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Logic and Foundations II� �
• Part 5. Models of first-order arithmetic (continued)

• Part 6. Real-closed ordered fields: completeness and decidability

• Part 7. Theory of reals and reverse mathematics

• Part 8. Second order arithmetic and non-standard methods� �
Part 6. Schedule� �
• March 28, (1) Basic properties of one-variable polynomials, after the rest of Part 5

• Apr. 1, (2) Real closed ordered fields and the Artin-Schreier theorem

• to be continued� �
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Rest of Part 5

• An L-structure A is recursively saturated, if any recursive 1-type on {a⃗} ⊆ A is
realized in A, that is, for any recursive type {φi(x, x⃗) | i ∈ N} and any {a⃗} ⊆ A,

∀j∃a ∈ A∀i < j AA |= φi(a, a⃗) ⇒ ∃a ∈ A∀iAA |= φi(a, a⃗).

Lemma

A countable structure in a countable language has a countable elementary extension which
is recursively saturated.

• An L-structure A is resplendent, if for a sentence φ in a language L+ ⊇ LA such that
Th(AA)∪{φ} is consistent, there exists an L+-expansion A+ of A such that A+ |= φ.

In other words, resplendent structures are considered to potentially possess the properties
of relations and functions manifested in their elementary extensions.
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• An L-structure A is strongly resplendent, if for any recursive type Φ(x⃗) in a language
L+ = L ∪ {finitely many additional symbols} and a⃗ ∈ A<ω such that Th(AA) ∪ Φ(⃗a)
is consistent, there exists an L+-expansion A+ of A which is a model of Φ(⃗a).

• In the definition of strongly resplendent, if we restrict a type Φ(x⃗) to be a single
formula, we obtain the definition of resplendent, and if we let L+ = L ∪ {c}, it
becomes the definition of recursive saturation. Hence, strongly resplendent
structures are both resplendent and recursively saturated.

Theorem (Barwise-Ressayre)

Countable recursively saturated structures are strongly resplendent.

Corollary (Barwise)

A resplendent structure in a finite language L is strongly resplendent, and so recursively
saturated.



Logic and
Foundation

K. Tanaka

Resplendency

Applications

One-variable
polynomial with
real coefficients

Real closed
ordered field

5

Theorem (Robinson’s Joint Consistency Theorem)

Let L = L1 ∩ L2, and T be a complete theory in the language L, with T1 and T2 as
extensions of T in the languages L1 and L2, respectively. Then, T1 ∪ T2 is consistent if
and only if T1 and T2 are separately consistent.

Proof. The necessity is clear, so we will prove the sufficiency. Assume T1 and T2 are
consistent, but T1 ∪ T2 is inconsistent.

• Since T1 ∪ T2 is inconsistent, there exist finite subsets S1 ⊆ T1 and S2 ⊆ T2 such that
S1 ∪ S2 also leads to a contradiction.

• Suppose S1 and S2 are theories in finite languages L′
1 and L′

2, respectively. Define
L′ = L′

1 ∩ L′
2, and let T ′ be the set of L′-sentences that can be deduced from T .

Then, T ′ is a complete and consistent set in the language L′, since T is a complete
and consistent set in L

• Moreover, let S′
1 = S1 ∪ T ′ and S′

2 = S2 ∪ T ′. Since S′
1 and S′

2 are subsets of T1 and
T2, respectively, they are separately consistent.
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• Consider a countable saturated model A of T ′. Since T ′ is complete, T ′ = Th(A).

• Since S′
1 = S1 ∪ Th(A) is consistent, by resplendency of A, A can be extended to a

model A1 of S1 in L′
1.

• Similarly, A can be extended to a model A2 of S2 in L′
2. Therefore, by defining the

interpretation of symbols in L′
1 −L′ to be the same as in A1 and in L′

2 −L′ to be the
same as in A2, we extend A to a structure A′ in L′

1 ∪ L′
2.

