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Logic and Foundations II� �
• Part 5. Models of first-order arithmetic (continued)

• Part 6. Real-closed ordered fields: completeness and decidability

• Part 7. Theory of reals and reverse mathematics

• Part 8. Second order arithmetic and non-standard methods� �
Part 6. Schedule� �
• March 28, (1) Basic properties of one-variable polynomials

• Apr. 2, (2) Real closed ordered fields and the Artin-Schreier theorem

• Apr. 9, (3) Quantifier elimination of RCOF

• Apr. 11, (4) Hilbert’s 17th problem and o-minimal theories� �
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Quantifier elimination of real closed ordered fields

• Tarski proved that the theory of real closed ordered fields admits
elimination of quantifiers by improving Artin and Schreier’s method
for solving Hilbert’s 17th problem.

• Subsequently, A. Robinson introduced the notion of model
completeness, which is weaker than quantifier elimination but still
has various applications.

• Furthermore, Shoenfield showed what conditions should be added to
model completeness to lead to quantifier elimination.

• The general framework of the discussion today is based on
[Schoenfield 67].

• For a proof of Tarski’s theorem without using model theory, refer to
[Adamowicz&Zbierski 97], [Kreisel&Krivine 71].

Tarski Hilbert

Artin Schreier

Robinson
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Definition

A theory T satisfies the isomorphism condition if the following holds.
For each i = 1, 2, let Li be a model of T , and Ki ⊆ Li.
Suppose there exists an isomorphism f : K1 → K2. Then there exist models Mi of T such
that Ki ⊆ Mi ⊆ Li, and f extends to an isomorphism between M1 and M2.

Definition

A theory T in a language L is 1-model complete if the following holds:
Let K ⊆ L be two models of T . For any open formula φ(x⃗, y) in the language L and any
tuple a⃗ from K, if L{a⃗} |= ∃yφ(⃗a, y), then K{a⃗} |= ∃yφ(⃗a, y).

As shown in the last lecture, the theory of real closed ordered fields RCOF is a 1-model
complete theory that satisfies the isomorphism condition.

Theorem (Shoenfield)

A 1-model complete theory that satisfies the isomorphism condition admits elimination of
quantifiers.
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• Before proving the above theorem, we prepare two lemmas. Recall that a formula is
said to be open if it has no quantifiers (i.e., no bound variables), and closed or a
sentence if no free variables.

• When dealing with open sentences, instead of using variables, we add new constants
to the language as needed. In this case, the following lemma is important.

Lemma (1)

If a theory T in a language L satisfies the isomorphism condition, then T also satisfies the
isomorphism condition in the language L∪C, where C is a set of new constants. Similarly,
a theory preserves 1-model completeness when the language is expanded by adding new
constants.

Proof. Let T be a theory in a language L satisfying the isomorphism condition. For each
i = 1, 2, let Li be a model of T in the language L ∪ C, where Ki ⊆ Li, and suppose there
exists an isomorphism f : K1 → K2 in the language L ∪ C.

• Let K′
i,L

′
i be the reducts of Ki,Li, respectively to the language L (i = 1, 2). Then,

f : K1 → K2 induces an isomorphism f ′ : K′
1 → K′

2.

• By the isomorphism condition of T in the language L, there exist models M′
i ⊆ L′

i of
T in L and f ′ : K′

1 → K′
2 extends to an isomorphism between M′

1 and M′
2.
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• Since the constants of C are interpreted as elements of K′
i, we can define an expansion

Mi of M
′
i to L ∪ C by adding this interpretation.

• Then, f ′ is naturally extended to an isomorphism between M1 and M2, which also
extends f : K1 → K2.

• Similar arguments hold for the preservation of 1-model completeness.

Let A, B be structures in a language containing one or more constants. We say that they
are equivalent with respect to the open sentences, denote A ≡0 B, if for any open
sentence φ, A |= φ⇔ B |= φ.

Lemma (2)

Let L be a language containing one or more constants, and let T be a theory in L. Then,
for any sentence σ in L, the following two conditions are equivalent:
(1) For any two models A and B of T with A ≡0 B,

A |= σ ⇔ B |= σ.

