

K. Tanaka

Resplendency Applications

Logic and Foundation II Part 5. Models of first-order arithmetic

Kazuyuki Tanaka

BIMSA

March 21, 2024

K. Tanaka

Resplendency Applications

- Logic and Foundations II (Spring 2024)
 - Part 5. Models of first-order arithmetic (continued)
 - Part 6. Real-closed ordered fields: completeness and decidability
 - Part 7. Theory of reals and reverse mathematics
 - Part 8. Second order arithmetic and non-standard methods

- Part 5. Models of first-order arithmetic

- Jan. 04, Non-standard models and the omitting type theorem
- Jan. 11, Recursively saturated models
- Mar. 12, Reviews
- Mar. 14, Friedman's theorem
- Mar. 19, Friedman's theorem (continued)
- Mar. 21, Resplendency and applications
- Mar. 26, Resplendency and applications (continued)

Recap

Resplendency Applications

Logic and Foundation

K Tanaka

- A type $\Phi(\vec{x})$ is a set of formulas in free variables $\vec{x} = (x_1, \cdots, x_n)$.
- \mathfrak{A} realizes $\Phi(\vec{x})$ by \vec{a} , if $\mathfrak{A}_A \models \varphi(\vec{a})$ for all formulas $\varphi(\vec{x})$ in $\Phi(\vec{x})$.
- A type $\Phi(\vec{x})$ is a type of a theory T if $T \cup \Phi(\vec{c})$ (\vec{c} new constants) is consistent. That is, there exists a model of T that realizes $\Phi(\vec{x})$.
- For a subset C of the universe of \mathfrak{A} , a type on C in \mathfrak{A} is a type of theory $\mathrm{Th}(\mathfrak{A}_C)$.
- An \mathcal{L} -structure \mathfrak{A} is recursively saturated, if any recursive 1-type on $\{\vec{a}\} \subseteq A$ is realized in \mathfrak{A} , that is, for any recursive type $\{\varphi_i(x, \vec{x}) \mid i \in \mathbb{N}\}$ and any $\{\vec{a}\} \subseteq A$,

 $\forall j \exists a \in A \forall i < j \,\mathfrak{A}_A \models \varphi_i(a, \vec{a}) \Rightarrow \exists a \in A \forall i \,\mathfrak{A}_A \models \varphi_i(a, \vec{a}).$

 An *L*-structure 𝔄 is resplendent, if for a sentence φ in a language *L*⁺ ⊇ *L*_A such that Th(𝔅_A) ∪ {φ} is consistent, there exists an *L*⁺-expansion 𝔅⁺ of 𝔅 such that 𝔅⁺ ⊨ φ.

K. Tanaka

Resplendency Applications

Definition

An \mathcal{L} -structure \mathfrak{A} is **strongly resplendent**, if for any recursive type $\Phi(\vec{x})$ in a language $\mathcal{L}^+ = \mathcal{L} \cup \{\text{finitely many additional symbols}\}$ and $\vec{a} \in A^{<\omega}$ such that $\operatorname{Th}(\mathfrak{A}_A) \cup \Phi(\vec{a})$ is consistent, there exists an \mathcal{L}^+ -expansion \mathfrak{A}^+ of \mathfrak{A} which is a model of $\Phi(\vec{a})$.

- In the definition of strongly resplendent, if we restrict the type Φ(x) to be a single formula, we obtain the definition of resplendent, and if we let L⁺ = L ∪ {c}, it becomes the definition of recursive saturation. Hence, strongly resplendent structures are both resplendent and recursively saturated.
- Furthermore, similar to the case of resplendent structures, it is worth noting that the consistency of $\operatorname{Th}(\mathfrak{A}_A) \cup \Phi(\vec{a})$ coincides with the consistency of $\operatorname{Th}(\mathfrak{A}_{\{\vec{a}\}}) \cup \Phi(\vec{a})$.
- We will now demonstrate that under certain natural assumptions, the above three properties coincide.

K. Tanaka

Resplendency Applications

Theorem (Barwise-Ressayre)

Countable recursively saturated structures are strongly resplendent.

