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Recap

• A type Φ(x⃗) is a set of formulas in free variables x⃗ = (x1, · · · , xn).

• A realizes Φ(x⃗) by a⃗, if AA |= φ(⃗a) for all formulas φ(x⃗) in Φ(x⃗).

• A type Φ(x⃗) is a type of a theory T if T ∪ Φ(⃗c) (⃗c new constants) is consistent.
That is, there exists a model of T that realizes Φ(x⃗).

• For a subset C of the universe of A, a type on C in A is a type of theory Th(AC).

• An L-structure A is recursively saturated, if any recursive 1-type on {a⃗} ⊆ A is
realized in A, that is, for any recursive type {φi(x, x⃗) | i ∈ N} and any {a⃗} ⊆ A,

∀j∃a ∈ A∀i < j AA |= φi(a, a⃗) ⇒ ∃a ∈ A∀iAA |= φi(a, a⃗).

• An L-structure A is resplendent, if for a sentence φ in a language L+ ⊇ LA such that
Th(AA)∪{φ} is consistent, there exists an L+-expansion A+ of A such that A+ |= φ.
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Definition

An L-structure A is strongly resplendent, if for any recursive type Φ(x⃗) in a language
L+ = L ∪ {finitely many additional symbols} and a⃗ ∈ A<ω such that Th(AA) ∪ Φ(⃗a) is
consistent, there exists an L+-expansion A+ of A which is a model of Φ(⃗a).

• In the definition of strongly resplendent, if we restrict the type Φ(x⃗) to be a single
formula, we obtain the definition of resplendent, and if we let L+ = L ∪ {c}, it
becomes the definition of recursive saturation. Hence, strongly resplendent
structures are both resplendent and recursively saturated.

• Furthermore, similar to the case of resplendent structures, it is worth noting that the
consistency of Th(AA) ∪ Φ(⃗a) coincides with the consistency of Th(A{a⃗}) ∪ Φ(⃗a).

• We will now demonstrate that under certain natural assumptions, the above three
properties coincide.
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Theorem (Barwise-Ressayre)

Countable recursively saturated structures are strongly resplendent.

Proof

• Let A be a countable recursively saturated structure in a countable language L.
• To show that A is strongly resplendent, let Φ(x⃗) be a recursive type in a finitely
extended language L+ of L and a⃗ ∈ Aω such that Th(AA) ∪ Φ(⃗a) is consistent.
Then, we want to construct a model A+ of Φ(⃗a) with the same domain |A|.

• A+ will be constructed by Henkin’s method, in which Henkin constants are selected as
elements of A by the recursively saturated nature of A.

Now, let’s look into the details of construction of A+.

• First, let {φn(x) : n ∈ ω} enumerate the formulas in LA with only one free variable x.
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• We construct a sequence of finite subsets of A and that of recursive theories in L+
A,

A0 = {a⃗} ⊆ A1 ⊆ A2 ⊆ · · · , T0 = Φ(⃗a) ⊆ T1 ⊆ T2 ⊆ · · · ,

satisfying the following: for each n
(1) Tn is a recursive set of sentences in L+

An
, and Tn ∪ Th(AA) is consistent.

(2) either φn(a) ∈ Tn+1 for some a ∈ A or ¬∃xφn(x) ∈ Tn+1.

• Now, suppose the construction is completed, and let Tω =
⋃

n Tn.

• To show Tω is complete, take a sentence σ in L+
A such that Tω ̸⊢ σ. Then σ is φk

(with no free variable) for some k. Obviously, σ ̸∈ Tk+1, since Tω ̸⊢ σ. Thus, by
condition (2), we have ¬∃xσ ∈ Tk+1, and so Tω ⊢ ¬σ. Therefore, Tω is complete.
Hence, we also have Th(AA) ⊆ Tω since Tω ∪ Th(AA) is consistent by condition (1).

• If Tω ⊢ ∃xφn(x, a⃗), then by (2), there exists some a ∈ A such that φn(a) ∈ Tω.

• Then Tω is a complete Henkin theory. By Henkin method, we can construct a
structure A+ over the domain A, such that Tω = Th(A+

A), and therefore A+ |= Φ(⃗a).
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Finally, we will construct the sequences {An} and {Tn} by induction.

