K. Tanaka

Logic and Foundation II Part 7. Real Anasis and Reverse Mathematics

Kazuyuki Tanaka

BIMSA

April 25, 2024

K. Tanaka

Logic and Foundations II

- Part 5. Models of first-order arithmetic (continued) (5 lectures)
- Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)

✒ ✑

- Part 7. Theory of reals and reverse mathematics (9 lectures?)
- Part 8. Second order arithmetic and non-standard methods (6 lectures?)

Part 7. Schedule

- Apr. 16, (1) Introduction and the base system $RCA₀$
- Apr. 18, (2) Defining real numbers in $RCA₀$
- Apr. 23, (3) Completeness of the reals and ACA_0
- Apr. 25, (4) Continuous functions and WKL_0
- Apr. 30, (5) König's lemma and Ramsey's theorem
- May 9, (6) Determinacy of infinite games I
- May 14, (7) Determinacy of infinite games II
- to be continued

K. Tanaka

Recap

Reverse Mathematics: Which axioms are needed to prove a theorem?

The Reverse Mathematics Phenomenon

Many theorems of mathematics are either provable in RCA_0 , or logically equivalent (over RCA_0) to one of WKL_0 , ACA_0 , ATR_0 , Π_1^1 - CA_0 .

✒ ✑

Definition 1.2 The system of **recursive comprehension axioms** $(RCA₀)$ consists of: (0) Axioms and inference rules of first-order logic with axioms of equality for numbers.

- (1) Basic arithmetic axioms: Same as Q_{\leq} (Chapter 4).
- (2) Δ_1^0 comprehension axiom $(\Delta_1^0$ -CA₀): $\forall n(\varphi(n) \leftrightarrow \psi(n)) \rightarrow \exists X \forall n(n \in X \leftrightarrow \varphi(n)),$ where $\varphi(n)$ is Σ_1^0 , $\psi(n)$ is Π_1^0 , and neither includes X as a free variable.
- (3) Σ_1^0 induction: $\varphi(0) \wedge \forall n(\varphi(n) \to \varphi(n+1)) \to \forall n \varphi(n)$, for any Σ_1^0 formula $\varphi(n)$.

K. Tanaka

Real numbers and continuous functions

Primitive recursive functions (e.g., sequence numbers and Gödel numbers) are available in $RCA₀$. Note that RCA₀ is a conservative extension of first-order arithmetic $I\Sigma₁$.

So, N, \mathbb{Z} , \mathbb{Q} and their arithmetical operations are naturally defined in RCA₀.

A sequence of rational numbers $\{q_n\}$ is a real number, $\{q_n\} \in \mathbb{R}$, if it satisfies

 $\forall n \forall i(|q_n - q_{n+i}| \leq 2^{-n}).$

A set $\Phi\subseteq\mathbb{Q}^4$ that satisfies the following conditions is called the **code** for a continuous function $f : \text{dom } f (\subseteq \mathbb{R}) \to \mathbb{R}$.

$$
(1) (p, q, r, s) \in \Phi \to p < q \land r \leq s,
$$

(2) $(p, q, r, s), (p', q', r', s') \in \Phi, p' < q \land p < q' \rightarrow r' \leq s \land r \leq s'.$

Intuitively, $(p, q, r, s) \in \Phi$ means $\forall x (p < x < q \rightarrow r < f(x) < s)$.

A real number x belongs to the **domain** of a continuous function f coded by Φ , if

 $\forall n \exists (p, q, r, s) \in \Phi(p < x < q \land s - r < 2^{-n}), \text{ denoted } x \in \text{dom}f.$

It is provable in RCA₀ that if $x \in \text{dom } f$, there exists a unique real y such that $\forall (p,q,r,s) \in \Phi(p < x < q \rightarrow r \leq y \leq s)$. We denote this y as $f(x)$.

K. Tanaka

 $ACA₀$

The system of arithmetical comprehension axioms (ACA_0) is RCA_0 plus

 $(\Pi_0^1\text{-CA}):\exists X\forall n(n\in X \leftrightarrow \varphi(n)),$

where $\varphi(n)$ is an arithmetical formula, which does not have X as a free variable. $ACA₀$ is a conservative extension of Peano Arithmetic PA.(Lemma 3.2)

In $RCA₀$, the following are equivalent (Lemma 3.3) (1) ACA_0 , (2) $(\Sigma_1^0$ -CA), (3) The range of any 1-1 function $f : \mathbb{N} \to \mathbb{N}$ exists.

Theorem 3.4

The followings are pairwise equivalent over $RCA₀$.

