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To Frances



Preface

These are my lecture notes from CS682: Theory of Computation, a one-
semester course for first-year graduate students in computer science at Cor-
nell, which I have taught off and on for many years. I took the course myself
as a PhD student at Cornell from Juris Hartmanis, and his influence can
be seen in the presentation and selection of topics.

Overview and Goals

The course serves a dual purpose: to cover core material in the founda-
tions of computing for graduate students in computer science preparing
for their PhD qualifying exams, and to provide an introduction to some
more advanced topics in the theory of computational complexity for those
intending to pursue further study in the area. The course is thus a mixture
of core and advanced material.

Most of the course is concerned with computational complexity, or the
classification of computational problems in terms of their inherent complex-
ity. This usually refers to time or space usage on a particular computational
model, but may include other complexity measures as well, such as random-
ness, number of alternations, or circuit size or depth. We include a rigorous
treatment of computational models, including deterministic, nondetermin-
istic, and alternating Turing machines, circuits, probabilistic machines, in-
teractive proof systems, automata on infinite objects, and various logical
formalisms. Also included are various approximation and inapproximation
results and some lower bounds. According to most treatments, the complex-
ity universe stops at polynomial space, but we also look at higher levels of
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complexity all the way up through the primitive recursive functions, partial
recursive functions, and the arithmetic and analytic hierarchies.

Despite the title of this book, there are many beautiful areas of theo-
retical computer science that I could not cover for lack of time and space.

Intended Audience

The course is aimed at an audience of advanced undergraduates and first-
year graduate students in computer science or mathematics with an interest
in the theory of computation and computational complexity. It may also be
of interest to computer professionals and other scientists who would like to
learn more about the classical foundations of computing and contemporary
research trends.

Familiarity with the content of standard undergraduate courses in algo-
rithms and the theory of computation are helpful prerequisites. In particu-
lar, we make free use of discrete mathematical structures, including graphs,
trees, and dags; O( ) and o( ) notation; finite automata, regular expressions,
pushdown automata, and context-free languages; and Turing machines,
computability, undecidability, and diagonalization. There are many good
undergraduate texts that cover this material, for example, [61, 76, 113].

Organization and Features

The course consists of 41 primary lectures and a handful of supplementary
lectures covering more specialized or advanced topics. In my previous texts
[75, 76], the basic unit is a lecture, which is a more or less self-contained
chunk of 4–7 pages. I have received much positive feedback regarding this
organization, so I have stuck with it here. In addition to the lectures, there
are 12 homework sets and several miscellaneous homework exercises of vary-
ing levels of difficulty, many with hints and complete solutions.
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Lecture 1

The Complexity of Computations

In this course we are concerned mainly with two broad issues:

• The definition and study of various computational models and pro-
gramming constructs, with an eye toward understanding their relative
power and limitations;

• The classification of computational problems in terms of their inher-
ent complexity. This usually means time or space complexity on a
particular model, but may include other measures as well, such as
randomness, number of alternations, or circuit size.

This area of study is generally known as computational complexity theory.
It has deep roots in the theory of computability as developed by Church,
Kleene, Post, Gödel, Turing, and others in the first half of the twentieth
century.

It is widely acknowledged that the genesis of the theory as we know it
today was the 1965 paper, “On the Computational Complexity of Algo-
rithms,” by Juris Hartmanis and Richard Stearns [55]. Although mathe-
maticians had previously studied the complexity of algorithms, this paper
showed that computational problems often have an inherent complexity,
which can be quantified in terms of the number of time steps needed on a
simple model of a computer, the multitape Turing machine, but is largely
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independent of the particular model of computation. In a subsequent pa-
per with Philip Lewis [115], they showed that space complexity (number
of tape cells used) can also be treated as a complexity measure in much
the same way as time. Other pioneering work on computational complexity
that appeared around the same time included papers of Cobham [30] and
Edmonds [37], who are generally credited with the invention of the notion
of polynomial time, and Hennie and Stearns [60]. Edmonds was apparently
the first to conjecture that P �= NP . These papers were immediately rec-
ognized as a fundamental advance. Indeed, it was the original Hartmanis
and Stearns paper [55] that gave the name computational complexity to the
discipline.

The fundamental contribution of Hartmanis and Stearns was not so
much the specific results regarding the complexity of Turing machine com-
putations, but the assimilation of concrete notions of resource usage into a
general theory of computational complexity. Although they worked primar-
ily with multitape Turing machines, they argued rightly that the concepts
were universal and that the same behavior would emerge in any reasonable
model. The fundamental notion of complexity class laid down in their orig-
inal paper still pervades the field. The theory has been further generalized
by Manuel Blum [16] using an abstract notion of complexity measure, and
many results generalize to this more abstract setting (see Supplementary
Lecture J). Other resources besides time and space, from area in VLSI
layout problems to randomness in probabilistic computation, have been
successfully treated in this framework.

Today the field also includes a wide variety of notions such as prob-
abilistic complexity classes, interactive proof systems, approximation and
inapproximation results, circuit complexity, and many others. The primary
goal of this field is to understand what makes computational problems com-
plex, with the hope that by doing so, we might better understand how to
make them simpler.

Turing Machines

A convenient starting point for our study is Turing machine (TM) com-
plexity. Turing machines were invented in 1936 by Alan M. Turing [123]
at around the same time as several other formalisms purporting to cap-
ture the notion of effective computability: Post systems [94, 95], µ-recursive
functions [47], λ-calculus [28, 71], and combinatory logic [109, 35].

All these models are computationally equivalent in the sense that they
can simulate one another. This led Alonzo Church to formulate Church’s
thesis [29, 123], which states that these models exactly capture our intu-
itive notion of effective computability. But one aspect of computability that
Church’s thesis does not address is the notion of complexity. For example,
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it is true that a deterministic two-counter automaton can simulate an ar-
bitrary nondeterministic multitape Turing machine, but only at great cost.
We are thus left with the task of defining reasonable models in which these
complexity questions can be formulated and studied.

The Turing machine is a good, albeit imperfect, model for defining basic
time and space complexity, because at least for higher levels of complexity,
the definitions are robust and reflect fairly accurately our expectations of
real-life computation.

The One-Tape Turing Machine: A Quick Review

We review here the definition of deterministic, one-tape Turing machines
that act as acceptors . Inputs to such a machine are finite-length strings
over some fixed finite alphabet Σ. The length of a string x is denoted |x |.
We also use the same notation |A | for the size (cardinality) of a set A. The
unique string of length 0 is called the null string and is denoted ε. The set
of all finite-length strings over Σ is denoted Σ∗.

Informally, the machine has a finite set of states Q, a semi-infinite tape
that is delimited on the left end by an endmarker � and is infinite to the
right, and a head that can move left and right over the tape, reading and
writing symbols from a finite alphabet Γ that contains Σ as a subset.

� a b b a b a �� �� �� �� · · ·

�
�

Q

two-way, read/write

The input string is initially written on the tape in contiguous tape cells
snug up against the left endmarker. The infinitely many cells to the right
of the input all contain a special blank symbol ��.

The machine starts in its start state s with its head scanning the left
endmarker. In each step it reads the symbol on the tape under its head.
Depending on that symbol and the current state, it writes a new symbol on
that tape cell, moves its head either left or right one cell, and enters a new
state. The action it takes in each situation is determined by a transition
function δ. It accepts its input by entering a special accept state t and
rejects by entering a special reject state r. If it either accepts or rejects
its input, then it is said to halt on that input. On some inputs it may run
infinitely without ever accepting or rejecting, in which case it is said to loop
on that input. The subset of Σ∗ consisting of all input strings accepted by
the TM M is denoted L(M).
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Formally, a deterministic one-tape Turing machine is a 9-tuple

M = (Q, Σ, Γ, �, ��, δ, s, t, r),

where

• Q is a finite set of states ;

• Σ is a finite input alphabet ;

• Γ is a finite tape alphabet containing Σ as a subset;

• �� ∈ Γ− Σ is the blank symbol ;

• � ∈ Γ− Σ is the left endmarker ;

• δ : Q× Γ → Q× Γ× {L, R} is the transition function;

• s ∈ Q is the start state;

• t ∈ Q is the accept state; and

• r ∈ Q is the reject state, r �= t.