• Assume that the construction up to n has been done.

• Take φn(x) and let B = An ∪ {elements of A occurring in φn(x)}, and define

Ψ(x) = {ψ(x) : ψ(x) is a one-variable formula in LB , and Tn ⊢ φn(x) → ψ(x)}.

• Although Ψ(x) is Σ1 as it is, it can be treated as a recursive type by Craig’s method.

• Since the structure A is recursively saturated, we can either find an a ∈ A realizing
Ψ(x) or find a finite subset {ψi(x) : i ≤ j} of Ψ(x) such that

AA |= ¬∃x
∧
i≤j

ψi(x).

• In the former case, we let An+1 = B ∪ {a}, Tn+1 = Tn ∪ {φn(a)}.
• To check the consistency of Tn+1 ∪ Th(AA), we show that any LAn+1

sentence
provable in Tn+1 is true in AA. So, let ψ(x) be a formula in LB such that
Tn+1 ⊢ ψ(a). If a /∈ B, Tn ⊢ φn(a) → ψ(a) implies Tn ⊢ φn(x) → ψ(x) and so
ψ(x) ∈ Ψ(x). Since a realizes Ψ(x), ψ(a) holds in AA. On the other hand, if a ∈ B,
then by Tn ⊢ φn(x) → (x = a→ ψ(x)), we get (x = a→ ψ(x)) ∈ Ψ(x), which
implies (a = a→ ψ(a)) ∈ Th(AA). Thus, ψ(a) holds in AA.



Logic and
Foundation

K. Tanaka

Resplendency

Applications

8

• Next, we consider the case that AA |= ¬∃x
∧

i≤j ψi(x). In this case, we simply set

An+1 = An, Tn+1 = Tn ∪ {¬∃xφn(x)}.

• Since Tn ⊢ φn(x) →
∧

i≤j ψi(x), we have Tn ⊢ ¬∃x
∧

i≤j ψi(x) → ¬∃xφn(x). So, to
show that Tn+1 ∪ Th(AA) is consistent, we may show the consistency of

Tn ∪ {¬∃x
∧
i≤j

ψi(x)} ∪ Th(AA).

• So, take a sentence ψ in LB such that Tn ⊢ ¬∃x
∧

i≤j ψi(x) → ψ, and we will show ψ
holds in AA.

• By the induction hypothesis, Tn ∪ Th(AA) is consistent, so ¬∃x
∧

i≤j ψi(x) → ψ
holds in AA. Moreover, we have the premise AA |= ¬∃x

∧
i≤j ψi(x). Therefore, ψ also

holds in AA. This completes the proof.
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Recall Problem 5 of Lec05-02� �
Let A = (A,+, • , 0, 1, <) be a non-standard model of IΣ1. Show that A′ =
(A,+, 0, 1, <) is recursively saturated.� �
Example 5� �
• In the above problem 5, it was shown that if A = (A,+, • , 0, 1, <) is a

nonstandard model of IΣ1, then A′ = (A,+, 0, 1, <) becomes recursively
saturated.

• Conversely, suppose A′ = (A,+, 0, 1, <) is a recursively saturated model of
Presburger arithmetic and is countable. Then, by the previous theorem, A′ is
strongly resplendent.

• On the other hand, Presburger arithmetic is complete, and the set of its theorems
coincides with Th(A′). Therefore, Th(A′) ∪ PA is nothing but PA, which is a
recursive consistent set.

• Hence, there exists a suitable interpretation of • such that A = (A,+, • , 0, 1, <)
becomes a model of PA. In summary, a countable model A = (A,+, • , 0, 1, <) of
IΣ1 can be turned into a model A′ = (A,+, • ′, 0, 1, <) of PA by changing the
interpretation of multiplication (the “misbuttoning theorem”).� �
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Next, when L is finite, the equivalence of resplendency and strong resplendency can be
derived from the following Kleene’s theorem.

Theorem (Kleene)

Let L be finite, and Φ(v⃗) be a recursive type in L. Then, there exists a formula φ(v⃗) in
some finite extension language L+ ⊇ L such that,
(1) If a structure A+ in L+ satisfies φ(⃗a), then its reduct A to L satisfies Φ(⃗a).
(2) If an infinite structure A in L satisfies Φ(⃗a), then there exists an expansion A+ in L+

that satisfies φ(⃗a).

