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PA and its subsystems

• PA− is the theory of discrete ordered semirings. Example:
Z[X]+ = {p ∈ Z[X] : the highest-order coefficient of p is positive} is a non-standard
model of PA−

• Peano arithmetic PA is PA−+ full induction.

• IΣn is PA−+ induction for Σn formulas. PA ⊃ IΣ1 ⊃ IΣ0 ⊃ IOpen ⊃ PA−.

• Robinson’s system Q (or Q<) is a weak subsystem of PA−.

Theorem (Overspill principle)

Let A be any non-standard model of IΣn, and φ(x) be any Σn formula. If AA |= φ(i)
holds for infinitely many i ∈ N, then there exists a non-standard element a such that
AA |= φ(a) holds.
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Types

• A type Φ(x⃗) is a set of formulas in free variables x⃗ = (x1, · · · , xn).
• A realizes Φ(x⃗) by a⃗, if AA |= φ(⃗a) for all formulas φ(x⃗) in Φ(x⃗).

• A omits Φ(x⃗), if A does not realize Φ(x⃗) by any a⃗.

• A type Φ(x⃗) is a type of a theory T if T ∪ Φ(⃗c) (⃗c new constants) is consistent.
That is, there exists a model of T that realizes Φ(x⃗).

• For a subset C of the universe of A, a type on C in A is a type of theory Th(AC).

• A type Φ(x⃗) is a principal type of theory T , if there exists a formula ψ(x⃗) such that
T ∪ {∃x⃗ψ(x⃗)} is consistent, and for any φ(x⃗) ∈ Φ(x⃗), T ⊢ ∀x⃗(ψ(x⃗) → φ(x⃗)). In this
case, we say that ψ(x⃗) generates Φ(x⃗) in T .

• A type Φ(x⃗) on C(⊆ A) in A is a principal type, if it is a principal type of Th(AA).

• Remark. Any structure A realizes each of its principal types Φ(x⃗).
∵ If ψ(x⃗) generates Φ(x⃗), then by definition Th(AA) ∪ {∃x⃗ψ(x⃗)} is consistent. Since
Th(AA) is a complete theory, it includes ∃x⃗ψ(x⃗) and so AA |= ∃x⃗ψ(x⃗). Therefore,
ψ(x⃗) and Φ(x⃗) are realized by A.
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Theorem (The omitting type theorem)

Let T be a consistent theory in a countable language L. Given countably many non-
principal types Φi(x⃗i) of T , then there is a countable model of T that omits all Φi.

Definition

A is an end-extension of B, denoted as B ⊆e A, if (b ∈ |B| ∧ A |= a < b) ⇒ a ∈ |B|.
A is an elementary end-extension of B, if B ⊆e A and B ≺ A.

Definition

In a language L with <, the following schema is called collection principle:

∀x < u∃y1 · · · ∃ykφ(x, y1, · · · , yk) → ∃v∀x < u∃y1 < v · · · ∃yk < vφ(x, y1, · · · , yk).

Theorem

A countably infinite structure that satisfies the collection principle and the transitivity law
has a proper elementary end-extension. In particular, a countable model of Peano
arithmetic PA has a proper elementary end-extension.
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Introduction to recursively saturated models

Definition

Let L be a countable language. An L-structure A is recursively saturated if any recursive
1-type on {a1, · · · , an} ⊆ A is realized in A, i.e., for any recursive type
{φi(x, x1, · · · , xn) | i ∈ N} and any a1, · · · , an ∈ A,

∀j∃a ∈ A∀i < j AA |= φi(a, a1, · · · , an) ⇒ ∃a ∈ A∀iAA |= φi(a, a1, · · · , an).

Lemma

A countable structure in a countable language has a countable elementary extension which
is recursively saturated.

Proof.
• Let A be a countable structure in a countable language. By the compactness theorem
and the downward Löwenheim–Skolem Theorem, A has a countable elementary
extension A1 which realizes all recursive 1-types on any finite subset of A (in A1).

