
Logic and
Foundation

K. Tanaka

Recursively
saturated models

Friedman’s
self-embedding
theorem

Resplendency

1

Logic and Foundation II
Part 5. Models of first-order arithmetic

Kazuyuki Tanaka

BIMSA

March 19, 2024



Logic and
Foundation

K. Tanaka

Recursively
saturated models

Friedman’s
self-embedding
theorem

Resplendency

2

Logic and Foundations II (Spring 2024)� �
• Part 5. Models of first-order arithmetic (continued)

• Part 6. Real-closed ordered fields: completeness and decidability

• Part 7. Theory of reals and reverse mathematics

• Part 8. Second order arithmetic and non-standard methods� �
Part 5. Models of first-order arithmetic� �
• Jan. 04, Non-standard models and the omitting type theorem

• Jan. 11, Recursively saturated models
—–

• Mar. 12, Reviews

• Mar. 14, Friedman’s theorem

• Mar. 19, Friedman’s theorem (continued) and introduction to resplendency

• Mar. 21, Resplendency and applications� �



Logic and
Foundation

K. Tanaka

Recursively
saturated models

Friedman’s
self-embedding
theorem

Resplendency

3

Recap
• PA− is the theory of discrete ordered semirings.
• IΣn is PA−+ induction for Σn formulas. PA ⊃ IΣ1 ⊃ IΣ0 ⊃ IOpen ⊃ PA− ⊃ Q<.

Theorem (Overspill principle)

Let A be any non-standard model of IΣn, and φ(x) be any Σn formula. If AA |= φ(i)
holds for infinitely many i ∈ N, then there exists a /∈ N such that AA |= φ(a).

• A type Φ(x⃗) is a type of a theory T if T ∪ Φ(⃗c) (⃗c new constants) is consistent.
That is, there exists a model of T that realizes Φ(x⃗).

• A type on C ⊂ A in A is a type of theory Th(AC).
• A type Φ(x⃗) is a principal type of theory T , if there exists a formula ψ(x⃗) such that
T ∪ {∃x⃗ψ(x⃗)} is consistent, and for any φ(x⃗) ∈ Φ(x⃗), T ⊢ ∀x⃗(ψ(x⃗) → φ(x⃗)).

Theorem (The omitting type theorem)

Let T be a consistent theory in a countable language L. Given countably many non-
principal types Φi(x⃗i) of T , then there is a countable model of T that omits all Φi.

• A countable model of Peano arithmetic PA has a proper elementary end-extension.
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Introduction to recursively saturated models

Definition

Let L be a countable language. An L-structure A is recursively saturated if for any
recursive type {φi(x, x1, · · · , xn) | i ∈ N} and any a1, · · · , an ∈ A,

∀j∃a ∈ A∀i < j AA |= φi(a, a1, · · · , an) ⇒ ∃a ∈ A∀iAA |= φi(a, a1, · · · , an).

• A countable structure in a countable language has a countable elementary extension
which is recursively saturated.

Lemma

For each n > 0, there exist formulas SatΣn
(x, y) and SatΠn

(x, y) in language LOR such
that for any Σn formula φ(v1, · · · , vk) and Πn formula ψ(v1, · · · , vk),

IΣ1 ⊢ ∀s(SatΣn
(⌜φ⌝, s) ↔ φ(s1, · · · , sk)),

IΣ1 ⊢ ∀s(SatΠn(⌜ψ⌝, s) ↔ ψ(s1, · · · , sk)),

where s is the code of (s1, · · · , sk). When n > 0, SatΣn
∈ Σn and SatΠn

∈ Πn.
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Lemma

For n > 0, a non-standard model A of IΣn is Σn-recursively saturated, i.e., it realizes any
(finitely satisfiable) recursive 1-type on a finite subset of A consisting of only Σn formulas.