Proof. The basic idea is to transform meta-mathematical arguments about L-structures
into mathematical arguments by extending the language to include Q< so that recursive
types of L-structures can be represented by a single formula. In other words, we will
incorporate the arithmetical structure with part of the domain.
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• Let L+ be an extended language of L obtained by adding the following symbols:

N(x), +, • , 0, 1, <, Eval(n, x), Sat(n, x), π(a, i).

Here, N(x) represents the domain of arithmetic. Eval(n, a) is a function to evaluate
terms in L and Sat(n, a) the satisfaction relation of L-structures, where n is the Gödel
number of a term or formula, and a represents an assignment to variables. Finally,
π(a, i) = ai is the projection function extracting the i-th component ai from a code a
intending to express an infinite sequence (a0, a1, · · · ).

• We want to express the recursive type Φ(v⃗) in L as a formula φ(v⃗) in L+, which
consists of six components σi (i = 1, · · · , 6). Each σi (i = 1, · · · , 5) is a sentence,
and σ6 is a formula with free variables v⃗, and φ(v⃗) is defined by

φ(v⃗) ≡ σ1 ∧ σ2 ∧ · · · ∧ σ6.

1. σ1 expresses the basic properties of N(x) as follows:

N(0) ∧N(1) ∧ ∀x∀y(N(x) ∧N(y) → N(x+ y) ∧N(x • y)).
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2. σ2 represents (N,+, • , 0, 1, <) |= Q<, i.e., σ2 is the conjunction of the eight axioms
of Q< with quantifiers restricted to N . For example, A10 (predecessor) is expressed as

∀x(N(x) → (x ̸= 0 → ∃y(N(y) ∧ y + 1 = x))).

3. σ3 is the following sentence stipulating a projection π(x, i): for i, j ranging over N ,

∀x∀i∀z∃y(∀j ̸= i(π(y, j) = π(x, j)) ∧ π(y, i) = z).

Here, y is the code of a sequence obtained by replacing the i-th element of x with z,
denoted x[z/i].
Note that σ3 does not assert the existence of infinite sequences in general, but it says
that finite parts can be specified arbitrarily. In fact, we will treat a finite sequence
u⃗ = (u0, u1, . . . , uk−1) as 0[u0/0][u1/1] · · · [uk−1/k − 1], where 0 = (0, 0, 0, . . . ).

Since any primitive recursive function over N is representable in Q<, Gödel numbers
⌜ ⌝ of terms and formulas in L can be handled as elements of N .
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4. σ4 describes the function Eval(n, x) that evaluates terms in L. It is defined as the
conjunction of the following sentences: For variables v0, v1, · · · ,

∀i(∈ N)∀a(Eval(⌜vi⌝, a) = π(a, i)).

For each m-ary function symbol f in L,

∀t0, · · · , tm−1(∈ N)∀a(Eval(⌜f(t0, · · · , tm−1)⌝, a)

= f(Eval(⌜t0⌝, a), · · · ,Eval(⌜tm−1⌝, a))).

5. σ5 describes the satisfaction relation Sat(n, x) of L-structures. It consists of the
following sentences. For each n-ary relation symbol R of L (including equality),

∀t0, · · · , tn−1∀a(Sat(⌜R(t0, · · · , tn−1)⌝, a) ↔ R(Eval(⌜t0⌝, a), · · · ,Eval(⌜tm−1⌝, a))).

For each logical symbol, we have

∀a(Sat(⌜ψ0 ∧ ψ1⌝, a) ↔ (Sat(⌜ψ0⌝, a) ∧ Sat(⌜ψ1⌝, a))),

∀a(Sat(⌜∃xiψ⌝, a) ↔ ∃bSat(⌜ψ⌝, a[b/i]))

and so on.
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6. σ6 is a formula expressing Φ(v⃗) using Sat. Let γ(n) be a formula expressing the
recursive set of the Gödel numbers of formulas in Φ(v⃗) in Q<, and define σ6 as follows:

∀n ∈ N(((N,+, • , 0, 1, <) |= γ(n)) → Sat(n, v⃗)).

