K. Tanaka

Logic and Foundation II Part 7. Theory of reals and Reverse Mathematics

Kazuyuki Tanaka

BIMSA

April 23, 2024

K. Tanaka

- Logic and Foundations II

- Part 5. Models of first-order arithmetic (continued) (5 lectures)
- Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)
- Part 7. Theory of reals and reverse mathematics (9 lectures?)
- Part 8. Second order arithmetic and non-standard methods (6 lectures?)

🔶 Part 7. Schedule

- Apr. 16, (1) Introduction and the base system RCA_0
- Apr. 18, (2) Defining real numbers in RCA_0
- Apr. 23, (3) Completeness of the reals and ACA_0
- Apr. 25, (4) Continuous functions and WKL_0
- Apr. 30, (5) Knig's lemma and Ramsey's theorem
- May 9, (6) Determinacy of infinite games I
- May 14, (7) Determinacy of infinite games II
- to be continued

Recap

Reverse Mathematics: Which axioms are needed to prove a theorem?

- The Reverse Mathematics Phenomenon

Many theorems of mathematics are either provable in RCA₀, or logically equivalent (over RCA₀) to one of WKL₀, ACA₀, ATR₀, Π_1^1 -CA₀.

Definition 1.2 The system of recursive comprehension axioms (RCA_0) consists of:

- (0) Axioms and inference rules of first-order logic with axioms of equality for numbers.
- (1) Basic arithmetic axioms: Same as $Q_{<}$ (Chapter 4).
- (2) Δ_1^0 comprehension axiom (Δ_1^0 -CA₀): $\forall n(\varphi(n) \leftrightarrow \psi(n)) \rightarrow \exists X \forall n(n \in X \leftrightarrow \varphi(n)),$ where $\varphi(n)$ is Σ_1^0 , $\psi(n)$ is Π_1^0 , and neither includes X as a free variable.
- $(3) \ \Sigma_1^0 \ \text{induction:} \ \varphi(0) \wedge \forall n(\varphi(n) \to \varphi(n+1)) \to \forall n\varphi(n) \text{, for any } \Sigma_1^0 \ \text{formula} \ \varphi(n).$

K. Tanaka

Real numbers in RCA_0

Primitive recursive functions (e.g., sequence numbers and Gödel numbers) are available in RCA_0 . Note that RCA_0 is a conservative extension of first-order arithmetic $I\Sigma_1$.

So, \mathbb{N} , \mathbb{Z} , \mathbb{Q} and their arithmetical operations are naturally defined in RCA_0.

A sequence of rational numbers $\{q_n\}$ is a real number, $\{q_n\} \in \mathbb{R}$, if it satisfies

$$\forall n \forall i (|q_n - q_{n+i}| \le 2^{-n}).$$

Moreover, we define

$$\begin{split} \{p_n\} &= \{q_n\} \leftrightarrow \forall n (|p_n - q_n| \le 2^{-n+1}), \\ \{p_n\} &< \{q_n\} \leftrightarrow \exists n (q_n - p_n > 2^{-n+1}), \\ \{p_n\} &+ \{q_n\} = \{p_{n+1} + q_{n+1}\} \\ \{p_n\} \cdot \{q_n\} &= \{p_{n+m} \cdot q_{n+m}\} \text{ for a large enough } m \end{split}$$

Then, it is provable in RCA₀ that $(\mathbb{R}, +, \cdot, 0, 1, <, =)$ is an Archimedean ordered field.

Sequences and continuous functions

We define a sequence of real numbers as a function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{Q}$ such that: for each n, letting $f_n(m) = f(n, m)$, $f_n : \mathbb{N} \to \mathbb{Q}$ is a real number.

• The nested interval property of $\mathbb R$ and uncountability of $\mathbb R$ is provable in $\mathsf{RCA}_0.$

We will introduce **continuous functions** on \mathbb{R} in RCA₀. A set $\Phi \subseteq \mathbb{Q}^4$ that satisfies the following conditions is called the **code** for a continuous function $f : \text{dom } f(\subseteq \mathbb{R}) \to \mathbb{R}$.