Proof. Let Φ(x, x⃗) be a recursive type consisting only of Σn formulas. Then, the Gödel
numbers of formulas in Φ can be expressed by a ∆1 formula θ(i). Thereby,

• The finite satisfiability of Φ(x, a⃗) is expressed as: for each natural number j,

∃x∀i < j(θ(i) → SatΣn
(i, (x, a⃗))),

which is shown to be Σn in BΣn(⊆ IΣn).

• Let A be a non-standard model of IΣn. By the overspill principle, the above formula
holds for some infinite element j′. Suppose x = a satisfies the formula for this j′.

• Then, we have θ(i) → SatΣn
(i, (a, a⃗)) for any natural number i. Namely, all Σn

formulas in Φ(x, a⃗) are realized by a in AA.

By the above lemma, any non-standard model of PA is Σn-recursively saturated for each
n > 0, but there is a non-standard model of PA which is not recursively saturated.
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Definition

Let A be a model of IΣ1, and a ∈ A. The set

{n ∈ N : A |= p(n)|a}

is called the set coded by a in A, where p(n) is a primitive recursive function representing
the n+ 1-th prime number, and u|v ≡ ∃w ≤ v(u •w = v) . The collection of all the sets
encoded by an element in A is called the standard system of A, denoted as SSy(A).

Lemma (D. Scott)

Let A be a non-standard model of IΣ1. Given two disjoint Σ1 sets, there exists a set in
SSy(A) which separates them. In particular, any recursive set belongs to SSy(A).

Note that in general, a set that separates two Σ1 sets cannot be obtained recursively. That
is, SSy(A) is properly larger than the class of recursive sets.



Logic and
Foundation

K. Tanaka

Recursively
saturated models

Friedman’s
self-embedding
theorem

Resplendency

7

Lemma

Let n > 0 and A be a non-standard model of IΣn. If a type Φ(x⃗) of Σn formulas on a
finite subset of A is coded in A, then A realizes Φ(x⃗).

The proof is exactly the same as that of lemma in Page 5. The converse holds as follows.

Lemma

Let n > 0 and A be a non-standard model of IΣn. Fix a⃗ ∈ Ak arbitrarily. Then the
following k-types can be coded.

Φ(x⃗) = {φ(x⃗) : φ(x⃗) ∈ Σn ∧ A |= φ(⃗a)},
Ψ(x⃗) = {ψ(x⃗) : ψ(x⃗) ∈ Πn ∧ A |= ψ(⃗a)}

Proof. In IΣ1, SatΣn(x, y) and SatΠn(x, y) can be defined. Since A is a model of IΣ1,
there exist a Σn formula φ1(k, a⃗) and a Πn formula ψ1(k, a⃗) s.t. φ ∈ Φ ↔ φ1(⌜φ⌝, a⃗) and
ψ ∈ Ψ ↔ ψ1(⌜ψ⌝, a⃗) hold. Then, letting c be a non-standard element of A, by Σn

induction, we can define a code Πb∈Up(b) for U = {b < c : φ1(b, a⃗)} and a code Πb∈V p(b)
for V = {b < c : ψ1(b, a⃗)}. Clearly, these code Φ(x⃗) and Ψ(x⃗), respectively.
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With the above preparations, we will prove Friedman’s self-embedding theorem. The
following is a key lemma, and also used in several variations of the theorem.

Lemma

Assuming n > 0, let A, B be countable non-standard models of IΣn. Take a0 ∈ A and
b0, c ∈ B arbitrarily. Then the following two conditions are equivalent.

(1) There exists B′ ⊆e B such that c ̸∈ B′. There is an isomorphism h between A and

B′ such that h(a0) = b0. For any Πn−1 formula φ(x⃗) and any b⃗ ∈ B′<ω,

B′
{⃗b} |= φ(⃗b) ⇔ B{⃗b} |= φ(⃗b).

