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Logic and Foundations II� �
• Part 5. Models of first-order arithmetic (continued) (5 lectures)

• Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)

• Part 7. Theory of reals and reverse mathematics (9 lectures?)

• Part 8. Second order arithmetic and non-standard methods (6 lectures?)� �
Part 7. Schedule� �
• Apr. 16, (1) Introduction and the base system RCA0

• Apr. 18, (2) Defining real numbers in RCA0

• Apr. 23, (3) Completeness of the reals and ACA0

• Apr. 25, (4) Continuous functions and WKL0
• Apr. 30, (5) Knig’s lemma and Ramsey’s theorem

• May 9, (6) Determinacy of infinite games I

• May 14, (7) Determinacy of infinite games II

• to be continued� �
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Recap

Reverse Mathematics: Which axioms are needed to prove a theorem?

The Reverse Mathematics Phenomenon� �
Many theorems of mathematics are either provable in RCA0, or logically equivalent
(over RCA0) to one of WKL0, ACA0, ATR0, Π

1
1-CA0.� �

Definition 1.2 The system of recursive comprehension axioms (RCA0) consists of:

(0) Axioms and inference rules of first-order logic with axioms of equality for numbers.

(1) Basic arithmetic axioms: Same as Q< (Chapter 4).

(2) ∆0
1 comprehension axiom (∆0

1-CA0): ∀n(φ(n) ↔ ψ(n)) → ∃X∀n(n ∈ X ↔ φ(n)),
where φ(n) is Σ0

1, ψ(n) is Π
0
1, and neither includes X as a free variable.

(3) Σ0
1 induction: φ(0) ∧ ∀n(φ(n) → φ(n+ 1)) → ∀nφ(n), for any Σ0

1 formula φ(n).
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Real numbers in RCA0

Primitive recursive functions (e.g., sequence numbers and Gödel numbers) are available in
RCA0. Note that RCA0 is a conservative extension of first-order arithmetic IΣ1.

So, N, Z, Q and their arithmetical operations are naturally defined in RCA0.

A sequence of rational numbers {qn} is a real number, {qn} ∈ R, if it satisfies

∀n∀i(|qn − qn+i| ≤ 2−n).

Moreover, we define

{pn}={qn} ↔ ∀n(|pn − qn| ≤ 2−n+1),

{pn}<{qn} ↔ ∃n(qn − pn > 2−n+1),

{pn}+{qn} = {pn+1 + qn+1}
{pn} · {qn} = {pn+m · qn+m} for a large enough m

Then, it is provable in RCA0 that (R,+, ·, 0, 1, <,=) is an Archimedean ordered field.
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Sequences and continuous functions

We define a sequence of real numbers as a function f : N× N → Q such that:
for each n, letting fn(m) = f(n,m), fn : N → Q is a real number.

• The nested interval property of R and uncountability of R is provable in RCA0.

We will introduce continuous functions on R in RCA0. A set Φ ⊆ Q4 that satisfies the
following conditions is called the code for a continuous function f : dom f(⊆ R) → R.
(1) (p, q, r, s) ∈ Φ → p < q ∧ r ≤ s,

(2) (p, q, r, s), (p′, q′, r′, s′) ∈ Φ, p′ < q ∧ p < q′ → r′ ≤ s ∧ r ≤ s′.

Intuitively, (p, q, r, s) ∈ Φ means ∀x(p < x < q → r ≤ f(x) ≤ s).
A real number x belongs to the domain of a continuous function f coded by Φ, if

∀n∃(p, q, r, s) ∈ Φ(p < x < q ∧ s− r < 2−n), denoted x ∈ domf.

It is provable in RCA0 that if x ∈ domf , there exists a unique real y such that
∀(p, q, r, s) ∈ Φ(p < x < q → r ≤ y ≤ s). We denote this y as f(x).

• The intermediate value theorem is provable in RCA0.
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Introducing ACA0

In the previous section, we proved the nested interval property of R in RCA0, but we will see
that other important properties such as sequential compactness require a strictly stronger
systems ACA0 (or often another system WKL0, which lies between RCA0 and ACA0).

Definition 3.1

The system of arithmetical comprehension axioms (ACA0) is RCA0 extended with the
following axiom:

(Π1
0 -CA) : ∃X∀n(n ∈ X ↔ φ(n)),

where φ(n) is an arithmetical formula (Π1
0 formula), which does not have X as a free

variable.