Intuitively, δ(p, a) = (q, b, d) means, “When in state p scanning symbol a,
write b on that tape cell, move the head in direction d, and enter state q.”
The symbols L and R stand for left and right, respectively.

We restrict TMs so that the left endmarker is never overwritten with
another symbol and the machine never moves off the tape to the left of the
endmarker; that is, we require that for all p ∈ Q there exists q ∈ Q such
that

δ(p,�) = (q,�, R). (1.1)

We also require that once the machine enters its accept state, it never leaves
it, and similarly for its reject state; that is, for all b ∈ Γ there exist c, c′ ∈ Γ
and d, d′ ∈ {L, R} such that

δ(t, b) = (t, c, d), δ(r, b) = (r, c′, d′). (1.2)

We refer to the state set and transition function collectively as the finite
control.

There are many variations on Turing machines: two-way infinite tapes,
multiple tapes, multiple accept and reject states, various forms of stacks
and counters. Most of these variations produce machines that are compu-
tationally equivalent in that they are all capable of accepting the same
sets. However, as mentioned, they are not necessarily equivalent from the
standpoint of resource usage.

A TM as described above is an acceptor ; that is, for each input x, it
either accepts x, rejects x, or loops on x. This amounts to computing a
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partial {0, 1}-valued function. TMs can also be equipped with an output
tape and specified output alphabet ∆ to compute partial functions with
range ∆∗.

An important variation is the nondeterministic Turing machine. A de-
terministic TM, as defined above, has a uniquely determined next configu-
ration from any given configuration as specified by its transition function
δ. A nondeterministic machine has a fixed finite choice of moves at each
transition. Formally, δ is a relation, not a function. The computation of
a deterministic machine can be described as a sequence of configurations
beginning with the start configuration. A nondeterministic machine, on the
other hand, determines a tree of possible computations, the root of which
is the start configuration. The children of any node are the possible con-
figurations that can be reached in one step. A nondeterministic machine
is said to accept its input if there is some path in the computation tree
leading to an accept configuration.

Because a Turing machine is a finite object, it is possible to encode
it as a sequence of symbols over some alphabet in such a way that the
resulting codes can be read and interpreted by another Turing machine
and simulated. This leads to the notion of a universal Turing machine.

See [61, 76, 113] for a more complete treatment.

Crossing Sequences

Let us reacquaint ourselves with Turing machines by deriving a couple
of results from [59, 115] on Turing machine time and space usage. These
results illustrate the use of a counting technique to show lower complexity
bounds.

Theorem 1.1 Let Σ = {0, 1, #}. The set of palindromes

PAL def= {z ∈ Σ∗ | z = rev z}
requires Ω(n2) time on a one-tape TM.

Here rev x denotes x written backwards. Note that this result holds
for one-tape TMs only; PAL can be accepted in linear time on a two-tape
machine.

Proof. Let M be any machine accepting PAL. Assume without loss of
generality that whenever M accepts, it first moves to the right end of the
nonblank portion of the tape before entering its accept state. For each n
that is a multiple of 4, consider the action of M on elements of PAL of the
form

PALn
def= {x#n/2 rev x | x ∈ {0, 1}n/4}.
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All elements of PALn are of length n and PALn ⊆ PAL. For each x ∈ PALn

and each position i, 0 ≤ i ≤ n, let ci(x) denote the sequence q1, q2, . . . , qk

of states of the finite control Q of M that M is in as it passes over the line
between the ith symbol and the i + 1st in either direction while scanning
x. This is called the crossing sequence at i. Let

C(x) def= {ci(x) | n/4 ≤ i ≤ 3n/4}.
Lemma 1.2 If x, y ∈ PALn and x �= y, then C(x) ∩ C(y) = ∅.

Proof. Suppose c ∈ C(x) ∩ C(y), say c = ci(x) = cj(y). Let x′ be the
prefix of x consisting of the first i symbols, and let y′ be the suffix of y
consisting of the last n− j symbols. Then x′y′ is accepted by M , because
the machine behaves to the left of c as if it were scanning x and to the
right of c as if it were scanning y; in particular, it accepts. But x′y′ is not
in PAL, because it is not a palindrome. This is a contradiction. �

Resume proof of Theorem 1.1. Let mx be the length of the shortest
crossing sequence in C(x). We show that some mx, x ∈ PALn, has to be
long. Let m = max{mx | x ∈ PALn}. Then

m∑
i=0

|Q |i =
|Q |m+1 − 1
|Q | − 1

≥ 2n/4.

The left hand side of the inequality gives the number of possible crossing se-
quences of length at most m. The right hand side is the number of elements
of PALn. The inequality holds because all the shortest crossing sequences
for elements of PALn must be different, by Lemma 1.2. By taking logs it
follows that

m ≥ Ω(n).

Then there must be an x ∈ PALn such that mx ≥ Ω(n). Because mx is the
length of the shortest crossing sequence in C(x), all crossing sequences in
C(x) are of length ≥ Ω(n), thus it takes at least n

2 · Ω(n) = Ω(n2) time to
generate all the crossing sequences in C(x). �

The next result uses the same technique to show that o(log log n) work-
space is no better than no workspace at all.

Theorem 1.3 If M runs in o(log log n) space, then M accepts a regular set.

There is a nonregular set accepted in O(log log n) space:

{#bk(0)#bk(1)#bk(2)# · · ·#bk(2k − 1)# | k ≥ 0},
where bk(i) denotes the k-bit binary representation of i (Homework 2, Ex-
ercise 4).
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Proof. Assume without loss of generality that M has a read-only input
tape and one read/write worktape, and that M always moves its input
head all the way to the right of the input string before accepting. If M is
S(n) space-bounded, then on inputs of length n there are at most

N = q · S(n) · dS(n) (1.3)

possible configurations of state, workhead position, and worktape contents,
where q is the number of states and d is the size of the worktape alphabet
of M (the position of the input head is not counted). These data constitute
the total information that can be transferred across a vertical line drawn at
some position i in the input string as the input head passes over that line.
For this proof, the crossing sequence at i consists of the sequence of such
configurations occurring at position i in the input string in either direction.
There are

m∑
i=0

N i =
Nm+1 − 1

N − 1

possible crossing sequences of length at most m.

Lemma 1.4 If there is a fixed finite bound k on the amount of space used by M on
accepted inputs, then L(M) is a regular set.

Proof. If M uses at most k worktape cells on all accepted inputs, we can
modify M to mark off k cells initially (k can be kept in the finite control)
and reject if the computation ever tries to use more than k cells. That way
we can make sure that M uses no more than k tape cells on any input. But
then no worktape memory is needed at all; the contents of the worktape
can be kept in the finite control. Thus M is equivalent to a two-way finite
automaton. �

Resume proof of Theorem 1.3. Suppose L(M) is not regular. By Lemma
1.4, there is no fixed finite bound on the amount of worktape used on inputs
in L(M). Thus for each k, there exists a string x ∈ L(M) of minimal length
for which at least k worktape cells are used. Here “of minimal length” means
that for all shorter strings in L(M), M uses fewer than k worktape cells.
Let n = |x | and let c be a crossing sequence containing an occurrence of a
configuration using k worktape cells. If c occurs in the right half of x, then
the first n/2 crossing sequences must all be distinct, otherwise a section
of x could be cut out to obtain a shorter string accepted with crossing
sequence c, contradicting the minimality assumption. If c occurs in the left
half, then the last n/2 crossing sequences must all be distinct for the same
reason. In either case, there are at least n/2 distinct crossing sequences.
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In order to have n/2 distinct crossing sequences, there must be a crossing
sequence of length at least m, where

n

2
≤

m∑
i=0

N i =
Nm+1 − 1

N − 1
. (1.4)

Moreover, no crossing sequence can be of length greater than 2N , otherwise
a configuration would be repeated in the crossing sequence twice in the
same direction, thus M would be looping, contradicting the fact that x is
accepted. Thus

m ≤ 2N. (1.5)

Combining (1.3), (1.4), and (1.5) and taking logs, we get

S(n) ≥ Ω(log log n).

