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Logic and Foundations II� �
• Part 5. Models of first-order arithmetic (continued)

• Part 6. Real-closed ordered fields: completeness and decidability

• Part 7. Theory of reals and reverse mathematics

• Part 8. Second order arithmetic and non-standard methods� �
Part 7. Schedule� �
• Apr. 16, (1) Introduction and the base system RCA0

• Apr. 18, (2) Defining reals in RCA0

• Apr. 23, (3) Completeness and compactness of reals

• Apr. 25, (4) ...

• to be continued� �
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From Hilbert’s program to reverse mathematics

• Second-order arithmetic is a formal theory targeting natural numbers and sets of
natural numbers. It was D. Hilbert who first drew attention to its importance as
foundations of mathematics. He formulated a deductive system of second-order
arithmetic Z2 around 1920, which can also encompass real numbers, sequences of real
numbers, continuous functions and much more.

• The second problem of Hilbert’s 23 problems was to show the consistency of basic
arithmetic of reals. This problem was then conceived as Hilbert’s program whose
aim is to establish the consistency of Z2 finitistically. As known well, Gödel’s second
incompleteness theorem blocked its progress.

• However, it is also known that a considerable breadth of mathematics can be
developed within weak subsystems of Z2, whose consistency can be shown finitistically.
From the mid-1970’s, H. Friedman, S. Simpson, and others started research to
investigate which subsystem is needed to prove a popular theorem of mathematics in
the framework of second order arithmetic. This research program has evolved into a
significant field known as reverse mathematics.
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Reverse Mathematics Program
Reverse Mathematics� �
Which axioms are needed to prove a theorem?� �

Big Five subsystems in order of increasing strength: RCA0, WKL0, ACA0, ATR0, Π
1
1-CA0

• RCA0 stands for the Recursive Comprehension Axiom, and it only guarantees the
existence of recursive (computable) sets. The subscript 0 indicates a restriction on
induction, which will be discussed later.

• WKL0= RCA0 +

Weak König Lemma︷ ︸︸ ︷
any infinite binary tree has an infinite path

= RCA0 +Σ0
1-SP

Σ0
1-SP (Σ0

1 separation):

¬∃x(φ0(x) ∧ φ1(x)) → ∃X∀x((φ0(x) → x ∈ X) ∧ (φ1(x) → x /∈ X)),

where φ0(x) and φ1(x) are Σ0
1 formulas.
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• ACA0= RCA0 +

Arithmetical Comprehension︷ ︸︸ ︷
∃X∀n

(
n ∈ X ↔ φ(n)

)
for all arithmetical φ(n)

= RCA0 +Σ0
1-CA

• ATR0= RCA0 +

Arithmetical Transfinite Recursion︷ ︸︸ ︷
the existence of a transfinite hierarchy produced

by interating arithemetic comprehension along a given well order

• Π1
1-CA0 = RCA0 +

Π1
1 Comprehension︷ ︸︸ ︷

∃X∀n
(
n ∈ X ↔ φ(n)

)
for all Π1

1 φ(n)

A formula in the form ∀Xψ with ψ arithmetical is called a Π1
1 formula.
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The Reverse Mathematics Phenomenon� �
Many theorems of mathematics are either provable in RCA0, or logically equivalent
(over RCA0) to one of the other four systems mentioned above.� �

RCA0 ⇒ the intermediate value theorem

⇒ fundamental theorem of algebra

WKL0 ↔ the maximum principle ↔ the Cauchy-Peano theorem

↔ Brouwer’s fixed point theorem

ACA0 ↔ the Bolzano-Weierstrass theorem ↔ the Ascoli-Arzela lemma

ATR0 ↔ the Luzin separation theorem ↔ Open-determinacy

Π1
1-CA0 ↔ the Cantor-Bendixson theorem ↔ (Open ∧ Closed)-determinacy

Friedman’s conservation result� �
WKL0 ⊢ σ ⇒ Primitive Recursive Arithmetic ⊢ σ for σ ∈ Π0

2.� �
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Planets and Reverse Mathematics
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Formulas of second-order arithmetic

• The language L2
OR of second-order arithmetic is the language of first-order arithmetic

LOR = {+, ·, 0, 1, <} plus a symbol ∈ for the membership relation.

• The formulas of second-order arithmetic are constructed from atomic formulas
(t1 = t2, t1 < t2, t ∈ X) by propositional connectives such as ¬, ∨, etc., and
quantifiers over arithmetic ∀x, ∃x, as well as over sets ∀X, ∃X.

