K. Tanaka

Recursively saturated model

Friedman's self-embeddin theorem

Resplendenc

Logic and Foundation II Part 5. Models of first-order arithmetic

Kazuyuki Tanaka

BIMSA

March 19, 2024

K. Tanaka

Recursively saturated models

Friedman's self-embedding theorem

Resplendency

- Logic and Foundations II (Spring 2024) -

- Part 5. Models of first-order arithmetic (continued)
- Part 6. Real-closed ordered fields: completeness and decidability
- Part 7. Theory of reals and reverse mathematics
- Part 8. Second order arithmetic and non-standard methods

← Part 5. Models of first-order arithmetic

- Jan. 04, Non-standard models and the omitting type theorem
- Jan. 11, Recursively saturated models
- Mar. 12, Reviews
- Mar. 14, Friedman's theorem
- Mar. 19, Friedman's theorem (continued) and introduction to resplendency
- Mar. 21, Resplendency and applications

K. Tanaka

Recursively saturated models

Friedman's self-embedding theorem

Resplendency

• PA⁻ is the theory of discrete ordered semirings.

• $I\Sigma_n$ is PA^- + induction for Σ_n formulas. $PA \supset I\Sigma_1 \supset I\Sigma_0 \supset IOpen \supset PA^- \supset Q_{<}$.

Theorem (Overspill principle)

Let \mathfrak{A} be any non-standard model of $I\Sigma_n$, and $\varphi(x)$ be any Σ_n formula. If $\mathfrak{A}_A \models \varphi(i)$ holds for infinitely many $i \in \mathbb{N}$, then there exists $a \notin \mathbb{N}$ such that $\mathfrak{A}_A \models \varphi(a)$.

- A type $\Phi(\vec{x})$ is a type of a theory T if $T \cup \Phi(\vec{c})$ (\vec{c} new constants) is consistent. That is, there exists a model of T that realizes $\Phi(\vec{x})$.
- A type on $C \subset A$ in \mathfrak{A} is a type of theory $\operatorname{Th}(\mathfrak{A}_C)$.
- A type $\Phi(\vec{x})$ is a principal type of theory T, if there exists a formula $\psi(\vec{x})$ such that $T \cup \{\exists \vec{x}\psi(\vec{x})\}$ is consistent, and for any $\varphi(\vec{x}) \in \Phi(\vec{x}), T \vdash \forall \vec{x}(\psi(\vec{x}) \rightarrow \varphi(\vec{x})).$

Theorem (The omitting type theorem)

Let T be a consistent theory in a countable language \mathcal{L} . Given countably many non-principal types $\Phi_i(\vec{x}_i)$ of T, then there is a countable model of T that omits all Φ_i .

• A countable model of Peano arithmetic PA has a proper elementary end-extension.

Recap

K. Tanaka

Recursively saturated models

Friedman's self-embedding theorem

Resplendency

Introduction to recursively saturated models

Definition

Let \mathcal{L} be a countable language. An \mathcal{L} -structure \mathfrak{A} is **recursively saturated** if for any recursive type $\{\varphi_i(x, x_1, \cdots, x_n) \mid i \in \mathbb{N}\}$ and any $a_1, \cdots, a_n \in A$,

 $\forall j \exists a \in A \forall i < j \, \mathfrak{A}_A \models \varphi_i(a, a_1, \cdots, a_n) \Rightarrow \exists a \in A \forall i \, \mathfrak{A}_A \models \varphi_i(a, a_1, \cdots, a_n).$

• A countable structure in a countable language has a countable elementary extension which is recursively saturated.

Lemma

For each n > 0, there exist formulas $\operatorname{Sat}_{\Sigma_n}(x, y)$ and $\operatorname{Sat}_{\Pi_n}(x, y)$ in language $\mathcal{L}_{\operatorname{OR}}$ such that for any Σ_n formula $\varphi(v_1, \cdots, v_k)$ and Π_n formula $\psi(v_1, \cdots, v_k)$,

$$\begin{split} \mathrm{I}\Sigma_1 &\vdash \forall s(\mathrm{Sat}_{\Sigma_n}(\ulcorner \varphi \urcorner, s) \leftrightarrow \varphi(s_1, \cdots, s_k)), \\ \mathrm{I}\Sigma_1 &\vdash \forall s(\mathrm{Sat}_{\Pi_n}(\ulcorner \psi \urcorner, s) \leftrightarrow \psi(s_1, \cdots, s_k)), \end{split}$$

where s is the code of (s_1, \dots, s_k) . When n > 0, $\operatorname{Sat}_{\Sigma_n} \in \Sigma_n$ and $\operatorname{Sat}_{\Pi_n} \in \Pi_n$.

K. Tanaka

Recursively saturated models

Friedman's self-embedding theorem

Resplendency

Lemma

For n > 0, a non-standard model \mathfrak{A} of $I\Sigma_n$ is Σ_n -recursively saturated, i.e., it realizes any (finitely satisfiable) recursive 1-type on a finite subset of A consisting of only Σ_n formulas.

