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Logic and Foundations II (Spring 2024)� �
• Part 5. Models of first-order arithmetic (continued)

• Part 6. Real-closed ordered fields: completeness and decidability

• Part 7. Theory of reals and reverse mathematics

• Part 8. Second order arithmetic and non-standard methods� �
Part 5. Models of first-order arithmetic� �
• Jan. 04, Non-standard models and the omitting type theorem

• Jan. 11, Recursively saturated models
—–

• Mar. 12, Reviews

• Mar. 14, Friedman’s theorem

• Mar. 19, Friedman’s theorem (continued)

• Mar. 21, Resplendency and applications� �
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Theorem (Friedman’s self-embedding theorem)

Let n > 0, A be a countable non-standard model of IΣn, and take a ∈ A arbitrarily. Then
there exists an initial segment A′ of A such that a ∈ A′ but A′ ⫋ A, and A ∼= A′ and for

any Πn−1 formula φ(x⃗) and any a⃗′ ∈ A′<ω,

A′
A′ |= φ(a⃗′) ⇔ AA′ |= φ(a⃗′).

• The essence of this theorem is that a countable non-standard model of IΣ1 has an
initial segment that is isomorphic to itself.

• Friedman first proved this theorem for a countable non-standard model of Peano
arithmetic, and several researchers sophisticated it to the above form.

• The same theorem does not hold for non-countable models, and also it does not hold
in general for countable non-standard models of IΣ0.

• Furthermore, an important result related to this is McAloon’s theorem, which states
that a countable non-standard model of IΣ0 has an initial segment that is a model of
Peano arithmetic PA.
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Introduction to Resplendency

• Recursive saturation of a structure means that it contains many “elements” that
satisfy recursive conditions, but by generalizing this property to relations and
functions, we introduce a new concept.

• By saying that a structure A in the language L has “resplendency”, we mean that if a
formula φ(⃗R) with new relation symbols R⃗ /∈ L consistent with Th(AA), φ(⃗R) can hold
in A by appropriate interpretation of R⃗.

• In a resplendent model of arithmetic, hidden properties of the structure can be found
by using new relation symbols for an initial segment and satisfaction relation.

Definition

The L-structure A is said to be resplendent, if for a sentence φ in a language L+ ⊇ LA

such that Th(AA) ∪ {φ} is consistent, there exists an L+-expansion A+ of A such that
A+ |= φ.
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• The statement that Th(AA) ∪ {φ} is consistent is equivalent to that φ is true in the
L+-extension of an elementary extension of A.

In other words, resplendent structures are considered to potentially possess the
properties of relations and functions manifested in their elementary extensions.

• The consistency of Th(AA) ∪ {φ} is that of Th(A{a⃗}) ∪ φ where a⃗ denotes the
elements of A contained in φ.

∵ Suppose Th(AA) ∪ {φ} is inconsistent. Then there exists a formula ψ(⃗a, b⃗) in

Th(AA) such that ⊢ ψ(⃗a, b⃗) → ¬φ. Thus we also have ⊢ ∃yψ(⃗a, y⃗) → ¬φ. Since
∃yψ(⃗a, y⃗) ∈ Th(A{a⃗}), it follows that Th(A{a⃗}) ∪ {φ} is inconsistent. The reverse
implication is trivial.

• Every finite structure is resplendent because its elementary extension is only itself.
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Since “resplendency” does not imply “recursive saturation” in general, we introduce the
following stronger notion which implies both.

Definition

An L-structure A is strongly resplendent, if for any recursive type Φ(x⃗) in a language
L+ = L ∪ {finitely many additional symbols} and a⃗ ∈ A<ω such that Th(AA) ∪ Φ(⃗a) is
consistent, there exists an L+-expansion A+ of A which is a model of Φ(⃗a).

• In the definition of strongly resplendent, if we restrict the type Φ(x⃗) to be a single
formula, we obtain the definition of resplendent, and if we let L+ = L ∪ {c}, it
becomes the definition of recursive saturation. Hence, strongly resplendent
structures are both resplendent and recursively saturated.