• Similarly, we create A1 ≺ A2 ≺ A3 ≺ · · · , and set A∞ =
⋃

k Ak. By the elementary
chain theorem, A ≺ A∞ and is also recursively saturated.
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Lemma (Tarski’s “undefinability of truth”)

Let T be a consistent extension of Q<. There is no formula Sat(x, y) such that: for any
LOR formula φ(v1, · · · , vk) (with only free variables v1, · · · , vk),

T ⊢ ∀s(Sat(⌜φ⌝, s) ↔ φ(s1, · · · , sk)),

where s is the code of a sequence (s1, · · · , sk).

Lemma

For each n > 0, there exist formulas SatΣn(x, y) and SatΠn(x, y) in language LOR such
that for any Σn formula φ(v1, · · · , vk) and Πn formula ψ(v1, · · · , vk) (neither includes free
variables other than v1, · · · , vk),

IΣ1 ⊢ ∀s(SatΣn
(⌜φ⌝, s) ↔ φ(s1, · · · , sk)),

IΣ1 ⊢ ∀s(SatΠn(⌜ψ⌝, s) ↔ ψ(s1, · · · , sk)),

where s is the code of (s1, · · · , sk). When n > 0, SatΣn
∈ Σn and SatΠn

∈ Πn.
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Proof.

• To start with, consider the case where n = 0. Roughly speaking, the truth of a Σ0

sentence is defined primitive-recursively, and so SatΣ0
(which is the same as SatΠ0

)
can be expressed by either Σ1 or Π1 in IΣ1.

• Next, by meta-induction on n, we construct SatΣn+1
assuming SatΠn

is already
obtained. For a Σn+1 formula ∃u1 · · · ∃ujφ(u1, · · · , uj , v1, · · · , vk) (with φ ∈ Πn),
SatΣn+1 is defined as follows.

SatΣn+1
(⌜∃u1 · · · ∃ujφ(u1, · · · , uj , v1, · · · , vk)⌝, (s1, · · · , sk))

↔ ∃ySatΠn
(⌜φ(u1, · · · , uj , v1, · · · , vk)⌝, (y1, · · · , yj , s1, · · · , sk)).

• Then the following is provable in IΣ1.

SatΣn+1
(⌜∃u1 · · · ∃ujφ(u1, · · · , uj , v1, · · · , vk)⌝, (s1, · · · , sk))

↔ ∃ySatΠn
(⌜φ(u1, · · · , uj , v1, · · · , vk)⌝, (y1, · · · , yj , s1, · · · , sk))

↔ ∃yφ(y1, · · · , yj , s1, · · · , sk)
↔ ∃u1 · · · ∃ujφ(u1, · · · , uj , s1, · · · , sk).

• Finally, SatΠn+1
can be defined in the same way.
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Lemma

For n > 0, a non-standard model A of IΣn is Σn-recursively saturated, i.e., it realizes any
(finitely satisfiable) recursive 1-type on a finite subset of A consisting of only Σn formulas.

Proof. Let Φ(x, x⃗) be a recursive type consisting only of Σn formulas. Then, the Gödel
numbers of formulas in Φ can be expressed by a ∆1 formula θ(i). Thereby,

• The finite satisfiability of Φ(x, a⃗) is expressed as: for each natural number j,

∃x∀i < j(θ(i) → SatΣn
(i, (x, a⃗))),

which is shown to be Σn in BΣn(⊆ IΣn).

• Let A be a non-standard model of IΣn. By the overspill principle, the above formula
holds for some infinite element j′. Suppose x = a satisfies the formula for this j′.

• Then, we have θ(i) → SatΣn
(i, (a, a⃗)) for any natural number i. Namely, all Σn

formulas in Φ(x, a⃗) are realized by a in AA.

By the above lemma, any non-standard model of PA is Σn-recursively saturated for each
n > 0, but in the next problem, we show there is a non-standard model of PA which is not
recursively saturated.
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If the satisfaction relation Sat(x, y) were defined in PA, any non-standard model of PA
would be recursively saturated in the same way as in the above lemmma. So, this is
another proof that the satisfaction relation is not definable in PA.