In the definition of ACA0, (Π
1
0 -CA) can be replaced with (Σ0

1 -CA). See Lemma 3.3 below.
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Lemma 3.2

ACA0 is a conservative extension of Peano Arithmetic PA. That is, all theorems of PA are
provable in ACA0, and a sentence in LOR provable in ACA0 is a theorem of PA.

Proof To prove that all theorems of PA are provable in ACA0, it suffices to show that
induction axiom for any arithmetic formula can be proved in ACA0.
Let φ(n) be any arithmetic formula, and assume

φ(0) ∧ ∀n(φ(n) → φ(n+ 1)).

By the arithmetical comprehension axiom, there exists X such that

∀n(n ∈ X ↔ φ(n)).

For this X, it follows that

0 ∈ X ∧ ∀n(n ∈ X → n+ 1 ∈ X),

and applying Σ0
1 induction yields ∀n(n ∈ X), hence ∀nφ(n).

For the converse direction, to prove that a proposition of first-order arithmetic provable in
ACA0 is a theorem of PA, we can use the same method that was used to show RCA0 is a
conservative extension of IΣ1.

2
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Let σ be a sentence in LOR such that PA ̸⊢ σ. By the completeness theorem, there exists a
model M of PA where M |= ¬σ.

For each arithmetical formula φ(x, y1, . . . , yk) and b1, . . . , bk ∈M , we put

Aφ,b1,...,bk = {a ∈M : M |= φ(a, b1, . . . , bk)}.

Then let S be the set of arithmetically definable subsets Aφ,b1,...,bk of M .
We show (M, S) forms a model of ACA0.

We first note that in any arithmetical formula with set parameters from S, a parameter
Aφ,c̄ can be eliminated by replacing t ∈ Aφ,c̄ with φ(t, c̄).

Then, Σ0
1 induction of (M, S) can be derived from arithmetical induction of M. Also, Σ0

1

comprehension holds in (M, S), since any set definable by Σ0
1 comprehension is also

definable without set parameters, and so already belongs to S. Thus, (M, S) is a model of
RCA0.

Finally, since σ does not contain set variables, its truth value is independent of S, and
hence (M, S) |= ¬σ. Therefore, ACA0 +¬σ is consistent, which implies ACA0 ̸⊢ σ. This
completes the proof. 2

Since PA is a proper extension of IΣ1, it follows that ACA0 is a proper extension of RCA0.
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Lemma 3.3

In RCA0, the following are equivalent:

(1) ACA0,

(2) (Σ0
1 -CA),

(3) The range of any 1-1 function f : N → N exists.

Proof (1) ⇒ (2) is obvious. (2) ⇒ (3) is also clear since the range of f is Σ0
1.

(3) ⇒ (2) immediately follows from Lemma 1.7 and Lemma 1.8 of Lec07-01.

To show (2) ⇒ (1), we prove (Σ0
1 -CA) → (Σ0

k -CA) by meta-induction on k. For k ≤ 1, it
is clear. Let φ(n) be any Σ0

k+1 formula. Then, we can write φ(n) as

φ(n) ↔ ∃m¬θ(m,n) ,where θ(m,n) is Σ0
k

By (Σ0
k -CA), the set Y = {(m,n) : θ(m,n)} exists. Then by (Σ0

1 -CA), the set

X = {n : ∃m¬((m,n) ∈ Y )}

also exists. Thus,
n ∈ X ↔ φ(n).

Therefore, (Σ0
k+1 -CA) holds. 2
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The following theorem states that some properties of real numbers are not only unprovable
in RCA0, but also equivalent to ACA0.

Theorem 3.4

The followings are pairwise equivalent over RCA0.

(1) ACA0,

(2) The Bolzano-Weierstrass theorem: Every bounded sequence of real numbers has a
convergent subsequence,

(3) Every Cauchy sequence converges,

(4) Every bounded sequence of real numbers has a supremum,

(5) The monotone convergence theorem: Every bounded increasing sequence converges.

Proof. (1) ⇒ (2), (3), (4), (5) can be deduced by the usual proofs found in calculus
textbooks. We here only notice that in the bisection method, conditions like an interval
containing at least one element or infinitely many elements from the sequence can be
written in arithmetical formulas. Also, (5) immediately follows from (2), (3), or (4), so it
suffices to show (5) implies (1).
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Monotone Convergence Theorem ⇒ ACA0

Assume (5). To show (1) by using Lemma 3.3(3), take any one-to-one function f : N → N.
We want to show the range of f exists.
Define a bounded increasing sequence of rational numbers {cn} by

cn =

n∑
i=0

2−f(i).