Proof. Let $\Phi(x, \vec{x})$ be a recursive type consisting only of Σ_n formulas. Then, the Gödel numbers of formulas in Φ can be expressed by a Δ_1 formula $\theta(i)$. Thereby,

- The finite satisfiability of $\Phi(x,\vec{a})$ is expressed as: for each natural number j,

 $\exists x \forall i < \overline{j}(\theta(i) \to \operatorname{Sat}_{\Sigma_n}(i, (x, \vec{a}))),$

which is shown to be Σ_n in $B\Sigma_n (\subseteq I\Sigma_n)$.

- Let \mathfrak{A} be a non-standard model of $I\Sigma_n$. By the overspill principle, the above formula holds for some infinite element j'. Suppose x = a satisfies the formula for this j'.
- Then, we have $\theta(\overline{i}) \to \operatorname{Sat}_{\Sigma_n}(\overline{i}, (a, \overline{a}))$ for any natural number i. Namely, all Σ_n formulas in $\Phi(x, \overline{a})$ are realized by a in \mathfrak{A}_A .

By the above lemma, any non-standard model of PA is Σ_n -recursively saturated for each n > 0, but there is a non-standard model of PA which is not recursively saturated.

K. Tanaka

Recursively saturated models

Friedman's self-embedding theorem

Resplendency

Definition

Let \mathfrak{A} be a model of $I\Sigma_1$, and $a \in A$. The set

$$\{n\in\mathbb{N}:\mathfrak{A}\models\overline{p(n)}|a\}$$

is called the set **coded by** a in \mathfrak{A} , where p(n) is a primitive recursive function representing the n + 1-th prime number, and $u|v \equiv \exists w \leq v(u \cdot w = v)$. The collection of all the sets encoded by an element in \mathfrak{A} is called the **standard system** of \mathfrak{A} , denoted as $SSy(\mathfrak{A})$.

Lemma (D. Scott)

Let \mathfrak{A} be a non-standard model of $I\Sigma_1$. Given two disjoint Σ_1 sets, there exists a set in $SSy(\mathfrak{A})$ which separates them. In particular, any recursive set belongs to $SSy(\mathfrak{A})$.

Note that in general, a set that separates two Σ_1 sets cannot be obtained recursively. That is, $SSy(\mathfrak{A})$ is properly larger than the class of recursive sets.

K. Tanaka

Recursively saturated models

Friedman's self-embedding theorem

Resplendency

Lemma

Let n > 0 and \mathfrak{A} be a non-standard model of $I\Sigma_n$. If a type $\Phi(\vec{x})$ of Σ_n formulas on a finite subset of A is coded in \mathfrak{A} , then \mathfrak{A} realizes $\Phi(\vec{x})$.

The proof is exactly the same as that of lemma in Page 5. The converse holds as follows.

Lemma

Let n > 0 and \mathfrak{A} be a non-standard model of $I\Sigma_n$. Fix $\vec{a} \in A^k$ arbitrarily. Then the following k-types can be coded.

$$\begin{split} \Phi(\vec{x}) &= \{\varphi(\vec{x}) : \varphi(\vec{x}) \in \Sigma_n \land \mathfrak{A} \models \varphi(\vec{a})\},\\ \Psi(\vec{x}) &= \{\psi(\vec{x}) : \psi(\vec{x}) \in \Pi_n \land \mathfrak{A} \models \psi(\vec{a})\} \end{split}$$

Proof. In $I\Sigma_1$, $\operatorname{Sat}_{\Sigma_n}(x, y)$ and $\operatorname{Sat}_{\Pi_n}(x, y)$ can be defined. Since \mathfrak{A} is a model of $I\Sigma_1$, there exist a Σ_n formula $\varphi_1(k, \vec{a})$ and a Π_n formula $\psi_1(k, \vec{a})$ s.t. $\varphi \in \Phi \leftrightarrow \varphi_1(\ulcorner \varphi \urcorner, \vec{a})$ and $\psi \in \Psi \leftrightarrow \psi_1(\ulcorner \psi \urcorner, \vec{a})$ hold. Then, letting c be a non-standard element of \mathfrak{A} , by Σ_n induction, we can define a code $\Pi_{b \in U} p(b)$ for $U = \{b < c : \varphi_1(b, \vec{a})\}$ and a code $\Pi_{b \in V} p(b)$ for $V = \{b < c : \psi_1(b, \vec{a})\}$. Clearly, these code $\Phi(\vec{x})$ and $\Psi(\vec{x})$, respectively.

K. Tanaka

Recursively saturated model

Friedman's self-embedding theorem

Resplendency

With the above preparations, we will prove Friedman's self-embedding theorem. The following is a key lemma, and also used in several variations of the theorem.

