K. Tanaka

the reals

Logic and Foundation II Part 7. Theory of reals and Reverse Mathematics

Kazuyuki Tanaka

BIMSA

April 16, 2024

K. Tanaka

the reals

- Logic and Foundations II

- Part 5. Models of first-order arithmetic (continued) (5 lectures)
- Part 6. Real-closed ordered fields: completeness and decidability (4 lectures)
- Part 7. Theory of reals and reverse mathematics (9 lectures?)
- Part 8. Second order arithmetic and non-standard methods (6 lectures?)

🔶 Part 7. Schedule

- Apr. 16, (1) Introduction and the base system RCA_0
- Apr. 18, (2) Defining real numbers in RCA_0
- Apr. 23, (3) Completeness of the reals and ACA_0
- Apr. 25, (4) Continuous functions and WKL_0
- Apr. 30, (5) Knig's lemma and Ramsey's theorem
- May 9, (6) Determinacy of infinite games I
- May 14, (7) Determinacy of infinite games II
- to be continued

K. Tanaka

the reals

Recap

Reverse Mathematics: Which axioms are needed to prove a theorem?

- The Reverse Mathematics Phenomenon

Many theorems of mathematics are either provable in RCA₀, or logically equivalent (over RCA₀) to one of WKL₀, ACA₀, ATR₀, Π_1^1 -CA₀.

Definition 1.2 The system of recursive comprehension axioms (RCA_0) consists of:

- (0) Axioms and inference rules of first-order logic with axioms of equality for numbers.
- (1) Basic arithmetic axioms: Same as $Q_{<}$ (Chapter 4).
- (2) Δ_1^0 comprehension axiom (Δ_1^0 -CA₀): $\forall n(\varphi(n) \leftrightarrow \psi(n)) \rightarrow \exists X \forall n(n \in X \leftrightarrow \varphi(n)),$ where $\varphi(n)$ is Σ_1^0 , $\psi(n)$ is Π_1^0 , and neither includes X as a free variable.
- $(3) \ \Sigma_1^0 \ \text{induction:} \ \varphi(0) \wedge \forall n(\varphi(n) \to \varphi(n+1)) \to \forall n\varphi(n) \text{, for any } \Sigma_1^0 \ \text{formula} \ \varphi(n).$

K. Tanaka

the reals

Basic properties of RCA₀

 RCA_0 is a conservative extension of first-order arithmetic I $\Sigma_1.$ (Lemma 1.3)

In RCA_0 , the following holds:

- (1) Π^0_1 induction. (2) The class of Σ^0_1 formulas is closed under bounded quantification. (Lemma 1.4)
- The set of total functions is closed under primitive recursion. (Lemma 1.5)
- The set of (partial) functions is closed under minimization μ . (Lemma 1.6) Moreover, if $f : \mathbb{N}^{n+1} \to \mathbb{N}$ is total and $\forall \vec{x} \exists y f(\vec{x}, y) = 0$ is provable, then $\mu y(f(\vec{x}, y) = 0)$ exists as a total function.
- for any Σ_1^0 formula $\varphi(x)$, there exists a finite set X such that $\forall x(x \in X \leftrightarrow \varphi(x))$, or there exists a one-to-one function $f : \mathbb{N} \to \mathbb{N}$ such that $\forall y(\exists x f(x) = y \leftrightarrow \varphi(y))$. (Lemma 1.7)
- (Bounded Σ_1^0 -CA) : $\forall x \exists X \forall y (y \in X \leftrightarrow (y < x \land \varphi(y)))$, where $\varphi(y)$ is a Σ_1^0 formula, not containing X as a free variable. (Lemma 1.8)

K. Tanaka

the reals

Natural numbers $\mathbb N$

In this lecture, we explore how real number theory is developed in RCA_0 .

First, we denote the set of all natural numbers $\{n : n = n\}$ by \mathbb{N} .

This is formally defined within the system, and the interpretation of \mathbb{N} relies on a model of RCA₀. In a model (M, S), the interpretation of \mathbb{N} is nothing but its first-order part M.

We will use ω to denote the totality of standard natural numbers.