(2) There exists an open sentence φ of L such that T ⊢ φ↔ σ.
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Proof. Since (2) ⇒ (1) is obvious, we will prove (1) ⇒ (2). Let

Γ = {φ : T ⊢ σ → φ, φ is an open sentence.}

If we show T ∪ Γ ⊢ σ, there exists a finite subset {φ1, · · · , φn} ⊆ Γ such that

T ⊢ (φ1 ∧ · · · ∧ φn) ↔ σ

and thus (2) follows. Therefore, assuming T ∪ Γ ̸⊢ σ, we derive a contradiction.

• By the completeness theorem, T ∪ Γ ∪ {¬σ} has a model A. Let ∆ be the set of all
open sentences that are true in A.

• Let B be a model of T ∪∆. Then A ≡0 B. So by assumption (1), we have B |= ¬σ.
Again by the completeness theorem, we obtain T ∪∆ ⊢ ¬σ.

• Then, there exists a finite subset {ψ1, · · · , ψm} ⊆ ∆ such that

T ⊢ (ψ1 ∧ · · · ∧ ψm) → ¬σ

which implies
T ⊢ σ → (¬ψ1 ∨ · · · ∨ ¬ψm)

Therefore, (¬ψ1 ∨ · · · ∨ ¬ψm) ∈ Γ ⊆ ∆, but this contradicts {ψ1, · · · , ψm} ⊆ ∆.
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Now we are ready to prove

Theorem (Shoenfield)

A 1-model complete theory that satisfies the isomorphism condition admits elimination of
quantifiers.

Proof.

• Let T be a 1-model complete theory that satisfies the isomorphism condition.
It is enough to show that for a formula in the form σ ≡ ∃xφ with φ open, there exists
an equivalent open formula.

• First, replace each free variable included in ∃xφ with a new constant. So, we extend
the language to include all of such constants. We may assume that the language L
contains at least one constant. By Lemma (1), the isomorphism condition and 1-model
completeness are preserved after expanding the language by adding new constants.

• By Lemma (2), it is sufficient to show that for any two models A ≡0 B of T , we have
A |= σ ⇔ B |= σ.
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• Let tA and tB denote the interpretations of a term t (without variables) in A and B,
respectively. Define A′ and B′ as the sets of all such interpretations in A and B, resp.
Let A′ and B′ be substructures of A and B with restricted domains A′ and B′, resp.

• Let define a function f : A′ → B′ by f(tA) = tB for each term t. Then it is easy to
see that it is an isomorphism f : A′ → B′.

• Next, by isomorphism condition, there exists a model A′′ of T such that A′ ⊆ A′′ ⊆ A
and a model B′′ of T such that B′ ⊆ B′′ ⊆ B, and f can be extended to an
isomorphism between A′′ and B′′.

• Since T is 1-model complete, for σ ≡ ∃xφ, we have

A′′ |= σ ⇔ A |= σ, B′′ |= σ ⇔ B |= σ.

• On the other hand, since A′′ ∼= B′′, we have A′′ |= σ ⇔ B′′ |= σ.

• Therefore,
A |= σ ⇔ B |= σ.
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Corollary (Tarski)

The theory of real closed ordered fields RCOF admits elimination of quantifiers.

Definition (Lec03-02, last semester)

A theory T is model complete if for any model A, B of T , A ⊆ B ⇒ A ≺ B.

Remark: A theory is model-complete iff any formula is equivalent to a ∀-formula.

Corollary (Tarski)

RCOF is model-complete, complete, and decidable.

Proof. It is clear that RCOF is model-complete since it admits elimination of quantifiers.
An atomic sentence of RCOF consists of constants 0, 1, arithmetical operations +,−, ·, /
and relations =, <, and so its truth value can be easily obtained by rational calculation.
Since an open sentence of RCOF is just a boolean combination of atomic sentences, its
truth value is also finitely determined. Therefore, RCOF is complete and decidable.
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Corollary (Tarski)

RCF is model-complete, complete, and decidable.