(2) SSy(A) = SSy(B), and for any Πn−1 formula φ(v⃗, u),

AA |= ∃v⃗φ(v⃗, a0) ⇒ BB |= ∃v⃗ < cφ(v⃗, b0),

where v⃗ = (v1, . . . , vk) and ∃v⃗ < c means ∃v1 < c · · · ∃vk < c.



Logic and
Foundation

K. Tanaka

Recursively
saturated models

Friedman’s
self-embedding
theorem

Resplendency

9

Proof. Assume (1) and we show the first half of (2).

• By A ∼= B′, SSy(A) = SSy(B′) is obvious.

• Since B′ ⊆e B, it is also clear that SSy(B′) ⊆ SSy(B).

• Assume that R ∈ SSy(B), i.e, R is coded by r in B. We will show that R is also
coded in B′.

• Take any non-standard element l of B′. Since B′ is also a model of IΣ1, the l + 1-th
prime p(l) belongs to B′, and so p(l)! ∈ B′.

• Now, letting m be the greatest common divisor of r and p(l)! in B, we have m ∈ B′

since B′ is an initial segment of B. Then, it is clear that m also encodes R.

• From the above, we obtain SSy(A) = SSy(B).

Next we show the second half of (2).

• Let φ(v⃗, u) be a Πn−1 formula, and AA |= ∃v⃗φ(v⃗, a0).
• By the isomorphism between A and B′, B′

B′ |= ∃v⃗φ(v⃗, b0).
• Then, since there exists d⃗ ∈ B′ such that B′

B′ |= φ(d⃗, b0), from the assumption (1),

BB |= φ(d⃗, b0). Therefore, BB |= ∃v⃗ < cφ(v⃗, b0).
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Next, assuming (2), we show (1).

• This is an application of the so-called back-and-forth argument. We alternately
produce a list a0, a1, · · · of the elements of A and a list b0, b1, · · · of the elements of
B′, so that an isomorphism h between A and B′ is obtained by h(ai) = bi.

• Now, suppose a0, a1, · · · , a2k and b0, b1, · · · , b2k have been chosen, and for any Πn−1

formula φ(v⃗, u⃗),

AA |= ∃v⃗φ(v⃗, a0, · · · , a2k) ⇒ BB |= ∃v⃗ < cφ(v⃗, b0, · · · , b2k) (♯)

holds.

• We next choose a2k+1, a2k+2 and b2k+1, b2k+2 such that this condition is preserved.
We will explain later that (1) can be obtained by this.

• Since A is countable, each member can be assigned by a natural number uniquely.
Then choose one with the smallest number among the elements that do not appear in
a0, a1, · · · , a2k and denote it as a2k+1. This procedure guarantees that {ai : i ∈ N}
lists all the members of A.
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• Now we will search for b2k+1 such that (♯) holds.

• Let Φ(x⃗) be the set of Σn formulas ∃v⃗φ(v⃗, x0, · · · , x2k+1) (φ ∈ Πn−1 ) which holds
for a0, · · · , a2k, a2k+1 in A. By the second lemma in page 7, Φ(x⃗) is coded in A.
Since SSy(A) = SSy(B), so it is also coded in B.

• Furthermore, we let

Φ′(x0, · · · , x2k+1, x2k+2)

= {∃v⃗ < x2k+2 φ(v⃗, x0, · · · , x2k+1) : ∃v⃗φ(v⃗, x0, · · · , x2k+1) ∈ Φ}.

Since there is a primitive recursive transformation between Φ and Φ′, Φ′ is also coded
in B.

• Then, if Φ′(b0, · · · , b2k, x, c) is shown to be finitely satisfiable in B, then by the first
lemma in page 7, we can find an element x = b that realizes Φ′(b0, · · · , b2k, x, c), and
letting b2k+1 be such a b, (♯) holds.