(1)
$$(p,q,r,s) \in \Phi \rightarrow p < q \land r \leq s$$
,

Logic and Foundation

K Tanaka

(2)
$$(p,q,r,s), (p',q',r',s') \in \Phi, p' < q \land p < q' \to r' \le s \land r \le s'.$$

Intuitively, $(p, q, r, s) \in \Phi$ means $\forall x (p < x < q \rightarrow r \leq f(x) \leq s)$. A real number x belongs to the **domain** of a continuous function f coded by Φ , if

$$\forall n \exists (p,q,r,s) \in \Phi(p < x < q \land s - r < 2^{-n}), \text{ denoted } x \in \text{dom} f.$$

It is provable in RCA₀ that if $x \in \text{dom} f$, there exists a unique real y such that $\forall (p,q,r,s) \in \Phi(p < x < q \rightarrow r \le y \le s)$. We denote this y as f(x).

• The intermediate value theorem is provable in RCA₀.

Introducing ACA₀

In the previous section, we proved the nested interval property of \mathbb{R} in RCA₀, but we will see that other important properties such as sequential compactness require a strictly stronger systems ACA₀ (or often another system WKL₀, which lies between RCA₀ and ACA₀).

Definition 3.1

The system of arithmetical comprehension axioms (ACA_0) is RCA_0 extended with the following axiom:

$$(\Pi_0^1 \operatorname{\mathsf{-CA}}) : \exists X \forall n (n \in X \leftrightarrow \varphi(n)),$$

where $\varphi(n)$ is an arithmetical formula (Π_0^1 formula), which does not have X as a free variable.

In the definition of ACA₀, $(\Pi_0^1$ -CA) can be replaced with $(\Sigma_1^0$ -CA). See Lemma 3.3 below.

K. Tanaka

Lemma 3.2

 ACA_0 is a conservative extension of Peano Arithmetic PA. That is, all theorems of PA are provable in ACA_0 , and a sentence in \mathcal{L}_{OR} provable in ACA_0 is a theorem of PA.

Proof To prove that all theorems of PA are provable in ACA₀, it suffices to show that induction axiom for any arithmetic formula can be proved in ACA₀. Let $\varphi(n)$ be any arithmetic formula, and assume

 $\varphi(0) \wedge \forall n(\varphi(n) \to \varphi(n+1)).$

By the arithmetical comprehension axiom, there exists \boldsymbol{X} such that

 $\forall n(n \in X \leftrightarrow \varphi(n)).$

For this X, it follows that

 $0 \in X \land \forall n (n \in X \to n+1 \in X),$

and applying Σ_1^0 induction yields $\forall n(n \in X)$, hence $\forall n\varphi(n)$.

For the converse direction, to prove that a proposition of first-order arithmetic provable in ACA₀ is a theorem of PA, we can use the same method that was used to show RCA₀ is a conservative extension of $I\Sigma_1$.

K. Tanaka

Let σ be a sentence in \mathcal{L}_{OR} such that PA $\not\vdash \sigma$. By the completeness theorem, there exists a model \mathfrak{M} of PA where $\mathfrak{M} \models \neg \sigma$.

For each arithmetical formula $arphi(x,y_1,\ldots,y_k)$ and $b_1,\ldots,b_k\in M$, we put

$$A_{\varphi,b_1,\ldots,b_k} = \{a \in M : \mathfrak{M} \models \varphi(a,b_1,\ldots,b_k)\}.$$

Then let S be the set of arithmetically definable subsets $A_{\varphi,b_1,...,b_k}$ of M. We show (\mathfrak{M},S) forms a model of $\mathsf{ACA}_0.$

We first note that in any arithmetical formula with set parameters from S, a parameter $A_{\varphi,\bar{c}}$ can be eliminated by replacing $t \in A_{\varphi,\bar{c}}$ with $\varphi(t,\bar{c})$.

Then, Σ_1^0 induction of (\mathfrak{M}, S) can be derived from arithmetical induction of \mathfrak{M} . Also, Σ_1^0 comprehension holds in (\mathfrak{M}, S) , since any set definable by Σ_1^0 comprehension is also definable without set parameters, and so already belongs to S. Thus, (\mathfrak{M}, S) is a model of RCA₀.

Finally, since σ does not contain set variables, its truth value is independent of S, and hence $(\mathfrak{M}, S) \models \neg \sigma$. Therefore, $ACA_0 + \neg \sigma$ is consistent, which implies $ACA_0 \not\vdash \sigma$. This completes the proof.

Since PA is a proper extension of $I\Sigma_1$, it follows that ACA₀ is a proper extension of RCA₀.