Problem 4� �
Let A be a non-standard model of PA, and a ∈ A be an arbitrary non-standard element.
Then, in A, let K(A ; a) denote the set of all element b ∈ A that can be defined by the
formula φ(x, a) (does not include parameters other than a). That is, K(A ; a) denote
the set of b’s such that A{a,b} |= ∀x(x = b↔ φ(x, a)). Then prove the following.
(1) By restricting functions and relations of A to that of K(A ; a), K(A ; a) can be seen
as a substructure of A. K(A ; a) is an elementary substructure of A.
(2) Φ(x, a) = {∃vφ(v, a) → ∃v < x φ(v, a) : φ(v, u) contains no free variables
or parameters other than u, v} is recursive and finitely satisfiable, but it cannot be
realized by K(A ; a).� �
Problem 5� �
Let A = (A,+, • , 0, 1, <) be a non-standard model of IΣ1. Show that A′ =
(A,+, 0, 1, <) is recursively saturated.� �
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Solutions.

• Problem 4 (1) Use the Tarski-Vaught test. If A{a} |= ∃xφ(x, a), then a formula
φ(x, a) ∧ ∀y < x¬φ(y, a) defines an element b ∈ K(A ; a) such that A{a,b} |= φ(b, a).

• Problem 4 (2) Obviously, Φ(x, a) is recursive and finitely satisfiable. Since it includes
∃vφ(v, a) → ∃v<x φ(v, a) for all formulas φ(v, a) defining an element of K(A ; a), it
can not be realized in K(A ; a).

• Problem 5 Any arithmetical formula without the multiplication symbol can be
expressed as a Σ0 formula (recall Presburger arithmetic). Since A is Σ1-recursively
saturated, A′ is also, and then it is recursively saturated.
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In the above lemma, we will extend a recursive type to a little more general class. To this
end, we introduce the following concept.

Definition

Let A be a model of IΣ1, and a ∈ A. The set

{n ∈ N : A |= p(n)|a}

is called the set coded by a in A, where p(n) is a primitive recursive function representing
the n+ 1-th prime number, and u|v ≡ ∃w ≤ v(u •w = v) . The collection of all the sets
encoded by an element in A is called the standard system of A, denoted as SSy(A).
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Lemma (D. Scott)

Let A be a non-standard model of IΣ1. Given two disjoint Σ1 sets, there exists a set in
SSy(A) which separates them. In particular, any recursive set belongs to SSy(A).

Proof.

• Let ∃yθi(x, y) (θi is a Σ0 formula, i = 0, 1) represent two disjoint Σ1 sets.

• Let A be a non-standard model of IΣ1. Then consider the following Σ1 formula:

∃v∀x, y < j((θ0(x, y) → p(x)|v) ∧ (θ1(x, y) → p(x) ̸ |v)).

This holds for any standard natural number j in A. Then by the overspill principle, it
also holds for a non-standard element j = b.

• Let c be such that v = c satisfies the above formula with j = b. Then, the set coded
by c separates the two initially given Σ1 sets as follows.

N |= ∃y θ0(n, y) ⇒ A{b} |= ∃y < b θ0(n, y) ⇒ A{c} |= p(n)|c,

N |= ∃y θ1(n, y) ⇒ A{b} |= ∃y < b θ1(n, y) ⇒ A{c} |= p(n) ̸ |c.

Note that in general, a set that separates two Σ1 sets cannot be obtained recursively. That
is, SSy(A) is properly larger than the class of recursive sets.
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Lemma

Let n > 0 and A be a non-standard model of IΣn. If a type Φ(x⃗) of Σn formulas on a
finite subset of A is coded in A, then A realizes Φ(x⃗).

The proof is exactly the same as that of lemma in Page 9. The converse holds as follows.

Lemma

Let n > 0 and A be a non-standard model of IΣn. Fix a⃗ ∈ A<ω arbitrarily. Then the
following k types can be coded.