Proof

- Let ${\mathfrak A}$ be a countable recursively saturated structure in a countable language ${\mathcal L}.$
- To show that \mathfrak{A} is strongly resplendent, let $\Phi(\vec{x})$ be a recursive type in a finitely extended language \mathcal{L}^+ of \mathcal{L} and $\vec{a} \in A^{\omega}$ such that $\operatorname{Th}(\mathfrak{A}_A) \cup \Phi(\vec{a})$ is consistent. Then, we want to construct a model \mathfrak{A}^+ of $\Phi(\vec{a})$ with the same domain $|\mathfrak{A}|$.
- \mathfrak{A}^+ will be constructed by Henkin's method, in which Henkin constants are selected as elements of A by the recursively saturated nature of \mathfrak{A} .

Now, let's look into the details of construction of $\mathfrak{A}^+.$

• First, let $\{\varphi_n(x) : n \in \omega\}$ enumerate the formulas in \mathcal{L}_A with only one free variable x.

K. Tanaka

Resplendency Applications • We construct a sequence of finite subsets of A and that of recursive theories in \mathcal{L}_A^+ ,

$$A_0 = \{\vec{a}\} \subseteq A_1 \subseteq A_2 \subseteq \cdots, \quad T_0 = \Phi(\vec{a}) \subseteq T_1 \subseteq T_2 \subseteq \cdots,$$

satisfying the following: for each \boldsymbol{n}

- (1) T_n is a recursive set of sentences in $\mathcal{L}^+_{A_n}$, and $T_n \cup \text{Th}(\mathfrak{A}_A)$ is consistent.
- (2) either $\varphi_n(a) \in T_{n+1}$ for some $a \in A$ or $\neg \exists x \varphi_n(x) \in T_{n+1}$.
- Now, suppose the construction is completed, and let $T_{\omega} = \bigcup_n T_n$.
- To show T_{ω} is complete, take a sentence σ in \mathcal{L}_{A}^{+} such that $T_{\omega} \not\vdash \sigma$. Then σ is φ_{k} (with no free variable) for some k. Obviously, $\sigma \notin T_{k+1}$, since $T_{\omega} \not\vdash \sigma$. Thus, by condition (2), we have $\neg \exists x \sigma \in T_{k+1}$, and so $T_{\omega} \vdash \neg \sigma$. Therefore, T_{ω} is complete. Hence, we also have $\operatorname{Th}(\mathfrak{A}_{A}) \subseteq T_{\omega}$ since $T_{\omega} \cup \operatorname{Th}(\mathfrak{A}_{A})$ is consistent by condition (1).
- If $T_{\omega} \vdash \exists x \varphi_n(x, \vec{a})$, then by (2), there exists some $a \in A$ such that $\varphi_n(a) \in T_{\omega}$.
- Then T_{ω} is a complete Henkin theory. By Henkin method, we can construct a structure \mathfrak{A}^+ over the domain A, such that $T_{\omega} = \operatorname{Th}(\mathfrak{A}^+_A)$, and therefore $\mathfrak{A}^+ \models \Phi(\vec{a})$.

K. Tanaka

Resplendency Applications Finally, we will construct the sequences $\{A_n\}$ and $\{T_n\}$ by induction.

- Assume that the construction up to \boldsymbol{n} has been done.
- Take $\varphi_n(x)$ and let $B = A_n \cup \{ \text{elements of } A \text{ occurring in } \varphi_n(x) \}$, and define

 $\Psi(x) = \{\psi(x) : \psi(x) \text{ is a one-variable formula in } \mathcal{L}_B, \text{ and } T_n \vdash \varphi_n(x) \to \psi(x)\}.$

- Although $\Psi(x)$ is Σ_1 as it is, it can be treated as a recursive type by Craig's method.
- Since the structure \mathfrak{A} is recursively saturated, we can either find an $a \in A$ realizing $\Psi(x)$ or find a finite subset $\{\psi_i(x) : i \leq j\}$ of $\Psi(x)$ such that

$$\mathfrak{A}_A \models \neg \exists x \bigwedge_{i \leq j} \psi_i(x).$$

- In the former case, we let $A_{n+1} = B \cup \{a\}, \quad T_{n+1} = T_n \cup \{\varphi_n(a)\}.$
- To check the consistency of $T_{n+1} \cup \operatorname{Th}(\mathfrak{A}_A)$, we show that any $\mathcal{L}_{A_{n+1}}$ sentence provable in T_{n+1} is true in \mathfrak{A}_A . So, let $\psi(x)$ be a formula in \mathcal{L}_B such that $T_{n+1} \vdash \psi(a)$. If $a \notin B$, $T_n \vdash \varphi_n(a) \to \psi(a)$ implies $T_n \vdash \varphi_n(x) \to \psi(x)$ and so $\psi(x) \in \Psi(x)$. Since a realizes $\Psi(x)$, $\psi(a)$ holds in \mathfrak{A}_A . On the other hand, if $a \in B$, then by $T_n \vdash \varphi_n(x) \to (x = a \to \psi(x))$, we get $(x = a \to \psi(x)) \in \Psi(x)$, which implies $(a = a \to \psi(a)) \in \operatorname{Th}(\mathfrak{A}_A)$. Thus, $\psi(a)$ holds in \mathfrak{A}_A .

