from the set of all initial segments of elements in B by removing the
elements of B, it is also finite. 2
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The Heine-Borel property of [0, 1] allows us to derive various properties of continuous
functions f : [0, 1] → R.

Lemma 3.10

In WKL0, a continuous function f : [0, 1] → R is uniformly continuous.

Proof Fix any n ∈ N. We want to show the existence of d > 0 such that

∀x, y ∈ [0, 1](| x− y |< d→| f(x)− f(y) |< 2−n).

Let F be the code for the continuous function f , and denote the open interval with code i
as (pi, qi). Then, define the open set U as follows:

i ∈ U ⇔ ∃j < i((pi, qi, pj , qj) ∈ F ∧ qj − pj < 2−n−1).

First, we show that U is a covering of [0, 1]. For any real number x ∈ [0, 1], since
x ∈ domf , there exists (pk, qk, pj , qj) ∈ F , such that

pk < x < qk ∧ qj − pj < 2−n−1.

Furthermore, there are infinitely many i such that pk ≤ pi < x < qi ≤ qk, so taking such
an i > j, we have i ∈ U with pi < x < qi. Therefore, U forms an open covering of [0, 1].
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By the Heine-Borel Theorem, U has a finite subcover U ′.

Let d be the minimum width qi − pi among the intervals (pi, qi) in U
′. We shall show that

this d satisfies the uniform convergence condition.

Now, choose any real numbers x, y ∈ [0, 1] such that | x− y |< d. Then, there must exist
intervals (pi, qi), (pi′ , qi′) in U

′ such that x ∈ (pi, qi), y ∈ (pi′ , qi′) and they have a
common point z.

Otherwise, take an interval (pi, qi) ∋ x in U ′ with maximum qi, and an interval
(pi′ , qi′) ∋ y in U ′ with minimum pi′ . If there is no common point, qi < pi′ . Since U

′ is a
covering, there exists qi ∈ (pk, qk) in U

′. By the maximality of qi, x /∈ (pk, qk). From
|qk − pk| ≥ d > |x− y|, we have y ∈ (pk, qk), which contradicts with the minimality of pi′ .

By the definition of U , we have | f(x)− f(z) |< 2−n−1 and | f(y)− f(z) |< 2−n−1, thus
| f(x)− f(y) |< 2−n, which fulfills the lemma. 2
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Lemma 3.11

In WKL0, a continuous function f : [0, 1] → R attains a maximum value.

Proof First, we show that the supremum M of the range of f exists.

As in the proof of the previous lemma, we define U by a Σ0
0 formula:

i ∈ U ⇔ ∃j < i((pi, qi, pj , qj) ∈ F ∧ qj − pj < 2−n−1).

We can finitely calculate whether or not a given finite set of open rational intervals covers
[0, 1]. Therefore, by arranging all finite subsets of U and checking sequentially whether
they cover [0, 1], we eventually obtain a finite subcover U ′. That is, in WKL0, we can
construct a function extracting U ′ according to n.

For each i ∈ U ′, select ji < i such that (pi, qi, pji , qji) ∈ F ∧ qji − pji < 2−n−1, and let
Mn = max{qji : i ∈ U ′}. Then, {Mn} itself is a real number, and it is clear that it is the
supremum M of the range of f .
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What remains is to show that the existence of a point x = a such that f(a) =M . For the
sake of the following argument, we redefine Mn = max{pji : i ∈ U ′}. This ensures that for
any n, Mn ≤M = {Mn}.
By way of contradiction, assume that f(x) < M for all x ∈ [0, 1]. Then, we define an open
set V as follows:

i ∈ V ⇔ ∃j < i ∃n < i((pi, qi, pj , qj) ∈ F ∧ qj < Mn).

To show that this set forms a covering of [0, 1], take any real number x ∈ [0, 1]. Since
f(x) < M , there exists n such that f(x) < Mn ≤M , and hence there exists
(pk, qk, pj , qj) ∈ F and n such that

pk < x < qk ∧ pj ≤ f(x) ≤ qj < Mn ≤M.

As there are infinitely many i such that pk ≤ pi < x < qi ≤ qk, taking i > j, n ensures
i ∈ V with pi < x < qi. Therefore, V forms an open covering of [0, 1].