Lemma

Assuming n > 0, let \mathfrak{A} , \mathfrak{B} be countable non-standard models of $I\Sigma_n$. Take $a_0 \in A$ and $b_0, c \in B$ arbitrarily. Then the following two conditions are equivalent.

(1) There exists $\mathfrak{B}' \subseteq_e \mathfrak{B}$ such that $c \notin B'$. There is an isomorphism h between \mathfrak{A} and \mathfrak{B}' such that $h(a_0) = b_0$. For any \prod_{n-1} formula $\varphi(\vec{x})$ and any $\vec{b} \in B'^{<\omega}$,

$$\mathfrak{B}'_{\{\vec{b}\}}\models\varphi(\vec{b})\Leftrightarrow\mathfrak{B}_{\{\vec{b}\}}\models\varphi(\vec{b}).$$

(2) $SSy(\mathfrak{A}) = SSy(\mathfrak{B})$, and for any Π_{n-1} formula $\varphi(\vec{v}, u)$,

$$\mathfrak{A}_A \models \exists \vec{v}\varphi(\vec{v}, a_0) \Rightarrow \mathfrak{B}_B \models \exists \vec{v} < c\,\varphi(\vec{v}, b_0),$$

where $\vec{v} = (v_1, \dots, v_k)$ and $\exists \vec{v} < c$ means $\exists v_1 < c \cdots \exists v_k < c$.

K. Tanaka

Recursively saturated models

Friedman's self-embedding theorem

Resplendency

Proof. Assume (1) and we show the first half of (2).

- By $\mathfrak{A} \cong \mathfrak{B}'$, $\mathrm{SSy}(\mathfrak{A}) = \mathrm{SSy}(\mathfrak{B}')$ is obvious.
- Since $\mathfrak{B}' \subseteq_{e} \mathfrak{B}$, it is also clear that $SSy(\mathfrak{B}') \subseteq SSy(\mathfrak{B})$.
- Assume that $R \in SSy(\mathfrak{B})$, i.e, R is coded by r in \mathfrak{B} . We will show that R is also coded in \mathfrak{B}' .
- Take any non-standard element l of B'. Since \mathfrak{B}' is also a model of $I\Sigma_1$, the l + 1-th prime p(l) belongs to B', and so $p(l)! \in B'$.
- Now, letting m be the greatest common divisor of r and p(l)! in \mathfrak{B} , we have $m \in B'$ since \mathfrak{B}' is an initial segment of \mathfrak{B} . Then, it is clear that m also encodes R.
- From the above, we obtain $\mathrm{SSy}(\mathfrak{A})=\mathrm{SSy}(\mathfrak{B}).$

Next we show the second half of (2).

- Let $\varphi(\vec{v}, u)$ be a Π_{n-1} formula, and $\mathfrak{A}_A \models \exists \vec{v} \varphi(\vec{v}, a_0)$.
- By the isomorphism between \mathfrak{A} and \mathfrak{B}' , $\mathfrak{B}'_{B'} \models \exists \vec{v} \varphi(\vec{v}, b_0).$
- Then, since there exists $\vec{d} \in B'$ such that $\mathfrak{B}'_{B'} \models \varphi(\vec{d}, b_0)$, from the assumption (1), $\mathfrak{B}_B \models \varphi(\vec{d}, b_0)$. Therefore, $\mathfrak{B}_B \models \exists \vec{v} < c \, \varphi(\vec{v}, b_0)$.

K. Tanaka

Recursively saturated model

Friedman's self-embedding theorem

Resplendency

Next, assuming (2), we show (1).

- This is an application of the so-called **back-and-forth argument**. We alternately produce a list a_0, a_1, \cdots of the elements of A and a list b_0, b_1, \cdots of the elements of B', so that an isomorphism h between \mathfrak{A} and \mathfrak{B}' is obtained by $h(a_i) = b_i$.
- Now, suppose a_0, a_1, \cdots, a_{2k} and b_0, b_1, \cdots, b_{2k} have been chosen, and for any \prod_{n-1} formula $\varphi(\vec{v}, \vec{u})$,

$$\mathfrak{A}_A \models \exists \vec{v}\varphi(\vec{v}, a_0, \cdots, a_{2k}) \Rightarrow \mathfrak{B}_B \models \exists \vec{v} < c\,\varphi(\vec{v}, b_0, \cdots, b_{2k}) \qquad (\sharp)$$

holds.

- We next choose a_{2k+1} , a_{2k+2} and b_{2k+1} , b_{2k+2} such that this condition is preserved. We will explain later that (1) can be obtained by this.
- Since A is countable, each member can be assigned by a natural number uniquely. Then choose one with the smallest number among the elements that do not appear in a_0, a_1, \dots, a_{2k} and denote it as a_{2k+1} . This procedure guarantees that $\{a_i : i \in \mathbb{N}\}$ lists all the members of A.

