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Logic and Foundations II� �
• Part 5. Models of first-order arithmetic (continued)

• Part 6. Real-closed ordered fields: completeness and decidability

• Part 7. Theory of reals and reverse mathematics

• Part 8. Second order arithmetic and non-standard methods� �
Part 6. Schedule� �
• March 28, (1) Basic properties of one-variable polynomials

• Apr. 2, (2) Real closed ordered fields and the Artin-Schreier theorem

• to be continued� �
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Real closed ordered field

Definition

The theory AF of fields consists of the following axioms in the language
LAF = {+,−, • , /, 0, 1}: (note x/0 = 0 for convenience)

x+ 0 = x, x+ y = y + x, x+ (y + z) = (x+ y) + z, x+ (−x) = 0,

x • 0 = 0, x • 1 = x, x • y = y •x, x • (y • z) = (x • y) • z,

x/0 = 0, x ̸= 0 → x • (y/x) = y, 1 ̸= 0, x • (y + z) = (x • y) + (x • z).

The theory OF of ordered fields is AF added with the following axioms in the language
LOF = {+,−, • , /, 0, 1, <}: < is a linear order and 0 < 1,

(x > 0 ∧ y > 0) → (x+ y > 0 ∧ xy > 0).

The theory RCOF of real-closed ordered fields is OF added with the following axioms:

∀x0∀x1 · · · ∀xn∀y∀z((y < z ∧ x0 + x1y + · · ·+ xny
n < 0 < x0 + x1z + · · ·+ xnz

n)

→ ∃u(y < u < z ∧ x0 + x1u+ · · ·+ xnu
n = 0)) (n > 0).
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• In the above definition, we define “real closed property” in the form of the
Intermediate Value Theorem. For the theory RCF of (unordered) real-closed fields,
there is an alternative definition that demands the existence of square roots and roots
of odd-degree polynomials as axioms.

Lemma

In any ordered field, if a polynomial P (a) > 0, then there exists some ϵ > 0 such that
P (x) > 0 in the interval (a− ϵ, a+ ϵ).

Proof.

• It is clear when P (x) is a constant. So we may assume its degree N > 0.
• P (x+ a)− P (a) is a polynomial that does not contain a constant term. Let M be
the maximum of absolute values of its coefficients Then, for |x| ≤ 1, we have
|P (x+ a)− P (a)| ≤ NM |x|

• So, setting ϵ = min{1, |P (a)|/NM}, if |x| < ϵ, then we have
|P (x+ a)− P (a)| < |P (a)|.

• Since P (a) > 0, this inequality does not hold unless P (x+ a) > 0.



Logic and
Foundation

K. Tanaka

Real closed
ordered field

5

The Artin-Schreier theorem

• In the previous semester (Problem 9 in part 3), we show that all fields can be
embedded in an algebraically closed field and that they also have an algebraic closure.

• Similarly, every ordered field can be embedded in a real closed ordered field, and it has
a real closure. However, it is difficult to create a real closed field directly.

• In the following, we will construct a real closed field within an algebraically closed
field. The final trick by Zorn’s lemma is quite brilliant.

Theorem (Artin-Schreier)

All ordered fields can be embedded in a real closed ordered field.
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Proof.

• Let K be an ordered field, and suppose the intermediate value theorem does not hold
in K. Then let P (x) be a polynomial over K (with coefficients in K) of the minimal
degree such that there exist a < b ∈ K such that P (a)P (b) < 0 and for all c ∈ (a, b)
P (c) ̸= 0.

Then, we show

Claim 1� �
P (x) is irreducible.� �
Proof of Claim 1� �
• Assume P (x) is not irreducible. So it can be decomposed as P (x) = Q(x)R(x).
Since P (a)P (b) < 0, we have Q(a)Q(b) < 0 or R(a)R(b) < 0.

• If Q(a)Q(b) < 0, there exists c ∈ (a, b) such that Q(c) = 0, because P (x) is a
polynomial of the minimal degree such that the intermediate value theorem does
not hold. However, Q(c) = 0 implies P (c) = 0, which reaches a contradiction.

• Similarly for R(a)R(b) < 0.� �
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• Let K[x] be a commutative ring of polynomials over K.
• We define an equivalence relation ≈ modulo P (x) on it. That is,

Q(x) ≈ R(x) ⇔ “Q(x)−R(x) is a multiple of P (x).′′

• Let K[x]/P (x) be the quotient algebra of the equivalence classes. Obviously,
K[x]/P (x) is also a commutative ring.

Claim 2� �
K[x]/P (x) is a field.� �
Proof of Claim 2� �
Let [Q(x)]≈ ̸= 0 = [P (x)]≈. Since P (x) is irreducible, Q(x) and P (x) are mutually
prime. Therefore, by mutual division method, there exist R(x) and S(x) such that

R(x)Q(x) + S(x)P (x) = 1.