• Furthermore, similar to the case of resplendent structures, it is worth noting that the
consistency of Th(AA) ∪ Φ(⃗a) coincides with the consistency of Th(A{a⃗}) ∪ Φ(⃗a).
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We will now demonstrate that under certain natural assumptions, the above three
properties coincide.

Theorem (Barwise-Ressayre)

Countable recursively saturated structures are strongly resplendent.

Proof

• Let A be a countable structure in a countable language L and assume it is recursively
saturated. Furthermore, suppose we are given a recursive type Φ(x⃗) in a finitely
extended language L+ of L and a⃗ ∈ Aω such that Th(AA) ∪ Φ(⃗a) is consistent.

• Then, we want to construct a model A+ of this theory without expanding the domain
|A|. The key idea of the construction is that by utilizing the recursively saturated
nature of A, we can select Henkin constants from elements of A.

Now, let’s look into the details of construction of A+.

• First, we enumerate the formulas in LA with only one free variable x, denoted by
{φn(x) : n ∈ ω}.
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• We construct a sequence of finite subsets of A and that of recursive theories in L+
A,

A0 = {a⃗} ⊆ A1 ⊆ A2 ⊆ · · · , T0 = Φ(⃗a) ⊆ T1 ⊆ T2 ⊆ · · · ,

satisfying the following conditions: for each n
(1) Tn is a recursive set of sentences in L+

An
, and Tn ∪ Th(AA) is consistent.

(2) either φn(a) ∈ Tn+1 for some a ∈ A or ¬∃xφn(x) ∈ Tn+1.

• Once the construction is completed, letting Tω =
⋃

n Tn, we will show Tω is a
complete Henkin theory.

• Let σ be a sentence in L+
A such that Tω ̸⊢ σ. Suppose σ is φk (with no free variable)

for some k. Then we have σ ̸∈ Tk+1, since Tω ̸⊢ σ. Thus, by condition (2), we have
¬∃xσ ∈ Tk+1, and so Tω ⊢ ¬σ. Therefore, Tω is complete, and so Th(AA) ⊆ Tω
since Tω ∪ Th(AA) is consistent by condition (1).

• If Tω ⊢ ∃xφn(x, a⃗), then by (2), there exists some a ∈ A such that φn(a) ∈ Tω.

• Then Tω is a complete Henkin theory. By Henkin method, we can construct a
structure A+ over the domain A, such that Tω = Th(A+

A), and therefore A+ |= Φ(⃗a).
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Finally, we will construct the sequences {An} and {Tn} by induction.

• Assuming that the constructions up to An and Tn have been done. Take φn(x).

• Let B = An ∪ {elements of A occurring in φn(x)}, and define

Ψ(x) = {ψ(x) : ψ(x) is a one-variable formula in LB , and Tn ⊢ φn(x) → ψ(x)}.

• Although Ψ(x) is Σ1 as it is, it can be treated as a recursive type by Craig’s method.

• Since the structure A is recursively saturated, we can either find an a ∈ A realizing
Ψ(x) or find a finite subset {ψi(x) : i ≤ j} of Ψ(x) such that

AA |= ¬∃x
∧
i≤j

ψi(x).

• In the former case, we let An+1 = B ∪ {a}, Tn+1 = Tn ∪ {φn(a)}.
• To check the consistency of Tn+1 ∪ Th(AA), we show that any LAn+1

sentence
provable in Tn+1 is true in AA. So, let ψ(x) be a formula in LB such that
Tn+1 ⊢ ψ(a). If a /∈ B, Tn ⊢ φn(a) → ψ(a) implies Tn ⊢ φn(x) → ψ(x) and so
ψ(x) ∈ Ψ(x). Since a realizes Ψ(x), ψ(a) holds in AA. On the other hand, if a ∈ B,
then by Tn ⊢ φn(x) → (x = a→ ψ(x)), we get (x = a→ ψ(x)) ∈ Ψ(x), which
implies (a = a→ ψ(a)) ∈ Th(AA). Thus, ψ(a) holds in AA.
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• Next, we consider the case that AA |= ¬∃x
∧

i≤j ψi(x). In this case, we can simply set

An+1 = An, Tn+1 = Tn ∪ {¬∃xφn(x)}.