Proof.

• Let K ⊂ L be two models of RCF. By defining < as

x < y ↔ ∃z(z2 + x = y ∧ z ̸= 0),

K and L become models K′ and L′ of RCOF. By the model completeness of RCOF,
K′ is an elementary substructure of L′, which remains the case even if < is ignored.
Hence, RCF is also model-complete.

• Every model of RCF has a substructure isomorphic to the real closure of the rational
field Q = (Q,+,−, ·, /, 0, 1), which becomes an elementary substructure by model
completeness. Thus, every model of RCF is elementary equivalent, hence it is
complete.

• Since recursively axiomatizable complete theories are decidable, RCF is decidable.

Note that RCF does not admit elimination of quantifiers. In fact, we cannot construct an
open formula expressing x < y in RCF.
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Additional remarks

• Mourgues-Ressayre (1993) shows that for any model M of RCOF there exists a
non-negative integer part I ⊂M that satisfies IOpen.
(Here, I ⊂M is a non-negative integer part, if for any element r ≥ 0 of M , there is a
unique i ∈ I such that i ≤ r < i+ 1)

• Furthermore, D’Aquino-Knight-Starchenko (2010) show that if a model M of RCOF
has a non-negative integer part that satisfies PA, it is recursively saturated. And the
converse is also true when M is countable.
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Complex numbers and Hilbert’s Nullstellensatz
• As we treated the structure of the real numbers as a real closed field, we will also treat
the structure of complex numbers as an algebraically closed field.

• We can show that the theory of algebraically closed fields is model-complete, and
admits elimination of quantifiers by similar arguments. From its model completeness,
we can easily derive Hilbert’s Nullstellensatz.

Definition

The theory ACF of algebraically closed field is a theory in the field language
LAF = {+,−, ·, /, 0, 1} consisting of axioms of fields AF and the following axioms

∀x0∀x1 · · · ∀xn−1∃y x0 + x1y + · · ·+ xn−1y
n−1 + yn = 0 (n > 0).

Let ACF(p) be ACF plus the following axiom representing the characteristic p ≥ 2.

n−times︷ ︸︸ ︷
1 + 1 + · · ·+ 1 ̸= 0 (0 < n < p) and

p−times︷ ︸︸ ︷
1 + 1 + · · ·+ 1 = 0.

Note that p must be a prime number.
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Let ACF(0) be ACF plus the following axioms representing the characteristic 0.

n−times︷ ︸︸ ︷
1 + 1 + · · ·+ 1 ̸= 0 (n ≥ 2).

• A typical model of ACF(0) is the field of complex numbers C = (C,+,−, • , /, 0, 1).

• As shown in a lemma below, any model of ACF(0) is elementarily equivalent to the
field of complex numbers C. So, to show a first-order property of the complex number
field C, we may instead observe any other model of ACF0, e.g., the algebraic closure Q
of the rational number field Q.

• A typical model of ACFp is the algebraic closure Ω of the factor ring (field)
Fp = Z/pZ of the integer ring Z, that is, Ω = ∪n≥1Fpn .

Lemma

ACF does not have a finite model.

Proof. Suppose there exists a finite model A of ACF with |A| = {a1, · · · , ak}. However,
f(x) = (x− a1) · · · (x− ak) + 1 has no roots in {a1, · · · , ak}.
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• We know that any field A can be embedded in an algebraically closed field.
And the algebraic closure A is the minimum of such extensions (Part 3 Problem 9).
Although we do not prove, the algebraic closure is unique up to isomorphism.

• Therefore, ACF is also a 1-model complete theory that satisfies the isomorphism
condition, and hence it admits elimination of quantifiers.

As in the following proof, it is not difficult to eliminate quantifiers as direct transformation.

Theorem

ACF admits elimination of quantifiers.

Proof idea.

• Let f(x, y⃗) and g(x, y⃗) be polynomials. Consider the quantifier elimination of the
following formula:

∃x(f(x, y⃗) = 0 ∧ g(x, y⃗) ̸= 0).

which is the negation of the following formula:

∀x(f(x, y⃗) = 0 → g(x, y⃗) = 0).
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• The above formula can be rephrased as “f(x, y⃗) divides gn(x, y⃗)” for a large enough n.