• A formula can be rewritten in the prenex normal form by shifting quantifiers to the
head of formula. Moreover, all second-order quantifiers can be placed outside of the
scopes of any first-order quantifier. The following transformation is possible even in a
very weak theory,

∀x∃Y φ(x, Y ) ⇔ ∀X∃Y (∃!x(x ∈ X) → ∀x(x ∈ X → φ(x, Y ))).

If the axiom of choice is available, the places of quantifiers are exchanged as follows:

∀x∃Y φ(x, Y ) ⇔ ∃Y ′∀xφ(x, Y ′
x),

where Y ′ is a set-valued choice function, that is, Y ′(x) = Y ′
x = {y : (x, y) ∈ Y ′}.
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Hierarchy of formulas

We inductively define the hierarchy of L2
OR-formulas, Σij and Πij (i = 0, 1, j ∈ N).

Definition 1.1

• The bounded formulas are constructed from atomic formulas t1 = t2, t1 < t2, t ∈ X
by propositional connectives and bounded quantifiers ∀x < t, ∃x < t.
The class of such formulas is written as Π0

0 or Σ0
0.

• For each j ≥ 0, if φ ∈ Σ0
j , then ∀x1 · · · ∀xkφ ∈ Π0

j+1;

if φ ∈ Π0
j , then ∃x1 · · · ∃xkφ ∈ Σ0

j+1.

All formulas in Σ0
j and Π0

j are called arithmetical.

The class of arithmetical formulas is also denoted as Π1
0 or Σ1

0.

• For each j ≥ 0, if φ ∈ Σ1
j , then ∀X1 · · · ∀Xkφ ∈ Π1

j+1;

if φ ∈ Π1
j then ∃X1 · · · ∃Xkφ ∈ Σ1

j+1.

All formulas in Σ1
j and Π1

j are called analytical.



Logic and
Foundation

K. Tanaka

10

• Formulas belonging to Σij or Π
i
j are referred to as Σij or Π

i
j formulas, respectively.

• Σ0
i (or Π0

i ) formulas without set variables are nothing but Σi (or Πi) formulas of
first-order arithmetic.

• A formula that is equivalent to a Σij (or Π
i
j) formula on a given base system is also

called Σij (or Π
i
j).

• Furthermore, if a Σij formula is equivalent to a Πij formula, each of them is called a

∆i
j formula. Since the equivalence of formulas depends on a base theory T , ∆i

j is

strictly expressed as (∆i
j)
T .

• When dealing with arithmetical hierarchies Σ0
i Π0

i , a system of second-order arithmetic
RCA0 is often assumed as a base theory. While dealing with analytical hierarchies, a
stronger system ACA0 is often needed.

Examples:

• “X is an infinite set” is represented by a Π0
2 formula ∀x∃y(x < y ∧ y ∈ X).

• “A linear order ⪯ is a well-ordering”, that is, “every non-empty set has the least
element”, can be represented by the following Π1

1 formula
∀X(∃z(z ∈ X) → ∃x(x ∈ X ∧ ∀y ∈ X(x ⪯ y))),
or rewritten as ∀X∀z∃x(z ̸∈ X ∨ (x ∈ X ∧ ∀y ∈ X(x ⪯ y))).
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The system of recursive comprehension axioms (RCA0) is a weak base system of
second-order arithmetic, which serves as the foundation for our subsequent observation.

Definition 1.2

The system of recursive comprehension axioms (RCA0) consists of the following axioms:

(0) Axioms and inference rules of first-order logic with axioms of equality for numbers.
Equality between sets X = Y is defined as ∀n(n ∈ X ↔ n ∈ Y ).

(1) Basic arithmetic axioms: Same as Q< (Chapter 4).

(2) ∆0
1 comprehension axiom (∆0

1-CA0):

∀n(φ(n) ↔ ψ(n)) → ∃X∀n(n ∈ X ↔ φ(n)),

where φ(n) is a Σ0
1 formula, ψ(n) is a Π0

1 formula, and neither includes X as a free
variable. This axiom ensures the existence of set X = {n : φ(n)}.

(3) Σ0
1 induction: φ(0) ∧ ∀n(φ(n) → φ(n+ 1)) → ∀nφ(n), for any Σ0

1 formula φ(n).
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• Since the ∆0
1 comprehension axiom asserts the existence of recursive sets

(=computable sets) in the standard model N, it is called the recursive
comprehension axiom.

• More precisely, since ψ(x) and φ(x) in the axiom may include set variables (other than
X) as parameters, this axiom indeed asserts that there exists a set that can be
computed in a parameter set as an oracle. But notice that it does not assert the
non-existence of a non-recursive set.