- (1) ACA₀,
- (2) The Bolzano-Weierstrass theorem: Every bounded sequence of real numbers has a convergent subsequence,
- (3) Every Cauchy sequence converges,
- (4) Every bounded sequence of real numbers has a supremum,
- The monotone convergence theorem: Every bounded increasing sequence converges.

K. Tanaka

WKL₀

Definition 3.5

Weak König's lemma is the statement that every infinite tree $T \subset \text{Seq}_2$ has an infinite path. The system WKL $_0$ is RCA $_0$ plus weak König's lemma.

Lemma 3.6

In $RCA₀$, WKL₀ is equivalent to the following statement:

 $(\Sigma^0_1$ -SP): $\forall n(\varphi(n) \to \psi(n)) \to \exists X \forall n \{(\varphi(n) \to n \in X) \land (n \in X \to \psi(n))\},\$

where $\varphi(n)$ is Σ^0_1 and $\psi(n)$ is $\Pi^0_1.$ SP stands for the ${\sf Separation}$ Principle.

Corollary 3.7

WKL₀ is strictly stronger than $RCA₀$.

There are various ways to show that $ACA₀$ is strictly stronger than WKL₀. WKL₀ and RCA₀ are conservative over $I\Sigma_1$, whereas ACA₀ is over PA.

K. Tanaka

Hine-Borel theorem in $WKL₀$

An open interval with rational endpoints $p, q \ (p < q)$ is represented by the natural number code for (p, q) .

An **open set** of $\mathbb R$ is defined (encoded) as a set of codes of open intervals.

Now, we say an open set U of $\mathbb R$ covers the closed interval [0, 1] if, for any real number $x \in [0, 1]$, there exists a code $(p, q) \in U$ such that $p < x < q$.

Heine-Borel (Covering) Theorem states that if an open set U covers the closed interval $[0,1]$, then there exists a finite subset U' of U that also covers $[0,1]$.

Lemma 3.8

The Heine-Borel Theorem can be proved in WKL_0 .

Proof. For each $s \in \text{Seq}_2$, we associate the rational open interval (a_s, b_s) defined as:

$$
a_s = \sum_{i < \text{leng}(s)} \frac{s(i)}{2^{i+1}}, \quad b_s = a_s + \frac{1}{2^{\text{leng}(s)}}.
$$

In this case, if $s \subset t$, then $(a_t, b_t) \subset (a_s, b_s)$.

K. Tanaka

Now, consider an open covering U of $[0, 1]$. For intuition, let's denote the open interval with code i as (p_i,q_i) . Then, define a tree $T \subseteq \text{Seq}_2$ as follows:

 $s \in T \leftrightarrow \neg \exists i \leq \text{leng}(s) (i \in U \land p_i < a_s < b_s < a_i).$

We first show that T has no infinite path. By way of contradiction, we suppose there exists a path $f \subseteq T$. By the nested interval property, there exists a (unique) real number x such that $a_s \leq x \leq b_s$ for all $s \in f$. Since the open set U covers [0, 1], there exists some $i \in U$ such that the real number x is contained in the open interval $\left(p_{i},q_{i}\right) .$ Then, there exists an $s \in f$ with $\mathrm{leng}(s) \geq i$ such that $p_i < a_s \leq x \leq b_s < q_i$, which implies $s \not\in T$, a contradiction.

If T has no infinite path, then by weak König's lemma, T is a finite set. This means that there exists a sufficiently large n such that all sequences in T have a length shorter than n . Thus,

$$
\forall s(\text{leng}(s) = n \to \exists i \le n (i \in U \land p_i < a_s < b_s < q_i)).
$$

Therefore, $\{i \in U : i \leq n\}$ forms a finite covering of $[0, 1]$.

K. Tanaka

Theorem 3.9

In $RCA₀$, the Heine-Borel Theorem is equivalent to $WKL₀$.

Proof We have already shown that the Heine-Borel Theorem holds in WKL_0 . Now, we assume the Heine-Borel Theorem and derive the weak König's lemma.

First, let's discuss the idea behind the proof. The Heine-Borel Theorem implies the compactness of [0, 1], which leads to the compactness of a closed subset

$$
\left\{\sum_{i=0}^{\infty} f(i) \cdot 3^{-i-1} \mid f \in \{0,2\}^{\mathbb{N}}\right\}
$$

(the ternary set), and hence also the compactness of the Cantor space $\{0,1\}^{\mathbb{N}}$ since it is homeomorphic to the ternary set. Finally, the compactness of $\{0,1\}^{\mathbb{N}}$ implies WKL_0 .