Then, by the Monotone Convergence Theorem, the limit

c = lim
n→∞

cn =

∞∑
i=0

2−f(i)

exists. Since |ck − c| =
∑

i=k+1 2
−f(i) < 2−n → ∀i>kf(i) > n, we have, for any n,

n ∈ rangef ↔ ∃mf(m) = n↔ ∀k (|ck − c| < 2−n → ∃m ≤ k (f(m) = n))

Thus, by (∆0
1 -CA), the range of f exists. Thus, by the above lemma, we have done. 2
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Binary Trees

We will see many important theorems in analysis are equivalent to the system WKL0,
which is properly weaker than ACA0. To define WKL0, we need some concepts of trees.

For each n ∈ N, a code s (∈ N) for functions with domain {i ∈ N : i < n} is called a finite
sequence with length n = leng(s).

Particularly, finite sequences that only take values 0 or 1 are called binary sequences, and
the set of (codes for) finite sequences of 0’s and 1’s is denoted by Seq2.

A subset T of Seq2 which is closed under initial segment, is called a tree, i.e.,

∀s, t(s ⊆ t ∧ t ∈ T =⇒ s ∈ T ),

where s ⊆ t means that s is an initial segment of t.

A subset of a tree T which is a tree with no branching is called a path through T . A path
through T is also expressed as a function g : N → Seq2 such that g(0) = ∅,
g(n) ⊆ g(n+ 1) ∈ T and ¬∃t (g(n) ⫋ t ⫋ g(n+ 1)) for all n ∈ N.



Logic and
Foundation

K. Tanaka

13

WKL0

Definition 3.5

Weak König’s lemma is the statement that every infinite tree T ⊂ Seq2 has an infinite
path. The system WKL0 is RCA0 plus weak König’s lemma.

To show the existence of a specific path through a given infinite tree such as the left-most
path, we need ACA0, which is properly stronger than WKL0, as we will see later. We first
show that WKL0 is strictly stronger than RCA0.

Lemma 3.6

In RCA0, WKL0 is equivalent to the following statement:

(Σ0
1 -SP) : ∀n(φ(n) → ψ(n)) → ∃X∀n{(φ(n) → n ∈ X) ∧ (n ∈ X → ψ(n))},

where φ(n) is a Σ0
1 formula and ψ(n) is a Π0

1 formula, neither containing X as a free
variable. stands for the Separation Principle.
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Note that in the Separation Principle, if we replace the premise ∀n(φ(n) → ψ(n)) with
∀n(ψ(n) ↔ ψ(n)), it becomes the ∆0

1 comprehension axiom (definition 1.2(2)). That is,
WKL0 is equivalent to RCA0 with (∆0

1 -CA) replaced by (Σ0
1 -SP).

Proof of Lemma 3.6 First, we show that the Σ0
1 Separation Principle holds in WKL0.

Given two Σ0
1 formulas φ0(n) and φ1(n) with

∀n(φ0(n) → ¬φ1(n)), or equivalently ∀n¬(φ0(n) ∧ φ1(n)).

We suppose φi(n) ≡ ∃mθi(m,n), where θi(m,n) ∈ Σ0
0. Then, define a set T ⊆ Seq2 in

RCA0 as follows:

t ∈ T ⇔ ∀m,n < leng(t)[(θ0(m,n) → t(n) = 0) ∧ (θ1(m,n) → t(n) = 1)].

It is easy to see that T forms an infinite tree. Then by weak König’s lemma, there exists an
infinite path f . If we set

X = {n : f(n) = 0},

then obviously
∀n{(φ0(n) → n ∈ X) ∧ (n ∈ X → ¬φ1(n))}.
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Conversely, we prove weak König’s lemma from Σ0
1 Separation Principle. Fix any infinite

tree T ⊆ Seq2. For i = 0, 1, let φi(s) denote the Σ0
1 formula expressing

“s ∈ Seq2 and the set {t ∈ T : s∩i ⊆ t} is finite”.