Then, since [R(x)]≈[Q(x)]≈ = 1, [Q(x)]≈ has a multiplicative inverse [R(x)]≈.� �
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• Without loss of generality, we may assume P (a) < 0, P (b) > 0, and then we set

A = {a′ ∈ [a, b] : ∃x ∈ [a′, b] P (x) < 0},

B = {a′ ∈ [a, b] : ∀x ∈ [a′, b] P (x) > 0} = [a, b]−A.

By the previous lemma, A has no maximum value and B has no minimum value.

• We may assume that for any element [Q(x)]≈ of K[x]/P (x), the representative
element Q(x) has a small order than P (x). Then, the intermediate value theorem
holds for Q(x).

• The number of real roots of Q(x) is less than or equal to the degree of Q(x). So, we
can take sufficiently close a′ ∈ A, b′ ∈ B such that (a′, b′) does not include a real root
of Q(x). Thus, Q(x) does not change its sign in the interval. Then, we define the
sign of [Q(x)]≈ by the sign of Q(x) on (a′, b′).

• Then we will show that K[x]/P (x) is an extension of K as an ordered field with this
order.
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Claim 3� �
K[x]/P (x) is an extension of K as an ordered field.� �
Proof of Claim 3� �
• First, it is clear that K[x]/P (x) includes K as a substructure. It is easy to see

that the order of K[x]/P (x) is linear and that the positive part is closed under +.

• Next, we will show that the positive part is closed under ·, i.e.,

[Q(x)]≈ > 0 ∧ [R(x)]≈ > 0 → [Q(x)R(x)]≈ > 0.

• Here, we may assume the degrees of Q(x) and R(x) are less than that of P (x).
Then suppose Q(x)R(x) = S(x)P (x) + T (x) where the degrees of S(x) and
T (x) are also less than that of P (x), i.e., [Q(x)R(x)]≈ = [T (x)]≈.

• Now, take a′ ∈ A, b′ ∈ B so that Q(x), R(x), S(x), and T (x) all have constant
sign in (a′, b′). Then, Q(x)R(x) is always positive and S(x)P (x) changes sign,
so T (x) must be always positive. Therefore, [Q(x)R(x)]≈ = [T (x)]≈ > 0.� �

We show that K[x]/P (x) without order can be embedded in the algebraic closure K of K.
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Claim 4� �
K[x]/P (x) without order can be embedded in the algebraic closure K of K.� �
Proof of Claim 4� �
• Suppose that P (u) = 0 holds for some element u of K. Let
I = {Q ∈ K[x] : Q(u) = 0}. Then, it is easy to see that this is an ideal. That is,
for any Q1, Q2 ∈ I, Q1 +Q2 ∈ I; for any R ∈ K[x] and Q ∈ I, R ·Q ∈ I.

• P (x) belongs I, and any polynomial with a smaller degree than P (x) does not
belong to it. Hence, P (x) is its generator. In other words, if Q(u) = 0, we can
write Q(x) = R(x)P (x).

• Now, we define a homomorphism f : K[x] → K[u] by f(Q(x)) = Q(u). Since
I = Ker(f) = {Q : f(Q(x)) = 0}, by the homomorphism theorem, we have

K[x]/P (x) ∼= K[x]/Ker(f) ∼= K[u].

Since K[x]/P (x) is a field, K[u] is also a field. Hence, K[u] coincides with the
extension field K(u), which is a subfield of K. So, K[x]/P (x) can be embedded in
K. (That is, K is also the algebraic closure of K[x]/P (x).)� �
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• Now consider the class of subfields of K that becomes an extended ordered field of K
with an appropriate ”order”. By Zorn’s lemma (Axiom of choice), we obtain the
maximal ordered field L in this class.

• If L does not satisfy the intermediate value theorem, by the above argument, L can be
extended further, which contradicts the maximality.

• Therefore, L is a real closed ordered field.

Problem 1� �
Using the above theorem, show the following.
For any open formula φ in the language LOF,

RCOF ⊢ φ ⇔ OF ⊢ φ.� �
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Let K ⊆ L be two fields. We construct a substructure of L by collecting its elements
algebraic over K (i.e., which are roots of polynomials over K). Then, we can easily see that

it is a field, and so we denote it by K
L
.

Obviously, we have M
L
= K

L
for a field M such that K ⊆ M ⊆ K

L
.

Lemma (Isomorphic condition)

Let K1
∼= K2 be two ordered fields, and f : K1 → K2 an isomorphism. If we take a real

closed field Li such that Ki ⊆ Li for each i = 1, 2, then f can be uniquely extended to an

isomorphism between K1
L1

and K2
L2
.

Proof.

• If K1
L1

= K1, then also K2
L2

= K2 and so the claim of the theorem is trivial.

• Hence, we suppose K1
L1 ̸= K1. Let P (x) be a polynomial over K1 of the smallest

degree among those with roots in |K1
L1 | − |K1|, and u be one of its roots.