K. Tanaka

Resplendency Applications • Next, we consider the case that $\mathfrak{A}_A \models \neg \exists x \bigwedge_{i \leq j} \psi_i(x)$. In this case, we simply set

$$A_{n+1} = A_n, \quad T_{n+1} = T_n \cup \{\neg \exists x \varphi_n(x)\}.$$

• Since $T_n \vdash \varphi_n(x) \to \bigwedge_{i \leq j} \psi_i(x)$, we have $T_n \vdash \neg \exists x \bigwedge_{i \leq j} \psi_i(x) \to \neg \exists x \varphi_n(x)$. So, to show that $T_{n+1} \cup \operatorname{Th}(\mathfrak{A}_A)$ is consistent, we may show the consistency of

$$T_n \cup \{ \neg \exists x \bigwedge_{i \leq j} \psi_i(x) \} \cup \operatorname{Th}(\mathfrak{A}_A).$$

- So, take a sentence ψ in \mathcal{L}_B such that $T_n \vdash \neg \exists x \bigwedge_{i \leq j} \psi_i(x) \rightarrow \psi$, and we will show ψ holds in \mathfrak{A}_A .
- By the induction hypothesis, $T_n \cup \text{Th}(\mathfrak{A}_A)$ is consistent, so $\neg \exists x \bigwedge_{i \leq j} \psi_i(x) \rightarrow \psi$ holds in \mathfrak{A}_A . Moreover, we have the premise $\mathfrak{A}_A \models \neg \exists x \bigwedge_{i \leq j} \psi_i(x)$. Therefore, ψ also holds in \mathfrak{A}_A . This completes the proof.

K. Tanaka

Resplendency Applications

Recall Problem 5 of Lec05-02 ·

Let $\mathfrak{A} = (A, +, \bullet, 0, 1, <)$ be a non-standard model of $I\Sigma_1$. Show that $\mathfrak{A}' = (A, +, 0, 1, <)$ is recursively saturated.

- Example 5

- In the above problem 5, it was shown that if $\mathfrak{A} = (A, +, \bullet, 0, 1, <)$ is a nonstandard model of $I\Sigma_1$, then $\mathfrak{A}' = (A, +, 0, 1, <)$ becomes recursively saturated.
- Conversely, suppose $\mathfrak{A}'=(A,+,0,1,<)$ is a recursively saturated model of Presburger arithmetic and is countable. Then, by the previous theorem, \mathfrak{A}' is strongly resplendent.
- On the other hand, Presburger arithmetic is complete, and the set of its theorems coincides with $\operatorname{Th}(\mathfrak{A}')$. Therefore, $\operatorname{Th}(\mathfrak{A}') \cup \mathsf{PA}$ is nothing but PA, which is a recursive consistent set.
- Hence, there exists a suitable interpretation of such that $\mathfrak{A} = (A, +, \bullet, 0, 1, <)$ becomes a model of PA. In summary, a countable model $\mathfrak{A} = (A, +, \bullet, 0, 1, <)$ of I Σ_1 can be turned into a model $\mathfrak{A}' = (A, +, \bullet', 0, 1, <)$ of PA by changing the interpretation of multiplication (the "misbuttoning theorem").

K. Tanaka

Resplendency Applications Next, when ${\cal L}$ is finite, the equivalence of resplendency and strong resplendency can be derived from the following Kleene's theorem.

Theorem (Kleene)

Let \mathcal{L} be finite, and $\Phi(\vec{v})$ be a recursive type in \mathcal{L} . Then, there exists a formula $\varphi(\vec{v})$ in some finite extension language $\mathcal{L}^+ \supseteq \mathcal{L}$ such that, (1) If a structure \mathfrak{A}^+ in \mathcal{L}^+ satisfies $\varphi(\vec{a})$, then its reduct \mathfrak{A} to \mathcal{L} satisfies $\Phi(\vec{a})$. (2) If an infinite structure \mathfrak{A} in \mathcal{L} satisfies $\Phi(\vec{a})$, then there exists an expansion \mathfrak{A}^+ in \mathcal{L}^+ that satisfies $\varphi(\vec{a})$.

