

K. Tanaka

[Resplendency](#page-2-0) [Applications](#page-18-0)

> Logic and Foundation II Part 5. Models of first-order arithmetic

> > Kazuyuki Tanaka

BIMSA

March 21, 2024

K. Tanaka

[Resplendency](#page-2-0) [Applications](#page-18-0)

Logic and Foundations II (Spring 2024)

- Part 5. Models of first-order arithmetic (continued)
- Part 6. Real-closed ordered fields: completeness and decidability
- Part 7. Theory of reals and reverse mathematics
- Part 8. Second order arithmetic and non-standard methods

✒ ✑ Part 5. Models of first-order arithmetic

• Jan. 04, Non-standard models and the omitting type theorem

✒ ✑

- Jan. 11, Recursively saturated models
- Mar. 12, Reviews

—–

- Mar. 14. Friedman's theorem
- Mar. 19, Friedman's theorem (continued)
- Mar. 21, Resplendency and applications
- Mar. 26, Resplendency and applications (continued)

Recap

Logic and [Foundation](#page-0-0)

K. Tanaka

[Resplendency](#page-2-0) [Applications](#page-18-0)

- A type $\Phi(\vec{x})$ is a set of formulas in free variables $\vec{x} = (x_1, \dots, x_n)$.
- A realizes $\Phi(\vec{x})$ by \vec{a} , if $\mathfrak{A}_A \models \varphi(\vec{a})$ for all formulas $\varphi(\vec{x})$ in $\Phi(\vec{x})$.
- A type $\Phi(\vec{x})$ is a type of a theory T if $T \cup \Phi(\vec{c})$ (\vec{c} new constants) is consistent. That is, there exists a model of T that realizes $\Phi(\vec{x})$.
- For a subset C of the universe of \mathfrak{A} , a type on C in \mathfrak{A} is a type of theory $\text{Th}(\mathfrak{A}_{\mathbb{C}})$.
- An *L*-structure $\mathfrak A$ is recursively saturated, if any recursive 1-type on $\{\vec a\} \subseteq A$ is realized in \mathfrak{A} , that is, for any recursive type $\{\varphi_i(x, \vec{x}) \mid i \in \mathbb{N}\}\$ and any $\{\vec{a}\}\subseteq A$,

 $\forall i \exists a \in A \forall i \leq i \, \mathfrak{A}_A \models \varphi_i(a, \vec{a}) \Rightarrow \exists a \in A \forall i \, \mathfrak{A}_A \models \varphi_i(a, \vec{a}).$

• An $\mathcal L$ -structure $\mathfrak A$ is resplendent, if for a sentence φ in a language $\mathcal L^+\supseteq\mathcal L_A$ such that $\text{Th}(\mathfrak{A}_A)\cup\{\varphi\}$ is consistent, there exists an \mathcal{L}^+ -expansion \mathfrak{A}^+ of \mathfrak{A} such that $\mathfrak{A}^+\models\varphi.$

K. Tanaka

[Resplendency](#page-2-0) **[Applications](#page-18-0)**

Definition

An L-structure $\mathfrak A$ is strongly resplendent, if for any recursive type $\Phi(\vec x)$ in a language $\mathcal{L}^+=\mathcal{L}\cup\{$ finitely many additional symbols $\}$ and $\vec{a}\in A^{<\omega}$ such that $\text{Th}(\mathfrak{A}_A)\cup\Phi(\vec{a})$ is consistent, there exists an \mathcal{L}^+ -expansion \mathfrak{A}^+ of $\mathfrak A$ which is a model of $\Phi(\vec a)$.

- In the definition of **strongly resplendent**, if we restrict the type $\Phi(\vec{x})$ to be a single formula, we obtain the definition of resplendent, and if we let $\mathcal{L}^+ = \mathcal{L} \cup \{c\}$, it becomes the definition of **recursive saturation**. Hence, strongly resplendent structures are both resplendent and recursively saturated.
- Furthermore, similar to the case of resplendent structures, it is worth noting that the consistency of Th $(\mathfrak{A}_A) \cup \Phi(\vec{a})$ coincides with the consistency of Th $(\mathfrak{A}_{\{\vec{a}\}}) \cup \Phi(\vec{a})$.
- We will now demonstrate that under certain natural assumptions, the above three properties coincide.