K. Tanaka

Recursively saturated models

Friedman's self-embedding theorem

Resplendency

- Now we will search for b_{2k+1} such that (\sharp) holds.
- Let $\Phi(\vec{x})$ be the set of Σ_n formulas $\exists \vec{v} \varphi(\vec{v}, x_0, \cdots, x_{2k+1})$ ($\varphi \in \Pi_{n-1}$) which holds for $a_0, \cdots, a_{2k}, a_{2k+1}$ in \mathfrak{A} . By the second lemma in page 7, $\Phi(\vec{x})$ is coded in \mathfrak{A} . Since $SSy(\mathfrak{A}) = SSy(\mathfrak{B})$, so it is also coded in \mathfrak{B} .
- Furthermore, we let

 $\begin{aligned} \Phi'(x_0, \cdots, x_{2k+1}, x_{2k+2}) \\ &= \{ \exists \vec{v} < x_{2k+2} \, \varphi(\vec{v}, x_0, \cdots, x_{2k+1}) : \exists \vec{v} \varphi(\vec{v}, x_0, \cdots, x_{2k+1}) \in \Phi \}. \end{aligned}$

Since there is a primitive recursive transformation between Φ and $\Phi',\,\Phi'$ is also coded in $\mathfrak{B}.$

- Then, if $\Phi'(b_0, \dots, b_{2k}, x, c)$ is shown to be finitely satisfiable in \mathfrak{B} , then by the first lemma in page 7, we can find an element x = b that realizes $\Phi'(b_0, \dots, b_{2k}, x, c)$, and letting b_{2k+1} be such a b, (\sharp) holds.
- Now, let $\exists \vec{v} < c \varphi_i(\vec{v}, b_0, \cdots, b_{2k}, x) \ (i \leq j)$ be any finite set of formulas from $\Phi'(b_0, \cdots, b_{2k}, x, c)$.

K. Tanaka

Recursively saturated models

Friedman's self-embedding theorem

Resplendency

• From the definition of Φ' , for each $i \leq j$, $\exists \vec{v} \varphi_i(\vec{v}, a_0, \cdots, a_{2k}, a_{2k+1})$ holds in \mathfrak{A} , so

$$\mathfrak{A}_A \models \exists \vec{v}_0 \cdots \exists \vec{v}_j \exists x \bigwedge_{i \leq j} \varphi_i(\vec{v}_i, a_0, \cdots, a_{2k}, x).$$

• On the other hand, using (\$),

$$\mathfrak{B}_B \models \exists \vec{v}_0 < c \cdots \exists \vec{v}_j < c \exists x < c \bigwedge_{i \le j} \varphi_i(\vec{v}_i, b_0, \cdots, b_{2k}, x).$$

• Therefore, by simple transformation,

$$\mathfrak{B}_B \models \exists x \bigwedge_{i \leq j} \exists \vec{v} < c \,\varphi_i(\vec{v}, b_0, \cdots, b_{2k}, x).$$

• In other words, $\Phi'(b_0, \cdots, b_{2k}, x, c)$ is finitely satisfiable, and b_{2k+1} is obtained.

K. Tanaka

Recursively saturated models

Friedman's self-embedding theorem

Resplendency

- Next, we first select b_{2k+2} and we search for a corresponding a_{2k+2}. If
 {b₀, ..., b_{2k}, b_{2k+1}} is an initial segment of B, then b_{2k+2} = b_{2k+1}, a_{2k+2} = a_{2k+1},
 and (\$\$) holds.
- Otherwise, there exists a $b < \max\{b_0, \cdots, b_{2k}, b_{2k+1}\}$ such that b does not appear in $b_0, \cdots, b_{2k}, b_{2k+1}$. Then among such, let b_{2k+2} be one with the minimal number assigned in advance to the members of B. This finally produces $\{b_i : i \in \mathbb{N}\}$ as an initial segment of \mathfrak{B} .
- Then we will find a_{2k+2} corresponding to b_{2k+2} .
- Let $\Psi(\vec{x})$ be the set of Σ_n formulas $\forall \vec{v} < x_{2k+3} \psi(\vec{v}, x_0, \cdots, x_{2k+2})$ holds for $b_0, \cdots, b_{2k+1}, b_{2k+2}, c$ in \mathfrak{B} . This can be coded in \mathfrak{B} .
- Therefore, if we define

$$\begin{split} &\Psi'(x_0, \cdots, x_{2k+1}, x_{2k+2}) \\ &= \{ \forall \vec{v} \psi(\vec{v}, x_0, \cdots, x_{2k+2}) : \forall \vec{v} < x_{2k+3} \, \psi(\vec{v}, x_0, \cdots, x_{2k+2}) \in \Psi \} \end{split}$$

then Ψ' is coded in ${\mathfrak A}$ by the same argument as above.

• All that remains is to show $\Psi'(a_0, \cdots, a_{2k+1}, x)$ is finitely satisfiable in \mathfrak{A} . So, let $\forall \vec{v} \psi_i(\vec{v}, a_0, \cdots, a_{2k+1}, x) \ (i \leq j)$ be a finite subset of $\Psi'(a_0, \cdots, a_{2k+1}, x)$.