Proof. The basic idea is to transform meta-mathematical arguments about \mathcal{L} -structures into mathematical arguments by extending the language to include $Q_{<}$ so that recursive types of \mathcal{L} -structures can be represented by a single formula. In other words, we will incorporate the arithmetical structure with part of the domain.

K. Tanaka

Resplendency Applications • Let \mathcal{L}^+ be an extended language of $\mathcal L$ obtained by adding the following symbols:

 $N(x), +, \bullet, 0, 1, <, Eval(n, x), Sat(n, x), \pi(a, i).$

Here, N(x) represents the domain of arithmetic. Eval(n, a) is a function to evaluate terms in \mathcal{L} and Sat(n, a) the satisfaction relation of \mathcal{L} -structures, where n is the Gödel number of a term or formula, and a represents an assignment to variables. Finally, $\pi(a, i) = a_i$ is the projection function extracting the *i*-th component a_i from a code a intending to express an infinite sequence (a_0, a_1, \cdots) .

• We want to express the recursive type $\Phi(\vec{v})$ in \mathcal{L} as a formula $\varphi(\vec{v})$ in \mathcal{L}^+ , which consists of six components σ_i $(i = 1, \cdots, 6)$. Each σ_i $(i = 1, \cdots, 5)$ is a sentence, and σ_6 is a formula with free variables \vec{v} , and $\varphi(\vec{v})$ is defined by

$$\varphi(\vec{v}) \equiv \sigma_1 \wedge \sigma_2 \wedge \cdots \wedge \sigma_6.$$

1. σ_1 expresses the basic properties of N(x) as follows:

 $\mathbf{N}(0)\wedge\mathbf{N}(1)\wedge\forall x\forall y(\mathbf{N}(x)\wedge\mathbf{N}(y)\rightarrow\mathbf{N}(x+y)\wedge\mathbf{N}(x\bullet y)).$

K. Tanaka

Resplendency Applications 2. σ_2 represents $(N, +, \bullet, 0, 1, <) \models Q_{<}$, i.e., σ_2 is the conjunction of the eight axioms of $Q_{<}$ with quantifiers restricted to N. For example, A10 (predecessor) is expressed as

$$\forall x (\mathbf{N}(x) \to (x \neq 0 \to \exists y (\mathbf{N}(y) \land y + 1 = x))).$$

3. σ_3 is the following sentence stipulating a projection $\pi(x,i)$: for i,j ranging over N,

$$\forall x \forall i \forall z \exists y (\forall j \neq i(\pi(y,j) = \pi(x,j)) \land \pi(y,i) = z).$$

Here, y is the code of a sequence obtained by replacing the i-th element of x with z, denoted x[z/i].

Note that σ_3 does not assert the existence of infinite sequences in general, but it says that finite parts can be specified arbitrarily. In fact, we will treat a finite sequence $\vec{u} = (u_0, u_1, \dots, u_{k-1})$ as $0[u_0/\overline{0}][u_1/\overline{1}]\cdots [u_{k-1}/\overline{k-1}]$, where $0 = (0, 0, 0, \dots)$.

Since any primitive recursive function over N is representable in $\mathbb{Q}_{<}$, Gödel numbers $\ulcorner \urcorner$ of terms and formulas in $\mathcal L$ can be handled as elements of N.

K. Tanaka

Resplendency Applications 4. σ_4 describes the function $\operatorname{Eval}(n, x)$ that evaluates terms in \mathcal{L} . It is defined as the conjunction of the following sentences: For variables v_0, v_1, \cdots ,

 $\forall i (\in N) \forall a (\operatorname{Eval}(\ulcorner v_i \urcorner, a) = \pi(a, i)).$

For each *m*-ary function symbol f in \mathcal{L} ,

 $\forall t_0, \cdots, t_{m-1} (\in N) \forall a (\operatorname{Eval}(\lceil \mathbf{f}(t_0, \cdots, t_{m-1}) \rceil, a)$ $= \mathbf{f}(\operatorname{Eval}(\lceil t_0 \rceil, a), \cdots, \operatorname{Eval}(\lceil t_{m-1} \rceil, a))).$