• RCA0 is a conservative extension of first-order arithmetic IΣ1. That is, a sentence of
LOR that is provable in RCA0 is already provable in IΣ1, as shown in the next lemma.

Definition (preliminary). The system of arithmetical comprehension axioms ACA0 is
obtained from RCA0 by replacing the ∆0

1 comprehension with the Σ0
1 comprehension 1.

• ACA0 is a conservative extension of first-order arithmetic PA.

1Arithmetical (Σ1
0) comprehension can be achieved by repeatedly applying the Σ0

1 comprehension axiom
to the parameters.
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Lemma 1.3

RCA0 is a conservative extension of first-order arithmetic IΣ1, that is, any theorem of IΣ1

is provable in RCA0, and any sentence in LOR provable in RCA0 is already provable in IΣ1.

Proof: It is obvious that any theorem of IΣ1 can be proved in RCA0, since all axioms of
IΣ1 are included in RCA0.

To prove the converse, consider a sentence σ in LOR such that IΣ1 ̸⊢ σ. By the
completeness theorem, there exists a model M = (M,+, ·, 0, 1, <) of IΣ1 where M |= ¬σ.
For a Σ1 formula φ(x, y1, . . . , yk), a Π1 formula ψ(x, y1, . . . , yk) and b1, . . . , bk ∈M , if

M |= ∀x(φ(x, b1, . . . , bk) ↔ ψ(x, b1, . . . , bk))

holds, then we put

Aφ,ψ,b1,...,bk = {a ∈M : M |= φ(a, b1, . . . , bk)}.

Otherwise, we let Aφ,ψ,b1,...,bk = ∅. Finally, let S be the set of ∆1 definable subsets of M ,

S = {Aφ,ψ,b1,...,bk : φ ∈ Σ1, ψ ∈ Π1, and b1, . . . , bk ∈M}.
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• To show that (M, S) = (M ∪ S,+, ·, 0, 1, <,∈) forms a model of RCA0, it suffices to
prove that any Σ0

1 formula with set parameters from S can be rewritten as an
equivalent Σ0

1 formula without set parameters. If so, Σ0
1 induction of (M, S) can be

derived from Σ1 induction of M. Also, (M, S) satisfies ∆0
1 comprehension, since any

set ∆0
1 (i.e., Σ0

1 and Π0
1) definable with set parameters can be ∆0

1 definable without
set parameters, and so already belongs to S.

• Now, consider a Σ0
1 formula θ(x, b1, . . . , bk, Aφ1,ψ1,c̄, . . . , Aφl,ψl,c̄) with bi ∈M and

Aφj ,ψj ,c̄ ∈ S. In the formula, replace t ∈ Aφj ,ψj ,c̄ with either φi(t, c̄) or ψi(t, c̄) so
that the whole formula keeps in Σ0

1. Thus, we obtain a Σ0
1 formula θ′(x, b1, . . . , bk, c̄),

which is equivalent to θ(x, b1, . . . , bk, Aφ1,ψ1,c̄, . . . , Aφl,ψl,c̄). The same for Π0
1

formulas. Thus, (M, S) is a model of RCA0.

• Finally, since σ does not contain set variables, its truth value is independent of S, and
hence (M, S) |= ¬σ. Therefore, RCA0 + ¬σ is consistent, which implies RCA0 ̸⊢ σ.
This completes the proof. 2
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The various properties of IΣ1 demonstrated in Chapter 4 also hold true in RCA0. In
particular, the following fact is frequently used.

Lemma 1.4

In RCA0, the following holds:
(1) Π0

1 induction.
(2) The class of Σ0

1 formulas is closed under bounded quantification.

Proof ideas. (1) Let φ(x) be a Π0
1 formula and assume φ(0) ∧ ∀x(φ(x) → φ(x+ 1)). By

way of contradiction, we assume ¬φ(c). Use induction for a Σ0
1 formula ¬φ(c− x). Then,

¬φ(c− 0) and ¬ φ(c− x) → ¬φ(c− (x+ 1)) imply ¬φ(0), a contradiction.

(2) Suppose ∀x < u∃yφ(x, y) with φ(x, y) bounded. Let ψ(w) be a Σ0
1 formula

∃v∀x < w∃y < vφ(x, y) ∨ u < w. By Σ0
1 induction, we have ∀wψ(w), in particular,

∃v∀x < u∃y < vφ(x, y).