K. Tanaka

[Resplendency](#page-2-0) [Applications](#page-18-0)

Theorem (Barwise-Ressayre)

Countable recursively saturated structures are strongly resplendent.

Proof

- Let $\mathfrak A$ be a countable recursively saturated structure in a countable language $\mathcal L$.
- To show that $\mathfrak A$ is strongly resplendent, let $\Phi(\vec x)$ be a recursive type in a finitely extended language \mathcal{L}^+ of $\mathcal L$ and $\vec a\in A^\omega$ such that $\text{Th}(\mathfrak{A}_A)\cup\Phi(\vec a)$ is consistent. Then, we want to construct a model \mathfrak{A}^{+} of $\Phi(\vec{a})$ with the same domain $|\mathfrak{A}|.$
- \bullet \mathfrak{A}^{+} will be constructed by Henkin's method, in which Henkin constants are selected as elements of A by the recursively saturated nature of \mathfrak{A} .

Now, let's look into the details of construction of $\mathfrak{A}^{+}.$

• First, let $\{\varphi_n(x): n \in \omega\}$ enumerate the formulas in \mathcal{L}_A with only one free variable x.

K. Tanaka

[Resplendency](#page-2-0) [Applications](#page-18-0)

 $\bullet\,$ We construct a sequence of finite subsets of A and that of recursive theories in $\mathcal L_A^+ ,$

$$
A_0 = \{\vec{a}\} \subseteq A_1 \subseteq A_2 \subseteq \cdots , \quad T_0 = \Phi(\vec{a}) \subseteq T_1 \subseteq T_2 \subseteq \cdots ,
$$

satisfying the following: for each n

- (1) T_n is a recursive set of sentences in ${\cal L}^+_{A_n},$ and $T_n\cup \text{Th}(\mathfrak{A}_A)$ is consistent. (2) either $\varphi_n(a) \in T_{n+1}$ for some $a \in A$ or $\neg \exists x \varphi_n(x) \in T_{n+1}$.
- Now, suppose the construction is completed, and let $T_\omega = \bigcup_n T_n$.
- \bullet To show T_ω is complete, take a sentence σ in \mathcal{L}^+_A such that $T_\omega\not\vdash \sigma.$ Then σ is φ_k (with no free variable) for some k. Obviously, $\sigma \notin T_{k+1}$, since $T_{\omega} \not\vdash \sigma$. Thus, by condition (2), we have $\neg \exists x \sigma \in T_{k+1}$, and so $T_{\omega} \vdash \neg \sigma$. Therefore, T_{ω} is complete. Hence, we also have $\text{Th}(\mathfrak{A}_A) \subseteq T_\omega$ since $T_\omega \cup \text{Th}(\mathfrak{A}_A)$ is consistent by condition (1).
- If $T_\omega \vdash \exists x \varphi_n(x, \vec{a})$, then by (2), there exists some $a \in A$ such that $\varphi_n(a) \in T_\omega$.
- Then T_{ω} is a complete Henkin theory. By Henkin method, we can construct a structure \mathfrak{A}^+ over the domain A , such that $T_\omega = \text{Th}(\mathfrak{A}_A^+)$, and therefore $\mathfrak{A}^+ \models \Phi(\vec{a})$.

K. Tanaka

[Resplendency](#page-2-0) [Applications](#page-18-0)

Finally, we will construct the sequences $\{A_n\}$ and $\{T_n\}$ by induction.

- Assume that the construction up to n has been done.
- Take $\varphi_n(x)$ and let $B = A_n \cup \{$ elements of A occurring in $\varphi_n(x)\}$, and define

 $\Psi(x) = {\psi(x) : \psi(x)$ is a one-variable formula in \mathcal{L}_B , and $T_n \vdash \varphi_n(x) \to \psi(x)$.