• K1(u) inherits an order as a substructure of L1. On the other hand, it coincides with
the order of K1[x]/P (x) defined in the proof of the above theorem. This is because
the sign of an element [Q(x)]≈ in K1[x]/P (x) is defined by the sign of Q(x) in the
neighborhood of u, and so when Q(u) exists, its sign must be the same.



Logic and
Foundation

K. Tanaka

Real closed
ordered field

13

• By the minimality of the degree of P (x), P ′(u) ̸= 0. In particular, we assume
P ′(u) > 0.

• Therefore, by the previous lemma, there exist a, b ∈ |K1| such that a < u < b and
P ′(x) > 0 on the interval (a, b).

• Then by the contrapositive of Rolle’s Theorem, P (x) is strictly increasing on this
interval, and so the root u is uniquely determined in the interval by P (x).

• Hence, if P (x) is mapped to R(x) by the isomorphism f : K1 → K2, then R(x)

uniquely determines an element v of K2
L1

in the interval (f(a), f(b)). Then, as
ordered fields, the following isomorphisms hold (cf. Claim 4 of the last theorem):

K1(u) ∼= K1[x]/P (x) ∼= K2[x]/R(x) ∼= K2(v).

• Therefore, we can extend f : K1 → K2 by mapping u to v, resulting in an isomorphism
from K1(u) to K2(v).
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• Consider all isomorphisms between ordered fields M1 ⊆ K
L1

1 and M2 ⊆ K
L2

2 that
extend f : K1 → K2. By Zorn’s Lemma, we can choose a maximal ordered field M1.

• If M1 ⫋ M
L1

1 = K
L1

1 , then we can extend M1, which contradicts its maximality.

• Hence, M1 = K
L1

1 . Then, it’s clear that M2 is also identical to K2
L2
.

• Finally, since each u in K1
L1

is uniquely determined as the n-th root of a polynomial,

the corresponding element v in K2
L2

is also uniquely determined as the n-th root of
the corresponding polynomial, and thus the extension of the isomorphism is
unique.
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By the above theorem and the lemma for isomorphism condition, any ordered field K has a
unique real closed ordered field which is an algebraic extension (up to isomorphisms). Such
a real closed ordered field is called the real closure of K.

In the following lectures, we will prove the quantifier elimination of real closed ordered
fields. Now, we prove one more lemma necessary for this purpose.

Lemma (1-model completeness)

Let K ⊆ L be two real closed ordered fields. For any open formula φ(x⃗, y) and elements a⃗
of K,

L{a⃗} |= ∃yφ(⃗a, y) ⇒ K{a⃗} |= ∃yφ(⃗a, y).
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Proof.

• We express the open formula φ(x⃗, y) in disjunctive normal form. Since we have

u ̸= v ↔ u < v ∨ v < u

and
u ̸< v ↔ u = v ∨ v < u

φ(x⃗, y) can be expressed as a disjunction (∨) of a conjunction (∧) of atomic formulas
without using negation.

• Therefore, ∃yφ(x⃗, y) is expressed by a disjunction of formulas in the form:

∃y(α1(x⃗, y) ∧ · · · ∧ αk(x⃗, y))

where αi is an atomic formula.

• Now, assuming that ∃y(α1(⃗a, y) ∧ · · · ∧ αk (⃗a, y)) holds in L{a⃗}, it suffices to show
that it holds in K{a⃗}. In what follows, we write L,K for L{a⃗},K{a⃗}, respectively
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• First, α1(⃗a, y) ∧ · · · ∧ αk (⃗a, y) consists of equations and inequalities. Since atomic
formulas not involving y can be moved outside ∃y, we may assume each αi(⃗a, y) is
expressed as P (y) = 0 or Q(y) > 0.

• Suppose it contains a equation P (y) = 0. Since any y = b satisfying P (y) = 0 in L is
also algebraic over K, it belongs to the real closed field K. Furthermore, if
α1(⃗a, b) ∧ · · · ∧ αk (⃗a, b) holds in L, it obviously holds in K.

• Next, suppose that α1(⃗a, y) ∧ · · · ∧ αk (⃗a, y) contains only inequalities Qi(y) > 0.

• Let S denote the set of all real roots of Qi(y) = 0 for i (1 ≤ i ≤ k), which is the same
set whether it is considered in L or K.

• In L, ∃y(Q1(y) > 0 ∧ · · · ∧Qk(y) > 0) implies, by the Intermediate Value Theorem
the existence of adjacent points a and b in S such that for any point z in (a, b),
Q1(z) > 0 ∧ · · · ∧Qk(z) > 0 holds, or for the maximum or minimum c in S, for any
point z in (c,+∞) or (−∞, c), Q1(z) > 0 ∧ · · · ∧Qk(z) > 0 holds.

• Thus, z = (a+ b)/2 or z = c± 1 in K satisfies Q1(z) > 0 ∧ · · · ∧Qk(z) > 0.
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Thank you for your attention!
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