�



Lecture 2

Time and Space Complexity Classes and
Savitch’s Theorem

Let T : N → N and S : N → N be numeric functions, which serve as
asymptotic time and space bounds for Turing machine computations. These
functions are usually written as functions of a single numeric variable n
standing for the length of the input string; for example, logn, (log n)2, n,
n log n, n3, 2(log n)2 , 2n, n!, 22n

, and so on.

Definition 2.1 We say that a nondeterministic TM runs in time T (n) or is T (n) time-
bounded if on all but finitely many inputs x, no computation path takes
more than T (|x |) steps before halting, where |x | denotes the length of x.

We say that a nondeterministic TM runs in space S(n) or is S(n)
space-bounded if on all but finitely many inputs x, no computation path
uses more than S(|x |) worktape cells, where |x | is the length of x.

In Definition 2.1, the “but finitely many” is there mainly to avoid trivial
counterexamples involving the null string, but it is also often technically
convenient in asymptotic complexity to be able to ignore small inputs. We
can always store a finite amount of data in the finite control and do table
lookup for finitely many inputs.

Note that to run in a certain amount of time or space, the machine
must not exceed the stated bounds even on nonaccepting computations.

The following are the basic time and space complexity classes.



12 Lecture 2

Definition 2.2

DTIME (T (n)) def= {L(M) | M is a deterministic multitape TM run-
ning in time T (n)},

NTIME (T (n)) def= {L(M) | M is a nondeterministic multitape TM
running in time T (n)},

DSPACE (S(n)) def= {L(M) | M is a deterministic TM with read-only
input tape and read/write worktape run-
ning in space S(n)},

NSPACE (S(n)) def= {L(M) | M is a nondeterministic TM with read-
only input tape and read/write worktape
running in space S(n)}.

If A is a complexity class, the set of complements of sets in A is denoted
co-A. Note: this is not the complement of A!

Linear Speedup

The next result says that for the TM model, it does not make sense to
measure time and space complexity any more accurately than to within a
constant factor.

Theorem 2.3 Let T (n) ≥ n + 1 and S(n) ≥ Ω(log n). For any constant c ≥ 1,

DTIME (cT (n)) ⊆ DTIME(T (n)),
NTIME (cT (n)) ⊆ NTIME(T (n)),

DSPACE (cS(n)) ⊆ DSPACE(S(n)),
NSPACE (cS(n)) ⊆ NSPACE(S(n)).

Proof sketch. Expand the tape alphabet so that c tape cells of the old
machine can be compressed into one tape cell of the new machine. This
allows c steps of the old machine to be simulated in one step of the new
machine. For the time bounds, we may need an extra tape to compress the
input. �

Some Common Complexity Classes

Definition 2.4

LOGSPACE def= DSPACE (log n),

NLOGSPACE def= NSPACE (log n),
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P def= DTIME (nO(1)) =
⋃
k>0

DTIME (nk),

NP def= NTIME (nO(1)) =
⋃
k>0

NTIME (nk),

PSPACE def= DSPACE (nO(1)) =
⋃
k>0

DSPACE (nk),

NPSPACE def= NSPACE (nO(1)) =
⋃
k>0

NSPACE (nk),

EXPTIME def= DTIME (2nO(1)
) =

⋃
k>0

DTIME (2nk

),

NEXPTIME def= NTIME (2nO(1)
) =

⋃
k>0

NTIME (2nk

),

EXPSPACE def= DSPACE (2nO(1)
) =

⋃
k>0

DSPACE(2nk

),

NEXPSPACE def= NSPACE (2nO(1)
) =

⋃
k>0

NSPACE (2nk

).

Basic Inclusions

The inclusions

DTIME (T (n)) ⊆ NTIME(T (n)),
DSPACE (S(n)) ⊆ NSPACE(S(n))

are trivial, because by definition every deterministic TM is also a nonde-
terministic TM.

Theorem 2.5 Let S(n) ≥ log n. Then

DTIME (T (n)) ⊆ DSPACE(T (n)),
NTIME (T (n)) ⊆ NSPACE(T (n)),

DSPACE (S(n)) ⊆ DTIME(2O(S(n))),
NSPACE (S(n)) ⊆ NTIME(2O(S(n))).

Proof. The first two inclusions follow from the fact that a machine can
scan at most one new worktape cell in every step, thus the space usage can
be no greater than the running time.

For the last two inclusions, we show how a machine running in space
S(n) can be modified to clock itself and shut down after 2O(S(n)) steps
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without affecting the set accepted. Assume without loss of generality that
the machine has a single read-only input tape and a single read/write work-
tape (multiple worktapes can be simulated on separate tracks of a single
worktape without loss of space by increasing the size of the worktape alpha-
bet). If the machine has d worktape symbols and q states, then there are
at most qnS(n)dS(n) possible configurations on inputs of length n, because
there are q possible states, n input head positions, S(n) worktape head
positions, and dS(n) worktape contents. This number is at most cS(n) for
some sufficiently large constant c. Any computation path of length greater
than this must have a repeated configuration, therefore there is a shorter
computation path with the same outcome (accept or reject) obtained by
deleting the segment between the two occurrences of the repeated configu-
ration. This says that if there exists an accepting computation path, then
there exists one of length at most cS(n). We can count up to cS(n) on a
separate track of the worktape and reject if the simulated computation has
not halted by then. This takes no extra space if the counting is done in
c-ary, and the time overhead is O(S(n)) steps per simulated step of the old
machine, or O(S(n)cS(n)) in all, which is still 2O(S(n)). �

We can show an even stronger result that subsumes Theorem 2.5.

Theorem 2.6 Let S(n) ≥ log n. Then

NTIME (T (n)) ⊆ DSPACE(T (n)),
NSPACE (S(n)) ⊆ DTIME(2O(S(n))).

Proof. For the first inclusion, we do a depth-first search on the com-
putation tree of the given nondeterministic T (n)-time-bounded machine,
constructing the computation tree on the fly. We accept if an accept con-
figuration is ever encountered. It may seem at first that we need O(T (n)2)
space to keep a stack of configurations for the depth-first search, because
each configuration requires up to T (n) space and the depth of the tree is
T (n); but actually we only need to keep on the stack a k-ary string giving
the path from the start configuration to the configuration currently being
visited, assuming that all nondeterministic choices are at most k-ary. We
can reconstruct the current configuration in space T (n) at any time by
starting at the start configuration and simulating the computation of the
nondeterministic machine, using the k-ary string to resolve nondeterminis-
tic choices.

For the second inclusion, assume first that S(n) is space-constructible.
That means that there exists a Turing machine that, when started with
any string of length n written on its input tape, marks off S(n) worktape
cells and halts, never using more than S(n) space in the process. Not all
functions are space-constructible, but the natural ones listed above are. We
show later how to get rid of this assumption.
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Using the assumption of space-constructibility, we first mark off S(n)
worktape cells. We then write down all the configurations of the nonde-
terministic machine that use no more than S(n) space. As argued in the
proof of Theorem 2.5, there are at most cS(n) of them, and we can write
them all down in at most S(n)cS(n) time. Now we inductively mark all
configurations that are reachable from the start configuration, accepting if
we ever mark an accept configuration. A coarse analysis of this procedure
still gives a time bound of dS(n) for sufficiently large constant d.

To get rid of the space-constructibility assumption, instead of marking
off S(n) space initially, we do the entire procedure above for S = 0, 1, 2, . . . .
For each S, if we ever encounter a configuration reachable from the start
configuration that wants to use more than S space, we set S := S + 1 and
restart. We eventually hit S(n), at which point no reachable configuration
will try to use more space. The time is at most

S(n)∑
S=0

dS ≤ dS(n)+1 − 1
d− 1

,

which is still 2O(S(n)). �

Savitch’s Theorem

Probably the most important open question in theoretical computer science
is the P=NP question. The corresponding question for space was solved in
1970 by Walter Savitch [108]. This result is known as Savitch’s theorem.

Theorem 2.7 (Savitch’s Theorem) Let S(n) ≥ log n. Then

NSPACE (S(n)) ⊆ DSPACE(S(n)2).

In particular, PSPACE = NPSPACE.

Proof. We prove the result under the assumption that S(n) is space-
constructible. We can get rid of this assumption the same way as in Theo-
rem 2.6. By the construction of Theorem 2.5, we can also assume without
loss of generality that the given nondeterministic S(n)-space-bounded ma-
chine M is also dS(n) time-bounded for some constant d.