• Then, A′ is a model of S1 ∪ S2, which contradicts our assumption. Thus, we complete
the proof.
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Corollary (Craig’s Interpolation Theorem)

If a formula φ→ ψ is provable (⊢ φ→ ψ), then there exists a formula θ consisting of
mathematical symbols appearing in φ and ψ commonly, besides logical symbols and =,
such that ⊢ φ→ θ and ⊢ θ → ψ.

The formula θ satisfying the above theorem is called an interpolant for φ and ψ.

Proof

• Assume ⊢ φ→ ψ with no interpolant θ. Let L be the language consisting of symbols
common to φ and ψ. Let T0 be the set of formulas ξ in L such that ⊢ φ→ ξ.

• Then, T0 ∪ {¬ψ} is consistent, since no finite subset of T0 implies ψ.
• Consider a model A of T0 ∪ {¬ψ}, and let T be the set of all L-formulas contained in

Th(A). Clearly, T ∪ {¬ψ} is consistent.
• To show that T ∪ {φ} is also consistent, assume otherwise. Then there exists a
formula σ in T such that ⊢ φ→ ¬σ. Thus, ¬σ ∈ T0 ⊆ T , which implies the
inconsistency of T .

• By Robinson’s joint consistency theorem, T ∪ {φ,¬ψ} is also consistent, contradicting
the assumption ⊢ φ→ ψ.
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Introduction to the theory of real numbers

• After Gödel showed that the theory of natural numbers was inevitably incomplete,
Tarski discovered a contrasting fact: the theory of real numbers and that of complex
numbers are completely axiomatized. The key tool to show these facts is the
technique of quantifier elimination.

• Various improvements were made later, but it is still not easy to demonstrate
quantifier elimination by direct transformation of formulas for the theory of real
numbers, although it is much easier for the theory of complex numbers.

• In this lecture, we use the results of the real closed field theory initiated by Artin and
Schreier to indirectly (model-theoretically) derive the fact that quantifiers are
eliminable.
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One-variable polynomial with real coefficients

• As a warm-up for real number theory, we will look at the basic properties of
one-variable polynomials with real coefficients .

• The following theorems look like popular theorems in calculus, but their proofs do not
rely on analytical concepts such as limits. These theorems also serve as theorems of
real closed ordered fields, as introduced in the subsequent lectures.

• For simplicity, We assume the ”Fundamental Theorem of Algebra” without proof,
which asserts that any complex polynomial P (x) can be expressed as a product of
linear factors.

• However, the dependence on this theorem can be eliminated in the following
discussions. A rigorous proof of this theorem will be provided in Part 8.

Lemma

A real polynomial P (x) with leading coefficient 1 (i.e., monic) can be expressed as the
product of a linear polynomial x+ a and a quadratic polynomial x2 + bx+ c with real
coefficients, where b2 < 4c.
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Proof.
Assuming the Fundamental Theorem of Algebra, any real polynomial P (x) can be
expressed as a product of linear expressions using complex numbers.
For any complex number z and its conjugate complex number z, we have

P (z) = P (z)

So, if a complex number z is a root of P (x), then z is also a root. Thus, P (x) has the
quadratic equation as a factor:

(x− z)(x− z) = x2 − (z + z)x+ zz.

Here, letting z = r + i s (i =
√
−1, r, s ∈ R), we see the following are real numbers:

−b = z + z = 2r, c = zz = r2 + s2.

Finally, we have b2 < 4c since

(z + z)2 − 4zz = (z − z)2 = (2is)2 = −4s2 < 0.
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Theorem (Intermediate value theorem)

Let P (x) be a polynomial with real coefficients, a < b be two real numbers such that
P (a) · P (b) < 0. Then there exists c in the interval (a, b) such that P (c) = 0.

Proof.

• Without loss of generality, we assume that a given polynomial P (x) is monic.

• From the above lemma, P (x) can be expressed as a product of linear equations x+ r
and quadratic equations x2 + sx+ t (where s2 < 4t).

