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Logic and Foundations II� �
• Part 5. Models of first-order arithmetic (continued) (5 lectures)

• Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)

• Part 7. Theory of reals and reverse mathematics (9 lectures?)

• Part 8. Second order arithmetic and non-standard methods (6 lectures?)� �
Part 7. Schedule� �
• Apr. 16, (1) Introduction and the base system RCA0

• Apr. 18, (2) Defining real numbers in RCA0

• Apr. 23, (3) Completeness of the reals and ACA0

• Apr. 25, (4) Continuous functions and WKL0
• Apr. 30, (5) Knig’s lemma and Ramsey’s theorem

• May 9, (6) Determinacy of infinite games I

• May 14, (7) Determinacy of infinite games II

• to be continued� �
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Recap

Reverse Mathematics: Which axioms are needed to prove a theorem?

The Reverse Mathematics Phenomenon� �
Many theorems of mathematics are either provable in RCA0, or logically equivalent
(over RCA0) to one of WKL0, ACA0, ATR0, Π

1
1-CA0.� �

Definition 1.2 The system of recursive comprehension axioms (RCA0) consists of:

(0) Axioms and inference rules of first-order logic with axioms of equality for numbers.

(1) Basic arithmetic axioms: Same as Q< (Chapter 4).

(2) ∆0
1 comprehension axiom (∆0

1-CA0): ∀n(φ(n) ↔ ψ(n)) → ∃X∀n(n ∈ X ↔ φ(n)),
where φ(n) is Σ0

1, ψ(n) is Π
0
1, and neither includes X as a free variable.

(3) Σ0
1 induction: φ(0) ∧ ∀n(φ(n) → φ(n+ 1)) → ∀nφ(n), for any Σ0

1 formula φ(n).
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Basic properties of RCA0

RCA0 is a conservative extension of first-order arithmetic IΣ1. (Lemma 1.3)

In RCA0, the following holds:

• (1) Π0
1 induction. (2) The class of Σ0

1 formulas is closed under bounded quantification.
(Lemma 1.4)

• The set of total functions is closed under primitive recursion. (Lemma 1.5)

• The set of (partial) functions is closed under minimization µ. (Lemma 1.6)
Moreover, if f : Nn+1 → N is total and ∀x⃗∃yf(x⃗, y) = 0 is provable, then
µy(f(x⃗, y) = 0) exists as a total function.

• for any Σ0
1 formula φ(x), there exists a finite set X such that ∀x(x ∈ X ↔ φ(x)), or

there exists a one-to-one function f : N → N such that ∀y(∃xf(x) = y ↔ φ(y)).
(Lemma 1.7)

• (Bounded Σ0
1 -CA) : ∀x∃X∀y(y ∈ X ↔ (y < x ∧ φ(y))),

where φ(y) is a Σ0
1 formula, not containing X as a free variable. (Lemma 1.8)
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Natural numbers N

In this lecture, we explore how real number theory is developed in RCA0.

First, we denote the set of all natural numbers {n : n = n} by N.

This is formally defined within the system, and the interpretation of N relies on a model of
RCA0. In a model (M,S), the interpretation of N is nothing but its first-order part M .

We will use ω to denote the totality of standard natural numbers.

Arithmetical operations on N such as + and · are simply taken as the corresponding
operations in RCA0. Then, (N,+, ·, 0, 1, <) represents the standard model of arithmetic in
a model of RCA0 whose first order part is just the standard model of arithmetic.

In the following, Z,Q,R are all formally introduced and so they coincide with their standard
counterparts in the real world only if they are interpreted in the special models of RCA0.
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Integers Z
First, the equivalence relation =Z on N× N is defined by

(k, l) =Z (m,n) ↔ k + n = l +m.

Here, the pair (k, l) intuitively represents the integer k − l.

Then, we select a pair with the smallest code from each equivalence class of =Z to be the
representative, called an integer. We denote the set of all such representatives by Z.

The operations on Z are defined as

(k, l) + (m,n) =Z (k +m, l + n),

(k, l) · (m,n) =Z (km+ ln, kn+ lm), etc.

Note that even if (k, l) and (m,n) belong to Z, (k +m, l + n) may not belong to Z.

Strictly, + on Z is induced by taking the representatives of equivalent classes as follows:

[(k, l)] + [(m,n)] = [(k +m, l + n)].

Then, it can be verified that Z satisfies the basic properties of an integer ring.
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Rational numbers Q
Next, the equivalence relation =Q on Z× (Z− {(0, 0)}) is defined by

(k, l) =Q (m,n) ↔ kn = lm.

Here, the pair (k, l) intuitively means the rational number
k

l
.

Then, we select a pair with the smallest code from each equivalence class of =Q as a
rational number, and denote the set of all such representatives by Q.

The operations on Q are defined as

(k, l) + (m,n) =Q (kn+ lm, ln),

(k, l) · (m,n) =Q (km, ln), etc.

Thus, Q satisfies the basic properties of a field of rational numbers.