K. Tanaka

For preparation, for each $s \in \text{Seq}_2$, we associate the rational open interval (a_s, b_s) defined as follows:

$$
a_s = \sum_{i < \text{leng}(s)} \frac{2s(i)}{3^{i+1}},
$$

$$
b_s = a_s + \frac{1}{3^{\text{leng}(s)}}.
$$

Let $s^{\cap}i$ simply denote the binary sequence s followed by $i = 0, 1$, i.e., $s \cup \{(\text{leng}(s), i)\}.$

Then, the closed intervals $[a_{s \cap 0}, b_{s \cap 0}]$ and $[a_{s \cap 1}, b_{s \cap 1}]$ respectively become the left and right thirds of the closed interval $[a_s, b_s]$.

Thus, for any real number x not belonging to the ternary set $\{\sum_{i=0}^{\infty} f(i) \cdot 3^{-i-1} : f \in \{0,2\}^{\mathbb{N}}\}$, there exists exactly one open interval $(b_{s \cap 0}, a_{s \cap 1})$ containing it. Especially,

$$
\bigcup\{(b_{s^\cap 0},a_{s^\cap 1})\mid s\in\textup{Seq}_2\}
$$

is the complement of the ternary set.

K. Tanaka

Furthermore, for each $s \in \text{Seq}_2$, define

$$
\begin{aligned} a_s' &= a_s - \frac{1}{3^{\text{leng}(s)+1}}, \\ b_s' &= b_s + \frac{1}{3^{\text{leng}(s)+1}}. \end{aligned}
$$

Then, for any real number x in the ternary set, there exists a unique $f \in \{0,1\}^{\mathbb{N}}$ such that: for any finite initial sequence $s\subset f, x\in (a'_s, b'_s).$ Note that two open intervals (a'_s, b'_s) and (a'_t, b'_t) intersect only if either s or t is an initial segment of the other.

Now, let's consider any (nonempty) tree $T \subseteq \text{Seq}_2$ without infinite paths and show that T is finite.

Let B be the set of minimal binary sequences not in T , that is,

$$
s \in B \Leftrightarrow s \notin T \land \forall t \subset s(t \neq s \to t \in T).
$$

It's clear that any infinite path $f \subseteq T$ shares exactly one element $s \in B$ and $s \subset f$.

K. Tanaka

Thus, if we set

$$
U=\bigcup\{(a'_s,b'_s):s\in B\}\cup\bigcup\{(b_{s\cap 0},a_{s\cap 1}):s\in \textrm{Seq}_2\},
$$

then, it forms an open cover of $[0, 1]$.

By the Heine-Borel Theorem, there exists a finite subcover $U^{\prime}.$

Since for any $s\in B$, (a'_s,b'_s) does not intersect with any other $(a'_t,b'_t)\in U$ and is not a subset of $\bigcup \{(b_{s \cap 0}, a_{s \cap 1}) : s \in \text{Seq}_2\}$, U' must contain $\{(a'_s, b'_s) : s \in B\}$. Therefore, B is finite.

Since T is obtained from the set of all initial segments of elements in B by removing the elements of B , it is also finite.

K. Tanaka

The Heine-Borel property of $[0, 1]$ allows us to derive various properties of continuous functions $f : [0, 1] \rightarrow \mathbb{R}$.

Lemma 3.10

In WKL₀, a continuous function $f : [0,1] \to \mathbb{R}$ is uniformly continuous.

Proof Fix any $n \in \mathbb{N}$. We want to show the existence of $d > 0$ such that

$$
\forall x, y \in [0,1] (|x - y| < d \to |f(x) - f(y)| < 2^{-n}).
$$

Let F be the code for the continuous function f , and denote the open interval with code i as (p_i,q_i) . Then, define the open set U as follows:

$$
i \in U \Leftrightarrow \exists j < i((p_i, q_i, p_j, q_j) \in F \land q_j - p_j < 2^{-n-1}).
$$

First, we show that U is a covering of [0, 1]. For any real number $x \in [0,1]$, since $x \in \text{dom} f$, there exists $(p_k, q_k, p_j, q_j) \in F$, such that

$$
p_k < x < q_k \land q_j - p_j < 2^{-n-1}.
$$

Furthermore, there are infinitely many i such that $p_k \leq p_i < x < q_i \leq q_k$, so taking such an $i>j$, we have $i\in U$ with $p_i < x < q_i.$ Therefore, U forms an open covering of $[0,1].$

K. Tanaka

By the Heine-Borel Theorem, U has a finite subcover $U^{\prime}.$

Let d be the minimum width q_i-p_i among the intervals $\left(p_i,q_i\right)$ in $U'.$ We shall show that this d satisfies the uniform convergence condition.