• Now, let ∃v⃗ < cφi(v⃗, b0, · · · , b2k, x) (i ≤ j) be any finite set of formulas from
Φ′(b0, · · · , b2k, x, c).
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• From the definition of Φ′, for each i ≤ j, ∃v⃗φi(v⃗, a0, · · · , a2k, a2k+1) holds in A, so

AA |= ∃v⃗0 · · · ∃v⃗j∃x
∧
i≤j

φi(v⃗i, a0, · · · , a2k, x).

• On the other hand, using (♯),

BB |= ∃v⃗0 < c · · · ∃v⃗j < c∃x < c
∧
i≤j

φi(v⃗i, b0, · · · , b2k, x).

• Therefore, by simple transformation,

BB |= ∃x
∧
i≤j

∃v⃗ < cφi(v⃗, b0, · · · , b2k, x).

• In other words, Φ′(b0, · · · , b2k, x, c) is finitely satisfiable, and b2k+1 is obtained.
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• Next, we first select b2k+2 and we search for a corresponding a2k+2. If
{b0, · · · , b2k, b2k+1} is an initial segment of B, then b2k+2 = b2k+1, a2k+2 = a2k+1,
and (♯) holds.

• Otherwise, there exists a b < max{b0, · · · , b2k, b2k+1} such that b does not appear in
b0, · · · , b2k, b2k+1. Then among such, let b2k+2 be one with the minimal number
assigned in advance to the members of B. This finally produces {bi : i ∈ N} as an
initial segment of B.

• Then we will find a2k+2 corresponding to b2k+2.

• Let Ψ(x⃗) be the set of Σn formulas ∀v⃗ < x2k+3 ψ(v⃗, x0, · · · , x2k+2) holds for
b0, · · · , b2k+1, b2k+2, c in B. This can be coded in B.

• Therefore, if we define

Ψ′(x0, · · · , x2k+1, x2k+2)

= {∀v⃗ψ(v⃗, x0, · · · , x2k+2) : ∀v⃗ < x2k+3 ψ(v⃗, x0, · · · , x2k+2) ∈ Ψ}

then Ψ′ is coded in A by the same argument as above.

• All that remains is to show Ψ′(a0, · · · , a2k+1, x) is finitely satisfiable in A. So, let
∀v⃗ψi(v⃗, a0, · · · , a2k+1, x) (i ≤ j) be a finite subset of Ψ′(a0, · · · , a2k+1, x).



Logic and
Foundation

K. Tanaka

Recursively
saturated models

Friedman’s
self-embedding
theorem

Resplendency

14

• We will show that these formulas are realized by x = a such that
a < max{a0, · · · , a2k, a2k+1} .

• By way of contradiction, assume

AA |= ∀x < max{a0, · · · , a2k, a2k+1}∃v⃗
∨
i≤j

¬ψi(v⃗, a0, · · · , a2k+1, x).

• By the Σn collection principle that follows from Σn induction,

AA |= ∃y∀x < max{a0, · · · , a2k, a2k+1}∃v⃗ < y
∨
i≤j

¬ψi(v⃗, a0, · · · , a2k+1, x).

• On the other hand, using (♯),

BB |= ∃y < c∀x < max{b0, · · · , b2k, b2k+1}∃v⃗ < y
∨
i≤j

¬ψi(v⃗, b0, · · · , b2k+1, x).

• Therefore, by simple transformation,

BB |= ∀x < max{b0, · · · , b2k, b2k+1}∃v⃗ < c
∨
i≤j

¬ψi(v⃗, b0, · · · , b2k+1, x)

This contradicts with the assumption that b0, · · · , b2k+1, b2k+2, c realize Ψ(x⃗).
• Thus, Ψ′(a0, · · · , a2k+1, x) is finitely satisfiable, and so the desired a2k+2 exists.
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• Suppose that we have completed the construction of a list a0, a1, · · · , and a list
b0, b1, · · · . As described above, A = {ai : i ∈ N} and B′ = {bi : i ∈ N} is an initial
segment of B. It is also obvious that c ̸∈ B′.