• Since Tn ⊢ ¬∃x
∧

i≤j ψi(x) → ¬∃xφn(x), we may show the consistency of

Tn ∪ {¬∃x
∧
i≤j

ψi(x)} ∪ Th(AA).

• Let ψ be a sentence in LB such that Tn ⊢ ¬∃x
∧

i≤j ψi(x) → ψ. By the induction
hypothesis, Tn ∪ Th(AA) is consistent, so ¬∃x

∧
i≤j ψi(x) → ψ holds in AA.

• Moreover, since we have the premise AA |= ¬∃x
∧

i≤j ψi(x), it follows that ψ also
holds in AA. This completes the proof.
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Recall Problem 5 of Lec05-02� �
Let A = (A,+, • , 0, 1, <) be a non-standard model of IΣ1. Show that A′ =
(A,+, 0, 1, <) is recursively saturated.� �
Example 5� �
• In the above problem 5, it was shown that if A = (A,+, • , 0, 1, <) is a

nonstandard model of IΣ1, then A′ = (A,+, 0, 1, <) becomes recursively
saturated.

• Conversely, suppose A′ = (A,+, 0, 1, <) is a recursively saturated model of
Presburger arithmetic and is countable. Then, by the previous theorem, A′ is
strongly resplendent.

• On the other hand, Presburger arithmetic is complete, and the set of its theorems
coincides with Th(A′). Therefore, Th(A′) ∪ PA is nothing but PA, which is a
recursive consistent set.

• Hence, there exists a suitable interpretation of • such that A = (A,+, • , 0, 1, <)
becomes a model of PA. In summary, a countable model A = (A,+, • , 0, 1, <) of
IΣ1 can be turned into a model A′ = (A,+, • ′, 0, 1, <) of PA by changing the
interpretation of multiplication (the “misbuttoning theorem”).� �
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Now, when L is finite, the equivalence of resplendency and strong resplendency can be
derived from the following Kleene’s theorem.

Theorem (Kleene)

Let L be finite, and Φ(v⃗) be its recursive type. Then, there exists a formula φ(v⃗) in some
finite extension language L+ ⊇ L such that,
(1) If a structure A+ in L+ satisfies φ(⃗a), then its reduct A to L satisfies Φ(⃗a).
(2) If an infinite structure A in L satisfies Φ(⃗a), then there exists an expansion A+ in L+

that satisfies φ(⃗a).

In part 4 of last semester, we show that in weak arithmetic such as Q< (or Q), all recursive
sets are representable, and hence ample meta-mathematical arguments of arithmetic can be
developed. Here, we aim to formalize meta-mathematics of general L-structures, and this
can also be done in Q<, so by extending the language to include Q<, recursive types of
L-structures can be represented by a single formula.
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Proof. The basic idea is to transform meta-mathematical arguments about L-structures
into mathematical (object-language) arguments by utilizing the language of Q<. The
crucial point is that instead of creating the natural numbers outside of L-structures, we will
incorporate the arithmetical structure with part of the domain.

• Let L+ be an extended language of L obtained by adding the following symbols:

N(x), +, • , 0, 1, <, Eval(n, x), Sat(n, x), π(x, i).

Here, N(x) represents the domain of arithmetic, Eval(n, x) is a function to evaluate
terms in L, Sat(n, x) the satisfaction relation of L-structures, and π(x, i) = xi the
projection function extracting the i-th component xi from the code x of an infinite
sequence (x0, x1, · · · ).