K. Tanaka

Recursively saturated model

Friedman's self-embedding theorem

Resplendency

- We will show that these formulas are realized by x=a such that $a<\max\{a_0,\cdots,a_{2k},a_{2k+1}\}$.
- By way of contradiction, assume

$$\mathfrak{A}_A \models \forall x < \max\{a_0, \cdots, a_{2k}, a_{2k+1}\} \exists \vec{v} \bigvee_{i \leq j} \neg \psi_i(\vec{v}, a_0, \cdots, a_{2k+1}, x).$$

• By the Σ_n collection principle that follows from Σ_n induction,

$$\mathfrak{A}_A \models \exists y \forall x < \max\{a_0, \cdots, a_{2k}, a_{2k+1}\} \exists \vec{v} < y \bigvee_{i \leq j} \neg \psi_i(\vec{v}, a_0, \cdots, a_{2k+1}, x).$$

• On the other hand, using (\sharp),

$$\mathfrak{B}_B \models \exists y < c \forall x < \max\{b_0, \cdots, b_{2k}, b_{2k+1}\} \exists \vec{v} < y \bigvee_{i \le j} \neg \psi_i(\vec{v}, b_0, \cdots, b_{2k+1}, x).$$

• Therefore, by simple transformation,

$$\mathfrak{B}_B \models \forall x < \max\{b_0, \cdots, b_{2k}, b_{2k+1}\} \exists \vec{v} < c \bigvee_{i \le j} \neg \psi_i(\vec{v}, b_0, \cdots, b_{2k+1}, x)$$

This contradicts with the assumption that $b_0, \dots, b_{2k+1}, b_{2k+2}, c$ realize $\Psi(\vec{x})$.

• Thus, $\Psi'(a_0,\cdots,a_{2k+1},x)$ is finitely satisfiable, and so the desired a_{2k+2} exists.

K. Tanaka

Recursively saturated mode

Friedman's self-embedding theorem

Resplendency

- Suppose that we have completed the construction of a list a_0, a_1, \cdots , and a list b_0, b_1, \cdots . As described above, $A = \{a_i : i \in \mathbb{N}\}$ and $B' = \{b_i : i \in \mathbb{N}\}$ is an initial segment of \mathfrak{B} . It is also obvious that $c \notin B'$.
- Next, we define a function h between A and B' by h(a_i) = b_i. Then, h is an isomorphism, since by (♯), for an atomic formula φ(x₀, · · · , x_k),

$$\mathfrak{A}_A \models \varphi(a_0, \cdots, a_k) \Rightarrow \mathfrak{B}_B \models \varphi(b_0, \cdots, b_k),$$

which implies h preserves operations and <.

• Moreover, by (‡), we can show that for any Π_{n-1} formula $\varphi(x_0,\cdots,x_k),$

$$\mathfrak{A}_A \models \varphi(a_0, \cdots, a_k) \Leftrightarrow \mathfrak{B}_B \models \varphi(b_0, \cdots, b_k).$$

 $\Rightarrow \text{ is clear. For } \Leftarrow, \text{ let } \mathfrak{A}_A \not\models \varphi(a_0, \cdots, a_k). \text{ Then } \mathfrak{A}_A \models \neg \varphi(a_0, \cdots, a_k), \text{ and } \neg \varphi(a_0, \cdots, a_k) \text{ is } \Sigma_{n-1}, \text{ so by } (\sharp), \mathfrak{B}_B \models \neg \varphi(b_0, \cdots, b_k), \text{ and } \mathfrak{B}_B \not\models \varphi(b_0, \cdots, b_k).$

• On the other hand, since h is isomorphic, for any formula $\varphi(x_0, \cdots, x_k)$,

$$\mathfrak{A}_A \models \varphi(a_0, \cdots, a_k) \Leftrightarrow \mathfrak{B'}_{B'} \models \varphi(b_0, \cdots, b_k).$$

So for any Π_{n-1} formula $\varphi(x_0, \cdots, x_k)$,

$$\mathfrak{B}'_{B'}\models\varphi(b_0,\cdots,b_k)\Leftrightarrow\mathfrak{B}_{B'}\models\varphi(b_0,\cdots,b_k),$$

and thus (1) is obtained.

K. Tanaka

Recursively saturated model

Friedman's self-embedding theorem

Resplendency

Theorem (Friedman's self-embedding theorem)

Let n > 0, \mathfrak{A} be a countable non-standard model of $I\Sigma_n$, and take $a \in A$ arbitrarily. Then there exists an initial segment \mathfrak{A}' of \mathfrak{A} such that $a \in A'$ but $A' \subsetneq A$, and $\mathfrak{A} \cong \mathfrak{A}'$ and for any $\prod_{n=1}$ formula $\varphi(\vec{x})$ and any $\vec{a'} \in A'^{<\omega}$,

$$\mathfrak{A}'_{A'} \models \varphi(\vec{a'}) \Leftrightarrow \mathfrak{A}_{A'} \models \varphi(\vec{a'}).$$

Proof.