Φ(x⃗) = {φ(x⃗) : φ(x⃗) ∈ Σn ∧ A |= φ(⃗a)},
Ψ(x⃗) = {ψ(x⃗) : ψ(x⃗) ∈ Πn ∧ A |= ψ(⃗a)}

Proof. In IΣ1, SatΣn(x, y) and SatΠn(x, y) can be defined. So, there exist Σn formula
φ1(k, a⃗) and Πn formula ψ1(k, a⃗) s.t. φ ∈ Φ ↔ φ1(⌜φ⌝, a⃗) and ψ ∈ Ψ ↔ ψ1(⌜ψ⌝, a⃗) hold.
Then, letting c be a non-standard element of A, by Σn induction, we can define a code
Πb∈Up(b) for U = {b < c : φ1(b, a⃗)} and a code Πb∈V p(b) for V = {b < c : ψ1(b, a⃗)}.
It is clear that these code Φ(x⃗) and Ψ(x⃗), respectively.
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With the above preparations, we will prove Friedman’s self-embedding theorem. The
following is a key lemma, and also used in several variations of the theorem.

Lemma

Assuming n > 0, let A, B be countable non-standard models of IΣn. Take a0 ∈ A and
b0, c ∈ B arbitrarily. Then the following two conditions are equivalent.

(1) There exists B′ ⊆e B such that c ̸∈ B′. There is an isomorphism h between A and

B′ such that h(a0) = b0. For any Πn−1 formula φ(x⃗) and any b⃗ ∈ B′<ω,

B′
{⃗b} |= φ(⃗b) ⇔ B{⃗b} |= φ(⃗b).

(2) SSy(A) = SSy(B), and for any Πn−1 formula φ(v⃗, u),

AA |= ∃v⃗φ(v⃗, a0) ⇒ BB |= ∃v⃗ < cφ(v⃗, b0),

where v⃗ = (v1, . . . , vk) and ∃v⃗ < c means ∃v1 < c · · · ∃vk < c.
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Proof. Assume (1) and we show the first half of (2).

• By A ∼= B′, SSy(A) = SSy(B′) is obvious.

• Since B′ ⊆e B, it is also clear that SSy(B′) ⊆ SSy(B).

• Assume that R ∈ SSy(B) and R is coded by r in B. We will show that R is also
coded in B′.

• Take any non-standard element l of B′. Since B′ is also a model of IΣn (n > 0), the
l + 1-th prime p(l) belongs to B′, and p(l)! ∈ B′.

• Therefore, letting m be the greatest common divisor of r and p(l)! in B, we have
m ∈ B′ since B′ is an initial segment of B. Then, it is clear that m also encodes R.

• From the above, we obtain SSy(A) = SSy(B).

Next we show the second half of (2).

• Let φ(v⃗, u) be a Πn−1 formula, and AA |= ∃v⃗φ(v⃗, a0).
• By the isomorphism between A and B′, B′

B′ |= ∃v⃗φ(v⃗, b0).
• Then, since there exists d⃗ ∈ B′ such that B′

B′ |= φ(d⃗, b0), from the assumption (1),

BB |= φ(d⃗, b0). Therefore, BB |= ∃v⃗ < cφ(v⃗, b0).
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Next, assuming (2), we show (1).

• This is an application of the so-called back-and-forth argument. We alternately
produce a list a0, a1, · · · of the elements of A and a list b0, b1, · · · of the elements of
B′, and an isomorphism h between A and B′ defiend by h(ai) = bi.

• Now, suppose a0, a1, · · · , a2k and b0, b1, · · · , b2k have been chosen, and for any Πn−1

formula φ(v⃗, u⃗),

AA |= ∃v⃗φ(v⃗, a0, · · · , a2k) ⇒ BB |= ∃v⃗ < cφ(v⃗, b0, · · · , b2k) (♯)

holds.

• We next choose a2k+1, a2k+2 and b2k+1, b2k+2 such that this condition is preserved.
We will explain later that (1) can be obtained by this.

• Since A is countable, each member can be assigned by a natural number uniquely.
Then choose one with the smallest number among the elements that do not appear in
a0, a1, · · · , a2k and denote it as a2k+1. This process guarantees that {ai : i ∈ N} lists
all the members of A.
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• Now we will search for b2k+1 such that (♯) holds.