• We want to express the recursive type Φ(v⃗) in L+ as a formula φ(v⃗), which we will
define in six components σi (i = 1, · · · , 6). Each σi (i = 1, · · · , 5) is a sentence, and
σ6 is a formula with free variables v⃗, and φ(v⃗) is defined by

φ(v⃗) ≡ σ1 ∧ σ2 ∧ · · · ∧ σ6.

1. σ1 expresses the basic properties of N(x) as follows:

N(0) ∧N(1) ∧ ∀x∀y(N(x) ∧N(y) → N(x+ y) ∧N(x • y)).
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2. σ2 represents (N,+, • , 0, 1, <) |= Q<, i.e., σ2 is the conjunction of the eight axioms
of Q< with quantifiers restricted to N . For example, A10 (predecessor) is expressed as

∀x(N(x) → (x ̸= 0 → ∃y(N(y) ∧ y + 1 = x))).

Since all primitive recursive functions over N are representable in Q<, Gödel numbers
of terms and formulas in L can be handled as elements of N .

3. σ3 is the following sentence which stipulates a projection function π(x, i): assuming
variables i, j ranges over N for simplicity,

∀x∀i∀z∃y(∀j ̸= i(π(y, j) = π(x, j)) ∧ π(y, i) = z).

Here, y is the code of a sequence obtained by replacing the i-th element of
x = (x0, x1, · · · ) with z. We write this y as x[z/i]. Note that σ3 does not assert the
existence of infinite sequences in general, but it says that finite parts can be specified
arbitrarily.
In fact, we will treat an infinite sequence as a finite sequence followed by infinitely
many 0’s. More strictly, letting 0 = (0, 0, 0, . . . ), 0[u0/0][u1/1] · · · [uk−1/k − 1]
denotes u⃗ = (u0, u1, . . . , uk−1) .
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4. σ4 describes the function Eval(n, x) that evaluates terms in L. It is defined as the
conjunction of the following sentences: For variables v0, v1, · · · ,

∀i(∈ N)∀a(Eval(⌜vi⌝, a) = π(a, i)).

For each m-ary function symbol f in L,

∀t0, · · · , tm−1(∈ N)∀a(Eval(⌜f(t0, · · · , tm−1)⌝, a)

= f(Eval(⌜t0⌝, a), · · · ,Eval(⌜tm−1⌝, a))).

5. σ5 describes the satisfaction relation Sat(n, x) of L-structures. It consists of the
following sentences. For each n-ary relation symbol R of L (including equality), we
have

∀t0, · · · , tn−1∀a(Sat(⌜R(t0, · · · , tn−1)⌝, a) ↔ R(Eval(⌜t0⌝, a), · · · ,Eval(⌜tm−1⌝, a))).

For each logical symbol, we have

∀a(Sat(⌜ψ0 ∧ ψ1⌝, a) ↔ (Sat(⌜ψ0⌝, a) ∧ Sat(⌜ψ1⌝, a))),

∀a(Sat(⌜∃xiψ⌝, a) ↔ ∃bSat(⌜ψ⌝, a[b/i]))

and so on.
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6. σ6 is a formula expressing Φ(v⃗) using Sat. For a recursive type Φ(v⃗), let γ(n) be a
formula expressing the set of Gödel numbers of Φ(v⃗) in Q<, and define σ6 as follows:

∀n ∈ N(((N,+, • , 0, 1, <) |= γ(n)) → Sat(n, v⃗)).

In this way, we have obtained φ(x⃗), and we will now verify that it satisfies the conditions of
the theorem. First, to prove condition (1), suppose that in a structure A+ in L+,
a = (a0, · · · , al−1) realizes φ(v⃗). Let A be its reduct to L. For each ψ(v⃗) in Φ(v⃗), we have
Q< ⊢ γ(⌜ψ(v⃗)⌝), and then by σ2 and σ6, we have:

A+ |= Sat(⌜ψ⌝, a)

Furthermore, by meta-induction on the construction of the formula ψ, we can prove by σ4
and σ5 that

A+ |= Sat(⌜ψ⌝, a) ↔ ψ(a0, · · · , al−1)

Therefore, we have
A+ |= ψ(a0, · · · , al−1),

which implies that ψ(a0, · · · , al−1) holds in A. Since ψ(v⃗) ∈ Φ(v⃗) is arbitrary, A realizes
Φ(v⃗) by a⃗, which proves condition (1).
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Next, to prove (2), suppose conversely that an infinite structure A in L realizes Φ(v⃗) by a⃗.