Arithmetical operations on \mathbb{N} such as + and \cdot are simply taken as the corresponding operations in RCA₀. Then, $(\mathbb{N}, +, \cdot, 0, 1, <)$ represents the standard model of arithmetic in a model of RCA₀ whose first order part is just the standard model of arithmetic.

In the following, $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are all formally introduced and so they coincide with their standard counterparts in the real world only if they are interpreted in the special models of RCA₀.

K. Tanaka

the reals

Integers $\mathbb Z$

First, the equivalence relation $=_{\mathbb{Z}}$ on $\mathbb{N}\times\mathbb{N}$ is defined by

 $(k,l) =_{\mathbb{Z}} (m,n) \leftrightarrow k+n = l+m.$

Here, the pair (k, l) intuitively represents the integer k - l.

Then, we select a pair with the smallest code from each equivalence class of $=_{\mathbb{Z}}$ to be the representative, called an **integer**. We denote the set of all such representatives by \mathbb{Z} .

The operations on $\ensuremath{\mathbb{Z}}$ are defined as

 $(k,l) + (m,n) =_{\mathbb{Z}} (k+m,l+n),$

 $(k,l)\cdot(m,n)=_{\mathbb{Z}}(km+ln,kn+lm), \text{ etc.}$

Note that even if (k,l) and (m,n) belong to \mathbb{Z} , (k+m,l+n) may not belong to \mathbb{Z} .

Strictly, + on $\ensuremath{\mathbb{Z}}$ is induced by taking the representatives of equivalent classes as follows:

$$[(k,l)] + [(m,n)] = [(k+m,l+n)].$$

Then, it can be verified that ${\ensuremath{\mathbb Z}}$ satisfies the basic properties of an integer ring.

K. Tanaka

the reals

Rational numbers ${\mathbb Q}$

Next, the equivalence relation $=_{\mathbb{Q}}$ on $\mathbb{Z}\times(\mathbb{Z}-\{(0,0)\})$ is defined by

$$(k,l) =_{\mathbb{Q}} (m,n) \leftrightarrow kn = lm.$$

Here, the pair (k,l) intuitively means the rational number $\frac{k}{l}$.

Then, we select a pair with the smallest code from each equivalence class of $=_{\mathbb{Q}}$ as a **rational number**, and denote the set of all such representatives by \mathbb{Q} .

The operations on ${\ensuremath{\mathbb Q}}$ are defined as

$$\begin{aligned} (k,l) + (m,n) =_{\mathbb{Q}} (kn + lm, ln), \\ (k,l) \cdot (m,n) =_{\mathbb{Q}} (km, ln), \text{ etc.} \end{aligned}$$

Thus, \mathbb{Q} satisfies the basic properties of a field of rational numbers.

We will next define a real number as a infinite sequence of rational numbers, that is, a function $\subset \mathbb{N} \times \mathbb{Q} \subset \mathbb{N} \times \mathbb{Z}^2 \subset \mathbb{N} \times \mathbb{N}^4 = \mathbb{N}^5$, coded as a subset of \mathbb{N} after all.

K. Tanaka

the reals

Real numbers $\mathbb R$

A sequence of rational numbers $\{q_n\}$ is called a **real number**, $\{q_n\} \in \mathbb{R}$, if it satisfies

 $\forall n \forall i (|q_n - q_{n+i}| \le 2^{-n}).$

Note that $\mathbb Q$ is a set in second-order arithmetic, whereas $\mathbb R$ is a predicate about sets. The equality = and inequality < on real numbers are defined as

$$\{p_n\} = \{q_n\} \leftrightarrow \forall n (|p_n - q_n| \le 2^{-n+1}), \\ \{p_n\} < \{q_n\} \leftrightarrow \exists n (q_n - p_n > 2^{-n+1}).$$