• Let Φ(x⃗) be the set of Σn formulas ∃v⃗φ(v⃗, x0, · · · , x2k+1) (φ ∈ Πn−1 ) which holds
for a0, · · · , a2k, a2k+1 in A. By the second lemma in page 14, Φ(x⃗) is coded in A.
Since SSy(A) = SSy(B), so it is also coded in B.

• Furthermore, we let

Φ′(x0, · · · , x2k+1, x2k+2)

= {∃v⃗ < x2k+2 φ(v⃗, x0, · · · , x2k+1) : ∃v⃗φ(v⃗, x0, · · · , x2k+1) ∈ Φ}.

Since there is a primitive recursive transformation between Φ and Φ′, Φ′ is also coded
in B.

• Then, if Φ′(b0, · · · , b2k, x, c) is shown to be finitely satisfiable in B, then by the first
lemma in page 14, we can find an element x = b that realizes Φ′(b0, · · · , b2k, x, c),
and letting b2k+1 be such a b, (♯) holds.

• Now, let ∃v⃗ < cφi(v⃗, b0, · · · , b2k, x) (i ≤ j) be any finite set of formulas from
Φ′(b0, · · · , b2k, x, c).
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• From the definition of Φ′, for each i ≤ j, ∃v⃗φi(v⃗, a0, · · · , a2k, a2k+1) holds in A, so

AA |= ∃v⃗0 · · · ∃v⃗j∃x
∧
i≤j

φi(v⃗i, a0, · · · , a2k, x).

• On the other hand, using (♯),

BB |= ∃v⃗0 < c · · · ∃v⃗j < c∃x < c
∧
i≤j

φi(v⃗i, b0, · · · , b2k, x).

• Therefore, by simple transformation,

BB |= ∃x
∧
i≤j

∃v⃗ < cφi(v⃗, b0, · · · , b2k, x).

• In other words, Φ′(b0, · · · , b2k, x, c) is finitely satisfiable, and b2k+1 is obtained.
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• Next, we first select b2k+2 and we search for a corresponding a2k+2. If
{b0, · · · , b2k, b2k+1} is an initial segment of B, then b2k+2 = b2k+1, a2k+2 = a2k+1,
and (♯) holds.

• Otherwise, there exists a b < max{b0, · · · , b2k, b2k+1} such that b does not appear in
b0, · · · , b2k, b2k+1. Then among such, let b2k+2 be one with the minimal number
assigned in advance to the members of B. This finally produces {bi : i ∈ N} as an
initial segment of B.

• Then we will find a2k+2 corresponding to b2k+2.

• Let Ψ(x⃗) be the set of Σn formulas ∀v⃗ < x2k+3 ψ(v⃗, x0, · · · , x2k+2) holds for
b0, · · · , b2k+1, b2k+2, c in B. This can be coded in B.

• Therefore, if we define

Ψ′(x0, · · · , x2k+1, x2k+2)

= {∀v⃗ψ(v⃗, x0, · · · , x2k+2) : ∀v⃗ < x2k+3 ψ(v⃗, x0, · · · , x2k+2) ∈ Ψ}

then Ψ′ is coded in A by the same argument as above.

• All that remains is to show Ψ′(a0, · · · , a2k+1, x) is finitely satisfiable in A. So, let
∀v⃗ψi(v⃗, a0, · · · , a2k+1, x) (i ≤ j) be a finite subset of Ψ′(a0, · · · , a2k+1, x).
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• We will show that these formulas are realized by x = a such that
a < max{a0, · · · , a2k, a2k+1} .

• By way of contradiction, assume

AA |= ∀x < max{a0, · · · , a2k, a2k+1}∃v⃗
∨
i≤j

¬ψi(v⃗, a0, · · · , a2k+1, x).

• By the Σn collection principle that follows from Σn induction,

AA |= ∃y∀x < max{a0, · · · , a2k, a2k+1}∃v⃗ < y
∨
i≤j

¬ψi(v⃗, a0, · · · , a2k+1, x).