• A quadratic factor x2 + sx+ t is always positive as follows

x2 + sx+ t =
(
x+

s

2

)2

+
4t− s2

4
> 0.

• Therefore, if P (a)P (b) < 0, then there is a linear factor x+ r such that the signs of
a+ r and b+ r are different.

• Since a < b, it should be the case that a < −r < b. Thus, by setting c = −r, we
obtain P (c) = 0.
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Theorem

If the polynomial P (a) > 0, then there exists ϵ > 0 such that P (x) > 0 on the interval
(a− ϵ, a+ ϵ).

Proof.

• Similar to the theorem above, assume that P (x) is monic. And decompose it into a
product of linear and quadratic equations.

• Let x− r1, · · · , x− rm be the linear factors.

• Take a positive number ϵ > 0 which is smaller than the minimum value of
|a− r1|, · · · , |a− rm|.

• Since the sign of x− ri (i = 1, . . . ,m) does not change in the interval (a− ϵ, a+ ϵ),
we have P (x) > 0.



Logic and
Foundation

K. Tanaka

Resplendency

Applications

One-variable
polynomial with
real coefficients

Real closed
ordered field

13

Theorem (Role’s theorem)

Let P (x) be a polynomial with real coefficients, and P ′(x) be its derivative, which is also a
polynomial. If a < b and P (a) = P (b), then there exists c in the interval (a, b) such that
P ′(c) = 0.

Proof.
• For simplicity, we assume that P (a) = P (b) = 0. Moreover, we may assume that there
is no solution for P (x) = 0 on (a, b). In other words, a and b are adjacent solutions.

• Since P (x) is divisible by x− a and x− b, there exists a polynomial Q(x) such that

P (x) = (x− a)m(x− b)nQ(x),

where m ≥ 1, n ≥ 1 and Q(a) ̸= 0, Q(b) ̸= 0. Since Q(x) ̸= 0 on (a, b), we have
Q(a) ·Q(b) > 0 by the contraposition of the intermediate value theorem.

• Now suppose P ′(x) = (x− a)m−1(x− b)n−1R(x). Then,

R(x) = (m(x− b) + n(x− a))Q(x) + (x− a)(x− b)Q′(x).

• We easily compute R(a) ·R(b) = −mn(a− b)2Q(a)Q(b) < 0. Hence, by the
intermediate value theorem, there exists c in (a, b) such that R(c) = 0. Therefore, we
have P ′(c) = 0, which completes the proof.
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Theorem

Let P (x) = xn + an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0 be a monic polynomial with real
coefficients. Let M be the maximum value of |an−1|, |an−2|, · · · , |a1|, |a0|. Then, all real
solutions of P (x) = 0 are in the interval (−M − 1,M + 1).

Proof.

• If |x| ≥M + 1, then we have

|P (x)− xn| ≤M(|x|n−1 + |x|n−2 + · · ·+ |x|+ 1) =M
|x|n − 1

|x| − 1
≤ |x|n − 1.

• When P (x) = 0, the above inequality (|x|n ≤ |x|n − 1) does not hold. Therefore,
P (x) = 0 has no solution at |x| ≥M + 1.
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The main result we are going to prove in this part is Tarski’s theorem on the real field.
This theorem is a generalization of a classical theorem due to Sturm. To state Sturm’s
theorem, we introduce some special terms. Let P (x) be a real polynomial.

• Let P0 = P , P1 = P ′, and define P2, P3, · · · as follows: −Pi+2 is the remainder of
dividing Pi by Pi+1, that is, Pi = Qi+1Pi+1 − Pi+2.

• Then, for each a ∈ R,
P0(a), P1(a), P2(a), · · ·

is called a Sturm sequence. The number of times the sign (+, –) changes in the
sequence is expressed as ωP (a), e.g, for a Sturm sequence (1,0,2,–1,0,1), ωP (a) = 2.