 \Box

K. Tanaka

Lemma 3.3

In RCA_0 , the following are equivalent:

- (1) ACA_0 ,
- (2) $(\Sigma_1^0 CA)$,
- (3) The range of any 1-1 function $f : \mathbb{N} \to \mathbb{N}$ exists.

 $\begin{array}{l} \textbf{Proof} \quad (1) \Rightarrow (2) \text{ is obvious. } (2) \Rightarrow (3) \text{ is also clear since the range of } f \text{ is } \Sigma_1^0.\\ (3) \Rightarrow (2) \text{ immediately follows from Lemma 1.7 and Lemma 1.8 of Lec07-01.} \end{array}$

To show $(2) \Rightarrow (1)$, we prove $(\Sigma_1^0 \operatorname{-CA}) \rightarrow (\Sigma_k^0 \operatorname{-CA})$ by meta-induction on k. For $k \leq 1$, it is clear. Let $\varphi(n)$ be any Σ_{k+1}^0 formula. Then, we can write $\varphi(n)$ as

$$arphi(n) \leftrightarrow \exists m
eg heta(m,n)$$
 ,where $heta(m,n)$ is Σ^0_k

By $(\Sigma_k^0$ -CA), the set $Y = \{(m, n) : \theta(m, n)\}$ exists. Then by $(\Sigma_1^0$ -CA), the set $X = \{n : \exists m \neg ((m, n) \in Y)\}$

also exists. Thus,

 $n \in X \leftrightarrow \varphi(n).$

Therefore, $(\Sigma_{k+1}^0 \operatorname{-CA})$ holds.

K. Tanaka

The following theorem states that some properties of real numbers are not only unprovable in RCA_0 , but also equivalent to ACA_0 .

Theorem 3.4

The followings are pairwise equivalent over RCA_0 .

- (1) ACA₀,
- (2) The Bolzano-Weierstrass theorem: Every bounded sequence of real numbers has a convergent subsequence,
- (3) Every Cauchy sequence converges,
- (4) Every bounded sequence of real numbers has a supremum,
- (5) The monotone convergence theorem: Every bounded increasing sequence converges.

Proof. $(1) \Rightarrow (2), (3), (4), (5)$ can be deduced by the usual proofs found in calculus textbooks. We here only notice that in the bisection method, conditions like an interval containing at least one element or infinitely many elements from the sequence can be written in arithmetical formulas. Also, (5) immediately follows from (2), (3), or (4), so it suffices to show (5) implies (1).

K. Tanaka

Monotone Convergence Theorem \Rightarrow ACA $_0$

Assume (5). To show (1) by using Lemma 3.3(3), take any one-to-one function $f : \mathbb{N} \to \mathbb{N}$. We want to show the range of f exists.

Define a bounded increasing sequence of rational numbers $\{c_n\}$ by

$$c_n = \sum_{i=0}^n 2^{-f(i)}$$

Then, by the Monotone Convergence Theorem, the limit

$$c = \lim_{n \to \infty} c_n = \sum_{i=0}^{\infty} 2^{-f(i)}$$

exists. Since $|c_k - c| = \sum_{i=k+1} 2^{-f(i)} < 2^{-n} \rightarrow \forall i > kf(i) > n$, we have, for any n,

$$n \in \mathsf{range} f \leftrightarrow \exists m \, f(m) = n \leftrightarrow \forall k \, (|c_k - c| < 2^{-n} \rightarrow \exists m \le k \, (f(m) = n))$$

Thus, by $(\Delta^0_1\operatorname{-CA})$, the range of f exists. Thus, by the above lemma, we have done. \Box

Binary Trees

We will see many important theorems in analysis are equivalent to the system WKL_0 , which is properly weaker than ACA_0 . To define WKL_0 , we need some concepts of trees.

For each $n \in \mathbb{N}$, a code $s \ (\in \mathbb{N})$ for functions with domain $\{i \in \mathbb{N} : i < n\}$ is called a **finite** sequence with length n = leng(s).

Particularly, finite sequences that only take values 0 or 1 are called **binary sequences**, and the set of (codes for) finite sequences of 0's and 1's is denoted by Seq_2 .

A subset T of Seq_2 which is closed under initial segment, is called a tree, i.e.,

 $\forall s, t(s \subseteq t \land t \in T \implies s \in T),$

where $s \subseteq t$ means that s is an **initial segment** of t.