A configuration of M consists of a state, head positions, and worktape
contents. The input string need not be explicitly represented. Encode con-
figurations of M as strings over a finite alphabet ∆ in some reasonable way,
and let d = |∆ |. For inputs of length n, a configuration of M is represented
by a string in ∆S(n), and there are dS(n) such strings. If α, β ∈ ∆S(n), write
α

≤k−→ β if α, β represent legal configurations of M and α goes to β in k
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or fewer steps according to the transition relation of M without exceeding
the space bound S(n).

The deterministic machine will implement a recursive procedure SAV
of three arguments α, β, k that determines whether α

≤k−→ β. Note that by
the pigeonhole argument of Theorem 2.5, if α

≤k−→ β for any k at all, then
α

≤k−→ β for some k ≤ dS(n), so we can restrict our attention to numbers in
this range. Writing k in d-ary requires at most S(n) space.

Thus to determine whether M accepts x, it suffices to check whether

start
≤dS(n)

−→ accept, where start and accept are the start and accept
configurations, respectively, which we can assume without loss of general-
ity are unique. The deterministic machine first constructs S(n), then calls
SAV(start, accept, dS(n)).

The recursive procedure SAV(α, β, k) operates as follows. If k = 0 or 1,
it checks directly whether α = β or, in the case k = 1, whether α goes to
β in one step. It returns “yes” if so, otherwise it returns “no”. If k ≥ 2,
it loops through all γ ∈ ∆S(n) in some order, say lexicographic. For each
such γ, it calls SAV(α, γ, 
k/2�) and SAV(γ, β, �k/2) to determine whether

α
≤�k/2�−→ γ and γ

≤�k/2�−→ β, respectively. If both recursive calls return “yes”,
it returns “yes”. Otherwise, it goes on to the next γ. If it goes through all
γ without success, then it returns “no”.

This is a deterministic procedure. One can show easily by induction on
k that SAV(α, β, k) returns “yes” iff α

≤k−→ β. Each instantiation of SAV
requires a stack frame of size S(n) for preserving local data across recursive
calls. The stack can be kept on the worktape. The depth of the recursion
is log2 dS(n) = O(S(n)), because k is halved with each recursive call. Thus
the total storage required is O(S(n)2). �
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Separation Results

Deterministic Separation Results

Theorem 3.1 Let S(n) be space-constructible. Then there exists a set in DSPACE(S(n))
that is not in DSPACE (S′(n)) for any S′(n) = o(S(n)).

Proof. We prove this with a diagonalization argument. Let M0, M1, . . .
be a list of all Turing machines with binary input alphabet. We assume
that the binary representation of i gives an encoding of the machine Mi

that allows universal simulation; that is, a universal TM, given the number
i in binary and another binary string x, can read a description of Mi from i
and simulate Mi step by step on input x. We assume that all binary strings
code some machine; if i is a nonsense string not corresponding to any TM,
we just take Mi to be some trivial machine that always halts immediately.
(Such an encoding scheme is called a Gödel numbering. We study Gödel
numberings from an axiomatic point of view in Lecture 33.)

We further assume that in our encoding scheme, leading zeros in the
binary representation of i are ignored. If #(x) is the number represented
by the binary numeral x, then for all sufficiently large n there is a binary
string x of length n such that #(x) = i, therefore any Mi has arbitrarily
large codes obtained by padding on the left with extra zeros.
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Now build a machine M that on a binary string x of length n does the
following:

1. lays off S(n) space on its worktape (this is possible by assumption of
space-constructibility in the statement of the theorem); and

2. simulates Mi on input x, where i = #(x), never exceeding S(n) space.

Exactly one of the following events has to occur, and in each case M takes
the specified action.

(i) If there is enough space to do the complete simulation and Mi halts,
then M does the opposite—if Mi accepts, then M rejects, and vice
versa.

(ii) If Mi loops infinitely, then so does M .

(iii) If the simulation requires more than S(n) space, then M just halts
and rejects.

Because of our assumption about padding in the encoding scheme, every
Turing machine is simulated on some input of length n for every sufficiently
large n. The meaning of “sufficiently large” depends on the TM being
simulated.

Now if Mi is o(S(n)) space-bounded, then for all sufficiently large inputs
x for which #(x) = i, M will simulate Mi on input x and the simulation
will have enough space to complete. This is true even if Mi’s tape alphabet
is much larger than M ’s—the simulation overhead is at most a constant
factor c, and for sufficiently large n the space required by Mi is less than
S(n)/c. Thus M and Mi will differ on input x, so L(Mi) �= L(M).

We also do not have to worry about the simulated machine not halting:
recall from the proof of Theorem 2.5 that for every space-bounded machine,
there is an equivalent self-clocking machine that always halts and uses no
more space.

Thus M differs on some input from every machine running in o(S(n))
space. �

There is a slight subtlety in the above argument. The universal ma-
chine M may require logarithmic space in the length of the encoding of Mi

to carry out the simulation of Mi. This is needed to compare states and
tape symbols in the encoded description of Mi. However, it only requires
logarithmic space in the length of the unpadded encoding of Mi, which is
log log i, and this number is arbitrarily small compared to the length of the
input x because of padding. Thus all we need is for S(n) to be unbounded
above. But if S(n) is bounded, there is no function S′(n) = o(S(n)), so in
that case the theorem is trivially true.



Separation Results 19

Theorem 3.2 Let T (n) be time-constructible, T (n) ≥ n. Then there exists a set in
DTIME (T (n)) that is not in DTIME (T ′(n)) for any T ′(n) such that
T ′(n) log T ′(n) = o(T (n)).

Here the extra log factor is overhead for the simulation. The proof is
similar to the proof of Theorem 3.1, and we leave it as an exercise (Miscel-
laneous Exercise 1).

Nondeterministic Separation Results

Padding is also the basis of a technique for separating nondeterministic
space and time classes. For space classes, stronger results can be obtained
using the Immerman–Szelepcsényi theorem, which we cover next time; but
our purpose here is to illustrate the padding technique, which predated the
Immerman–Szelepcsényi theorem by 15 years.

We illustrate the technique by showing that NSPACE (n4) contains a
set not in NSPACE (n3). Suppose for a contradiction that NSPACE(n4) ⊆
NSPACE (n3). We show how we could then use padding to lift this into a
proof that NSPACE (n5) ⊆ NSPACE (n4).

Let M be an arbitrary nondeterministic machine running in space n5,
A = L(M). Consider the set

A′ = {x#|x |5/4−|x | | x ∈ A},
where # is a new symbol not in M ’s input alphabet. In other words, we
pad the input with a string of #’s of length |x |5/4 − |x |. Build a machine
M ′ which on an input of the form x#m:

(i) checks whether m = |x |5/4 − |x |; and

(ii) if so, runs M on x, ignoring the #’s.

Because M runs in space |x |5 on input x, M ′ runs in space

|x |5 = (|x |5/4)4 = |x#|x |5/4−|x | |4,

thus A′ = L(M ′) ∈ NSPACE(n4).
By our soon-to-be-proven-erroneous assumption, A′ ∈ NSPACE (n3),

therefore there exists a machine M ′′ accepting A′ running in space n3.
Now build a new machine M ′′′ for A, which does the following on input

x:

(i) appends a string of #s of length |x |5/4 − |x | to the end of x; and

(ii) runs M ′′ on the resulting string.
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Then on input x, M ′′′ runs in space

|x#|x |5/4−|x | |3 = (|x |5/4)3 = |x |15/4 ≤ |x |4,
and L(M ′′′) = A.

We have shown that under the assumption

NSPACE (n4) ⊆ NSPACE(n3),

we can conclude that

NSPACE (n5) ⊆ NSPACE(n4).

Repeating this process two more times, we get

NSPACE (n6) ⊆ NSPACE(n5),
NSPACE (n7) ⊆ NSPACE(n6).