• In last lemma, we consider the case $\mathfrak{A} = \mathfrak{B}$. In order to satisfy the condition (2) of the last lemma, for any Π_{n-1} formula $\varphi(\vec{v}, u)$, it is sufficient to find c such that

$$\mathfrak{A}_{\{a\}} \models \exists \vec{v} \varphi(\vec{v}, a) \Rightarrow \mathfrak{A}_{\{a,c\}} \models \exists \vec{v} < c \, \varphi(\vec{v}, a).$$

• Now, let

$$\Phi(x) = \{ \exists \vec{v} \varphi(\vec{v}, a) \to \exists \vec{v} < x \, \varphi(\vec{v}, a) : \varphi(\vec{v}, u) \in \Pi_{n-1} \}.$$

This is a recursive type consisting only of Π_n formulas, and is clearly finitely satisfiable.

 Therefore, there exists c that realizes Φ(x). Therefore, by the last lemma, there exists an initial segment 𝔄' of 𝔅 which satisfies the conditions of the theorem.

Remarks

Logic and Foundation

K. Tanaka

Recursively saturated models

Friedman's self-embedding theorem

Resplendency

- The essence of this theorem is that a countable non-standard model of $\mathrm{I}\Sigma_1$ has an initial segment that is isomorphic to itself.
- Friedman first proved this theorem for a countable non-standard model of Peano arithmetic, and several researchers sophisticated it to the above form.
- The same theorem does not hold for non-countable models, and also it does not hold in general for countable non-standard models of $I\Sigma_0$.
- Furthermore, an important result related to this is McAloon's theorem, which states that a countable non-standard model of $\mathrm{I}\Sigma_0$ has an initial segment that is a model of Peano arithmetic PA.

K. Tanaka

Recursively saturated models

Friedman's self-embedding theorem

Resplendency

Introduction to Resplendency

- Recursive saturation of a structure means that it contains many "elements" that satisfy recursive conditions, but by generalizing this property to relations and functions, we introduce a new concept.
- By saying that a structure \mathfrak{A} in the language \mathcal{L} has "resplendency", we mean that if a formula $\varphi(\vec{R})$ with new relation symbols $\vec{R} \notin \mathcal{L}$ consistent with $\operatorname{Th}(\mathfrak{A}_A)$, $\varphi(\vec{R})$ can hold in \mathfrak{A} by appropriate interpretation of \vec{R} .
- In a resplendent model of arithmetic, hidden properties of the structure can be found by using new relation symbols for an initial segment and satisfaction relation.

Definition

The \mathcal{L} -structure \mathfrak{A} is said to be **resplendent**, if for a sentence φ in a language $\mathcal{L}^+ \supseteq \mathcal{L}_A$ such that $\operatorname{Th}(\mathfrak{A}_A) \cup \{\varphi\}$ is consistent, there exists an \mathcal{L}^+ -expansion \mathfrak{A}^+ of \mathfrak{A} such that $\mathfrak{A}^+ \models \varphi$.

K. Tanaka

- Recursively saturated models
- Friedman's self-embedding theorem
- Resplendency

- The statement that $\operatorname{Th}(\mathfrak{A}_A) \cup \{\varphi\}$ is consistent is equivalent to that φ is true in the \mathcal{L}^+ -extension of an elementary extension of \mathfrak{A} .
- In other words, resplendent structures are considered to potentially possess the properties of relations and functions manifested in their elementary extensions.
- We remark that if we denote the elements of A contained in φ (shown as constants) as \vec{a} , then this condition is equivalent to the consistency of $\operatorname{Th}(\mathfrak{A}_{\{\vec{a}\}}) \cup \varphi$.

: Suppose $\operatorname{Th}(\mathfrak{A}_A) \cup \{\varphi\}$ is inconsistent. Then there exists a formula $\psi(\vec{a}, \vec{b})$ in $\operatorname{Th}(\mathfrak{A}_A)$ such that $\vdash \psi(\vec{a}, \vec{b}) \to \neg \varphi$. Thus we also have $\vdash \exists y \psi(\vec{a}, \vec{y}) \to \neg \varphi$. Since $\exists y \psi(\vec{a}, \vec{y}) \in \operatorname{Th}(\mathfrak{A}_{\{\vec{a}\}})$, it follows that $\operatorname{Th}(\mathfrak{A}_{\{\vec{a}\}}) \cup \{\varphi\}$ is inconsistent. The reverse implication is trivial.

• Every finite structure is resplendent because its elementary extension is only itself.

K. Tanaka

Recursively saturated models

Friedman's self-embedding theorem

Resplendency

Since "resplendency" does not imply "recursive saturation" in general, we introduce the following stronger notion which implies both.