In this way, we have defined φ(x⃗), and we will now verify that it satisfies the theorem.

First, to prove condition (1), suppose that in a structure A+ in L+, a = (a0, · · · , al−1)
realizes φ(v⃗). Take any ψ(v⃗) in Φ(v⃗). Then, Q< ⊢ γ(⌜ψ(v⃗)⌝), and by σ2 and σ6, we have:

A+ |= Sat(⌜ψ⌝, a).

By meta-induction on the construction of the formula ψ, we can prove by σ4 and σ5 that

A+ |= Sat(⌜ψ⌝, a) ↔ ψ(a0, · · · , al−1)

Therefore, we have
A+ |= ψ(a0, · · · , al−1),

which implies that ψ(a0, · · · , al−1) holds in its reduct A to L. Since ψ(v⃗) ∈ Φ(v⃗) is
arbitrary, A realizes Φ(v⃗) by a⃗, which proves condition (1).
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Next, to prove (2), suppose conversely that an infinite structure A in L realizes Φ(v⃗) by a⃗.

• Choose a countably infinite subset N of |A| and define +, • , 0, 1, < on N so that
(N,+, • , 0, 1, <) is isomorphic to the standard structure of arithmetic. And extend
+, • to total functions on A in an arbitrary way. Then, σ1 and σ2 clearly hold.

• Since A is infinite, there exists a bijection between A and A<ω. Let B ⊂ Aω be the
set of infinite sequences with all but finitely many elements being 0. Then, we can
take a surjection h : A→ B. Now, define π(a, i) to be the i-th element bi of
h(a) = (b0, b1, · · · ). Then, σ3 holds.

• Furthermore, by defining Eval(⌜t⌝, a) as the value of a term t at a, and the
satisfaction relation Sat(n, x) as

Sat(⌜ψ⌝, a) ⇔ A |= ψ(a0, · · · , al−1),

we establish σ4 and σ5.

• Finally, for σ6, we have:

(N,+, • , 0, 1, <) |= γ(⌜ψ⌝) ⇔ ψ(v⃗) ∈ Φ(v⃗) ⇒ ψ(a0, · · · , al−1) ⇔ Sat(⌜ψ⌝, a)).

Thus, φ(⃗a) holds in A+, and so condition (2) is satisfied.
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Corollary (Barwise)

A resplendent structure in a finite language L is strongly resplendent, and so recursively
saturated.

Proof.

• Let L be a finite language, and A be a resplendent structure in L. If A is finite, then
it is already recursively saturated and so strongly resplendent (by Barwise-Ressayre).
Thus, we may assume that A is infinite.

• To show that A is strongly resplendent, suppose a recursive type Φ(v⃗) in L′(⊃ L) is
given so that Th(AA) ∪ Φ(⃗a) is consistent.

• Then, we can construct φ(v⃗) in L′+ to satisfy Kleene’s Theorem.

• Let A′ be an L′-expansion of an elementary extension of A which satisfies Φ(⃗a).
Then, by Kleene’s Theorem (2), A′ has an L′+-expansion A′+ which satisfies φ(⃗a).
Thus by the resplendency of A, A also has an L′+-expansion which satisfies φ(⃗a).

• Finally, by Kleene’s Theorem (1), Φ(⃗a) holds in A. This proves that A is strongly
resplendent.
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Let us consider Kleene’s Theorem for an arithmetic structure A.

• If L already includes the language of arithmetic LOR, and a L-structure A is already a
model of Q<, there is no need to introduce +, • , 0, 1, <, Eval(n, x), π(x, i)
separately. To prove Kleene’s theorem, it suffices to use N(x) and Sat(n, x).

• If A is resplendent, we can introduce N(x) and Sat(n, x) as relations in A. Then, we
can derive various properties of A.

Theorem

For any countable resplendent model A of Peano Arithmetic PA, there exists a (proper)
initial segment that is isomorphic to A, and A is an elementary extension of this initial
segment.