- Although $\Psi(x)$ is Σ_1 as it is, it can be treated as a recursive type by Craig's method.
- Since the structure $\mathfrak A$ is recursively saturated, we can either find an $a \in A$ realizing $\Psi(x)$ or find a finite subset $\{\psi_i(x) : i \leq j\}$ of $\Psi(x)$ such that

$$
\mathfrak{A}_A \models \neg \exists x \bigwedge_{i \leq j} \psi_i(x).
$$

- In the former case, we let $A_{n+1} = B \cup \{a\}, T_{n+1} = T_n \cup \{\varphi_n(a)\}.$
- To check the consistency of $T_{n+1} \cup Th(\mathfrak{A}_A)$, we show that any $\mathcal{L}_{A_{n+1}}$ sentence provable in T_{n+1} is true in \mathfrak{A}_A . So, let $\psi(x)$ be a formula in \mathcal{L}_B such that T_{n+1} $\vdash \psi(a)$. If $a \notin B$, $T_n \vdash \varphi_n(a) \to \psi(a)$ implies $T_n \vdash \varphi_n(x) \to \psi(x)$ and so $\psi(x) \in \Psi(x)$. Since a realizes $\Psi(x)$, $\psi(a)$ holds in \mathfrak{A}_A . On the other hand, if $a \in B$, then by $T_n \vdash \varphi_n(x) \to (x = a \to \psi(x))$, we get $(x = a \to \psi(x)) \in \Psi(x)$, which implies $(a = a \rightarrow \psi(a)) \in \text{Th}(\mathfrak{A}_A)$. Thus, $\psi(a)$ holds in \mathfrak{A}_A .

K. Tanaka

[Resplendency](#page-2-0)

 $\bullet\,$ Next, we consider the case that $\mathfrak{A}_A \models \neg \exists x\, \bigwedge_{i\leq j}\psi_i(x).$ In this case, we simply set

$$
A_{n+1} = A_n, \quad T_{n+1} = T_n \cup \{\neg \exists x \varphi_n(x)\}.
$$

• Since $T_n \vdash \varphi_n(x) \to \bigwedge_{i \leq j} \psi_i(x)$, we have $T_n \vdash \neg \exists x \bigwedge_{i \leq j} \psi_i(x) \to \neg \exists x \varphi_n(x)$. So, to show that $T_{n+1} \cup Th(\mathfrak{A}_{A}^{-})$ is consistent, we may show the consistency of

$$
T_n \cup \{\neg \exists x \bigwedge_{i \leq j} \psi_i(x)\} \cup \mathrm{Th}(\mathfrak{A}_A).
$$

- $\bullet\,$ So, take a sentence ψ in \mathcal{L}_B such that $T_n\vdash\neg\exists x\bigwedge_{i\leq j}\psi_i(x)\to\psi$, and we will show ψ holds in \mathfrak{A}_{A} .
- By the induction hypothesis, $T_n\cup \text{Th}(\mathfrak{A}_A)$ is consistent, so $\neg \exists x\bigwedge_{i\leq j}\psi_i(x)\to \psi$ holds in $\mathfrak{A}_A.$ Moreover, we have the premise $\mathfrak{A}_A \models \neg \exists x\, \bigwedge_{i\leq j}\psi_i(x).$ Therefore, ψ also holds in \mathfrak{A}_A . This completes the proof.

K. Tanaka

[Resplendency](#page-2-0) **[Applications](#page-18-0)**

Recall Problem 5 of Lec05-02

Let $\mathfrak{A} = (A, +, \bullet, 0, 1, <)$ be a non-standard model of I Σ_1 . Show that $\mathfrak{A}' =$ $(A, +, 0, 1, <)$ is recursively saturated.