Definition

An \mathcal{L} -structure \mathfrak{A} is **strongly resplendent**, if for any recursive type $\Phi(\vec{x})$ in a language $\mathcal{L}^+ = \mathcal{L} \cup \{\text{finitely many additional symbols}\}$ and $\vec{a} \in A^{<\omega}$ such that $\operatorname{Th}(\mathfrak{A}_A) \cup \Phi(\vec{a})$ is consistent, there exists an \mathcal{L}^+ -expansion \mathfrak{A}^+ of \mathfrak{A} which is a model of $\Phi(\vec{a})$.

- In the definition of strongly resplendent, if we restrict the type Φ(x) to be a single formula, we obtain the definition of resplendent, and if we let L⁺ = L ∪ {c}, it becomes the definition of recursive saturation. Hence, strongly resplendent structures are both resplendent and recursively saturated.
- Furthermore, similar to the case of resplendent structures, it is worth noting that the consistency of Th(𝔄_A) ∪ Φ(*a*) coincides with the consistency of Th(𝔄_{*a*}) ∪ Φ(*a*).

K. Tanaka

Recursively saturated model

Friedman's self-embedding theorem

Resplendency

We will now demonstrate that under certain natural assumptions, the above three properties coincide.

Theorem (Barwise-Ressayre)

Countable recursively saturated structures are strongly resplendent.

Proof

- Let \mathfrak{A} be a countable structure in a countable language \mathcal{L} and assume it is recursively saturated. Furthermore, suppose we are given a recursive type $\Phi(\vec{x})$ in a finitely extended language \mathcal{L}^+ of \mathcal{L} and $\vec{a} \in A^{\omega}$ such that $\operatorname{Th}(\mathfrak{A}_A) \cup \Phi(\vec{a})$ is consistent.
- Then, we want to construct a model \mathfrak{A}^+ of this theory without expanding the domain $|\mathfrak{A}|$. The key idea of the construction is that by utilizing the recursively saturated nature of \mathfrak{A} , we can select Henkin constants from elements of A.

Now, let's look into the details of construction of $\mathfrak{A}^+.$

• First, we enumerate the formulas in \mathcal{L}_A with only one free variable x, denoted by $\{\varphi_n(x) : n \in \omega\}.$

K. Tanaka

Recursively saturated models

Friedman's self-embedding theorem

Resplendency

• We construct a sequence of finite subsets of A and that of recursive theories in \mathcal{L}_{A}^{+} ,

$$A_0 = \{\vec{a}\} \subseteq A_1 \subseteq A_2 \subseteq \cdots, \quad T_0 = \Phi(\vec{a}) \subseteq T_1 \subseteq T_2 \subseteq \cdots,$$

satisfying the following conditions: for each \boldsymbol{n}

- (1) T_n is a recursive set of sentences in $\mathcal{L}_{A_n}^+$, and $T_n \cup \text{Th}(\mathfrak{A}_A)$ is consistent. (2) either $\varphi_n(a) \in T_{n+1}$ for some $a \in A$ or $\neg \exists x \varphi_n(x) \in T_{n+1}$.
- Once the construction is completed, letting $T_{\omega} = \bigcup_n T_n$, we will show T_{ω} is a complete Henkin theory.
- Let σ be a sentence in \mathcal{L}_A^+ such that $T_\omega \not\vdash \sigma$. Suppose σ is φ_k (with no occurrence of x) for some k. Then we have $\sigma \not\in T_{k+1}$, since $T_\omega \not\vdash \sigma$. Thus, by condition (2), we have $\neg \exists x \sigma \in T_{k+1}$, and so $T_\omega \vdash \neg \sigma$. Therefore, T_ω is complete, and so $\operatorname{Th}(\mathfrak{A}_A) \subseteq T_\omega$ since $T_\omega \cup \operatorname{Th}(\mathfrak{A}_A)$ is consistent by condition (1).
- If $T_{\omega} \vdash \exists x \varphi_n(x, \vec{a})$, then by (2), there exists some $a \in A$ such that $\varphi_n(a) \in T_{\omega}$.
- Then T_{ω} is a complete Henkin theory. By Henkin method, we can construct a structure \mathfrak{A}^+ over the domain A, such that $T_{\omega} = \operatorname{Th}(\mathfrak{A}^+_A)$, and therefore $\mathfrak{A}^+ \models \Phi(\vec{a})$.

K. Tanaka

Recursively saturated models

Friedman's self-embedding theorem

Resplendency

Finally, we will construct the sequences $\{A_n\}$ and $\{T_n\}$ by induction.