It is easy to see that for any two reals $\{p_n\}$ and $\{q_n\}$, exactly one of the following holds:

$$\{p_n\} = \{q_n\}, \{p_n\} < \{q_n\} \text{or } \{q_n\} < \{p_n\}.$$

The sum of two real numbers $\{p_n\}$ and $\{q_n\}$ is defined as follows:

$$\{p_n\} + \{q_n\} = \{p_{n+1} + q_{n+1}\}.$$

Here, $\{p_{n+1}+q_{n+1}\}$ is a real, since

$$|(p_{n+1} + q_{n+1}) - (p_{n+1+i} + q_{n+1+i})| \le |p_{n+1} - p_{n+1+i}| + |q_{n+1} - q_{n+1+i}| \le 2^{-n-1} + 2^{-n-1} \le 2^{-n}$$

K. Tanaka

the reals

Product of real numbers

Next, the **product** of two real numbers $\{p_n\}$ and $\{q_n\}$ is defined as follows:

$$\{p_n\} \cdot \{q_n\} = \{p_{n+m} \cdot q_{n+m}\},\$$

where m is the smallest natural number such that $\max(|p_0|, |q_0|) + 1 \leq 2^{m-1}$. Then,

$$\begin{aligned} |p_{n+m} \cdot q_{n+m} - p_{n+m+i} \cdot q_{n+m+i}| \\ &\leq |q_{n+m}| \cdot |p_{n+m} - p_{n+m+i}| + |p_{n+m+i}| \cdot |q_{n+m} - q_{n+m+i}| \\ &\leq (|q_0|+1) \cdot 2^{-n-m} + (|p_0|+1) \cdot 2^{-n-m} \\ &\leq 2 \cdot (\max(|p_0|, |q_0|) + 1) \cdot 2^{-n-m} \\ &\leq 2 \cdot 2^{m-1} \cdot 2^{-n-m} = 2^{-n}. \end{aligned}$$

Thus, $\{p_n\} \cdot \{q_n\}$ is also a real number.

Problem 2

In RCA₀, show the existence of a real y = 1/x for any real $x \neq 0$.

K. Tanaka

the reals

- Summary

It is provable in RCA $_0$ that $(\mathbb{R}, +, \cdot, 0, 1, <, =)$ becomes an Archimedean ordered field.

Remark 1. The above relation = is not the equality but an equivalent relation. In ordinary mathematics, the definition of real numbers \mathbb{R} is finished by dividing by the equivalence relation =. But in RCA₀, we cannot construct equivalence classes of sets, or choose representatives for them.

Remark 2. There is another way to define reals from rationals by so-called "Dedekind cuts". In this definition, a real r is identified with the unique set $\{q \in \mathbb{Q} : q < r\}$. Arithmetical operations on such reals can be defined easily. However, it is difficult to handle infinite sequences of such reals. In fact, it is not provable in RCA₀ that the element-wise sum of two sequence of such reals exists.

K. Tanaka

the reals

Sequences of real numbers

We define a sequence of real numbers as a function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{Q}$ such that:

for each n, letting $f_n(m)=f(n,m),$ $f_n:\mathbb{N}\to\mathbb{Q}$ is a real number.

The sequence of real numbers is denoted by $\{f_n\}$, and for each n, f_n represented as $\{f_{nm}\}$. Furthermore, the limit of a sequence of real numbers $\{f_n\}$, denoted $\lim_{n\to\infty} f_n$, is

defined as the unique real number \boldsymbol{a} such that

$$\forall \varepsilon > 0 \exists n \forall i (|a - f_{n+i}| < \varepsilon).$$

Under this definition, the next theorem can be proved in RCA_0 .

Theorem 2.1 (Nested interval property of \mathbb{R})

The following is provable in RCA_0. Let $\{a_n\}$ and $\{b_n\}$ be two sequences of real numbers such that

$$a_n \leq a_{n+1} \leq b_{n+1} \leq b_n$$
 (for all n), and $\lim_{n \to \infty} |a_n - b_n| = 0$.

Then, there exists a real number c such that $c = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$.

K. Tanaka

the reals

Proof. We reason within RCA_0 . Let $\{a_n\}$ and $\{b_n\}$ be two sequences of real numbers such that

$$a_n \leq a_{n+1} \leq b_{n+1} \leq b_n$$
 (for all n), and $\lim_{n \to \infty} |a_n - b_n| = 0$.