We will next define a real number as a infinite sequence of rational numbers, that is,
a function ⊂ N×Q ⊂ N× Z2 ⊂ N× N4 = N5, coded as a subset of N after all.
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Real numbers R
A sequence of rational numbers {qn} is called a real number, {qn} ∈ R, if it satisfies

∀n∀i(|qn − qn+i| ≤ 2−n).

Note that Q is a set in second-order arithmetic, whereas R is a predicate about sets.
The equality = and inequality < on real numbers are defined as

{pn}={qn} ↔ ∀n(|pn − qn| ≤ 2−n+1),

{pn}<{qn} ↔ ∃n(qn − pn > 2−n+1).

It is easy to see that for any two reals {pn} and {qn}, exactly one of the following holds:

{pn} = {qn}, {pn} < {qn}or {qn} < {pn}.

The sum of two real numbers {pn} and {qn} is defined as follows:

{pn}+{qn} = {pn+1 + qn+1}.

Here, {pn+1 + qn+1} is a real, since

|(pn+1 + qn+1)− (pn+1+i + qn+1+i)| ≤ |pn+1 − pn+1+i|+ |qn+1 − qn+1+i|
≤ 2−n−1 + 2−n−1 ≤ 2−n
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Product of real numbers
Next, the product of two real numbers {pn} and {qn} is defined as follows:

{pn}·{qn} = {pn+m · qn+m},

where m is the smallest natural number such that max(|p0|, |q0|) + 1 ≤ 2m−1. Then,

|pn+m · qn+m − pn+m+i · qn+m+i|
≤ |qn+m| · |pn+m − pn+m+i|+ |pn+m+i| · |qn+m − qn+m+i|
≤ (|q0|+ 1) · 2−n−m + (|p0|+ 1) · 2−n−m

≤ 2 · (max(|p0|, |q0|) + 1) · 2−n−m

≤ 2 · 2m−1 · 2−n−m = 2−n.

Thus, {pn} · {qn} is also a real number.

Problem 2� �
In RCA0, show the existence of a real y = 1/x for any real x ̸= 0.� �
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Summary� �
It is provable in RCA0 that (R,+, ·, 0, 1, <,=) becomes an Archimedean ordered field.� �

Remark 1. The above relation = is not the equality but an equivalent relation. In ordinary
mathematics, the definition of real numbers R is finished by dividing by the equivalence
relation =. But in RCA0, we cannot construct equivalence classes of sets, or choose
representatives for them.

Remark 2. There is another way to define reals from rationals by so-called “Dedekind
cuts”. In this definition, a real r is identified with the unique set {q ∈ Q : q < r}.
Arithmetical operations on such reals can be defined easily. However, it is difficult to
handle infinite sequences of such reals. In fact, it is not provable in RCA0 that the
element-wise sum of two sequence of such reals exists.
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Sequences of real numbers
We define a sequence of real numbers as a function f : N× N → Q such that:

for each n, letting fn(m) = f(n,m), fn : N → Q is a real number.

The sequence of real numbers is denoted by {fn}, and for each n, fn represented as
{fnm}. Furthermore, the limit of a sequence of real numbers {fn}, denoted lim

n→∞
fn, is

defined as the unique real number a such that

∀ε>0∃n∀i(|a− fn+i| < ε).

Under this definition, the next theorem can be proved in RCA0.

Theorem 2.1 (Nested interval property of R)
The following is provable in RCA0. Let {an} and {bn} be two sequences of real numbers
such that

an ≤ an+1 ≤ bn+1 ≤ bn(for all n), and lim
n→∞

|an − bn| = 0.

Then, there exists a real number c such that c = limn→∞ an = limn→∞ bn.
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Proof. We reason within RCA0.
Let {an} and {bn} be two sequences of real numbers such that

an ≤ an+1 ≤ bn+1 ≤ bn(for all n), and lim
n→∞

|an − bn| = 0.

Now, suppose an = {pnm} and bn = {qnm}. We set p′nm = pn(m+1) − 2−m−1 and
q′nm = qn(m+1) + 2−m−1. Then {p′nm} and {q′nm} are also sequences of real numbers. In
addition, for any n, an = {p′nm} and bn = {q′nm}, and for any m,

p′nm ≤ an and bn ≤ q′nm

.

Since lim
n→∞

|an − bn| = 0, we have

∀ε > 0∃n∀m ≥ n|am − bm| < ε.

A simple calculation shows that

∀ε > 0∃n∀m ≥ n|p′mm − q′mm| < ε

also holds.
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We define an increasing sequence {p′′k} by primitive recursion as follows: Let p′′0 = p′00. For
k > 0, set p′′k = p′nn with the smallest n ≥ k such that |p′nn − q′nn| < 2−k and p′′k−1 ≤ p′nn.

Since p′′k = p′nn ≤ p′′k+i ≤ q′nn, it is clear that {p′′k} becomes a real number.

Moreover, since ∀k∃n∀m ≥ n|am − p′′m| < 2−k, we have {p′′k} = lim
n→∞

an.

Similarly, we have {p′′k} = lim
n→∞

bn. So we are done. 2

Although the nested completeness property of R is provable in RCA0, the sequential
compactness or completeness of R is not, which will be discussed in the next lecture.
As an application of the above theorem, we prove that R is uncountable.