Combining all these inclusions, we would get NSPACE(n7) ⊆ NSPACE (n3).
But then

NSPACE (n7) ⊆ NSPACE(n3)
⊆ DSPACE(n6) by Savitch’s theorem
� DSPACE(n7) by Theorem 3.1
⊆ NSPACE(n7),

which is a contradiction.
This theorem can be strengthened (Miscellaneous Exercises 4, 5).
For further containment and separation results, and a more detailed

treatment, see [63].

A Space-Constructible Function S(n) ≤ O(log log n)

For n ≥ 3, let �(n) be the least positive number not dividing n. The number
�(n) is always a prime power, because if km does not divide n, and if k
and m are relatively prime (have no common factors), then one of k or m
must not divide n. Also �(n) = O(log n), which is easily shown using the
fact that for any �,∏

p≤ �

p prime

p ≥ 2Ω(�)

(see [51, Theorem 414, p. 341]).
This gives an unbounded space-constructible function S(n) that is

O(log log n), namely the space needed by a particular TM accepting the
set

A = {an | �(n) is prime}.
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This TM checks the defining condition for A by writing down k = 2, 3, 4, . . .
in binary and checking for each k whether k divides n until it finds one that
does not; this is �(n). It can test whether k divides n by counting the length
of the input mod k, which can be done by repeatedly counting up to k in
binary on a second track of its worktape, moving its read head one cell to
the right in each step.

When it finds �(n), it checks whether it is prime. It can do this by
computing the remainder of �(n) modulo 2, 3, 4, . . . using integer division
on the worktape.

The amount of space used is no more than log �(n) = O(log log n). This
is space-constructible because only the length of the input string is used:
the input alphabet is a single-letter alphabet.

Surprisingly, the function 
log log n� itself is not space constructible.
In fact, it can be shown that for any space-constructible function S(n) ≤
o(log n), there must exist a value k such that S(n) = k for infinitely many
n; in other words,

lim
n≥0

inf
m≥n

S(m) < ∞.

This can be proved by a crossing sequence argument (Homework 6, Exercise
1).
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The Immerman–Szelepcsényi Theorem

In 1987, Neil Immerman [65] and independently Róbert Szelepcsényi [119]
showed that for space bounds S(n) ≥ log n, the nondeterministic space
complexity class NSPACE(S(n)) is closed under complement. The case
S(n) = n gave an affirmative solution to a long-standing open problem of
formal language theory: whether the complement of every context-sensitive
language is context-sensitive.

Theorem 4.1 (Immerman–Szelepcsényi Theorem) For S(n) ≥ log n, NSPACE (S(n)) =
co-NSPACE (S(n)).

Proof. For simplicity we first prove the result for space-constructible
S(n). One can remove this condition in a way similar to the proof of Sav-
itch’s theorem (Theorem 2.7).

The proof is based on the following idea involving the concept of a census
function. Suppose we have a finite set A of strings and a nondeterministic
test for membership in A. Suppose further that we know in advance the
size of the set A. Then there is a nondeterministic test for nonmembership
in A: given y, successively guess |A | distinct elements and verify that they
are all in A and all different from y. If this test succeeds, then y cannot be
in A.

Let M be a nondeterministic S(n)-space bounded Turing machine. We
wish to build another such automaton N accepting the complement of
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L(M). Assume we have a standard encoding of configurations of M over
a finite alphabet ∆, |∆ | = d, such that every configuration on inputs of
length n is represented as a string in ∆S(n).

Assume without loss of generality that whenever M wishes to accept,
it first erases its worktape, moves its heads all the way to the left, and
enters a unique accept state. Thus there is a unique accept configuration
accept ∈ ∆S(n) on inputs of length n. Let start ∈ ∆S(n) represent the
start configuration on input x, |x | = n: in the start state, heads all the
way to the left, worktape empty.

Because there are at most dS(n) configurations M can attain on input
x, if x is accepted then there is an accepting computation path of length
at most dS(n). Define Am to be the set of configurations in ∆S(n) that are
reachable from the start configuration start in at most m steps; that is,

Am = {α ∈ ∆S(n) | start ≤m−→ α}.

Thus A0 = {start} and

M accepts x ⇔ accept ∈ AdS(n) .

The machine N will start by laying off S(n) space on its worktape. It
will then proceed to compute the sizes |A0 |, |A1 |, |A2 |, . . . , |AdS(n) | in-
ductively. First, |A0 | = 1. Now suppose |Am | has been computed and is
written on a track of N ’s tape. Because |Am | ≤ dS(n), this takes up S(n)
space at most. To compute |Am+1 |, successively write down each β ∈ ∆S(n)

in lexicographical order; for each one, determine whether β ∈ Am+1 (the
algorithm for this is given below); if so, increment a counter by one. The
final value of the counter is |Am+1 |. To test whether β ∈ Am+1, nondeter-
ministically guess the |Am | elements of Am in lexicographic order, verify

that each such α is in Am by guessing the computation path start
≤m−→ α,

and for each such α check whether α
≤1−→ β. If any such α yields β in one

step, then β ∈ Am+1; if no such α does, then β �∈ Am+1.
After |AdS(n) | has been computed, in order to test accept �∈ AdS(n)

nondeterministically, guess the |AdS(n) | elements of AdS(n) in lexicographic
order, verifying that each guessed α is in AdS(n) by guessing the computa-

tion path start
≤dS(n)

−→ α, and verifying that each such α is different from
accept.

The nondeterministic machine N thus accepts the complement of L(M)
and can easily be programmed to run in space S(n).

To remove the constructibility condition, we do the entire computation
above for successive values S = 1, 2, 3, . . . approximating the true space
bound S(n). In the course of the computation for S, we eventually see all
configurations of length S reachable from the start configuration, and can
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check whether M ever tries to use more than S space. If so, we know that
S is too small and can restart the computation with S + 1. �



Lecture 5

Logspace Computability

For either deterministic or nondeterministic machines, the following re-
sources are equally powerful:

(i) Logarithmic workspace;

(ii) Counting up to n, the length of the input; and

(iii) “Finite fingers”.

By this we mean that the following classes of automata can simulate one
another:

(i) Logspace-bounded TMs;

(ii) Automata with a two-way read-only input head and a fixed finite
number of integer counters that can hold an integer between 0 and
n, the length of the input; and

(iii) Automata with a fixed finite number of two-way read-only input
heads that may not move outside the input.

A machine of type (ii) with k counters is called, appropriately enough, a
k-counter automaton with linearly bounded counters. In each step, such a
machine may test each of its counters for zero. Based on this information
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and its current state, it may add one or subtract one from each of the coun-
ters, move its read head left or right, and enter a new state. Without the
bound of n on the maximum value of the counters, a two-counter machine
could simulate an arbitrary Turing machine. But with the bound, k-counter
machines are no more powerful than logspace machines.

A machine of type (iii) with k heads is called a k-headed two-way finite
automaton (k-FA).

Intuitively, logspace is enough to simulate a finite number of integer
counters that may count only up to n, because the value of the counters can
be kept on the worktape in binary. Conversely, the values in the counters
can simulate the contents of the worktape, although this simulation is a
little more complicated; it takes a bit of cleverness to figure out how to
simulate reading and writing symbols on the worktape by manipulating
the values in the counters (Homework 1, Exercise 2).

A two-way read head can simulate a linearly bounded counter by main-
taining the count as the distance from the left endmarker; conversely, a
counter can maintain the distance of a simulated read head from the left
endmarker (Miscellaneous Exercise 9).

Logspace Transducers

A logspace transducer is a total deterministic logspace-bounded Turing ma-
chine with output. Total means it halts on all inputs. A logspace transducer
has

• a two-way read-only input tape;

• a two-way read/write logspace-bounded worktape, initially blank;
and

• a write-only left-to-right output tape, initially blank.

It has three finite alphabets Σ, Γ, and ∆, the input, worktape, and output
alphabets, respectively.

The machine begins in its start state with all the heads positioned all the
way to the left on the three tapes. The input string x ∈ Σ∗ is written on the
input tape between endmarkers, and the input head may never go outside
the endmarkers. It runs as a normal logspace TM, reading symbols on its
input tape and reading and writing symbols on its worktape. Occasionally
it may enter a special state that causes it to write a symbol in ∆ on its
output tape and advance the output tape head one cell. When the machine
halts (which it must, by assumption), the string in ∆∗ that is written on
the output tape at that point is the value of the function computed by the
machine on input x.
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Only worktape space usage is counted in the space bound; the output
tape is not counted.