Proof. To the language of arithmetic LOR, add N(x), Sat(n, x), as well as SatN (n, x) to
represent the satisfaction relation for N , and f(x) to represent an isomorphism between
the whole structure and its restriction to N .
Now, consider a recursive type claiming that N is an initial segment isomorphic to the
whole A, and is also an elementary substructure. This type is consistent with Th(AA) by
Friedman’s theorem. By resplendency, N can be realized as an initial segment of A.
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Theorem

For a resplendent model A of Peano Arithmetic PA, there exists a satisfaction relation Sat,
such that for any LOR formula ψ,

(A, Sat) |= ∀a(Sat(⌜ψ⌝, a) ↔ ψ(a0, · · · , al−1))

and (A, Sat) satisfies induction for formulas in LOR ∪ {Sat}. Conversely, if a model A of
Peano Arithmetic PA has such a relation Sat, then A is recursively saturated. Hence, if
countable, it is resplendent.

Proof. The existence of Sat follows from the resplendency and the definition of Sat in
Kleene’s theorem. To show that (A, Sat) satisfies induction, it is enough to see that the
recursive set of sentences representing the induction for LOR ∪ {Sat} is consistent with
Th(AA). The second part is obvious from the proof of the following lemma.

Lemma (revisit)� �
For each n > 0, a non-standard model A of IΣn is Σn-recursively saturated.� �
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Theorem (Robinson’s Joint Consistency Theorem)

Let L = L1 ∩ L2, and T be a complete theory in the language L, with T1 and T2 as
extensions of T in the languages L1 and L2, respectively. Then, T1 ∪ T2 is consistent if
and only if T1 and T2 are separately consistent.

Proof. The necessity is clear, so we will prove the sufficiency. Assume T1 and T2 are
consistent, but T1 ∪ T2 is inconsistent.

• Since T1 ∪ T2 is inconsistent, there exist finite subsets S1 ⊆ T1 and S2 ⊆ T2 such that
S1 ∪ S2 also leads to a contradiction.

• Suppose S1 and S2 are theories in finite languages L′
1 and L′

2, respectively. Define
L′ = L′

1 ∩ L′
2, and let T ′ be the set of L′-sentences that can be deduced from T .

Then, T ′ is a complete and consistent set in the language L′, since T is a complete
and consistent set in L

• Moreover, let S′
1 = S1 ∪ T ′ and S′

2 = S2 ∪ T ′. Since S′
1 and S′

2 are subsets of T1 and
T2, respectively, they are separately consistent.
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• Consider a countable saturated model A of T ′. Since T ′ is complete, T ′ = Th(A).

• Since S′
1 = S1 ∪ Th(A) is consistent, by resplendency of A, A can be extended to a

model A1 of S1 in L′
1.

• Similarly, A can be extended to a model A2 of S2 in L′
2. Therefore, by defining the

interpretation of symbols in L′
1 −L′ to be the same as in A1 and in L′

2 −L′ to be the
same as in A2, we extend A to a structure A′ in L′

1 ∪ L′
2.

• Then, A′ is a model of S1 ∪ S2, which contradicts our assumption. Thus, we complete
the proof.
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Corollary (Craig’s Interpolation Theorem)

If a formula φ→ ψ is provable (⊢ φ→ ψ), then there exists a formula θ consisting of
mathematical symbols appearing in φ and ψ commonly, besides logical symbols and =,
such that ⊢ φ→ θ and ⊢ θ → ψ.

The formula θ satisfying the above theorem is called an interpolant for φ and ψ.

Proof

• Assume ⊢ φ→ ψ with no interpolant θ. Let L be the language consisting of symbols
common to φ and ψ. Let T0 be the set of formulas ξ in L such that ⊢ φ→ ξ.

• Since no finite subset of T0 implies ψ, T0 ∪ {¬ψ} is consistent.
• Consider a model A of T0 ∪ {¬ψ}, and let T be the set of all L formulas contained in
Th(A). Clearly, T ∪ {¬ψ} is consistent.

• To show that T ∪ {φ} is also consistent, assume otherwise. Then there exists a
formula σ in T such that ⊢ φ→ ¬σ. Thus, ¬σ ∈ T0 ⊆ T , which implies the
inconsistency of T .

• By Robinson’s joint consistency theorem, T ∪ {φ,¬ψ} is also consistent, contradicting
the assumption ⊢ φ→ ψ.
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Thank you for your attention!
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