• On the other hand, using (♯),

BB |= ∃y < c∀x < max{b0, · · · , b2k, b2k+1}∃v⃗ < y
∨
i≤j

¬ψi(v⃗, b0, · · · , b2k+1, x).

• Therefore, by simple transformation,

BB |= ∀x < max{b0, · · · , b2k, b2k+1}∃v⃗ < c
∨
i≤j

¬ψi(v⃗, b0, · · · , b2k+1, x)

This is contradicts with the assumption that b0, · · · , b2k+1, b2k+2, c realize Ψ(x⃗).
• Thus, Ψ′(a0, · · · , a2k+1, x) is finitely satisfiable, and so the desired a2k+2 exists.
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• Suppose that we have completed the construction of a list a0, a1, · · · , and a list
b0, b1, · · · . As described above, A = {ai : i ∈ N} and B′ = {bi : i ∈ N} is an initial
segment of B. It is also obvious that c ̸∈ B′.

• Next, we define a function h between A and B′ by h(ai) = bi. Then, h is an
isomorphism, since by (♯), for an atomic formula φ(x0, · · · , xk),

AA |= φ(a0, · · · , ak) ⇒ BB |= φ(b0, · · · , bk),

which implies h preserves operations and <.
• Moreover, by (♯), we can show that for any Πn−1 formula φ(x0, · · · , xk),

AA |= φ(a0, · · · , ak) ⇔ BB |= φ(b0, · · · , bk).

⇒ is clear. For ⇐, let AA ̸|= φ(a0, · · · , ak). Then AA |= ¬φ(a0, · · · , ak), and
¬φ(a0, · · · , ak) is Σn−1, so by (♯), BB |= ¬φ(b0, · · · , bk), and BB ̸|= φ(b0, · · · , bk).

• On the other hand, since h is isomorphic, for any formula φ(x0, · · · , xk),

AA |= φ(a0, · · · , ak) ⇔ B′
B′ |= φ(b0, · · · , bk).

So for any Πn−1 formula φ(x0, · · · , xk),

B′
B′ |= φ(b0, · · · , bk) ⇔ BB′ |= φ(b0, · · · , bk),

and thus (1) is obtained.
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Theorem (Friedman’s self-embedding theorem)

Let n > 0, A be a countable non-standard model of IΣn, and take a ∈ A arbitrarily. Then
there exists an initial segment A′ of A such that a ∈ A′ but A′ ⫋ A, and A ∼= A′ and for

any Πn−1 formula φ(x⃗) and any a⃗′ ∈ A′<ω,

A′
A′ |= φ(a⃗′) ⇔ AA′ |= φ(a⃗′).

Proof.

• In last lemma, we consider the case A = B. In order to satisfy the condition (2) of the
last lemma, for any Πn−1 formula φ(v⃗, u), it is sufficient to find c such that

A{a} |= ∃v⃗φ(v⃗, a) ⇒ A{a,c} |= ∃v⃗ < cφ(v⃗, a).

• Now, let
Φ(x) = {∃v⃗φ(v⃗, a) → ∃v⃗ < xφ(v⃗, a) : φ(v⃗, u) ∈ Πn−1}.

This is a recursive type consisting only of Πn formulas, and is clearly finitely satisfiable.

• Therefore, there exists c that realizes Φ(x). Therefore, by the last lemma, there exists
an initial segment A′ of A which satisfies the conditions of the theorem.
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• The essence of this theorem is that a countable non-standard model of IΣ1 has an
initial segment that is isomorphic to itself.

• Friedman first proved this theorem for a countable non-standard model of Peano
arithmetic, and several researchers sophisticated it to the above form.

• The same theorem does not hold for non-countable models, and also it does not hold
in general for countable non-standard models of IΣ0.

• Furthermore, an important result related to this is McAloon’s theorem, which states
that a countable non-standard model of IΣ0 has an initial segment that is a model of
Peano arithmetic PA.
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Thank you for your attention!
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