Now, choose any real numbers $x, y \in [0, 1]$ such that $|x - y| < d$. Then, there must exist intervals $(p_i,q_i),(p_{i'},q_{i'})$ in U' such that $x\in (p_i,q_i),\,y\in (p_{i'},q_{i'})$ and they have a common point z.

Otherwise, take an interval $(p_i,q_i)\ni x$ in U' with maximum q_i , and an interval $(p_{i'}, q_{i'}) \ni y$ in U' with minimum $p_{i'}$. If there is no common point, $q_i < p_{i'}$. Since U' is a covering, there exists $q_i \in (p_k,q_k)$ in $U'.$ By the maximality of q_i , $x \notin (p_k,q_k)$. From $|q_k - p_k| \geq d > |x-y|$, we have $y \in (p_k, q_k)$, which contradicts with the minimality of $p_{i'}$.

By the definition of U , we have $|\!|\!|f(x)-f(z)\!|\!<2^{-n-1}$ and $|\!|\!|f(y)-f(z)\!|\!<2^{-n-1}$, thus $| f(x) - f(y) | < 2^{-n}$, which fulfills the lemma.

K. Tanaka

Lemma 3.11

In WKL₀, a continuous function $f : [0, 1] \rightarrow \mathbb{R}$ attains a maximum value.

Proof First, we show that the supremum M of the range of f exists.

As in the proof of the previous lemma, we define U by a Σ_0^0 formula:

 $i \in U \Leftrightarrow \exists j < i((p_i, q_i, p_j, q_j) \in F \wedge q_j - p_j < 2^{-n-1}).$

We can finitely calculate whether or not a given finite set of open rational intervals covers $[0, 1]$. Therefore, by arranging all finite subsets of U and checking sequentially whether they cover $[0,1]$, we eventually obtain a finite subcover $U'.$ That is, in WKL_0 , we can construct a function extracting U' according to n .

For each $i\in U'$, select $j_i < i$ such that $(p_i,q_i,p_{j_i},q_{j_i})\in F\wedge q_{j_i} - p_{j_i} < 2^{-n-1}$, and let $M_n = \max\{q_{j_i} : i \in U'\}.$ Then, $\{M_n\}$ itself is a real number, and it is clear that it is the supremum M of the range of f .

K. Tanaka

What remains is to show that the existence of a point $x = a$ such that $f(a) = M$. For the sake of the following argument, we redefine $M_n = \max\{p_{j_i} : i \in U'\}.$ This ensures that for any $n, M_n \leq M = \{M_n\}.$

By way of contradiction, assume that $f(x) < M$ for all $x \in [0,1]$. Then, we define an open set V as follows:

 $i \in V \Leftrightarrow \exists j < i \ \exists n < i((p_i, q_i, p_j, q_j) \in F \wedge q_j < M_n).$

To show that this set forms a covering of [0, 1], take any real number $x \in [0, 1]$. Since $f(x) < M$, there exists n such that $f(x) < M_n \leq M$, and hence there exists $(p_k, q_k, p_j, q_j) \in F$ and n such that

$$
p_k < x < q_k \ \land \ p_j \le f(x) \le q_j < M_n \le M.
$$

As there are infinitely many i such that $p_k \leq p_i < x < q_i \leq q_k$, taking $i > j, n$ ensures $i \in V$ with $p_i < x < q_i.$ Therefore, V forms an open covering of $[0,1].$

Again, by the Heine-Borel Theorem, V has a finite subcover V' . Let M' be the maximum of q_i for (p_i,q_i) in V^\prime . Then, by the definition of values of a continuous function, obviously M' is an upper bound of the range. However, due to the finiteness of V' , for some n , $M' < M_n < M$, which contradicts the fact that M is the supremum.

K. Tanaka

Conversely, the properties described in the two lemmas above allow us to derive WKL_0 . In sum, the following theorem holds:

Theorem 3.12

The following assertions are pairwise equivalent in RCA_0 :

 (1) WKL₀,

- (2) A continuous function $f : [0,1] \to \mathbb{R}$ is uniformly continuous,
- (3) A continuous function $f : [0,1] \to \mathbb{R}$ is bounded,
- (4) A bounded continuous function $f : [0,1] \to \mathbb{R}$ has a supremum,
- (5) A continuous function $f : [0, 1] \to \mathbb{R}$ that has a supremum attains its maximum value.