5. σ_5 describes the satisfaction relation $\operatorname{Sat}(n, x)$ of \mathcal{L} -structures. It consists of the following sentences. For each *n*-ary relation symbol R of \mathcal{L} (including equality),

 $\forall t_0, \cdots, t_{n-1} \forall a(\operatorname{Sat}(\ulcorner \mathsf{R}(t_0, \cdots, t_{n-1})\urcorner, a) \leftrightarrow \mathsf{R}(\operatorname{Eval}(\ulcorner t_0 \urcorner, a), \cdots, \operatorname{Eval}(\ulcorner t_{m-1} \urcorner, a))).$

For each logical symbol, we have

 $\forall a(\operatorname{Sat}(\ulcorner\psi_0 \land \psi_1 \urcorner, a) \leftrightarrow (\operatorname{Sat}(\ulcorner\psi_0 \urcorner, a) \land \operatorname{Sat}(\ulcorner\psi_1 \urcorner, a))),$

 $\forall a(\operatorname{Sat}(\ulcorner\exists x_i\psi\urcorner,a) \leftrightarrow \exists b\operatorname{Sat}(\ulcorner\psi\urcorner,a[b/i]))$

and so on.

K. Tanaka

Resplendency Applications 6. σ_6 is a formula expressing $\Phi(\vec{v})$ using Sat. Let $\gamma(n)$ be a formula expressing the recursive set of the Gödel numbers of formulas in $\Phi(\vec{v})$ in Q_<, and define σ_6 as follows:

 $\forall n \in N(((N, +, \bullet, 0, 1, <) \models \gamma(\overline{n})) \to \operatorname{Sat}(n, \vec{v})).$

In this way, we have defined $\varphi(\vec{x})$, and we will now verify that it satisfies the theorem.

First, to prove condition (1), suppose that in a structure \mathfrak{A}^+ in \mathcal{L}^+ , $a = (a_0, \cdots, a_{l-1})$ realizes $\varphi(\vec{v})$. Take any $\psi(\vec{v})$ in $\Phi(\vec{v})$. Then, $\mathbf{Q}_{\leq} \vdash \gamma(\overline{\ulcorner\psi(\vec{v})}\urcorner)$, and by σ_2 and σ_6 , we have:

 $\mathfrak{A}^+ \models \operatorname{Sat}(\ulcorner \psi \urcorner, a).$

By meta-induction on the construction of the formula ψ , we can prove by σ_4 and σ_5 that

$$\mathfrak{A}^+ \models \operatorname{Sat}(\ulcorner \psi \urcorner, a) \leftrightarrow \psi(a_0, \cdots, a_{l-1})$$

Therefore, we have

$$\mathfrak{A}^+ \models \psi(a_0, \cdots, a_{l-1}),$$

which implies that $\psi(a_0, \dots, a_{l-1})$ holds in its reduct \mathfrak{A} to \mathcal{L} . Since $\psi(\vec{v}) \in \Phi(\vec{v})$ is arbitrary, \mathfrak{A} realizes $\Phi(\vec{v})$ by \vec{a} , which proves condition (1).

K. Tanaka

Resplendency Applications Next, to prove (2), suppose conversely that an infinite structure \mathfrak{A} in \mathcal{L} realizes $\Phi(\vec{v})$ by \vec{a} .

- Choose a countably infinite subset N of $|\mathfrak{A}|$ and define $+, \bullet, 0, 1, <$ on N so that $(N, +, \bullet, 0, 1, <)$ is isomorphic to the standard structure of arithmetic. And extend $+, \bullet$ to total functions on A in an arbitrary way. Then, σ_1 and σ_2 clearly hold.
- Since A is infinite, there exists a bijection between A and $A^{<\omega}$. Let $B \subset A^{\omega}$ be the set of infinite sequences with all but finitely many elements being 0. Then, we can take a surjection $h: A \to B$. Now, define $\pi(a, i)$ to be the *i*-th element b_i of $h(a) = (b_0, b_1, \cdots)$. Then, σ_3 holds.
- Furthermore, by defining $\mathrm{Eval}(\ulcornert\urcorner,a)$ as the value of a term t at a, and the satisfaction relation $\mathrm{Sat}(n,x)$ as

$$\operatorname{Sat}(\ulcorner\psi\urcorner, a) \Leftrightarrow \mathfrak{A} \models \psi(a_0, \cdots, a_{l-1}),$$

we establish σ_4 and σ_5 .