A function σ : Σ∗ → ∆∗ is called logspace computable if it is computed
by some logspace transducer in this way.

The output of a logspace transducer is polynomially bounded in length.
That is, for any logspace computable function σ : Σ∗ → ∆∗, there is a
constant d such that for all x ∈ Σ∗, |σ(x) | ≤ |x |d. This is because a
logspace transducer can emit at most one output symbol per step, and it
can run for at most polynomially many steps, because otherwise it would
repeat a configuration, in which case it would be in an infinite loop.

Logspace Reducibility

To encode one problem in another, we use a reducibility relation known
as logspace reducibility. This is a relation that is computed by a logspace
transducer. Logspace reducibility was first studied by Savitch [108] and
Jones [67].

If A ⊆ Σ∗ and B ⊆ ∆∗, we write A ≤log
m B and say A is logspace

reducible to B if there is a logspace-computable function σ : Σ∗ → ∆∗ such
that for all x ∈ Σ∗,

x ∈ A ⇔ σ(x) ∈ B.

The subscript m on ≤log
m stands for “many–one” and refers to the type of

reducibility relation.

Lemma 5.1 The relation ≤log
m is transitive. That is, if A ≤log

m B and B ≤log
m C, then

A ≤log
m C.

Proof. Homework 1, Exercise 1. This is nontrivial, because there is not
enough space to write down an intermediate result in its entirety. �

Lemma 5.2 For A ∈ Σ∗, A ∈ LOGSPACE iff A ≤log
m {0, 1}.

Proof. A logspace decision procedure for membership in A is essentially
a reduction of A to a two-element set. �

Lemma 5.3 If A ≤log
m B and B ∈ LOGSPACE, then A ∈ LOGSPACE.

Proof. This follows immediately from Lemmas 5.1 and 5.2. �

In the theory of NP -completeness, you might have studied the
polynomial-time many–one reducibility relation≤p

m, also known as Karp re-
ducibility. The relations ≤p

m and ≤log
m are similar, except that ≤p

m is defined
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in terms of polynomial time transducers, which are the same as logspace
transducers except that the bound is on time instead of space. Because
logspace transducers can run for at most polynomial time, we have imme-
diately that

Lemma 5.4 If A ≤log
m B then A ≤p

m B.

It is not known whether ≤log
m is strictly stronger than ≤p

m, however.
Although ≤p

m is adequate for studying the P = NP question, we are
interested in the stronger reducibility ≤log

m because it has consequences for
lower complexity classes such as LOGSPACE and NLOGSPACE . Most
of the natural polynomial-time reductions appearing in the literature can
actually be done in logspace.

Completeness

A set A ∈ Σ∗ is said to be ≤log
m -hard for a complexity class C if B ≤log

m A
for all B ∈ C. Intuitively, A is as hard as any decision problem in C, because
it can encode any decision problem in C. A set A is said to be complete for
C with respect to ≤log

m if

(i) A is ≤log
m -hard for C, and

(ii) A ∈ C.

Sometimes we say that A is ≤log
m -complete for C or just C-complete if the

reducibility relation ≤log
m is understood. Intuitively, A is a hardest element

of C in the sense that it encodes every other element of C.
The Cook–Levin theorem says that Boolean satisfiability is NP -

complete. The usual proofs of the Cook–Levin theorem only show ≤p
m

completeness, but it is easily shown that the problem is complete with
respect to the stronger reducibility ≤log

m . We derive this as a corollary next
time.

Here is the canonical NLOGSPACE -complete problem that is to the
LOGSPACE = NLOGSPACE question as Boolean satisfiability is to the
P = NP question.

Definition 5.5 The problem MAZE (also known as directed graph reachability) is the
problem of determining, given a directed graph G = (V, E) and distinguished
vertices s, t ∈ V , whether there exists a directed path from s to t.

Theorem 5.6 (Jones, Lien, and Laaser [68]) MAZE is ≤log
m -complete for NLOGSPACE.

Proof. We must show

(i) MAZE is ≤log
m -hard for NLOGSPACE , and
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(ii) MAZE ∈ NLOGSPACE .

Part (ii) is easy, because we can trace our way through the given graph using
finitely many fingers, guessing the path from s to t nondeterministically.

To show (i), let A be an arbitrary element of NLOGSPACE . We must
show that A ≤log

m MAZE. Suppose M is a nondeterministic logspace-
bounded TM accepting A. Let start and accept be the start and accept
configurations of M , respectively. We can assume without loss of generality
that accept is unique by making M erase its worktape and move its heads
all the way to the left before accepting. We build a graph G = (V, E), where
V is a finite set of configurations of M containing all configurations of M
on input x, and E is the next-configuration relation on input x. Then M
accepts x iff there is a path from start to accept in G.

Recall that a configuration of M consists of the current state, the cur-
rent head positions, and the current contents of the worktape. For an input
x of length n, all this information takes only logn space to record, say as
a string of length log n over an alphabet ∆ of size d. We can thus take
V = ∆log n. This set is of size dlog n = nlog d. We take the edges E to be the
pairs (α, β) such that α and β are encodings of configurations of M and β
follows from α in one step on input x according to the transition rules of
M .

It remains to argue that this graph can be produced by a logspace
transducer on input x. The transducer first outputs the set of vertices
∆log n. This is easy: it lays off log n space on its worktape, then cycles
through all strings in ∆log n lexicographically, outputting them all. For the
edges, it writes down all pairs α, β in lexicographic order. For each pair,
it checks that they both encode configurations of M and that α goes to
β in one step on input x. It has to read the ith symbol of its input x to
determine this, where i is the position of the input head specified by α. If
so, it outputs the edge (α, β). Finally, it outputs the two strings encoding
the configurations start and accept.

Although the output (V, E, start, accept) is polynomial in length, only
logarithmic workspace was used to produce it, because there were only at
most two configurations of M written down on the transducer’s worktape
at any time. Thus the map x �→ (V, E, start, accept) is computable in
logspace and constitutes a reduction from A to MAZE. �

Corollary 5.7 MAZE ∈ LOGSPACE iff LOGSPACE = NLOGSPACE.

Proof. Lemmas 5.1 and 5.2 and Theorem 5.6. �

Omer Reingold [101] has very recently shown that the undirected graph
reachability problem is solvable in deterministic LOGSPACE .
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The Circuit Value Problem

In the early 1970s, Stephen Cook [31] and independently Leonid Levin [79]
showed that the Boolean satisfiability problem (SAT)—whether a given
Boolean formula has a satisfying truth assignment—is NP-complete. Thus
Boolean satisfiability is in P iff P = NP . This theorem has become known
as the Cook–Levin theorem. Around the same time, Richard Karp [70]
showed that a large number of optimization problems in the field of oper-
ations research such as the traveling salesperson problem, graph coloring,
bin packing, and many others were all interreducible and therefore NP -
complete. These two milestones established the study of NP-completeness
as an important aspect of theoretical computer science. In fact, the question
of whether P = NP is today widely considered one of the most important
open questions in all of mathematics.

There is a theorem of Ladner [78] that plays the same role for the P =
NLOGSPACE or P = LOGSPACE question that the Cook–Levin theorem
plays for the P = NP question. The decision problem involved is the circuit
value problem (CVP): given an acyclic Boolean circuit with several inputs
and one output and a truth assignment to the inputs, what is the value of
the output? The circuit can be evaluated in deterministic polynomial time;
the theorem says that this problem is ≤log

m -complete for P . It follows from
the transitivity of ≤log

m that P = NLOGSPACE iff CVP ∈ NLOGSPACE
and P = LOGSPACE iff CVP ∈ LOGSPACE .
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Formally, a Boolean circuit is a program consisting of finitely many
assignments of the form

Pi := 0,

Pi := 1,

Pi := Pj ∧ Pk, j, k < i,

Pi := Pj ∨ Pk, j, k < i, or
Pi := ¬Pj , j < i,

where each Pi in the program appears on the left-hand side of exactly one
assignment. The conditions j, k < i and j < i ensure acyclicity. We want
to compute the value of Pn, where n is the maximum index.

Theorem 6.1 The circuit value problem is ≤log
m -complete for P.