✒ ✑ Example 5

- In the above problem 5, it was shown that if $\mathfrak{A} = (A, +, \bullet, 0, 1, <)$ is a nonstandard model of $I\Sigma_1$, then $\mathfrak{A}'=(A,+,0,1,<)$ becomes recursively saturated.
- Conversely, suppose $\mathfrak{A}' = (A, +, 0, 1, <)$ is a recursively saturated model of Presburger arithmetic and is countable. Then, by the previous theorem, \mathfrak{A}' is strongly resplendent.
- On the other hand, Presburger arithmetic is complete, and the set of its theorems coincides with $\text{Th}(\mathfrak{A}')$. Therefore, $\text{Th}(\mathfrak{A}') \cup \text{PA}$ is nothing but PA, which is a recursive consistent set.
- Hence, there exists a suitable interpretation of such that $\mathfrak{A} = (A, +, \bullet, 0, 1, <)$ becomes a model of PA. In summary, a countable model $\mathfrak{A} = (A, +, \cdot, 0, 1, <)$ of $\mathrm{I}\Sigma_1$ can be turned into a model $\mathfrak{A}'=(A,+,\,\bullet\hskip.4pt',0,1,<)$ of PA by changing the interpretation of multiplication (the "misbuttoning theorem").

K. Tanaka

[Resplendency](#page-2-0) **[Applications](#page-18-0)**

Next, when $\mathcal L$ is finite, the equivalence of resplendency and strong resplendency can be derived from the following Kleene's theorem.

Theorem (Kleene)

Let L be finite, and $\Phi(\vec{v})$ be a recursive type in L. Then, there exists a formula $\varphi(\vec{v})$ in some finite extension language $\mathcal{L}^+ \supseteq \mathcal{L}$ such that, (1) If a structure \mathfrak{A}^+ in \mathcal{L}^+ satisfies $\varphi(\vec{a})$, then its reduct $\mathfrak A$ to $\mathcal L$ satisfies $\Phi(\vec{a})$. (2) If an infinite structure $\frak A$ in ${\cal L}$ satisfies $\Phi(\vec a)$, then there exists an expansion $\frak A^+$ in ${\cal L}^+$ that satisfies $\varphi(\vec{a})$.

Proof. The basic idea is to transform meta-mathematical arguments about \mathcal{L} -structures into mathematical arguments by extending the language to include Q_{\leq} so that recursive types of \mathcal{L} -structures can be represented by a single formula. In other words, we will incorporate the arithmetical structure with part of the domain.

K. Tanaka

[Resplendency](#page-2-0) [Applications](#page-18-0)

 $\bullet\,$ Let \mathcal{L}^+ be an extended language of $\mathcal L$ obtained by adding the following symbols:

 $N(x)$, +, \bullet , 0, 1, <, Eval (n, x) , Sat (n, x) , $\pi(a, i)$.

Here, $N(x)$ represents the domain of arithmetic. $Eval(n, a)$ is a function to evaluate terms in $\mathcal L$ and $\text{Sat}(n, a)$ the satisfaction relation of $\mathcal L$ -structures, where n is the Gödel number of a term or formula, and α represents an assignment to variables. Finally, $\pi(a,i)=a_i$ is the projection function extracting the i -th component a_i from a code a intending to express an infinite sequence (a_0, a_1, \dots) .

• We want to express the recursive type $\Phi(\vec{v})$ in ${\cal L}$ as a formula $\varphi(\vec{v})$ in ${\cal L}^+$, which consists of six components σ_i $(i = 1, \dots, 6)$. Each σ_i $(i = 1, \dots, 5)$ is a sentence, and σ_6 is a formula with free variables \vec{v} , and $\varphi(\vec{v})$ is defined by

$$
\varphi(\vec{v}) \equiv \sigma_1 \wedge \sigma_2 \wedge \cdots \wedge \sigma_6.
$$

1. σ_1 expresses the basic properties of $N(x)$ as follows:

 $N(0) \wedge N(1) \wedge \forall x \forall y (N(x) \wedge N(y) \rightarrow N(x + y) \wedge N(x \cdot y)).$

K. Tanaka

[Resplendency](#page-2-0) [Applications](#page-18-0)