- Assuming that the constructions up to A_n and T_n have been done. Take $\varphi_n(x)$.
- Let $B = A_n \cup \{ \text{elements of } A \text{ occurring in } \varphi_n(x) \}$, and define

 $\Psi(x) = \{\psi(x) : \psi(x) \text{ is a one-variable formula in } \mathcal{L}_B, \text{ and } T_n \vdash \varphi_n(x) \to \psi(x)\}.$

- Although $\Psi(x)$ is Σ_1 as it is, it can be treated as a recursive type by Craig's method.
- Since the structure \mathfrak{A} is recursively saturated, we can either find an $a \in A$ realizing $\Psi(x)$ or find a finite subset $\{\psi_i(x) : i \leq j\}$ of $\Psi(x)$ such that

$$\mathfrak{A}_A \models \neg \exists x \bigwedge_{i \leq j} \psi_i(x).$$

- In the former case, we let $A_{n+1} = B \cup \{a\}, \quad T_{n+1} = T_n \cup \{\varphi_n(a)\}.$
- To check the consistency of $T_{n+1} \cup \operatorname{Th}(\mathfrak{A}_A)$, we will show that any $\mathcal{L}_{A_{n+1}}$ sentence provable in T_{n+1} is true in \mathfrak{A}_A . Now, let $\psi(x)$ be a formula in \mathcal{L}_B and assume $T_{n+1} \vdash \psi(a)$. If $a \notin B$, $T_n \vdash \varphi_n(a) \to \psi(a)$ implies $T_n \vdash \varphi_n(x) \to \psi(x)$ and so $\psi(x) \in \Psi(x)$. Since a realizes $\Psi(x)$, $\psi(a)$ holds in \mathfrak{A}_A . On the other hand, if $a \in B$, then by $T_n \vdash \varphi_n(x) \to (x = a \to \psi(x))$, we get $(x = a \to \psi(x)) \in \Psi(x)$, which implies $(a = a \to \psi(a)) \in \operatorname{Th}(\mathfrak{A}_A)$. Thus, $\psi(a)$ holds in \mathfrak{A}_A .

K. Tanaka

- Recursively saturated model
- Friedman's self-embedding theorem
- Resplendency

• Next, we consider the case that $\mathfrak{A}_A \models \neg \exists x \bigwedge_{i \leq j} \psi_i(x)$. In this case, we can simply set

$$A_{n+1} = A_n, \quad T_{n+1} = T_n \cup \{\neg \exists x \varphi_n(x)\}.$$

• Since $T_n \vdash \neg \exists x \bigwedge_{i \leq j} \psi_i(x) \rightarrow \neg \exists x \varphi_n(x)$, we may show the consistency of

$$T_n \cup \{ \neg \exists x \bigwedge_{i \leq j} \psi_i(x) \} \cup \operatorname{Th}(\mathfrak{A}_A).$$

- Let ψ be a sentence in \mathcal{L}_B such that $T_n \vdash \neg \exists x \bigwedge_{i \leq j} \psi_i(x) \to \psi$. By the induction hypothesis, $T_n \cup \operatorname{Th}(\mathfrak{A}_A)$ is consistent, so $\neg \exists x \bigwedge_{i \leq j} \psi_i(x) \to \psi$ holds in \mathfrak{A}_A .
- Moreover, since we have the premise $\mathfrak{A}_A \models \neg \exists x \bigwedge_{i \leq j} \psi_i(x)$, it follows that ψ also holds in \mathfrak{A}_A . This completes the proof.

K. Tanaka

Recursively saturated models

Friedman's self-embedding theorem

Resplendency

Recall Problem 5 of Lec05-02 -

Let $\mathfrak{A} = (A, +, \bullet, 0, 1, <)$ be a non-standard model of $I\Sigma_1$. Show that $\mathfrak{A}' = (A, +, 0, 1, <)$ is recursively saturated.

- Example 5

- In the above problem 5, it was shown that if $\mathfrak{A} = (A, +, \bullet, 0, 1, <)$ is a nonstandard model of $I\Sigma_1$, then $\mathfrak{A}' = (A, +, 0, 1, <)$ becomes recursively saturated.
- Conversely, suppose $\mathfrak{A}'=(A,+,0,1,<)$ is a recursively saturated model of Presburger arithmetic and is countable. Then, by the previous theorem, \mathfrak{A}' is strongly resplendent.
- On the other hand, Presburger arithmetic is complete, and the set of its theorems coincides with $\operatorname{Th}(\mathfrak{A}')$. Therefore, $\operatorname{Th}(\mathfrak{A}') \cup \mathsf{PA}$ is nothing but PA , which is a recursive consistent set.
- Hence, there exists a suitable interpretation of such that $\mathfrak{A} = (A, +, \bullet, 0, 1, <)$ becomes a model of PA. In summary, a countable model $\mathfrak{A} = (A, +, \bullet, 0, 1, <)$ of I Σ_1 can be turned into a model $\mathfrak{A}' = (A, +, \bullet', 0, 1, <)$ of PA by changing the interpretation of multiplication (the "misbuttoning theorem").

K. Tanaka

Recursively saturated models

Friedman's self-embeddin theorem

Resplendency

Thank you for your attention!