Proof. We have already argued that CVP ∈ P . To show hardness, we
reduce an arbitrary A ∈ P to CVP. Let M be a deterministic single-tape
polynomial-time-bounded TM accepting A, say with time bound nc. Let Γ
be the worktape alphabet of M and let Q be the set of states of M ’s finite
control. The transition function δ of M is of type δ : Q×Γ → Q×Γ×{L, R}.
Intuitively, δ(p, a) = (q, b, d) says, “When in state p scanning symbol a on
the tape, print b on that cell, move in direction d, and enter state q.” We
can encode configurations of M over a finite alphabet ∆ as usual.

Now given x of length n, think of the successive configurations of M on
input x as arranged in an (nc+1)×(nc+1) time/space matrix R with entries
in ∆. The ith row of R is a string in ∆nc+1 describing the configuration of
the machine at time i. The jth column of R describes what is going on at
tape cell j throughout the history of the computation.

For example, the ith row of the matrix might look like

� a b a a b

p

a b a a b a b �� �� ��

and the i + 1st might look like

� a b a a b b

q

b a a b a b �� �� ��

This would happen if δ(p, a) = (q, b, R). The elements of ∆ are thus of the
form

a
or

q

a
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for a ∈ Γ and q ∈ Q.
We can specify the matrix R in terms of a set of local consistency condi-

tions on (nc+1)×(nc+1) matrices over ∆. Each local consistency condition
is a relation on the entries of the matrix in a small neighborhood of some
location i, j. The conjunction of all these local consistency conditions is
enough to determine R uniquely.

Our circuit will involve Boolean variables

P a
ij , 0 ≤ i, j ≤ nc, a ∈ Γ,

Qq
ij , 0 ≤ i, j ≤ nc, q ∈ Q.

The variable P a
ij says, “The symbol occupying tape cell j at time i is a,”

and the variable Qq
ij says, “The machine is in state q scanning tape cell j

at time i.”
Now we write down a set of conditions in terms of the P a

ij and Qq
ij

describing all ways that the machine could be in state q scanning tape cell
j at time i or that the symbol occupying tape cell j at time i is a.

For 1 ≤ i ≤ nc, 0 ≤ j ≤ nc, and b ∈ Γ, we include the assignment

P b
ij :=

∨
δ(p,a)=(q,b,d)

(Qp
i−1,j ∧ P a

i−1,j) (6.1)

∨ (P b
i−1,j ∧

∧
p∈Q

¬Qp
i−1,j) (6.2)

in our circuit. Intuitively, this says, “The symbol occupying tape cell j at
time i is b if and only if either the machine was scanning tape cell j at time
i − 1 and printed b (clause (6.1)), or the machine was not scanning tape
cell j at time i− 1 and the symbol occupying that cell at time i− 1 was b
(clause (6.2)).” The join in (6.1) is over all states p, q ∈ Q, symbols a ∈ Γ,
and directions d ∈ {L, R} such that δ(p, a) = (q, b, d); that is, all situations
that would cause b to be printed.

For 1 ≤ i ≤ nc, 1 ≤ j ≤ nc − 1 (that is, ignoring the left and right
boundaries), and q ∈ Q, we include the assignment

Qq
ij :=

∨
δ(p,a)=(q,b,R)

(Qp
i−1,j−1 ∧ P a

i−1,j−1) (6.3)

∨
∨

δ(p,a)=(q,b,L)

(Qp
i−1,j+1 ∧ P a

i−1,j+1). (6.4)

Intuitively, this says, “The machine is scanning tape cell j at time i if and
only if either it was scanning tape cell j − 1 at time i− 1 and moved right
(clause (6.3)), or it was scanning tape cell j + 1 at time i − 1 and moved
left (clause (6.4)).” The join in (6.3) is over all states p ∈ Q and symbols
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a, b ∈ Γ such that δ(p, a) = (q, b, R); that is, all situations that would cause
the machine to move right and enter state q.

For j = 0, that is, for the leftmost tape cell, we define Qq
ij in terms of

(6.3) only. Similarly, for j = nc, we define Qq
ij in terms of (6.4) only.

This takes care of everything except the first row of the matrix. The
values P b

ij and Qq
ij are determined by the start configuration; these are the

inputs to the circuit. If x = a1 · · ·an, the start state is s, and the endmarker
and blank symbol are � and ��, respectively, we include

P	
0,0 := 1,

P b
0,0 := 0, b ∈ Γ− {�},

P
aj

0,j := 1, 1 ≤ j ≤ n,

P b
0,j := 0, b ∈ Γ− {aj}, 1 ≤ j ≤ n,

P ��
0,j := 1, n + 1 ≤ j ≤ nc,

P b
0,j := 0, b ∈ Γ− {��}, n + 1 ≤ j ≤ nc,

Qs
0,0 := 1,

Qs
0,j := 0, 1 ≤ j ≤ nc,

Qq
0,j := 0, 0 ≤ j ≤ nc, q ∈ Q− {s}.

This gives a circuit. Assuming that the machine moves its head all the
way to the left before entering its accept state t, the Boolean value of

Qt
nc,0 ∨Qt

nc,1

determines whether M accepts x.
The construction we have just given can be done in logspace. Even

though the circuit is polynomial size, it is highly uniform in the sense that
it is built of many identical pieces. The only differences are the indices i, j,
which can be written down in logspace. �

The Cook–Levin Theorem

Now we show how to derive the Cook–Levin theorem as a corollary of the
previous construction. We would like to show that the Boolean satisfiability
problem SAT—given a Boolean formula, does it have a satisfying truth
assignment?—is NP-complete. The two main differences between SAT and
CVP are:

(i) With SAT, the input values are not provided. The problem asks
whether there exist values making the formula evaluate to true.
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(ii) CVP is defined in terms of circuits and SAT is defined in terms of
formulas. The difference is that in circuits, Boolean values may be
used more than once. A circuit is represented as a labeled directed
acyclic graph (dag), whereas a formula is a labeled tree. Another way
to look at it is that a circuit allows sharing of common subexpressions.
The satisfiability problem is NP -complete, regardless of whether we
use circuits or formulas; but the problem of evaluating a formula on
a given truth assignment is apparently easier than CVP, because it
can be done in logspace (Homework 2, Exercise 3).

We define a circuit with unspecified inputs exactly as above, except that
we also include assignments

Pi := ?

denoting inputs whose value is unspecified.

Theorem 6.2 Boolean satisfiability is ≤log
m -complete for NP.

Proof. Boolean satisfiability is in NP , because we can guess a truth
assignment and verify that it satisfies the given formula or circuit in poly-
nomial time.

To show that the problem is ≤log
m -hard for NP , let A be an arbitrary set

in NP , and let M be a nondeterministic machine accepting A and running
in time nc. Assume without loss of generality that the nondeterminism is
binary branching. Then a computation path of M is specified by a string
in {0, 1}nc

.
Let M ′ be a deterministic machine that takes as input x#y, where

|y | = |x |c, and runs M on input x, using y to resolve the nondeterministic
choices and accepting if the computation path of M specified by y leads
to acceptance. By the construction of Theorem 6.1, there is a circuit that
has value 1 iff M ′ accepts x#y. Note from the construction that if |z | =
|y | = nc, the circuit constructed for x#z is identical to that for x#y
except for the inputs corresponding to y; making these inputs unspecified,
we obtain a circuit C(P1, . . . , Pnc) with unspecified inputs P1, . . . , Pnc such
that M accepts x if and only if there exist y1, . . . , ync ∈ {0, 1} such that
C(y1, . . . , ync) = 1.

We can transform the circuit into a formula by replacing each assign-
ment Pi := E with the clause Pi ↔ E and taking the conjunction of all
clauses obtained in this way. The resulting formula is satisfiable iff M ac-
cepts x. �

The Boolean satisfiability problem remains NP -hard even when re-
stricted to formulas in conjunctive normal form (CNF with at most three
literals per clause (3CNF) (Miscellaneous Exercise 10), whereas it is solv-
able in polynomial time for formulas in 2CNF (Homework 2, Exercise 2).
The satisfiability problem for 3CNF formulas is known as 3SAT.
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The Knaster–Tarski Theorem

Transfinite Ordinals

Everyone is familiar with the set ω = {0, 1, 2, . . .} of finite ordinals , also
known as the natural numbers. An essential mathematical tool is the in-
duction principle on this set, which states that if a property is true of zero
and is preserved by the successor operation, then it is true of all elements
of ω.