2. σ_2 represents $(N, +, \bullet, 0, 1, <) \models \mathbb{Q}_{\leq}$, i.e., σ_2 is the conjunction of the eight axioms of Q_{ℓ} with quantifiers restricted to N. For example, A10 (predecessor) is expressed as

$$
\forall x (\mathbf{N}(x) \to (x \neq 0 \to \exists y (\mathbf{N}(y) \land y + 1 = x))).
$$

3. σ_3 is the following sentence stipulating a projection $\pi(x, i)$: for i, j ranging over N,

$$
\forall x \forall i \forall z \exists y (\forall j \neq i (\pi(y, j) = \pi(x, j)) \land \pi(y, i) = z).
$$

Here, y is the code of a sequence obtained by replacing the i-th element of x with z, denoted $x[z/i]$.

Note that σ_3 does not assert the existence of infinite sequences in general, but it says that finite parts can be specified arbitrarily. In fact, we will treat a finite sequence $\vec{u} = (u_0, u_1, \dots, u_{k-1})$ as $0[u_0/\overline{0}][u_1/\overline{1}]\cdots[u_{k-1}/\overline{k-1}]$, where $0 = (0, 0, 0, \dots)$.

Since any primitive recursive function over N is representable in Q_{\leq} , Gödel numbers \Box of terms and formulas in $\mathcal L$ can be handled as elements of N.

K. Tanaka

[Resplendency](#page-2-0) [Applications](#page-18-0)

4. σ_A describes the function $Eval(n, x)$ that evaluates terms in \mathcal{L} . It is defined as the conjunction of the following sentences: For variables v_0, v_1, \dots ,

 $\forall i (\in N) \forall a (\text{Eval}(\ulcorner v_i \urcorner, a) = \pi(a, i)).$

For each m -ary function symbol f in \mathcal{L} ,

 $\forall t_0, \cdots, t_{m-1} \in N \forall a (\text{Eval}(\ulcorner \mathbf{f}(t_0, \cdots, t_{m-1}) \urcorner, a))$ $= f(\text{Eval}(\ulcorner t_0 \urcorner, a), \cdots, \text{Eval}(\ulcorner t_{m-1} \urcorner, a))).$

5. σ_5 describes the satisfaction relation $\text{Sat}(n, x)$ of \mathcal{L} -structures. It consists of the following sentences. For each *n*-ary relation symbol R of $\mathcal L$ (including equality),

 $\forall t_0, \cdots, t_{n-1} \forall a (\text{Sat}(\lceil R(t_0, \cdots, t_{n-1}) \rceil, a) \leftrightarrow R(\text{Eval}(\lceil t_0 \rceil, a), \cdots, \text{Eval}(\lceil t_{m-1} \rceil, a))).$

For each logical symbol, we have

 $\forall a(\text{Sat}(\lceil \psi_0 \wedge \psi_1 \rceil, a) \leftrightarrow (\text{Sat}(\lceil \psi_0 \rceil, a) \wedge \text{Sat}(\lceil \psi_1 \rceil, a))).$

 $\forall a(\text{Sat}(\ulcorner\exists x_i\psi\urcorner, a) \leftrightarrow \exists b \, \text{Sat}(\ulcorner\psi\urcorner, a[b/i]))$

and so on.

K. Tanaka

[Resplendency](#page-2-0) [Applications](#page-18-0)

6. σ_6 is a formula expressing $\Phi(\vec{v})$ using Sat. Let $\gamma(n)$ be a formula expressing the recursive set of the Gödel numbers of formulas in $\Phi(\vec{v})$ in Q_{\leq} , and define σ_6 as follows:

 $\forall n \in N(((N, +, \bullet, 0, 1, <) \models \gamma(\overline{n})) \rightarrow \text{Sat}(n, \vec{v})).$

In this way, we have defined $\varphi(\vec{x})$, and we will now verify that it satisfies the theorem.