Now, suppose $a_n = \{p_{nm}\}$ and $b_n = \{q_{nm}\}$. We set $p'_{nm} = p_{n(m+1)} - 2^{-m-1}$ and $q'_{nm} = q_{n(m+1)} + 2^{-m-1}$. Then $\{p'_{nm}\}$ and $\{q'_{nm}\}$ are also sequences of real numbers. In addition, for any n, $a_n = \{p'_{nm}\}$ and $b_n = \{q'_{nm}\}$, and for any m,

$$p'_{nm} \leq a_n$$
 and $b_n \leq q'_{nm}$

Since $\lim_{n \to \infty} |a_n - b_n| = 0$, we have

$$\forall \varepsilon > 0 \exists n \forall m \ge n |a_m - b_m| < \varepsilon.$$

A simple calculation shows that

$$\forall \varepsilon > 0 \exists n \forall m \geq n | p'_{mm} - q'_{mm} | < \varepsilon$$

also holds.

K. Tanaka

the reals

We define an increasing sequence $\{p''_k\}$ by primitive recursion as follows: Let $p''_0 = p'_{00}$. For k > 0, set $p''_k = p'_{nn}$ with the smallest $n \ge k$ such that $|p'_{nn} - q'_{nn}| < 2^{-k}$ and $p''_{k-1} \le p'_{nn}$.

Since $p_k'' = p_{nn}' \le p_{k+i}'' \le q_{nn}'$, it is clear that $\{p_k''\}$ becomes a real number.

Moreover, since $\forall k \exists n \forall m \ge n |a_m - p''_m| < 2^{-k}$, we have $\{p''_k\} = \lim_{n \to \infty} a_n$. Similarly, we have $\{p''_k\} = \lim_{n \to \infty} b_n$. So we are done.

Although the nested completeness property of \mathbb{R} is provable in RCA₀, the sequential compactness or completeness of \mathbb{R} is not, which will be discussed in the next lecture. As an application of the above theorem, we prove that \mathbb{R} is uncountable.

Theorem 2.2 (Uncountability of \mathbb{R})

It is provable in RCA₀ that for any sequence of real numbers $\{a_n\}$, there exists a real number c such that $\forall n(a_n \neq c)$.

K. Tanaka

the reals

Proof. We reason within RCA_0 .

First, let $a_n = \{p_{nm}\}$. Using primitive recursion, we define a sequence of shrinking closed intervals with rational endpoints $\{[q_n, r_n]\}$ as follows:

 $[q_0, r_0] = [0, 1],$ $[q_{n+1}, r_{n+1}] = \begin{cases} \left[\frac{q_n + 3r_n}{4}, r_n\right] & \text{if } p_{n,2n+3} \le \frac{q_n + r_n}{2}, \\ [q_n, \frac{3q_n + r_n}{4}] & \text{otherwise.} \end{cases}$

The two sequences $\{q_n\}$ and $\{r_n\}$ clearly satisfy the conditions of Theorem 2.1, and thus there exists a real number c such that $c = \lim_{n \to \infty} q_n = \lim_{n \to \infty} r_n$.

Now, take any n. If $p_{n,2n+3} \leq \frac{q_n+r_n}{2}$, then $a_n \leq p_{n,2n+3} + 2^{-2n-3} \leq \frac{q_n+r_n}{2} + 2^{-2n-3} < \frac{q_n+r_n}{2} + \frac{2^{-2n}}{4} = \frac{q_n+r_n}{2} + \frac{r_n-q_n}{4} = q_{n+1} \leq c.$

Otherwise, $a_n \ge \frac{q_n + r_n}{2} - 2^{-2n-3} > r_{n+1} \ge c$.

In either case, $a_n \neq c$ is shown.

K. Tanaka

the reals

We will introduce continuous functions on $\mathbb R$ in $\mathsf{RCA}_0.$ 1

Definition 2.3

A set $\Phi \subseteq \mathbb{Q}^4$ that satisfies the following conditions is called the **code** for a continuous function $f : \text{dom } f (\subseteq \mathbb{R}) \to \mathbb{R}$.

