K. Tanaka

Logic and Foundation II Part 7. Theory of reals and Reverse Mathematics

Kazuyuki Tanaka

BIMSA

April 16, 2024

Logic and Foundations II

- Part 5. Models of first-order arithmetic (continued)
- Part 6. Real-closed ordered fields: completeness and decidability
- Part 7. Theory of reals and reverse mathematics
- Part 8. Second order arithmetic and non-standard methods

- Part 7. Schedule

- Apr. 16, (1) Introduction and the base system RCA_0
- Apr. 18, (2) Defining reals in RCA_0
- Apr. 23, (3) Completeness and compactness of reals
- Apr. 25, (4) ...
- to be continued

From Hilbert's program to reverse mathematics

Logic and

K Tanaka

- Second-order arithmetic is a formal theory targeting natural numbers and sets of natural numbers. It was D. Hilbert who first drew attention to its importance as foundations of mathematics. He formulated a deductive system of second-order arithmetic Z₂ around 1920, which can also encompass real numbers, sequences of real numbers, continuous functions and much more.
- The second problem of Hilbert's 23 problems was to show the consistency of basic arithmetic of reals. This problem was then conceived as **Hilbert's program** whose aim is to establish the consistency of Z_2 finitistically. As known well, Gödel's second incompleteness theorem blocked its progress.
- However, it is also known that a considerable breadth of mathematics can be developed within weak subsystems of Z_2 , whose consistency can be shown finitistically. From the mid-1970's, H. Friedman, S. Simpson, and others started research to investigate which subsystem is needed to prove a popular theorem of mathematics in the framework of second order arithmetic. This research program has evolved into a significant field known as reverse mathematics.

K. Tanaka

Reverse Mathematics

Which axioms are needed to prove a theorem?

Big Five subsystems in order of increasing strength: RCA_0 , WKL_0 , ACA_0 , ATR_0 , Π_1^1 - CA_0

• RCA_0 stands for the Recursive Comprehension Axiom, and it only guarantees the existence of recursive (computable) sets. The subscript 0 indicates a restriction on induction, which will be discussed later.

• WKL₀= RCA₀ + any infinite binary tree has an infinite path
= RCA₀ +
$$\Sigma_1^0$$
-SP
 Σ_1^0 -SP (Σ_1^0 separation):
 $\neg \exists x(\varphi_0(x) \land \varphi_1(x)) \rightarrow \exists X \forall x((\varphi_0(x) \rightarrow x \in X) \land (\varphi_1(x) \rightarrow x \notin X)),$

where $\varphi_0(x)$ and $\varphi_1(x)$ are Σ_1^0 formulas.

K. Tanaka

Arithmetical Transfinite Recursion

• $ATR_0 = RCA_0 +$ the existence of a transfinite hierarchy produced by interating arithemetic comprehension along a given well order

•
$$\Pi_1^1$$
-CA₀ = RCA₀ + $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$ for all $\Pi_1^1 \varphi(n)$
A formula in the form $\forall X \psi$ with ψ arithmetical is called a Π_1^1 formula

K. Tanaka

- The Reverse Mathematics Phenomenon -

Many theorems of mathematics are either provable in RCA_0 , or logically equivalent (over RCA_0) to one of the other four systems mentioned above.

 $\mathsf{RCA}_0 \Rightarrow$ the intermediate value theorem

 \Rightarrow fundamental theorem of algebra

 $\mathsf{WKL}_0 \leftrightarrow \mathsf{the}\ \mathsf{maximum}\ \mathsf{principle}\ \leftrightarrow\ \mathsf{the}\ \mathsf{Cauchy-Peano}\ \mathsf{theorem}$

 \leftrightarrow Brouwer's fixed point theorem

 $\mathsf{ACA}_0 \leftrightarrow \mathsf{the}\ \mathsf{Bolzano-Weierstrass}\ \mathsf{theorem}\ \leftrightarrow\ \mathsf{the}\ \mathsf{Ascoli-Arzela}\ \mathsf{lemma}$

 $\mathsf{ATR}_0 \leftrightarrow \mathsf{the} \ \mathsf{Luzin} \ \mathsf{separation} \ \mathsf{theorem} \ \leftrightarrow \ \mathsf{Open-determinacy}$