First, to prove condition (1), suppose that in a structu<u>re \mathfrak{A}^+ </u> in \mathcal{L}^+ , $a = (a_0, \cdots, a_{l-1})$ realizes $\varphi(\vec{v})$. Take any $\psi(\vec{v})$ in $\Phi(\vec{v})$. Then, $Q_{\leq} \vdash \gamma(\overline{\psi(\vec{v})})$, and by σ_2 and σ_6 , we have:

 $\mathfrak{A}^+ \models \operatorname{Sat}(\ulcorner \psi \urcorner, a).$

By meta-induction on the construction of the formula ψ , we can prove by σ_4 and σ_5 that

$$
\mathfrak{A}^+ \models \mathrm{Sat}(\ulcorner \psi \urcorner, a) \leftrightarrow \psi(a_0, \cdots, a_{l-1})
$$

Therefore, we have

$$
\mathfrak{A}^+ \models \psi(a_0, \cdots, a_{l-1}),
$$

which implies that $\psi(a_0, \dots, a_{l-1})$ holds in its reduct $\mathfrak A$ to $\mathcal L$. Since $\psi(\vec v) \in \Phi(\vec v)$ is arbitrary, $\mathfrak A$ realizes $\Phi(\vec v)$ by $\vec a$, which proves condition (1).

K. Tanaka

[Resplendency](#page-2-0) [Applications](#page-18-0)

Next, to prove (2), suppose conversely that an infinite structure $\mathfrak A$ in $\mathcal L$ realizes $\Phi(\vec{v})$ by \vec{a} .

- Choose a countably infinite subset N of $|\mathfrak{A}|$ and define $+$, •, 0, 1, $<$ on N so that $(N, +, \bullet, 0, 1, <)$ is isomorphic to the standard structure of arithmetic. And extend $+$, • to total functions on A in an arbitrary way. Then, σ_1 and σ_2 clearly hold.
- Since A is infinite, there exists a bijection between A and $A^{\langle\omega\rangle}$. Let $B \subset A^{\omega}$ be the set of infinite sequences with all but finitely many elements being 0. Then, we can take a surjection $h : A \rightarrow B$. Now, define $\pi(a, i)$ to be the *i*-th element b_i of $h(a) = (b_0, b_1, \dots)$. Then, σ_3 holds.
- Furthermore, by defining $Eval(\ulcorner t\urcorner, a)$ as the value of a term t at a, and the satisfaction relation $\text{Sat}(n, x)$ as

$$
Sat(\ulcorner\psi\urcorner,a)\Leftrightarrow\mathfrak{A}\models\psi(a_0,\cdots,a_{l-1}),
$$

we establish σ_4 and σ_5 .

• Finally, for σ_6 , we have:

 $(N, +, \bullet, 0, 1, <) \models \gamma(\overline{\lceil \psi \rceil}) \Leftrightarrow \psi(\vec{v}) \in \Phi(\vec{v}) \Rightarrow \psi(a_0, \cdots, a_{l-1}) \Leftrightarrow \text{Sat}(\overline{\lceil \psi \rceil}, a)).$

Thus, $\varphi(\vec{a})$ holds in \mathfrak{A}^{+} , and so condition (2) is satisfied.

K. Tanaka

[Resplendency](#page-2-0) [Applications](#page-18-0)

Corollary (Barwise)

A resplendent structure in a finite language $\mathcal L$ is strongly resplendent, and so recursively saturated.

Proof.

- Let $\mathcal L$ be a finite language, and $\mathfrak A$ be a resplendent structure in $\mathcal L$. If $\mathfrak A$ is finite, then it is already recursively saturated and so strongly resplendent (by Barwise-Ressayre). Thus, we may assume that $\mathfrak A$ is infinite.
- To show that $\mathfrak A$ is strongly resplendent, suppose a recursive type $\Phi(\vec v)$ in $\mathcal L'(\supset \mathcal L)$ is given so that $\text{Th}(\mathfrak{A}_A) \cup \Phi(\vec{a})$ is consistent.
- Then, we can construct $\varphi(\vec{v})$ in \mathcal{L}'^+ to satisfy Kleene's Theorem.
- Let \mathfrak{A}' be an \mathcal{L}' -expansion of an elementary extension of $\mathfrak A$ which satisfies $\Phi(\vec a)$. Then, by Kleene's Theorem (2), \mathfrak{A}' has an \mathcal{L}'^+ -expansion \mathfrak{A}'^+ which satisfies $\varphi(\vec{a})$. Thus by the resplendency of $\mathfrak A$, $\mathfrak A$ also has an $\mathcal L'^+$ -expansion which satisfies $\varphi(\vec a)$.
- Finally, by Kleene's Theorem (1) , $\Phi(\vec{a})$ holds in \mathfrak{A} . This proves that \mathfrak{A} is strongly resplendent.