• Finally, for σ_6 , we have:

 $(N,+,\bullet,0,1,<)\models\gamma(\overline{\ulcorner\psi\urcorner})\Leftrightarrow\psi(\vec{v})\in\Phi(\vec{v})\Rightarrow\psi(a_0,\cdots,a_{l-1})\Leftrightarrow\mathrm{Sat}(\overline{\ulcorner\psi\urcorner},a)).$

Thus, $\varphi(\vec{a})$ holds in \mathfrak{A}^+ , and so condition (2) is satisfied.

K. Tanaka

Resplendency Applications

Corollary (Barwise)

A resplendent structure in a finite language ${\cal L}$ is strongly resplendent, and so recursively saturated.

Proof.

- Let \mathcal{L} be a finite language, and \mathfrak{A} be a resplendent structure in \mathcal{L} . If \mathfrak{A} is finite, then it is already recursively saturated and so strongly resplendent (by Barwise-Ressayre). Thus, we may assume that \mathfrak{A} is infinite.
- To show that \mathfrak{A} is strongly resplendent, suppose a recursive type $\Phi(\vec{v})$ in $\mathcal{L}'(\supset \mathcal{L})$ is given so that $\operatorname{Th}(\mathfrak{A}_A) \cup \Phi(\vec{a})$ is consistent.
- Then, we can construct $\varphi(\vec{v})$ in \mathcal{L}'^+ to satisfy Kleene's Theorem.
- Let \mathfrak{A}' be an \mathcal{L}' -expansion of an elementary extension of \mathfrak{A} which satisfies $\Phi(\vec{a})$. Then, by Kleene's Theorem (2), \mathfrak{A}' has an \mathcal{L}'^+ -expansion \mathfrak{A}'^+ which satisfies $\varphi(\vec{a})$. Thus by the resplendency of \mathfrak{A} , \mathfrak{A} also has an \mathcal{L}'^+ -expansion which satisfies $\varphi(\vec{a})$.
- Finally, by Kleene's Theorem (1), $\Phi(\vec{a})$ holds in \mathfrak{A} . This proves that \mathfrak{A} is strongly resplendent.

K. Tanaka

Resplendency Applications Let us consider Kleene's Theorem for an arithmetic structure \mathfrak{A} .

- If *L* already includes the language of arithmetic *L*_{OR}, and a *L*-structure A is already a model of Q_<, there is no need to introduce +, •, 0, 1, <, Eval(n, x), π(x, i) separately. To prove Kleene's theorem, it suffices to use N(x) and Sat(n, x).
- If \mathfrak{A} is resplendent, we can introduce N(x) and Sat(n, x) as relations in \mathfrak{A} . Then, we can derive various properties of \mathfrak{A} .

Theorem

For any countable resplendent model \mathfrak{A} of Peano Arithmetic PA, there exists a (proper) initial segment that is isomorphic to \mathfrak{A} , and \mathfrak{A} is an elementary extension of this initial segment.

Proof. To the language of arithmetic \mathcal{L}_{OR} , add N(x), Sat(n, x), as well as $Sat_N(n, x)$ to represent the satisfaction relation for N, and f(x) to represent an isomorphism between the whole structure and its restriction to N.

Now, consider a recursive type claiming that N is an initial segment isomorphic to the whole \mathfrak{A} , and is also an elementary substructure. This type is consistent with $\mathsf{Th}(\mathfrak{A}_A)$ by Friedman's theorem. By resplendency, N can be realized as an initial segment of \mathfrak{A} .

K. Tanaka

Resplendency Applications

Theorem

For a resplendent model \mathfrak{A} of Peano Arithmetic PA, there exists a satisfaction relation Sat, such that for any \mathcal{L}_{OR} formula ψ ,

 $(\mathfrak{A}, Sat) \models \forall a(\operatorname{Sat}(\ulcorner \psi \urcorner, a) \leftrightarrow \psi(a_0, \cdots, a_{l-1}))$

and (\mathfrak{A}, Sat) satisfies induction for formulas in $\mathcal{L}_{OR} \cup \{Sat\}$. Conversely, if a model \mathfrak{A} of Peano Arithmetic PA has such a relation Sat, then \mathfrak{A} is recursively saturated. Hence, if countable, it is resplendent.