Here, s∩i denotes the binary sequence s followed by i, that is, s ∪ {(leng(s), i)}. “Tree T ′

is finite” can be expressed as T ′ ∩ {0, 1}n ̸= ∅ for some sufficiently large n, which can be
written as a Σ0

1 formula.
Now, let φi(s) ≡ ∃mθi(m, s), with θi(m, s) ∈ Σ0

0, and modify them for the Σ0
1 Separation

Principle as
φ′
0(s) ≡ ∃m(θ0(m, s) ∧ ∀k < m¬θ1(k, s)),

φ′
1(s) ≡ ∃m(θ1(m, s) ∧ ∀k ≤ m¬θ0(k, s)).

Since ∀n¬(φ′
0(n) ∧ φ′

1(n)), or ∀n(φ′
0(n) → ¬φ′

1(n)), the Σ0
1 Separation Principle ensures

the existence of X such that ∀n{(φ′
0(n) → n ∈ X) ∧ (n ∈ X → ¬φ′

1(n))}.
Using X, we inductively define an infinite sequence of binary sequences s0 ⊂ s1 ⊂ · · · as
follows: Let s0 = ∅. If sn ∈ X, then sn+1 = sn

∩{1}. Otherwise sn+1 = sn
∩{0}.

To show that f = {sn} forms an infinite path through T , we show by induction that for all
n, Tn = {t ∈ T : sn ⊆ t} is infinite. Now, assume Tn is infinite, i.e., ¬φ0(sn) ∨ ¬φ1(sn).
Consider the case sn ∈ X. Then, ¬φ′

1(sn) and sn+1 = sn
∩{1}. Thus, Tn+1 is infinite or

∃m0,m1(m0 ≤ m1 ∧ θ0(m0, sn) ∧ θ1(m1, sn)). However, since ¬φ0(sn) ∨ ¬φ1(sn), the
latter disjunctive condition does not hold. The case sn /∈ X can be treated similarly. 2
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By the above lemma, the following is straightforward.

Corollary 3.7

WKL0 is strictly stronger than RCA0.

Proof It suffices to show that the minimal model of RCA0, (ω,Rec), cannot be a model
of WKL0. Here, Rec denotes the set of recursive subsets of ω.

We need to show the existence of two disjoint Σ0
1 sets A and B that are recursively

inseparable.
Let A and B be defined as follows:

A = {⌜σ⌝ | R ⊢ σ} (the set of Gödel numbers of the theorems of R)

B = {⌜σ⌝ | R ⊢ ¬σ} (the set of Gödel numbers of the negations of the theorems of R)

Then, we derive a contradiction by assuming the existence of recursive set C
(A ⊂ C ⊂ Bc).
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Since C is recursive, by Representation Theorem in Part 4, there exists Σ0
1 formula φ(x)

such that

n ∈ C → R ⊢ φ(n̄)
n ̸∈ C → R ⊢ ¬φ(n̄)

By Diagonalization Lemma in Part 4, there exists σ such that

⌜σ⌝ ̸∈ C → R ⊢ ¬φ(⌜σ⌝) → R ⊢ ¬σ → ⌜σ⌝ ∈ A.

⌜σ⌝ ∈ C → R ⊢ φ(⌜σ⌝) → R ⊢ ¬σ → ⌜σ⌝ ∈ B,

Then, C does not separate A and B (Not A ⊂ C ⊂ Bc).

Therefore, (Σ0
1 -SP) does not hold in (ω,Rec).

2
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There are various ways to show that ACA0 is strictly stronger than WKL0.

One is the fact that WKL0 has no minimal model, and for any model (M,S) of WKL0,
there exists ⟨An | n ∈M⟩ ∈ S such that (M, {An}) is a model of WKL0. This fact can be
proved from the compactness shown in the next chapter (via the strong Π0

1 dependent
choice axiom [Simpson, 1999, Lemma VIII. 2. 5]).

While this might seem to contradict the incompleteness theorem, defining the satisfaction
relation |= on (M, {An}) requires ACA0; thus, the existence of a model of WKL0 within
WKL0 itself is not asserted. However, if ACA0 is assumed, the existence of a model of
WKL0 and hence the consistency of WKL0 can be proved, we can show that ACA0 is
strictly stronger than WKL0.

Moreover, as shown in the next part, WKL0 and RCA0 are equivalent over arithmetic
formulas, i.e., both are conservative extensions of IΣ1. Whereas, ACA0 is a conservative
extension of PA. Thus, these three systems have different strength.