A subset of a tree T which is a tree with no branching is called a **path** through T. A path through T is also expressed as a function $g: \mathbb{N} \to \text{Seq}_2$ such that $g(0) = \emptyset$, $g(n) \subseteq g(n+1) \in T$ and $\neg \exists t \ (g(n) \subsetneqq t \gneqq g(n+1))$ for all $n \in \mathbb{N}$.

WKL_0

Definition 3.5

Weak König's lemma is the statement that every infinite tree $T \subset Seq_2$ has an infinite path. The system WKL₀ is RCA₀ plus weak König's lemma.

To show the existence of a specific path through a given infinite tree such as the left-most path, we need ACA₀, which is properly stronger than WKL_0 , as we will see later. We first show that WKL_0 is strictly stronger than RCA_0 .

Lemma 3.6

In RCA_0 , WKL_0 is equivalent to the following statement:

 $(\Sigma_1^0\operatorname{-}{\rm SP}): \forall n(\varphi(n)\to\psi(n))\to\exists X\forall n\{(\varphi(n)\to n\in X)\wedge(n\in X\to\psi(n))\},$

where $\varphi(n)$ is a Σ_1^0 formula and $\psi(n)$ is a Π_1^0 formula, neither containing X as a free variable. stands for the **Separation Principle**.

K. Tanaka

Note that in the Separation Principle, if we replace the premise $\forall n(\varphi(n) \rightarrow \psi(n))$ with $\forall n(\psi(n) \leftrightarrow \psi(n))$, it becomes the Δ_1^0 comprehension axiom (definition 1.2(2)). That is, WKL₀ is equivalent to RCA₀ with (Δ_1^0 -CA) replaced by (Σ_1^0 -SP).

Proof of Lemma 3.6 First, we show that the Σ_1^0 Separation Principle holds in WKL₀. Given two Σ_1^0 formulas $\varphi_0(n)$ and $\varphi_1(n)$ with

 $\forall n(\varphi_0(n) \to \neg \varphi_1(n)), \text{ or equivalently } \forall n \neg (\varphi_0(n) \land \varphi_1(n)).$

We suppose $\varphi_i(n) \equiv \exists m \theta_i(m, n)$, where $\theta_i(m, n) \in \Sigma_0^0$. Then, define a set $T \subseteq \text{Seq}_2$ in RCA₀ as follows:

$$t \in T \Leftrightarrow \forall m, n < \operatorname{leng}(t)[(\theta_0(m, n) \to t(n) = 0) \land (\theta_1(m, n) \to t(n) = 1)].$$

It is easy to see that T forms an infinite tree. Then by weak König's lemma, there exists an infinite path $f.\ {\rm If}$ we set

$$X = \{n : f(n) = 0\},\$$

then obviously

$$\forall n \{ (\varphi_0(n) \to n \in X) \land (n \in X \to \neg \varphi_1(n)) \}.$$

K. Tanaka

Conversely, we prove weak König's lemma from Σ_1^0 Separation Principle. Fix any infinite tree $T \subseteq \text{Seq}_2$. For i = 0, 1, let $\varphi_i(s)$ denote the Σ_1^0 formula expressing

" $s \in \text{Seq}_2$ and the set $\{t \in T : s \cap i \subseteq t\}$ is finite".

Here, $s^{\cap i}$ denotes the binary sequence s followed by i, that is, $s \cup \{(\text{leng}(s), i)\}$. "Tree T' is finite" can be expressed as $T' \cap \{0, 1\}^n \neq \emptyset$ for some sufficiently large n, which can be written as a Σ_1^0 formula.

Now, let $\varphi_i(s) \equiv \exists m \theta_i(m, s)$, with $\theta_i(m, s) \in \Sigma_0^0$, and modify them for the Σ_1^0 Separation Principle as

$$\begin{split} \varphi_0'(s) &\equiv \exists m(\theta_0(m,s) \land \forall k < m \neg \theta_1(k,s)), \\ \varphi_1'(s) &\equiv \exists m(\theta_1(m,s) \land \forall k \le m \neg \theta_0(k,s)). \end{split}$$

Since $\forall n \neg (\varphi'_0(n) \land \varphi'_1(n))$, or $\forall n(\varphi'_0(n) \rightarrow \neg \varphi'_1(n))$, the Σ^0_1 Separation Principle ensures the existence of X such that $\forall n\{(\varphi'_0(n) \rightarrow n \in X) \land (n \in X \rightarrow \neg \varphi'_1(n))\}$.