• Then, divisibility of polynomials can be expressed as an open formula in coefficients.

• As a more general case, we consider

∃x(f1(x, y⃗) = 0 ∧ f2(x, y⃗) = 0 ∧ g1(x, y⃗) ̸= 0 ∧ g2(x, y⃗) ̸= 0).

Here, g1(x, y⃗) ̸= 0 ∧ g2(x, y⃗) ̸= 0 can be converted into one expression as follows

g1(x, y⃗) · g2(x, y⃗) ̸= 0

• To treat f1(x, y⃗) and f2(x, y⃗), we basically use the mutual division method to reduce
the sum of their degrees. Suppose the degree of f1(x, y⃗) is not lower than that of
f2(x, y⃗). Then, we let f ′1(x, y⃗) be the polynomial that is the remainder when f1(x, y⃗)
is divided by f2(x, y⃗). Replacing f1(x, y⃗) with it does not change the solution of
simultaneous equations. And the sum of the degrees of the two equations
decreases.
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From the above theorem, we have

Corollary

ACF is model-complete and decidable.

Corollary

ACF(0) and ACF(p) are model-complete, complete, and decidable.

Now, we show Hilbert’s Nullstellensatz.

Theorem (Nullstellensatz)

Let K be an algebraically closed field. For any sequence of polynomials with no common
root in K,

P1(X1, · · · , Xn), · · · , Pm(X1, · · · , Xn) ∈ K[X1, · · · , Xn],

There exist Q1(X1, · · · , Xn), · · · , Qm(X1, · · · , Xn) ∈ K[X1, · · · , Xn] such that

P1(X1, · · · , Xn)Q1(X1, · · · , Xn) + · · ·+ Pm(X1, · · · , Xn)Qm(X1, · · · , Xn) = 1.
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Proof (by way of contradiction)

• Suppose that the conclusion does not hold for
P1(X1, · · · , Xn), · · · , Pm(X1, · · · , Xn) ∈ K[X1, · · · , Xn]. Then we let

I = {P1(X1, · · · , Xn)Q1(X1, · · · , Xn) + · · ·+ Pm(X1, · · · , Xn)Qm(X1, · · · , Xn) :

Q1(X1, · · · , Xn), · · · , Qm(X1, · · · , Xn) ∈ K[X1, · · · , Xn]}

That is, I is the ideal generated by P1(X1, · · · , Xn), · · · , Pm(X1, · · · , Xn).

• Since it does not include 1, it is a proper subset of K[X1, · · · , Xn].

• Using Zorn’s lemma, we expand I to the maximal ideal J .

• We define the equivalence relation P (X1, · · · , Xn) ∼ Q(X1, · · · , Xn) by
P (X1, · · · , Xn)−Q(X1, · · · , Xn) ∈ J .

• Considering the factor algebra K[X1, · · · , Xn]/J , it is easy to see that it is a field. In
other words, K[X1, · · · , Xn]/J can be considered as an field extension of K.
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• On K[X1, · · · , Xn]/J , we have

P1(X1, · · · , Xn) = 0, · · · , Pm(X1, · · · , Xn) = 0,

and thus

K[X1, · · · , Xn]/J |= ∃x1 · · · ∃xn(P1(x1, · · · , xn) = 0 ∧ · · · ∧ Pm(x1, · · · , xn) = 0)

• Then, the above equation also holds for the algebraic closure L of K[X1, · · · , Xn]/J .

• By model completeness of an algebraically closed field, since K is an elementary
substructure of L, we have

K |= ∃x1 · · · ∃xn(P1(x1, · · · , xn) = 0 ∧ · · · ∧ Pm(x1, · · · , xn) = 0)

• Therefore, P1(X1, · · · , Xn), · · · , Pm(X1, · · · , Xn) have a common root on K, which
contradicts the assumption.
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Thank you for your attention!
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