(1)
$$(p,q,r,s) \in \Phi o p < q \wedge r \leq s$$
,

 $(2) \ (p,q,r,s), (p',q',r',s') \in \Phi, p' < q \land p < q' \ \to \ r' \le s \land r \le s'.$

In (2), $p' < q \land p < q'$ is $(p,q) \cap (p',q') \neq \emptyset$, and $r' \leq s \land r \leq s'$ is $[r,s] \cap [r',s'] \neq \emptyset$. Intuitively, $(p,q,r,s) \in \Phi$ means $\forall x(p < x < q \rightarrow r \leq f(x) \leq s)$. A real number x belongs to the **domain** of a continuous function f coded by Φ , if

$$\forall n \exists (p,q,r,s) \in \Phi(p < x < q \land s - r < 2^{-n}), \text{ denoted } x \in \text{dom}f.$$

It is provable in RCA₀ that if $x \in \text{dom} f$, there exists a unique real y such that $\forall (p,q,r,s) \in \Phi(p < x < q \rightarrow r \leq y \leq s)$. (Exercise: Use the nested interval property of \mathbb{R} to prove this.) We denote this y as f(x).

Problem 3. Show in RCA₀ that y = 1/x is a continuous function on $\mathbb{R} - \{0\}$.

¹Continuous functions in separable metric spaces will be introduced at the end of Section 3.

K. Tanaka

the reals

Theorem 2.4 (Intermediate Value Theorem)

The following is provable in RCA₀. Given a continuous function f such that its domain includes [0,1] and f(0) < 0 < f(1), there exists an $x \in [0,1]$ such that f(x) = 0.

Proof. We reason in RCA₀. We may assume that $f(q) \neq 0$ for all rational numbers $q \in [0,1]$. Otherwise, the theorem already holds. For any rational number $q \in [0,1]$, if $\{p_n\}$ represents the real number f(q), then for sufficiently large n, either $p_n < -2^{-n}$ or $2^{-n} < p_n$ holds, which allows us to determine whether f(q) < 0 or f(q) > 0. Therefore, we can recursively define a sequence of shrinking closed intervals with rational endpoints $\{[p_n, q_n]\}$ as follows:

$$\begin{split} [p_0,q_0] &= [0,1], \\ [p_{n+1},q_{n+1}] &= \begin{cases} & [\frac{p_n+q_n}{2},q_n] & \text{ if } f(\frac{p_n+q_n}{2}) < 0, \\ & [p_n,\frac{p_n+q_n}{2}] & \text{ if } f(\frac{p_n+q_n}{2}) > 0. \end{cases} \end{split}$$

Then, by Theorem 2.1, there exists a real number $x \in [0,1]$ s.t. $x = \lim_{n \to \infty} p_n = \lim_{n \to \infty} q_n$. Finally, it is clear that f(x) = 0.

K. Tanaka

the reals

One conclusion that can be drawn from the Intermediate Value Theorem is that ${\mathbb R}$ forms a real closed ordered field.

However, this does not immediately imply that all theorems of the theory of real closed ordered fields hold in \mathbb{R} . Since \mathbb{R} is not a set but a formula in the sense of second-order arithmetic, treatment of quantifiers in \mathbb{R} requires formal methods like quantifier elimination.

As a corollary of the Intermediate Value Theorem, it is provable in RCA₀ that any continuous function $f:[0,1] \rightarrow [0,1]$ has a fixed point. (Apply the Intermediate Value Theorem to x - f(x).)

However, the empirical fact that this cannot be simply extended to dimensions two or higher is supported by a result in the next section, which claims that Brouwer's Fixed Point Theorem is equivalent to WKL_0 .

K. Tanaka

the reals

Problem 4

Consider the following. Given an infinite sequence of continuous functions $\{f_n\}$ such that for each n, dom f_n includes [0,1], and $f_n(0) < 0 < f_n(1)$. Can you show the existence of a sequence $\{x_n\} \subset [0,1]$ such that $f_n(x_n) = 0$ in RCA₀? (Hint: Use two Σ_1^0 sets that cannot be recursively separated in the minimal model of RCA₀, (ω, Rec) , to construct a counterexample. Refer to Lemma 3.6 and Corollary 3.7 in the next section.)

K. Tanaka

the reals

Thank you for your attention!