 $\Pi^1_1\text{-}\mathsf{CA}_0 \leftrightarrow \mathsf{the} \; \mathsf{Cantor-Bendixson} \; \mathsf{theorem} \; \; \leftrightarrow \; \; \mathsf{(Open} \land \mathsf{Closed)}\text{-}\mathsf{determinacy}$

Friedman's conservation result

 $\mathsf{WKL}_0 \vdash \sigma \Rightarrow \mathsf{Primitive \, Recursive \, Arithmetic} \vdash \sigma \quad \text{for } \sigma \in \Pi^0_2.$

Planets and Reverse Mathematics

K. Tanaka

Formulas of second-order arithmetic

- The language \mathcal{L}^2_{OR} of second-order arithmetic is the language of first-order arithmetic $\mathcal{L}_{OR} = \{+, \cdot, 0, 1, <\}$ plus a symbol \in for the membership relation.
- The formulas of second-order arithmetic are constructed from atomic formulas
 (t₁ = t₂, t₁ < t₂, t ∈ X) by propositional connectives such as ¬, ∨, etc., and
 quantifiers over arithmetic ∀x, ∃x, as well as over sets ∀X, ∃X.
- A formula can be rewritten in the prenex normal form by shifting quantifiers to the head of formula. Moreover, all second-order quantifiers can be placed outside of the scopes of any first-order quantifier. The following transformation is possible even in a very weak theory,

$$\forall x \exists Y \varphi(x, Y) \Leftrightarrow \forall X \exists Y (\exists ! x (x \in X) \to \forall x (x \in X \to \varphi(x, Y))).$$

If the axiom of choice is available, the places of quantifiers are exchanged as follows:

$$\forall x \exists Y \varphi(x, Y) \Leftrightarrow \exists Y' \forall x \varphi(x, Y'_x),$$

where Y' is a set-valued choice function, that is, $Y'(x) = Y'_x = \{y : (x, y) \in Y'\}.$

K. Tanaka

Hierarchy of formulas

We inductively define the hierarchy of \mathcal{L}_{OR}^2 -formulas, Σ_j^i and Π_j^i $(i = 0, 1, j \in \mathbb{N})$.

Definition 1.1

- The **bounded** formulas are constructed from atomic formulas $t_1 = t_2, t_1 < t_2, t \in X$ by propositional connectives and bounded quantifiers $\forall x < t, \exists x < t$. The class of such formulas is written as Π_0^0 or Σ_0^0 .
- For each $j \ge 0$, if $\varphi \in \Sigma_j^0$, then $\forall x_1 \cdots \forall x_k \varphi \in \Pi_{j+1}^0$; if $\varphi \in \Pi_j^0$, then $\exists x_1 \cdots \exists x_k \varphi \in \Sigma_{j+1}^0$. All formulas in Σ_j^0 and Π_j^0 are called **arithmetical**. The class of arithmetical formulas is also denoted as Π_0^1 or Σ_0^1 .
- For each $j \ge 0$, if $\varphi \in \Sigma_j^1$, then $\forall X_1 \cdots \forall X_k \varphi \in \Pi_{j+1}^1$; if $\varphi \in \Pi_j^1$ then $\exists X_1 \cdots \exists X_k \varphi \in \Sigma_{j+1}^1$. All formulas in Σ_j^1 and Π_j^1 are called analytical.

- Logic and Foundation
- K. Tanaka

- Formulas belonging to Σ^i_j or Π^i_j are referred to as Σ^i_j or Π^i_j formulas, respectively.
- Σ_i^0 (or Π_i^0) formulas without set variables are nothing but Σ_i (or Π_i) formulas of first-order arithmetic.
- A formula that is equivalent to a Σ_j^i (or Π_j^i) formula on a given base system is also called Σ_j^i (or Π_j^i).
- Furthermore, if a Σ_j^i formula is equivalent to a Π_j^i formula, each of them is called a Δ_j^i formula. Since the equivalence of formulas depends on a base theory T, Δ_j^i is strictly expressed as $(\Delta_j^i)^T$.
- When dealing with arithmetical hierarchies $\Sigma_i^0 \Pi_i^0$, a system of second-order arithmetic RCA₀ is often assumed as a base theory. While dealing with analytical hierarchies, a stronger system ACA₀ is often needed.