Theorem 2.2 (Uncountability of R)
It is provable in RCA0 that for any sequence of real numbers {an}, there exists a real
number c such that ∀n(an ̸= c).
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Proof. We reason within RCA0.
First, let an = {pnm}. Using primitive recursion, we define a sequence of shrinking closed
intervals with rational endpoints {[qn, rn]} as follows:

[q0, r0] = [0, 1],

[qn+1, rn+1] =

{
[ qn+3rn

4 , rn] if pn,2n+3 ≤ qn+rn
2 ,

[qn,
3qn+rn

4 ] otherwise.

The two sequences {qn} and {rn} clearly satisfy the conditions of Theorem 2.1, and thus
there exists a real number c such that c = limn→∞ qn = limn→∞ rn.

Now, take any n. If pn,2n+3 ≤ qn+rn
2 , then

an ≤ pn,2n+3 + 2−2n−3 ≤ qn+rn
2 + 2−2n−3 < qn+rn

2 + 2−2n

4 = qn+rn
2 + rn−qn

4 = qn+1 ≤ c.

Otherwise, an ≥ qn+rn
2 − 2−2n−3 > rn+1 ≥ c.

In either case, an ̸= c is shown. 2
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We will introduce continuous functions on R in RCA0.
1

Definition 2.3

A set Φ ⊆ Q4 that satisfies the following conditions is called the code for a continuous
function f : dom f(⊆ R) → R.
(1) (p, q, r, s) ∈ Φ → p < q ∧ r ≤ s,

(2) (p, q, r, s), (p′, q′, r′, s′) ∈ Φ, p′ < q ∧ p < q′ → r′ ≤ s ∧ r ≤ s′.

In (2), p′ < q ∧ p < q′ is (p, q) ∩ (p′, q′) ̸= ∅, and r′ ≤ s ∧ r ≤ s′ is [r, s] ∩ [r′, s′] ̸= ∅.
Intuitively, (p, q, r, s) ∈ Φ means ∀x(p < x < q → r ≤ f(x) ≤ s).
A real number x belongs to the domain of a continuous function f coded by Φ, if

∀n∃(p, q, r, s) ∈ Φ(p < x < q ∧ s− r < 2−n), denoted x ∈ domf.

It is provable in RCA0 that if x ∈ domf , there exists a unique real y such that
∀(p, q, r, s) ∈ Φ(p < x < q → r ≤ y ≤ s). (Exercise: Use the nested interval property of R
to prove this.) We denote this y as f(x).

Problem 3. Show in RCA0 that y = 1/x is a continuous function on R− {0}.

1Continuous functions in separable metric spaces will be introduced at the end of Section 3.
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Theorem 2.4 (Intermediate Value Theorem)

The following is provable in RCA0. Given a continuous function f such that its domain
includes [0, 1] and f(0) < 0 < f(1), there exists an x ∈ [0, 1] such that f(x) = 0.

Proof. We reason in RCA0. We may assume that f(q) ̸= 0 for all rational numbers
q ∈ [0, 1]. Otherwise, the theorem already holds. For any rational number q ∈ [0, 1], if
{pn} represents the real number f(q), then for sufficiently large n, either pn < −2−n or
2−n < pn holds, which allows us to determine whether f(q) < 0 or f(q) > 0. Therefore,
we can recursively define a sequence of shrinking closed intervals with rational endpoints
{[pn, qn]} as follows:

[p0, q0] = [0, 1],

[pn+1, qn+1] =

{
[pn+qn

2 , qn] if f(pn+qn
2 ) < 0,

[pn,
pn+qn

2 ] if f(pn+qn
2 ) > 0.

Then, by Theorem 2.1, there exists a real number x ∈ [0, 1] s.t. x = lim
n→∞

pn = lim
n→∞

qn.

Finally, it is clear that f(x) = 0. 2
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One conclusion that can be drawn from the Intermediate Value Theorem is that R forms a
real closed ordered field.

However, this does not immediately imply that all theorems of the theory of real closed
ordered fields hold in R. Since R is not a set but a formula in the sense of second-order
arithmetic, treatment of quantifiers in R requires formal methods like quantifier elimination.

As a corollary of the Intermediate Value Theorem, it is provable in RCA0 that any
continuous function f : [0, 1] → [0, 1] has a fixed point. (Apply the Intermediate Value
Theorem to x− f(x).)

However, the empirical fact that this cannot be simply extended to dimensions two or
higher is supported by a result in the next section, which claims that Brouwer’s Fixed Point
Theorem is equivalent to WKL0.
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Problem 4� �
Consider the following. Given an infinite sequence of continuous functions {fn} such
that for each n, domfn includes [0, 1], and fn(0) < 0 < fn(1). Can you show the
existence of a sequence {xn} ⊂ [0, 1] such that fn(xn) = 0 in RCA0? (Hint: Use two
Σ0

1 sets that cannot be recursively separated in the minimal model of RCA0, (ω,Rec), to
construct a counterexample. Refer to Lemma 3.6 and Corollary 3.7 in the next section.)� �
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Thank you for your attention!
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