• Next, we define a function h between A and B′ by h(ai) = bi. Then, h is an
isomorphism, since by (♯), for an atomic formula φ(x0, · · · , xk),

AA |= φ(a0, · · · , ak) ⇒ BB |= φ(b0, · · · , bk),

which implies h preserves operations and <.
• Moreover, by (♯), we can show that for any Πn−1 formula φ(x0, · · · , xk),

AA |= φ(a0, · · · , ak) ⇔ BB |= φ(b0, · · · , bk).

⇒ is clear. For ⇐, let AA ̸|= φ(a0, · · · , ak). Then AA |= ¬φ(a0, · · · , ak), and
¬φ(a0, · · · , ak) is Σn−1, so by (♯), BB |= ¬φ(b0, · · · , bk), and BB ̸|= φ(b0, · · · , bk).

• On the other hand, since h is isomorphic, for any formula φ(x0, · · · , xk),

AA |= φ(a0, · · · , ak) ⇔ B′
B′ |= φ(b0, · · · , bk).

So for any Πn−1 formula φ(x0, · · · , xk),

B′
B′ |= φ(b0, · · · , bk) ⇔ BB′ |= φ(b0, · · · , bk),

and thus (1) is obtained.



Logic and
Foundation

K. Tanaka

Recursively
saturated models

Friedman’s
self-embedding
theorem

Resplendency

16

Theorem (Friedman’s self-embedding theorem)

Let n > 0, A be a countable non-standard model of IΣn, and take a ∈ A arbitrarily. Then
there exists an initial segment A′ of A such that a ∈ A′ but A′ ⫋ A, and A ∼= A′ and for

any Πn−1 formula φ(x⃗) and any a⃗′ ∈ A′<ω,

A′
A′ |= φ(a⃗′) ⇔ AA′ |= φ(a⃗′).

Proof.

• In last lemma, we consider the case A = B. In order to satisfy the condition (2) of the
last lemma, for any Πn−1 formula φ(v⃗, u), it is sufficient to find c such that

A{a} |= ∃v⃗φ(v⃗, a) ⇒ A{a,c} |= ∃v⃗ < cφ(v⃗, a).

• Now, let
Φ(x) = {∃v⃗φ(v⃗, a) → ∃v⃗ < xφ(v⃗, a) : φ(v⃗, u) ∈ Πn−1}.

This is a recursive type consisting only of Πn formulas, and is clearly finitely satisfiable.

• Therefore, there exists c that realizes Φ(x). Therefore, by the last lemma, there exists
an initial segment A′ of A which satisfies the conditions of the theorem.



Logic and
Foundation

K. Tanaka

Recursively
saturated models

Friedman’s
self-embedding
theorem

Resplendency

17

Remarks

• The essence of this theorem is that a countable non-standard model of IΣ1 has an
initial segment that is isomorphic to itself.

• Friedman first proved this theorem for a countable non-standard model of Peano
arithmetic, and several researchers sophisticated it to the above form.

• The same theorem does not hold for non-countable models, and also it does not hold
in general for countable non-standard models of IΣ0.

• Furthermore, an important result related to this is McAloon’s theorem, which states
that a countable non-standard model of IΣ0 has an initial segment that is a model of
Peano arithmetic PA.
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Introduction to Resplendency

• Recursive saturation of a structure means that it contains many “elements” that
satisfy recursive conditions, but by generalizing this property to relations and
functions, we introduce a new concept.

• By saying that a structure A in the language L has “resplendency”, we mean that if a
formula φ(⃗R) with new relation symbols R⃗ /∈ L consistent with Th(AA), φ(⃗R) can hold
in A by appropriate interpretation of R⃗.

• In a resplendent model of arithmetic, hidden properties of the structure can be found
by using new relation symbols for an initial segment and satisfaction relation.

Definition

The L-structure A is said to be resplendent, if for a sentence φ in a language L+ ⊇ LA

such that Th(AA) ∪ {φ} is consistent, there exists an L+-expansion A+ of A such that
A+ |= φ.
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• The statement that Th(AA) ∪ {φ} is consistent is equivalent to that φ is true in the
L+-extension of an elementary extension of A.