Theorem (Sturm’s theorem)

Let P (x) be a polynomial with real coefficients, and let a < b and P (a)P (b) ̸= 0. Then,
ωP (a)− ωP (b) is the number of (different) roots that P (x) has in the interval (a, b).

• The proofs can be found in Lang’s Algebra and Jacobson’s Basic Algebra I and II.

• While Sturm’s theorem expresses only the number of roots of a polynomial within an
interval (a, b) in terms of equations, Tarski’s theorem asserts that any property
expressed in the first order language can be represented by a combination of equations
and inequalities.
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Real closed ordered field

Definition

The theory AF of fields consists of the following axioms in the language
LAF = {+,−, • , /, 0, 1}: (note x/0 = 0 for convenience)

x+ 0 = x, x+ y = y + x, x+ (y + z) = (x+ y) + z, x+ (−x) = 0,

x • 0 = 0, x • 1 = x, x • y = y •x, x • (y • z) = (x • y) • z,

x/0 = 0, x ̸= 0 → x • (y/x) = y, 1 ̸= 0, x • (y + z) = (x • y) + (x • z).

The theory OF of ordered fields is AF added with the following axioms in the language
LOF = {+,−, • , /, 0, 1, <}: < is a linear order and 0 < 1,

(x > 0 ∧ y > 0) → (x+ y > 0 ∧ xy > 0).

The theory RCOF of real-closed ordered fields is OF added with the following axioms:

∀x0∀x1 · · · ∀xn∀y∀z((y < z ∧ x0 + x1y + · · ·+ xny
n < 0 < x0 + x1z + · · ·+ xnz

n)

→ ∃u(y < u < z ∧ x0 + x1u+ · · ·+ xnu
n = 0)) (n > 0).
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• In the above definition, we define “real closed property” in the form of the
Intermediate Value Theorem. However, there is an alternative definition that demands
the existence of square roots and roots of odd-degree polynomials as axioms. The
latter is necessary for the theory RCF of (unordered) real-closed fields.

• However, in this course, we will not introduce the theory RCF; instead, we treat a real
closed field as a reduct of a real closed ordered field.

Example 1� �
• The ordered field of real numbers R = (R,+,−, • , /, 0, 1, <) is the standard
model of RCOF.

• R restricted to the algebraic real numbers (real numbers that are solutions of
integer coefficient polynomials) is also a real closed ordered field, but it is
countable.

• Any real closed ordered field contains a substructure that is isomorphic to the
ordered field of algebraic reals.� �
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• All the lemmas and theorems proved for R in this lecture also hold for any real closed
ordered field. The only problem is to prove the fundamental theorem of algebra in
RCOF. But without using it, we can derive the other theorems.

• First, the intermediate value theorem is an axiom of RCOF, so there is no need to
prove it. We also give another proof of the following theorem.

Theorem

In any ordered field, if a polynomial P (a) > 0, then there exists some ϵ > 0 such that
P (x) > 0 in the interval (a− ϵ, a+ ϵ).

Proof.

• It is clear when P (x) is a constant. So we may assume its degree N > 0.
• P (x+ a)− P (a) is a polynomial that does not contain a constant term. Let M be
the maximum of absolute values of its coefficients Then, for |x| ≤ 1, we have
|P (x+ a)− P (a)| ≤ NM |x|

• So, setting ϵ = min{1, |P (a)|/NM}, then we have |P (x+ a)− P (a)| < |P (a)|.
• Since P (a) > 0, this inequality does not hold unless P (x+ a) > 0.
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The Artin-Schreier theorem

• In the previous semester (Problem 9 in part 3), we show that all fields can be
embedded in an algebraically closed field and that they also have an algebraic closure.

• Similarly, every ordered field can be embedded in a real closed ordered field, and it has
a real closure.

• However, it is difficult to directly create a real closed field. Here, we will construct a
real closed field with an algebraically closed field.

Theorem (Artin-Schreier)

All ordered fields can be embedded in a real closed ordered field.
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Thank you for your attention!
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