Examples:

- "X is an infinite set" is represented by a Π_2^0 formula $\forall x \exists y (x < y \land y \in X)$.
- "A linear order \leq is a well-ordering", that is, "every non-empty set has the least element", can be represented by the following Π^1_1 formula $\forall X (\exists z(z \in X) \rightarrow \exists x(x \in X \land \forall y \in X(x \leq y))),$ or rewritten as $\forall X \forall z \exists x(z \notin X \lor (x \in X \land \forall y \in X(x \leq y))).$

K. Tanaka

The system of recursive comprehension axioms (RCA_0) is a weak base system of second-order arithmetic, which serves as the foundation for our subsequent observation.

Definition 1.2

The system of recursive comprehension axioms (RCA₀) consists of the following axioms:

- (0) Axioms and inference rules of first-order logic with axioms of equality for numbers. Equality between sets X = Y is defined as $\forall n (n \in X \leftrightarrow n \in Y)$.
- (1) Basic arithmetic axioms: Same as $\mathsf{Q}_<$ (Chapter 4).
- (2) Δ_1^0 comprehension axiom (Δ_1^0 -CA₀):

 $\forall n(\varphi(n) \leftrightarrow \psi(n)) \rightarrow \exists X \forall n(n \in X \leftrightarrow \varphi(n)),$

where $\varphi(n)$ is a Σ_1^0 formula, $\psi(n)$ is a Π_1^0 formula, and neither includes X as a free variable. This axiom ensures the existence of set $X = \{n : \varphi(n)\}$.

(3) Σ_1^0 induction: $\varphi(0) \land \forall n(\varphi(n) \to \varphi(n+1)) \to \forall n\varphi(n)$, for any Σ_1^0 formula $\varphi(n)$.

K. Tanaka

- Since the ∆₁⁰ comprehension axiom asserts the existence of recursive sets (=computable sets) in the standard model N, it is called the recursive comprehension axiom.
- More precisely, since $\psi(x)$ and $\varphi(x)$ in the axiom may include set variables (other than X) as parameters, this axiom indeed asserts that there exists a set that can be computed in a parameter set as an oracle. But notice that it does not assert the non-existence of a non-recursive set.
- RCA₀ is a conservative extension of first-order arithmetic $I\Sigma_1$. That is, a sentence of \mathcal{L}_{OR} that is provable in RCA₀ is already provable in $I\Sigma_1$, as shown in the next lemma.

Definition (preliminary). The system of **arithmetical comprehension axioms** ACA₀ is obtained from RCA₀ by replacing the Δ_1^0 comprehension with the Σ_1^0 comprehension ¹.

• ACA₀ is a conservative extension of first-order arithmetic PA.

 $^{^1\}text{Arithmetical}~(\Sigma^0_1)$ comprehension can be achieved by repeatedly applying the Σ^0_1 comprehension axiom to the parameters.

K. Tanaka

Lemma 1.3

 RCA_0 is a conservative extension of first-order arithmetic $\mathsf{I}\Sigma_1$, that is, any theorem of $\mathsf{I}\Sigma_1$ is provable in RCA_0 , and any sentence in $\mathcal{L}_{\mathrm{OR}}$ provable in RCA_0 is already provable in $\mathsf{I}\Sigma_1$.

Proof: It is obvious that any theorem of $I\Sigma_1$ can be proved in RCA₀, since all axioms of $I\Sigma_1$ are included in RCA₀.

To prove the converse, consider a sentence σ in \mathcal{L}_{OR} such that $I\Sigma_1 \not\vdash \sigma$. By the completeness theorem, there exists a model $\mathfrak{M} = (M, +, \cdot, 0, 1, <)$ of $I\Sigma_1$ where $\mathfrak{M} \models \neg \sigma$. For a Σ_1 formula $\varphi(x, y_1, \ldots, y_k)$, a Π_1 formula $\psi(x, y_1, \ldots, y_k)$ and $b_1, \ldots, b_k \in M$, if

$$\mathfrak{M} \models \forall x(\varphi(x, b_1, \dots, b_k) \leftrightarrow \psi(x, b_1, \dots, b_k))$$

holds, then we put

$$A_{\varphi,\psi,b_1,\ldots,b_k} = \{a \in M : \mathfrak{M} \models \varphi(a,b_1,\ldots,b_k)\}.$$