Proof By Lemmas 3.10 and 3.11, we can deriving (2) , (3) , (4) , and (5) from (1) . Hence, it suffices to obtain counterexamples for (2) , (3) , (4) and (5) from the negation of (1) . Now, assume the negation of (1). Then, there exists an infinite tree $T \subseteq \text{Seq}_2$ without infinite paths.

K. Tanaka

As shown in the proof of Heine-Borel's theorem, for each $s \in \mathrm{Seq}_2$, define the two rational numbers a_s and b_s as follows:

$$
a_s = \sum_{i < \text{leng}(s)} \frac{s(i)}{2^{i+1}},
$$

$$
b_s = a_s + \frac{1}{2^{\text{leng}(s)}}.
$$

Let B be the infinite set of all minimal binary sequences not in T ,

$$
s \in B \Leftrightarrow s \notin T \land \forall t \subset s(t \neq s \to t \in T)
$$

and J be the set of closed intervals $[a_s, b_s]$ for all $s \in B$.

Each real number $x \in [0, 1]$ is either an interior point of exactly one interval in J or an endpoint of one or two intervals. Such an infinite set J is called a **singular closed cover**.

K. Tanaka

$$
\neg\,\mathsf{WKL}_0 \to \neg\,\, (3) \,\, \mathsf{bounded}.
$$

We will construct a counterexample for (3) using this singular closed cover J. This also serves as a counterexample for (2) since (2) implies (3) . We define a continuous function f_s for each interval $[a_s, b_s]$ in J as follows:

$$
f_s(x) = \begin{cases} \text{leng}(s) \frac{2(x-a_s)}{a_s+b_s} & \text{if } a_s \le x \le \frac{a_s+b_s}{2}, \\ \text{leng}(s) \frac{2(b_s-x)}{a_s+b_s} & \text{if } \frac{a_s+b_s}{2} \le x \le b_s. \end{cases}
$$

That is, f_s takes 0 at the endpoints $x = a_s, b_s$, takes $\text{leng}(s)$ at the midpoint $x = \frac{a_s + b_s}{2}$, and is linearly interpolated otherwise.

Let f be a function obtained by composing all such functions f_s . Then, it is clearly continuous but unbounded. (It is left as an exercise for the reader to construct a continuous function code for f .)

\neg WKL₀ \rightarrow \neg (5) a maximum value.

A counterexample for (5) can be constructed in the way similar to that for (3) in the previous slide. We just replace the maximum value of f_s from $\mathrm{leng}(s)$ to $1-2^{-\mathrm{leng}(s)}$ as follows:

$$
f_s(x) = \begin{cases} (1 - 2^{-\text{leng}(s)}) \frac{2(x - a_s)}{a_s + b_s} & \text{if } a_s \le x \le \frac{a_s + b_s}{2}, \\ (1 - 2^{-\text{leng}(s)}) \frac{2(b_s - x)}{a_s + b_s} & \text{if } \frac{a_s + b_s}{2} \le x \le b_s. \end{cases}
$$

Then, a composed function f clearly has 1 as its supremum, but it can not attain the maximum value 1 in $[0, 1]$.

K. Tanaka

$$
\neg\,\mathsf{WKL}_0 \to \neg\,\big(4\big) \text{ a supremum.}
$$

Recall:

Theorem $3.4.(5)$

 $(\mathsf{RCA}_0 \vdash) \, \mathsf{ACA}_0 \Leftrightarrow (4)$ Every bounded increasing sequence of reals has a supremum.

✒ ✑ Negating WKL_0 , we have the negation of ACA $_0$, which implies the existence of a bounded increasing sequence of rational numbers ${c_n}$ that lacks a supremum. Then, replace the maximum value of f_s with $c_{\text{lens}(s)}$ and proceed similarly.

$$
f_s(x) = \begin{cases} c_{\text{leng}(s)} \frac{2(x - a_s)}{a_s + b_s} & \text{if } a_s \le x \le \frac{a_s + b_s}{2}, \\ c_{\text{leng}(s)} \frac{2(b_s - x)}{a_s + b_s} & \text{if } \frac{a_s + b_s}{2} \le x \le b_s, \end{cases}
$$

 \sim Problem \sim

Show that in the theorem [3.12](#page-16-0) (4) and (5), "continuous function" can be replaced with "uniformly continuous function". Hint: It is beneficial to use a singular closed cover for the ternary set.

K. Tanaka

Thank you for your attention!