• Choose a countably infinite subset N of |A| and define +, • , 0, 1, < on N so that
(N,+, • , 0, 1, <) is isomorphic to the standard structure of arithmetic. And extend
+, • to total functions on A in an arbitrary way. Then, σ1 and σ2 clearly hold.

• Since A is infinite, there exists a bijection between A and A<ω. Let B ⊂ Aω be the
set of infinite sequences with all but finitely many elements being 0. Then, we can
take a surjection h : A→ B. Now, define π(a, i) to be the i-th element bi of
h(a) = (b0, b1, · · · ). Then, σ3 holds.

• Furthermore, by defining Eval(⌜t⌝, a) as the value of a term t at a, and the
satisfaction relation Sat(n, x) as

Sat(⌜ψ⌝, a) ⇔ A |= ψ(a0, · · · , al−1),

we establish σ4 and σ5.

• Finally, for σ6, we have:

(N,+, • , 0, 1, <) |= γ(⌜ψ⌝) ⇔ ψ(v⃗) ∈ Φ(v⃗) ⇔ ψ(a0, · · · , al−1) ⇔ Sat(⌜ψ⌝, a)).

Thus, condition (2) is also satisfied.
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Corollary (Barwise)

A resplendent structure in a finite language L is strongly resplendent, and so recursively
saturated.

Proof.

• Let L be a finite language, and A be a resplendent structure in L. If A is finite, then
it is already recursively saturated and so strongly resplendent (by Barwise-Ressayre).
Thus, we may assume that A is infinite.

• To show that A is strongly resplendent, suppose a recursive type Φ(v⃗) in L′(⊃ L) is
given so that Th(AA) ∪ Φ(⃗a) is consistent.

• Then, we can construct φ(v⃗) in L′+ to satisfy Kleene’s Theorem.

• Let A′ be an L′-expansion of an elementary extension of A which satisfies Φ(⃗a).
Then, by Kleene’s Theorem (2), A′ has an L′+-expansion A′+ which satisfies ϕ(⃗a).
Thus by the resplendency of A, A also has an L′+-expansion which satisfies ϕ(⃗a).

• Finally, by Kleene’s Theorem (1), Φ(⃗a) holds in A. This proves that A is strongly
resplendent.
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Next we consider Kleene’s Theorem for an arithmetic structure A.

•
• If L already includes the language of arithmetic LOR, and a L-structure A is an
expansion of a model of Q<, there is no need to introduce +, • , 0, 1, <, Eval(n, x),
π(x, i) separately. To prove Kleene’s theorem, it suffices to use N(x) and Sat(n, x).

• If A is resplendent, we can introduce N(x) and Sat(n, x) as relations in A, and then
we can derive various properties of A by adding various conditions to them.

• We start with a representative application.

Theorem

For any countable resplendent model A of Peano Arithmetic PA, there exists a (proper)
initial segment that is isomorphic to A, and A is an elementary extension of this initial
segment.

Proof. To the language of arithmetic LOR, add N(x), Sat(n, x), as well as SatN (n, x) to
represent the satisfaction relation for N , and f(x) to represent an isomorphism.
Now, consider a recursive type claiming that N is an initial segment isomorphic to the
whole A, and is also an elementary substructure. This type is consistent with Th(AA) by
Friedman’s theorem. By resplendency, N can be realized as an initial segment of A.
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Theorem

For a resplendent model A of Peano Arithmetic PA, there exists a satisfaction relation Sat,
such that for any LOR formula ψ,

(A, Sat) |= ∀a(Sat(⌜ψ⌝, a) ↔ ψ(a0, · · · , al−1))

and (A, Sat) satisfies induction for formulas in LOR ∪ {Sat}. Conversely, if a model A of
Peano Arithmetic PA has such a relation Sat, then A is recursively saturated, and hence, if
countable, it is resplendent.