Otherwise, we let $A_{\varphi,\psi,b_1,\ldots,b_k} = \emptyset$. Finally, let S be the set of Δ_1 definable subsets of M,

$$S = \{A_{\varphi,\psi,b_1,\ldots,b_k} : \varphi \in \Sigma_1, \psi \in \Pi_1, \text{ and } b_1,\ldots,b_k \in M\}.$$

K. Tanaka

- To show that $(\mathfrak{M}, S) = (M \cup S, +, \cdot, 0, 1, <, \in)$ forms a model of RCA₀, it suffices to prove that any Σ_1^0 formula with set parameters from S can be rewritten as an equivalent Σ_1^0 formula without set parameters. If so, Σ_1^0 induction of (\mathfrak{M}, S) can be derived from Σ_1 induction of \mathfrak{M} . Also, (\mathfrak{M}, S) satisfies Δ_1^0 comprehension, since any set Δ_1^0 (i.e., Σ_1^0 and Π_1^0) definable with set parameters can be Δ_1^0 definable without set parameters, and so already belongs to S.
- Now, consider a Σ_1^0 formula $\theta(x, b_1, \ldots, b_k, A_{\varphi_1, \psi_1, \overline{c}}, \ldots, A_{\varphi_l, \psi_l, \overline{c}})$ with $b_i \in M$ and $A_{\varphi_j, \psi_j, \overline{c}} \in S$. In the formula, replace $t \in A_{\varphi_j, \psi_j, \overline{c}}$ with either $\varphi_i(t, \overline{c})$ or $\psi_i(t, \overline{c})$ so that the whole formula keeps in Σ_1^0 . Thus, we obtain a Σ_1^0 formula $\theta'(x, b_1, \ldots, b_k, \overline{c})$, which is equivalent to $\theta(x, b_1, \ldots, b_k, A_{\varphi_1, \psi_1, \overline{c}}, \ldots, A_{\varphi_l, \psi_l, \overline{c}})$. The same for Π_1^0 formulas. Thus, (\mathfrak{M}, S) is a model of RCA₀.
- Finally, since σ does not contain set variables, its truth value is independent of S, and hence (𝔅, S) ⊨ ¬σ. Therefore, RCA₀ + ¬σ is consistent, which implies RCA₀ ⊬ σ. This completes the proof.

K. Tanaka

The various properties of I Σ_1 demonstrated in Chapter 4 also hold true in RCA₀. In particular, the following fact is frequently used.

Lemma 1.4

In RCA₀, the following holds: (1) Π_1^0 induction. (2) The class of Σ_1^0 formulas is closed under bounded quantification.

Proof ideas. (1) Let $\varphi(x)$ be a Π_1^0 formula and assume $\varphi(0) \land \forall x(\varphi(x) \to \varphi(x+1))$. By way of contradiction, we assume $\neg \varphi(c)$. Use induction for a Σ_1^0 formula $\neg \varphi(c-x)$. Then, $\neg \varphi(c-0)$ and $\neg \varphi(c-x) \to \neg \varphi(c-(x+1))$ imply $\neg \varphi(0)$, a contradiction.

(2) Suppose $\forall x < u \exists y \varphi(x, y)$ with $\varphi(x, y)$ bounded. Let $\psi(w)$ be a Σ_1^0 formula $\exists v \forall x < w \exists y < v \varphi(x, y) \lor u < w$. By Σ_1^0 induction, we have $\forall w \psi(w)$, in particular, $\exists v \forall x < u \exists y < v \varphi(x, y)$.

Let X, Y be sets of natural numbers. $X \subseteq Y$ is an abbreviation for $\forall n(n \in X \to n \in Y)$, and X = Y is defined as $X \subseteq Y \land Y \subseteq X$. The equality of terms $t_1 = t_2$ is a Π_0^0 formula, but the equality of sets X = Y is a Π_1^0 formula.

K. Tanaka

The **pair** of natural numbers (m, n) is coded by a natural number $\frac{(m+n)(m+n+1)}{2} + m$. The **product** $X \times Y$ is the set of pairs (codes) of one from X and the other from Y. Thus, $n \in X \times Y \Leftrightarrow \exists x \leq n \exists y \leq n (x \in X \land y \in Y \land (x, y) = n).$

Since the above formula is Σ_0^0 , the existence of $X \times Y$ is guaranteed in RCA₀.