П

K. Tanaka

[Resplendency](#page-2-0) **[Applications](#page-18-0)**

Let us consider Kleene's Theorem for an arithmetic structure $\mathfrak A$.

- If $\mathcal L$ already includes the language of arithmetic $\mathcal L_{OR}$, and a $\mathcal L$ -structure $\mathfrak A$ is already a model of Q_{\leq} , there is no need to introduce $+$, \bullet , 0, 1, \lt , Eval (n, x) , $\pi(x, i)$ separately. To prove Kleene's theorem, it suffices to use $N(x)$ and $Sat(n, x)$.
- If $\mathfrak A$ is resplendent, we can introduce $N(x)$ and $\text{Sat}(n, x)$ as relations in $\mathfrak A$. Then, we can derive various properties of A.

Theorem

For any countable resplendent model $\mathfrak A$ of Peano Arithmetic PA, there exists a (proper) initial segment that is isomorphic to \mathfrak{A} , and \mathfrak{A} is an elementary extension of this initial segment.

Proof. To the language of arithmetic \mathcal{L}_{OR} , add $N(x)$, $Sat(n, x)$, as well as $Sat_N(n, x)$ to represent the satisfaction relation for N, and $f(x)$ to represent an isomorphism between the whole structure and its restriction to N .

Now, consider a recursive type claiming that N is an initial segment isomorphic to the whole \mathfrak{A} , and is also an elementary substructure. This type is consistent with Th (\mathfrak{A}_A) by Friedman's theorem. By resplendency, N can be realized as an initial segment of \mathfrak{A} . П

K. Tanaka

[Resplendency](#page-2-0) [Applications](#page-18-0)

Theorem

For a resplendent model $\mathfrak A$ of Peano Arithmetic PA, there exists a satisfaction relation Sat . such that for any \mathcal{L}_{OR} formula ψ .

 $(\mathfrak{A}, Sat) \models \forall a(\mathrm{Sat}(\ulcorner \psi \urcorner, a) \leftrightarrow \psi(a_0, \cdots, a_{l-1}))$

and (\mathfrak{A}, Sat) satisfies induction for formulas in $\mathcal{L}_{OR} \cup \{Sat\}$. Conversely, if a model $\mathfrak A$ of Peano Arithmetic PA has such a relation Sat , then $\mathfrak A$ is recursively saturated. Hence, if countable, it is resplendent.

Proof. The existence of Sat follows from the resplendency and the definition of Sat in Kleene's theorem. To show that (\mathfrak{A}, Sat) satisfies induction, it is enough to see that the recursive set of sentences representing the induction for $\mathcal{L}_{OR} \cup \{Sat\}$ is consistent with $\text{Th}(\mathfrak{A}_A)$. The second part is obvious from the proof of the following lemma.

✒ ✑

− Lemma (revisit)

For each $n > 0$, a non-standard model $\mathfrak A$ of $\mathrm{I}\Sigma_n$ is Σ_n -recursively saturated.

K. Tanaka

[Resplendency](#page-2-0) **[Applications](#page-18-0)**

Theorem (Robinson's Joint Consistency Theorem)

Let $\mathcal{L} = \mathcal{L}_1 \cap \mathcal{L}_2$, and T be a complete theory in the language \mathcal{L} , with T_1 and T_2 as extensions of T in the languages \mathcal{L}_1 and \mathcal{L}_2 , respectively. Then, $T_1 \cup T_2$ is consistent if and only if T_1 and T_2 are separately consistent.