Using X, we inductively define an infinite sequence of binary sequences $s_0 \subset s_1 \subset \cdots$ as follows: Let $s_0 = \emptyset$. If $s_n \in X$, then $s_{n+1} = s_n^{\cap}\{1\}$. Otherwise $s_{n+1} = s_n^{\cap}\{0\}$. To show that $f = \{s_n\}$ forms an infinite path through T, we show by induction that for all $n, T_n = \{t \in T : s_n \subseteq t\}$ is infinite. Now, assume T_n is infinite, i.e., $\neg \varphi_0(s_n) \lor \neg \varphi_1(s_n)$. Consider the case $s_n \in X$. Then, $\neg \varphi'_1(s_n)$ and $s_{n+1} = s_n^{\cap}\{1\}$. Thus, T_{n+1} is infinite or $\exists m_0, m_1(m_0 \leq m_1 \land \theta_0(m_0, s_n) \land \theta_1(m_1, s_n))$. However, since $\neg \varphi_0(s_n) \lor \neg \varphi_1(s_n)$, the latter disjunctive condition does not hold. The case $s_n \notin X$ can be treated similarly. \Box_{15}

By the above lemma, the following is straightforward.

Corollary 3.7

 WKL_0 is strictly stronger than RCA_0 .

Proof It suffices to show that the minimal model of RCA₀, (ω, Rec) , cannot be a model of WKL₀. Here, Rec denotes the set of recursive subsets of ω .

We need to show the existence of two disjoint Σ^0_1 sets A and B that are recursively inseparable.

Let \boldsymbol{A} and \boldsymbol{B} be defined as follows:

 $A = \{ \lceil \sigma \rceil \mid \mathsf{R} \vdash \sigma \}$ (the set of Gödel numbers of the theorems of R) $B = \{ \lceil \sigma \rceil \mid \mathsf{R} \vdash \neg \sigma \}$ (the set of Gödel numbers of the negations of the theorems of R)

Then, we derive a contradiction by assuming the existence of recursive set C ($A \subset C \subset B^c).$

K. Tanaka

Since C is recursive, by Representation Theorem in Part 4, there exists Σ^0_1 formula $\varphi(x)$ such that

$$\begin{split} n &\in C \to \mathsf{R} \vdash \varphi(\bar{n}) \\ n \not\in C \to \mathsf{R} \vdash \neg \varphi(\bar{n}) \end{split}$$

By Diagonalization Lemma in Part 4, there exists σ such that

$$\lceil \sigma \urcorner \notin C \to \mathsf{R} \vdash \neg \varphi(\overline{\lceil \sigma \urcorner}) \to \mathsf{R} \vdash \neg \sigma \to \lceil \sigma \urcorner \in A.$$
$$\lceil \sigma \urcorner \in C \to \mathsf{R} \vdash \varphi(\overline{\lceil \sigma \urcorner}) \to \mathsf{R} \vdash \neg \sigma \to \lceil \sigma \urcorner \in B,$$

Then, C does not separate A and B (Not $A \subset C \subset B^c$).

Therefore, $(\Sigma_1^0 \text{-SP})$ does not hold in (ω, Rec) .

K. Tanaka

There are various ways to show that ACA_0 is strictly stronger than WKL_0 .

One is the fact that WKL₀ has no minimal model, and for any model (M, S) of WKL₀, there exists $\langle A_n \mid n \in M \rangle \in S$ such that $(M, \{A_n\})$ is a model of WKL₀. This fact can be proved from the compactness shown in the next chapter (via the strong Π_1^0 dependent choice axiom [Simpson, 1999, Lemma VIII. 2. 5]).

While this might seem to contradict the incompleteness theorem, defining the satisfaction relation \models on $(M, \{A_n\})$ requires ACA₀; thus, the existence of a model of WKL₀ within WKL₀ itself is not asserted. However, if ACA₀ is assumed, the existence of a model of WKL₀ and hence the consistency of WKL₀ can be proved, we can show that ACA₀ is strictly stronger than WKL₀.

Moreover, as shown in the next part, WKL_0 and RCA_0 are equivalent over arithmetic formulas, i.e., both are conservative extensions of $I\Sigma_1$. Whereas, ACA_0 is a conservative extension of PA. Thus, these three systems have different strength.