Let X, Y be sets of natural numbers. X ⊆ Y is an abbreviation for ∀n(n ∈ X → n ∈ Y ),
and X = Y is defined as X ⊆ Y ∧ Y ⊆ X. The equality of terms t1 = t2 is a Π0

0 formula,
but the equality of sets X = Y is a Π0

1 formula.



Logic and
Foundation

K. Tanaka

16

The pair of natural numbers (m,n) is coded by a natural number (m+n)(m+n+1)
2 +m.

The product X × Y is the set of pairs (codes) of one from X and the other from Y . Thus,

n ∈ X × Y ↔ ∃x ≤ n∃y ≤ n(x ∈ X ∧ y ∈ Y ∧ (x, y) = n).

Since the above formula is Σ0
0, the existence of X × Y is guaranteed in RCA0.

A function f : X → Y is a subset F ⊆ X × Y such that

∀x∀y0∀y1((x, y0) ∈ F ∧ (x, y1) ∈ F → y0 = y1) and ∀x ∈ X∃y ∈ Y (x, y) ∈ F.

When (x, y) ∈ F , we write f(x) = y. The set X of f : X → Y is called the domain of f .

A function whose domain is N or Nk is called a total function.

Furthermore, a function f whose domain is X = {i : i < n} is called a finite sequence
with length n. In RCA0, a finite sequence can be coded by a natural number, and this
code (Gödel number) is often identified with the sequence itself.
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Lemma 1.5

In RCA0, it is provable that the set of total functions is closed under primitive recursion.

Proof In the last semester (in Part 4), we proved that a function defined by primitive
recursion is ∆1 definable in IΣ1, thus by ∆0

1 comprehension, it exists as a set. 2

Moreover, we have

Lemma 1.6

In RCA0, it is provable that the set of (partial) functions is closed under minimization µ.

Proof Expressing g(x1, · · · , xn) = µy(f(x1, · · · , xn, y) = 0) in a formula, we have

((x1, · · · , xn), y) ∈ g ⇔ ((x1, · · · , xn, y), 0) ∈ f ∧ ∀z < y((x1, · · · , xn, z), 0) /∈ f.

The right side is a Σ0
0 formula, so the existence of g and its totality can be shown in RCA0.

2

Note For a recursive function defined using µ-operator, if its totality is provable in RCA0,
it can be defined by primitive recursion without using µ (by Friedman’s Theorem in the
next chapter).
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Lemma 1.7

In RCA0, for any Σ0
1 formula φ(x), there exists a finite set X such that ∀x(x ∈ X ↔ φ(x)),

or there exists a one-to-one function f : N → N such that ∀y(∃xf(x) = y ↔ φ(y)).

Proof

• Let φ(x) be a Σ0
1 formula. So, there exists a Σ0

0 formula θ(x, y) such that
φ(x) ↔ ∃yθ(x, y). By (Σ0

0 -CA),

Y = {(x, y) : θ(x, y) ∧ ∀y′ < y¬θ(x, y′)}

exists. Note that ∃yθ(x, y) ↔ ∃y(x, y) ∈ Y ↔ ∃!y(x, y) ∈ Y for all x.

• If Y is bounded, there exist u, v such that φ(x) ↔ (x < u ∧ ∃y < vθ(x, y)). Then, by
(Σ0

0 -CA), there exists a finite set X such that ∀x(x ∈ X ↔ φ(x)).

• Next, suppose that Y is unbounded. By Lemmas1.5 and 1.6, we can define a function
which enumerates the elements of Y , and a function which extracts the first
component x from (x, y). Combining them, we can create a one-to-one function f
such that ∀y(∃xf(x) = y ↔ φ(y)). This proves the lemma. 2
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Lemma 1.8

In RCA0, the following form of set existence axiom is provable:

(Bounded Σ0
1 -CA) : ∀x∃X∀y(y ∈ X ↔ (y < x ∧ φ(y))),

where φ(y) is a Σ0
1 formula, not containing X as a free variable.

Proof For a fixed x, if there exist no finite set X such that

∀y(y ∈ X ↔ (y < x ∧ φ(y))),

then by the previous lemma, there must exist a one-to-one function f : N → N such that

∀y(∃zf(z) = y ↔ (y < x ∧ φ(y))),

which is absurd. 2

Problem 1 (Strong Σ0
1 Collection Axiom)� �

Prove in RCA0: for a Σ0
1 formula φ(i, j) (not containing n as a free variable),

(SΣ0
1) : ∀m∃n∀i < m(∃jφ(i, j) → ∃j < nφ(i, j)).� �
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Thank you for your attention!