Again, by the Heine-Borel Theorem, V has a finite subcover V ′. Let M ′ be the maximum
of qi for (pi, qi) in V

′. Then, by the definition of values of a continuous function, obviously
M ′ is an upper bound of the range. However, due to the finiteness of V ′, for some n,
M ′ < Mn ≤M , which contradicts the fact that M is the supremum. 2
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Conversely, the properties described in the two lemmas above allow us to derive WKL0.
In sum, the following theorem holds:

Theorem 3.12

The following assertions are pairwise equivalent in RCA0:

(1) WKL0,

(2) A continuous function f : [0, 1] → R is uniformly continuous,

(3) A continuous function f : [0, 1] → R is bounded,

(4) A bounded continuous function f : [0, 1] → R has a supremum,

(5) A continuous function f : [0, 1] → R that has a supremum attains its maximum value.

Proof By Lemmas 3.10 and 3.11, we can deriving (2), (3), (4), and (5) from (1). Hence,
it suffices to obtain counterexamples for (2), (3), (4) and (5) from the negation of (1).
Now, assume the negation of (1). Then, there exists an infinite tree T ⊆ Seq2 without
infinite paths.
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As shown in the proof of Heine-Borel’s theorem, for each s ∈ Seq2, define the two rational
numbers as and bs as follows:

as =
∑

i<leng(s)

s(i)

2i+1
,

bs = as +
1

2leng(s)
.

Let B be the infinite set of all minimal binary sequences not in T ,

s ∈ B ⇔ s /∈ T ∧ ∀t ⊂ s(t ̸= s→ t ∈ T )

and J be the set of closed intervals [as, bs] for all s ∈ B.

Each real number x ∈ [0, 1] is either an interior point of exactly one interval in J or an
endpoint of one or two intervals. Such an infinite set J is called a singular closed cover.
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¬WKL0 → ¬ (3) bounded.

We will construct a counterexample for (3) using this singular closed cover J . This also
serves as a counterexample for (2) since (2) implies (3). We define a continuous function
fs for each interval [as, bs] in J as follows:

fs(x) =

 leng(s) 2(x−as)
as+bs

if as ≤ x ≤ as+bs
2 ,

leng(s) 2(bs−x)
as+bs

if as+bs
2 ≤ x ≤ bs.

That is, fs takes 0 at the endpoints x = as, bs, takes leng(s) at the midpoint x = as+bs
2 ,

and is linearly interpolated otherwise.

Let f be a function obtained by composing all such functions fs. Then, it is clearly
continuous but unbounded. (It is left as an exercise for the reader to construct a
continuous function code for f . )
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¬WKL0 → ¬ (5) a maximum value.

A counterexample for (5) can be constructed in the way similar to that for (3) in the
previous slide. We just replace the maximum value of fs from leng(s) to 1− 2−leng(s) as
follows:

fs(x) =

 (1− 2−leng(s)) 2(x−as)
as+bs

if as ≤ x ≤ as+bs
2 ,

(1− 2−leng(s)) 2(bs−x)
as+bs

if as+bs
2 ≤ x ≤ bs.

Then, a composed function f clearly has 1 as its supremum, but it can not attain the
maximum value 1 in [0, 1].
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¬WKL0 → ¬ (4) a supremum.
Recall:

Theorem 3.4.(5)� �
(RCA0 ⊢) ACA0 ⇔ (4) Every bounded increasing sequence of reals has a supremum.� �

Negating WKL0, we have the negation of ACA0, which implies the existence of a bounded
increasing sequence of rational numbers {cn} that lacks a supremum.
Then, replace the maximum value of fs with cleng(s) and proceed similarly.

fs(x) =

 cleng(s)
2(x−as)
as+bs

if as ≤ x ≤ as+bs
2 ,

cleng(s)
2(bs−x)
as+bs

if as+bs
2 ≤ x ≤ bs,

Problem� �
Show that in the theorem 3.12 (4) and (5), ”continuous function” can be replaced with
”uniformly continuous function”. Hint: It is beneficial to use a singular closed cover for
the ternary set.� �
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Thank you for your attention!