A function $f: X \to Y$ is a subset $F \subseteq X \times Y$ such that

 $\forall x \forall y_0 \forall y_1((x,y_0) \in F \land (x,y_1) \in F \rightarrow y_0 = y_1) \text{ and } \forall x \in X \exists y \in Y(x,y) \in F.$

When $(x, y) \in F$, we write f(x) = y. The set X of $f: X \to Y$ is called the domain of f.

A function whose domain is \mathbb{N} or \mathbb{N}^k is called a **total function**.

Furthermore, a function f whose domain is $X = \{i : i < n\}$ is called a **finite sequence** with **length** n. In RCA₀, a finite sequence can be coded by a natural number, and this code (Gödel number) is often identified with the sequence itself.

K. Tanaka

Lemma 1.5

In RCA_0 , it is provable that the set of total functions is closed under primitive recursion.

Proof In the last semester (in Part 4), we proved that a function defined by primitive recursion is Δ_1 definable in I Σ_1 , thus by Δ_1^0 comprehension, it exists as a set.

Moreover, we have

Lemma 1.6

In RCA₀, it is provable that the set of (partial) functions is closed under minimization μ .

Proof Expressing $g(x_1, \cdots, x_n) = \mu y(f(x_1, \cdots, x_n, y) = 0)$ in a formula, we have

 $((x_1, \cdots, x_n), y) \in g \Leftrightarrow ((x_1, \cdots, x_n, y), 0) \in f \land \forall z < y((x_1, \cdots, x_n, z), 0) \notin f.$

The right side is a Σ_0^0 formula, so the existence of g and its totality can be shown in RCA₀.

Note For a recursive function defined using μ -operator, if its totality is provable in RCA₀, it can be defined by primitive recursion without using μ (by Friedman's Theorem in the next chapter).

K. Tanaka

Lemma 1.7

In RCA₀, for any Σ_1^0 formula $\varphi(x)$, there exists a finite set X such that $\forall x (x \in X \leftrightarrow \varphi(x))$, or there exists a one-to-one function $f : \mathbb{N} \to \mathbb{N}$ such that $\forall y (\exists x f(x) = y \leftrightarrow \varphi(y))$.

Proof

• Let $\varphi(x)$ be a Σ_1^0 formula. So, there exists a Σ_0^0 formula $\theta(x,y)$ such that $\varphi(x) \leftrightarrow \exists y \theta(x,y)$. By $(\Sigma_0^0 \text{-CA})$,

$$Y = \{(x, y) : \theta(x, y) \land \forall y' < y \neg \theta(x, y')\}$$

exists. Note that $\exists y \theta(x,y) \leftrightarrow \exists y(x,y) \in Y \leftrightarrow \exists ! y(x,y) \in Y$ for all x.

- If Y is bounded, there exist u, v such that $\varphi(x) \leftrightarrow (x < u \land \exists y < v\theta(x, y))$. Then, by $(\Sigma_0^0 \text{-CA})$, there exists a finite set X such that $\forall x(x \in X \leftrightarrow \varphi(x))$.
- Next, suppose that Y is unbounded. By Lemmas1.5 and 1.6, we can define a function which enumerates the elements of Y, and a function which extracts the first component x from (x, y). Combining them, we can create a one-to-one function f such that ∀y(∃xf(x) = y ↔ φ(y)). This proves the lemma.

K. Tanaka

Lemma 1.8

In RCA_0 , the following form of set existence axiom is provable:

(Bounded Σ_1^0 -CA) : $\forall x \exists X \forall y (y \in X \leftrightarrow (y < x \land \varphi(y))),$

where $\varphi(y)$ is a Σ_1^0 formula, not containing X as a free variable.

Proof For a fixed x, if there exist no finite set X such that

 $\forall y (y \in X \leftrightarrow (y < x \land \varphi(y))),$

then by the previous lemma, there must exist a one-to-one function $f:\mathbb{N} o \mathbb{N}$ such that

$$\forall y (\exists z f(z) = y \leftrightarrow (y < x \land \varphi(y))),$$

which is absurd.

 \succ Problem 1 (Strong Σ^0_1 Collection Axiom) —

Prove in RCA₀: for a Σ_1^0 formula $\varphi(i,j)$ (not containing n as a free variable),

 $(\mathsf{S}\Sigma^0_1): \forall m \exists n \forall i < m (\exists j \varphi(i,j) \to \exists j < n \varphi(i,j)).$

K. Tanaka

Thank you for your attention!