• In other words, resplendent structures are considered to potentially possess the
properties of relations and functions manifested in their elementary extensions.

• We remark that if we denote the elements of A contained in φ (shown as constants)
as a⃗, then this condition is equivalent to the consistency of Th(A{a⃗}) ∪ φ.
∵ Suppose Th(AA) ∪ {φ} is inconsistent. Then there exists a formula ψ(⃗a, b⃗) in

Th(AA) such that ⊢ ψ(⃗a, b⃗) → ¬φ. Thus we also have ⊢ ∃yψ(⃗a, y⃗) → ¬φ. Since
∃yψ(⃗a, y⃗) ∈ Th(A{a⃗}), it follows that Th(A{a⃗}) ∪ {φ} is inconsistent. The reverse
implication is trivial.

• Every finite structure is resplendent because its elementary extension is only itself.
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Since “resplendency” does not imply “recursive saturation” in general, we introduce the
following stronger notion which implies both.

Definition

An L-structure A is strongly resplendent, if for any recursive type Φ(x⃗) in a language
L+ = L ∪ {finitely many additional symbols} and a⃗ ∈ A<ω such that Th(AA) ∪ Φ(⃗a) is
consistent, there exists an L+-expansion A+ of A which is a model of Φ(⃗a).

• In the definition of strongly resplendent, if we restrict the type Φ(x⃗) to be a single
formula, we obtain the definition of resplendent, and if we let L+ = L ∪ {c}, it
becomes the definition of recursive saturation. Hence, strongly resplendent
structures are both resplendent and recursively saturated.

• Furthermore, similar to the case of resplendent structures, it is worth noting that the
consistency of Th(AA) ∪ Φ(⃗a) coincides with the consistency of Th(A{a⃗}) ∪ Φ(⃗a).
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We will now demonstrate that under certain natural assumptions, the above three
properties coincide.

Theorem (Barwise-Ressayre)

Countable recursively saturated structures are strongly resplendent.

Proof

• Let A be a countable structure in a countable language L and assume it is recursively
saturated. Furthermore, suppose we are given a recursive type Φ(x⃗) in a finitely
extended language L+ of L and a⃗ ∈ Aω such that Th(AA) ∪ Φ(⃗a) is consistent.

• Then, we want to construct a model A+ of this theory without expanding the domain
|A|. The key idea of the construction is that by utilizing the recursively saturated
nature of A, we can select Henkin constants from elements of A.

Now, let’s look into the details of construction of A+.

• First, we enumerate the formulas in LA with only one free variable x, denoted by
{φn(x) : n ∈ ω}.
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• We construct a sequence of finite subsets of A and that of recursive theories in L+
A,

A0 = {a⃗} ⊆ A1 ⊆ A2 ⊆ · · · , T0 = Φ(⃗a) ⊆ T1 ⊆ T2 ⊆ · · · ,

satisfying the following conditions: for each n
(1) Tn is a recursive set of sentences in L+

An
, and Tn ∪ Th(AA) is consistent.

(2) either φn(a) ∈ Tn+1 for some a ∈ A or ¬∃xφn(x) ∈ Tn+1.

• Once the construction is completed, letting Tω =
⋃

n Tn, we will show Tω is a
complete Henkin theory.

• Let σ be a sentence in L+
A such that Tω ̸⊢ σ. Suppose σ is φk (with no occurrence of

x) for some k. Then we have σ ̸∈ Tk+1, since Tω ̸⊢ σ. Thus, by condition (2), we
have ¬∃xσ ∈ Tk+1, and so Tω ⊢ ¬σ. Therefore, Tω is complete, and so Th(AA) ⊆ Tω
since Tω ∪ Th(AA) is consistent by condition (1).