Proof. The necessity is clear, so we will prove the sufficiency. Assume T_1 and T_2 are consistent, but $T_1 \cup T_2$ is inconsistent.

- Since $T_1 \cup T_2$ is inconsistent, there exist finite subsets $S_1 \subseteq T_1$ and $S_2 \subseteq T_2$ such that $S_1 \cup S_2$ also leads to a contradiction.
- Suppose S_1 and S_2 are theories in finite languages \mathcal{L}'_1 and \mathcal{L}'_2 , respectively. Define $\mathcal{L}'=\mathcal{L}'_1\cap\mathcal{L}'_2$, and let T' be the set of \mathcal{L}' -sentences that can be deduced from $T.$ Then, T' is a complete and consistent set in the language \mathcal{L}' , since T is a complete and consistent set in \mathcal{L}
- Moreover, let $S_1' = S_1 \cup T'$ and $S_2' = S_2 \cup T'$. Since S_1' and S_2' are subsets of T_1 and T_2 , respectively, they are separately consistent.

K. Tanaka

[Applications](#page-18-0)

- Consider a countable saturated model $\mathfrak A$ of $T'.$ Since T' is complete, $T' = \operatorname{Th}(\mathfrak A).$
- Since $S_1' = S_1 \cup \text{Th}(\mathfrak{A})$ is consistent, by resplendency of \mathfrak{A} , \mathfrak{A} can be extended to a model \mathfrak{A}_1 of S_1 in \mathcal{L}_1' .
- Similarly, $\mathfrak A$ can be extended to a model $\mathfrak A_2$ of S_2 in $\mathcal L_2'.$ Therefore, by defining the interpretation of symbols in $\mathcal{L}_1'-\mathcal{L}'$ to be the same as in \mathfrak{A}_1 and in $\mathcal{L}_2'-\mathcal{L}'$ to be the same as in \mathfrak{A}_{2} , we extend $\mathfrak A$ to a structure $\mathfrak A'$ in $\mathcal{L}_1'\cup\mathcal{L}_2'.$
- Then, \mathfrak{A}' is a model of $S_1\cup S_2$, which contradicts our assumption. Thus, we complete the proof.

K. Tanaka

[Resplendency](#page-2-0) **[Applications](#page-18-0)**

Corollary (Craig's Interpolation Theorem)

If a formula $\varphi \to \psi$ is provable ($\vdash \varphi \to \psi$), then there exists a formula θ consisting of mathematical symbols appearing in φ and ψ commonly, besides logical symbols and $=$, such that $\vdash \varphi \rightarrow \theta$ and $\vdash \theta \rightarrow \psi$.

The formula θ satisfying the above theorem is called an **interpolant** for φ and ψ .

Proof

- Assume $\vdash \varphi \rightarrow \psi$ with no interpolant θ . Let $\mathcal L$ be the language consisting of symbols common to φ and ψ . Let T_0 be the set of formulas ξ in $\mathcal L$ such that $\vdash \varphi \to \xi$.
- Since no finite subset of T_0 implies ψ , $T_0 \cup {\neg \psi}$ is consistent.
- Consider a model $\mathfrak A$ of $T_0 \cup \{\neg \psi\}$, and let T be the set of all $\mathcal L$ formulas contained in Th(\mathfrak{A}). Clearly, $T \cup \{\neg \psi\}$ is consistent.
- To show that $T \cup {\varphi}$ is also consistent, assume otherwise. Then there exists a formula σ in T such that $\vdash \varphi \to \neg \sigma$. Thus, $\neg \sigma \in T_0 \subseteq T$, which implies the inconsistency of T .
- By Robinson's joint consistency theorem, $T \cup \{\varphi, \neg \psi\}$ is also consistent, contradicting the assumption $\vdash \varphi \rightarrow \psi$.

K. Tanaka

[Resplendency](#page-2-0)

[Applications](#page-18-0)

Thank you for your attention!