Proof. The existence of Sat follows from the resplendency and the definition of Sat in
Kleene’s theorem. To show that (A, Sat) satisfies induction, it is enough to see that the
recursive set of sentences representing the induction for LOR ∪ {Sat} is consistent with
Th(AA). The second part is obvious from the following lemma.

Lemma (revisit)� �
For each n > 0, a non-standard model A of IΣn is Σn-recursively saturated.� �
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Theorem (Robinson’s Joint Consistency Theorem)

Let L = L1 ∩ L2, and let T be a complete theory in the language L, with T1 and T2 being
extensions of T in the languages L1 and L2, respectively. Then, the necessary and
sufficient condition for T1 ∪ T2 to be consistent is that T1 and T2 are separately consistent.

Proof. The necessity is clear, so we will prove the sufficiency. Assume T1 and T2 are
consistent, but T1 ∪ T2 is inconsistent.

• Since T1 ∪ T2 is inconsistent, there exist finite subsets S1 ⊆ T1 and S2 ⊆ T2 such that
S1 ∪ S2 also leads to a contradiction.

• Suppose S1 and S2 are theories in finite languages L′
1 and L′

2, respectively. Define
L′ = L′

1 ∩ L′
2, and let T ′ be the set of L′-sentences that can be deduced from T .

Then, T ′ is a complete and consistent set in the language L′, since T is a complete
and consistent set in L

• Moreover, let S′
1 = S1 ∪ T ′ and S′

2 = S2 ∪ T ′. Since S′
1 and S′

2 are subsets of T1 and
T2, respectively, they are separately consistent.



Logic and
Foundation

K. Tanaka

Resplendency

Applications

22

• Consider a countable saturated model A of T ′. Since T ′ is complete, T ′ = Th(A).

• Since S′
1 = S1 ∪ Th(A) is consistent, by resplendency of A, A can be extended to a

model A1 of S1 in L′
1.

• Similarly, A can be extended to a model A2 of S2 in L′
2. Therefore, by defining the

interpretation of symbols in L′
1 −L′ to be the same as in A1 and in L′

2 −L′ to be the
same as in A2, we extend A to a structure A′ in L′

1 ∪ L′
2.

• Then, A′ is a model of S1 ∪ S2, which contradicts our assumption. Thus, we complete
the proof.
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Corollary (Craig’s Interpolation Theorem)

If a formula φ→ ψ is provable from logical axioms (⊢ φ→ ψ), then there exists a formula
θ consisting of mathematical symbols commonly appearing both in φ and ψ besides logical
symbols and =, such that ⊢ φ→ θ and ⊢ θ → ψ.

The formula θ satisfying the above theorem is called an interpolant for φ and ψ.

Proof

• Assume ⊢ φ→ ψ with no interpolant θ. Let L be the language consisting of symbols
common to φ and ψ. Let T0 be the set of formulas ξ in L such that ⊢ φ→ ξ.

• Since no finite subset of T0 implies ψ, T0 ∪ {¬ψ} is consistent.
• Consider a model A of T0 ∪ {¬ψ}, and let T be the set of all L formulas contained in
Th(A). Clearly, T ∪ {¬ψ} is consistent.

• To show that T ∪ {φ} is also consistent, assume otherwise. Then there exists a
formula σ in T such that ⊢ φ→ ¬σ. Thus, ¬σ ∈ T0 ⊆ T , which implies the
inconsistency of T .

• By Robinson’s joint consistency theorem, T ∪ {φ,¬ψ} is also consistent, contradicting
the assumption ⊢ φ→ ψ.
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Thank you for your attention!
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