• If Tω ⊢ ∃xφn(x, a⃗), then by (2), there exists some a ∈ A such that φn(a) ∈ Tω.

• Then Tω is a complete Henkin theory. By Henkin method, we can construct a
structure A+ over the domain A, such that Tω = Th(A+

A), and therefore A+ |= Φ(⃗a).
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Finally, we will construct the sequences {An} and {Tn} by induction.

• Assuming that the constructions up to An and Tn have been done. Take φn(x).

• Let B = An ∪ {elements of A occurring in φn(x)}, and define

Ψ(x) = {ψ(x) : ψ(x) is a one-variable formula in LB , and Tn ⊢ φn(x) → ψ(x)}.

• Although Ψ(x) is Σ1 as it is, it can be treated as a recursive type by Craig’s method.

• Since the structure A is recursively saturated, we can either find an a ∈ A realizing
Ψ(x) or find a finite subset {ψi(x) : i ≤ j} of Ψ(x) such that

AA |= ¬∃x
∧
i≤j

ψi(x).

• In the former case, we let An+1 = B ∪ {a}, Tn+1 = Tn ∪ {φn(a)}.
• To check the consistency of Tn+1 ∪ Th(AA), we will show that any LAn+1

sentence
provable in Tn+1 is true in AA. Now, let ψ(x) be a formula in LB and assume
Tn+1 ⊢ ψ(a). If a /∈ B, Tn ⊢ φn(a) → ψ(a) implies Tn ⊢ φn(x) → ψ(x) and so
ψ(x) ∈ Ψ(x). Since a realizes Ψ(x), ψ(a) holds in AA. On the other hand, if a ∈ B,
then by Tn ⊢ φn(x) → (x = a→ ψ(x)), we get (x = a→ ψ(x)) ∈ Ψ(x), which
implies (a = a→ ψ(a)) ∈ Th(AA). Thus, ψ(a) holds in AA.
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• Next, we consider the case that AA |= ¬∃x
∧

i≤j ψi(x). In this case, we can simply set

An+1 = An, Tn+1 = Tn ∪ {¬∃xφn(x)}.

• Since Tn ⊢ ¬∃x
∧

i≤j ψi(x) → ¬∃xφn(x), we may show the consistency of

Tn ∪ {¬∃x
∧
i≤j

ψi(x)} ∪ Th(AA).

• Let ψ be a sentence in LB such that Tn ⊢ ¬∃x
∧

i≤j ψi(x) → ψ. By the induction
hypothesis, Tn ∪ Th(AA) is consistent, so ¬∃x

∧
i≤j ψi(x) → ψ holds in AA.

• Moreover, since we have the premise AA |= ¬∃x
∧

i≤j ψi(x), it follows that ψ also
holds in AA. This completes the proof.
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Recall Problem 5 of Lec05-02� �
Let A = (A,+, • , 0, 1, <) be a non-standard model of IΣ1. Show that A′ =
(A,+, 0, 1, <) is recursively saturated.� �
Example 5� �
• In the above problem 5, it was shown that if A = (A,+, • , 0, 1, <) is a

nonstandard model of IΣ1, then A′ = (A,+, 0, 1, <) becomes recursively
saturated.

• Conversely, suppose A′ = (A,+, 0, 1, <) is a recursively saturated model of
Presburger arithmetic and is countable. Then, by the previous theorem, A′ is
strongly resplendent.

• On the other hand, Presburger arithmetic is complete, and the set of its theorems
coincides with Th(A′). Therefore, Th(A′) ∪ PA is nothing but PA, which is a
recursive consistent set.

• Hence, there exists a suitable interpretation of • such that A = (A,+, • , 0, 1, <)
becomes a model of PA. In summary, a countable model A = (A,+, • , 0, 1, <) of
IΣ1 can be turned into a model A′ = (A,+, • ′, 0, 1, <) of PA by changing the
interpretation of multiplication (the “misbuttoning theorem”).� �
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Thank you for your attention!
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