Proof. The existence of *Sat* follows from the resplendency and the definition of *Sat* in Kleene's theorem. To show that (\mathfrak{A}, Sat) satisfies induction, it is enough to see that the recursive set of sentences representing the induction for $\mathcal{L}_{OR} \cup {Sat}$ is consistent with $Th(\mathfrak{A}_A)$. The second part is obvious from the proof of the following lemma.

– Lemma (revisit)

For each n > 0, a non-standard model \mathfrak{A} of I Σ_n is Σ_n -recursively saturated.

K. Tanaka

Resplendency Applications

Theorem (Robinson's Joint Consistency Theorem)

Let $\mathcal{L} = \mathcal{L}_1 \cap \mathcal{L}_2$, and T be a complete theory in the language \mathcal{L} , with T_1 and T_2 as extensions of T in the languages \mathcal{L}_1 and \mathcal{L}_2 , respectively. Then, $T_1 \cup T_2$ is consistent if and only if T_1 and T_2 are separately consistent.

Proof. The necessity is clear, so we will prove the sufficiency. Assume T_1 and T_2 are consistent, but $T_1 \cup T_2$ is inconsistent.

- Since $T_1 \cup T_2$ is inconsistent, there exist finite subsets $S_1 \subseteq T_1$ and $S_2 \subseteq T_2$ such that $S_1 \cup S_2$ also leads to a contradiction.
- Suppose S_1 and S_2 are theories in finite languages \mathcal{L}'_1 and \mathcal{L}'_2 , respectively. Define $\mathcal{L}' = \mathcal{L}'_1 \cap \mathcal{L}'_2$, and let T' be the set of \mathcal{L}' -sentences that can be deduced from T. Then, T' is a complete and consistent set in the language \mathcal{L}' , since T is a complete and consistent set in \mathcal{L}
- Moreover, let $S'_1 = S_1 \cup T'$ and $S'_2 = S_2 \cup T'$. Since S'_1 and S'_2 are subsets of T_1 and T_2 , respectively, they are separately consistent.

K. Tanaka

Resplendency Applications

- Consider a countable saturated model \mathfrak{A} of T'. Since T' is complete, $T' = Th(\mathfrak{A})$.
- Since $S'_1 = S_1 \cup \text{Th}(\mathfrak{A})$ is consistent, by resplendency of \mathfrak{A} , \mathfrak{A} can be extended to a model \mathfrak{A}_1 of S_1 in \mathcal{L}'_1 .
- Similarly, 𝔅 can be extended to a model 𝔅₂ of S₂ in ℒ'₂. Therefore, by defining the interpretation of symbols in ℒ'₁ ℒ' to be the same as in 𝔅₁ and in ℒ'₂ ℒ' to be the same as in 𝔅₂, we extend 𝔅 to a structure 𝔅' in ℒ'₁ ∪ ℒ'₂.
- Then, \mathfrak{A}' is a model of $S_1 \cup S_2$, which contradicts our assumption. Thus, we complete the proof.

K. Tanaka

Resplendency Applications

Corollary (Craig's Interpolation Theorem)

If a formula $\varphi \to \psi$ is provable ($\vdash \varphi \to \psi$), then there exists a formula θ consisting of mathematical symbols appearing in φ and ψ commonly, besides logical symbols and =, such that $\vdash \varphi \to \theta$ and $\vdash \theta \to \psi$.

The formula θ satisfying the above theorem is called an **interpolant** for φ and ψ .

Proof

- Assume ⊢ φ → ψ with no interpolant θ. Let L be the language consisting of symbols common to φ and ψ. Let T₀ be the set of formulas ξ in L such that ⊢ φ → ξ.
- Since no finite subset of T_0 implies ψ , $T_0 \cup \{\neg\psi\}$ is consistent.
- Consider a model \mathfrak{A} of $T_0 \cup \{\neg\psi\}$, and let T be the set of all \mathcal{L} formulas contained in $\operatorname{Th}(\mathfrak{A})$. Clearly, $T \cup \{\neg\psi\}$ is consistent.
- To show that $T \cup \{\varphi\}$ is also consistent, assume otherwise. Then there exists a formula σ in T such that $\vdash \varphi \rightarrow \neg \sigma$. Thus, $\neg \sigma \in T_0 \subseteq T$, which implies the inconsistency of T.
- By Robinson's joint consistency theorem, $T \cup \{\varphi, \neg\psi\}$ is also consistent, contradicting the assumption $\vdash \varphi \rightarrow \psi$.

K. Tanaka

Resplendenc

Applications

Thank you for your attention!