In theoretical computer science, we often run into inductive definitions
that take longer than ω to close, and it is useful to have an induction prin-
ciple that applies to these objects. Cantor recognized the value of such a
principle in his theory of infinite sets. Any modern account of the foun-
dations of mathematics will include a chapter on ordinals and transfinite
induction.

Unfortunately, a complete understanding of ordinals and transfinite in-
duction is impossible outside the context of set theory, because many issues
impact the very foundations of the subject. Here we only give a cursory
account of the basic facts, tools, and techniques we need.
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Set-Theoretic Definition of Ordinals

Ordinals are defined as certain sets of sets. The key facts we need about
ordinals, succinctly stated, are:

(i) There are two kinds: successors and limits.

(ii) They are well ordered.

(iii) There are a lot of them.

(iv) We can do induction on them.

We explain each of these statements in more detail below.
A set C of sets is said to be transitive if A ∈ C whenever A ∈ B and

B ∈ C. Equivalently, C is transitive if every element of C is a subset of C;
that is, C ⊆ 2C . Formally, an ordinal is defined to be a set A such that

• A is transitive; and

• all elements of A are transitive.

It follows that any element of an ordinal is an ordinal. We use α, β, γ, . . .
to refer to ordinals. The class of all ordinals is denoted Ord. It is not a set,
but a proper class.

This neat but rather obscure definition of ordinals has some far-reaching
consequences that are not at all obvious. For ordinals α, β, define α < β
if α ∈ β. The relation < is a strict partial order. As usual, there is an
associated nonstrict partial order ≤ defined by α ≤ β if α ∈ β or α = β.

It follows from the axioms of set theory that the relation < on ordinals
is a linear order. That is, if α and β are any two ordinals, then either
α < β, α = β, or α > β. This is most easily proved by induction on the
well-founded relation

(α, β) ≤ (α′, β′) def⇐⇒ α ≤ α′ and β ≤ β′.

Then every ordinal is equal to the set of all smaller ordinals (in the sense
of <). The class of ordinals is well-founded in the sense that any nonempty
set of ordinals has a least element.

If α is an ordinal, then so is α ∪ {α}. The latter is called the successor
of α and is denoted α + 1. Also, if A is any set of ordinals, then

⋃
A is an

ordinal, and is the supremum of the ordinals in A under the relation ≤.
The smallest few ordinals are

0 def= ∅

1 def= {0} = {∅}
2 def= {0, 1} = {∅, {∅}}
3 def= {0, 1, 2} = {∅, {∅}, {∅, {∅}}}
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Pictorially,

�0 ��
1 �� ���

�
�

�

2 �� �� �� ���
�

�
�

�
�

�
�

3

The first infinite ordinal is

ω
def= {0, 1, 2, 3, . . .}.

An ordinal is called a successor ordinal if it is of the form α+1 for some
ordinal α, otherwise it is called a limit ordinal . The smallest limit ordinal
is 0 and the next smallest is ω. Of course, ω + 1 = ω ∪ {ω} is an ordinal,
so it does not stop there.

The ordinals form a proper class, thus there can be no one-to-one func-
tion Ord → A into a set A. This is what we mean above by, “There are
a lot of ordinals.” In practice, this comes up when we construct functions
f : Ord → A from Ord into a set A by induction. Such an f , regarded
as a collection of ordered pairs, is necessarily a class and not a set. We
will always be able to conclude that there exist distinct ordinals α, β with
f(α) = f(β).

Transfinite Induction

The transfinite induction principle is a method of establishing that a partic-
ular property is true of all ordinals (or of all elements of a class of objects
indexed by ordinals). It states that in order to prove that the property
is true of all ordinals, it suffices to show that the property is true of an
arbitrary ordinal α whenever it is true of all ordinals β < α. Proofs by
transfinite induction typically contain two cases, one for successor ordinals
and one for limit ordinals. The basis of the induction is often a special case
of the case for limit ordinals, because 0 = ∅ is a limit ordinal; here the
premise that the property is true of all ordinals β < α is vacuously true.

The validity of this principle ultimately follows from the well-
foundedness of the set containment relation ∈. This is an axiom of set
theory.

Zorn’s Lemma and the Axiom of Choice

Related to the ordinals and transfinite induction are the axiom of choice
and Zorn’s lemma.
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The axiom of choice states that for every set A of nonempty sets, there
exists a function f with domain A that picks an element out of each set in
A; that is, for every B ∈ A, f(B) ∈ B. Equivalently, any Cartesian product
of nonempty sets is nonempty.

Zorn’s lemma states that every set of sets closed under unions of chains
contains a ⊆ -maximal element. Here a chain is a family of sets linearly
ordered by the inclusion relation ⊆ , and to say that a set C of sets is
closed under unions of chains means that if B ⊆ C and B is a chain, then⋃

B ∈ C. An element B ∈ C is ⊆ -maximal if it is not properly included
in any B′ ∈ C.

The well-ordering principle states that every set is in one-to-one corre-
spondence with some ordinal. A set is countable if it is either finite or in
one-to-one correspondence with ω.

The axiom of choice, Zorn’s lemma, and the well-ordering principle are
equivalent to one another and independent of Zermelo–Fraenkel (ZF) set
theory in the sense that if ZF is consistent, then neither they nor their
negations can be proven from the axioms of ZF.

Complete Lattices

A complete lattice is a set U with a distinguished partial ordering relation
≤ defined on it (reflexive, antisymmetric, transitive) such that every subset
of U has a supremum or least upper bound with respect to ≤. That is, for
every subset A ⊆ U , there is an element supA ∈ U such that

(i) for all x ∈ A, x ≤ sup A (sup A is an upper bound for A), and

(ii) if x ≤ y for all x ∈ A, then supA ≤ y (sup A is the least upper
bound).

It follows from (i) and (ii) that supA is unique. We abbreviate sup{x, y}
by x ∨ y.

Any complete lattice U has a maximum element � def= sup U and a
minimum element ⊥ def= sup ∅. Also, every subset A ⊆ U has an infimum
or greatest lower bound inf A

def= sup{y | ∀z ∈ A y ≤ z}. One can show
(Miscellaneous Exercise 19) that inf A is the unique element such that

(i) for all y ∈ A, inf A ≤ y (inf A is a lower bound for A), and

(ii) if x ≤ y for all y ∈ A, then x ≤ inf A (inf A is the greatest lower
bound).

A common example of a complete lattice is the powerset 2X of a set X ,
or set of all subsets of X , ordered by the subset relation ⊆ . The supremum
of a set C of subsets of X is their union

⋃
C and the infimum of C is their

intersection
⋂

C.
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Monotone, Continuous, and Finitary Operators

An operator on a complete lattice U is a function τ : U → U . Here we
introduce some special properties of such operators such as monotonicity
and closure and discuss some of their consequences. We culminate with a
general theorem due to Knaster and Tarski concerning inductive definitions.

In the special case of set-theoretic complete lattices 2X ordered by set
inclusion ⊆ , we call such an operator a set operator .

An operator τ is said to be monotone if it preserves ≤:

x ≤ y ⇒ τ(x) ≤ τ(y).

A chain in U is a subset of U totally ordered by ≤; that is, for every
x and y in the chain, either x ≤ y or y ≤ x. An operator τ is said to be
chain-continuous if for every chain A,

τ(sup A) = sup
x∈A

τ(x).

For set operators τ : 2X → 2X , τ is said to be finitary if its action on
A ⊆ X depends only on finite subsets of A in the following sense:

τ(A) =
⋃

B ⊆ A

B finite

τ(B).

A set operator is finitary iff it is chain-continuous (Miscellaneous Ex-
ercise 20), and every chain-continuous operator on any complete lattice is
monotone, but not necessarily vice versa (Miscellaneous Exercise 21). In
many applications involving set operators, the operators are finitary.

Example A.1 For a binary relation R on a set V , define

τ(R) = {(a, c) | ∃b (a, b), (b, c) ∈ R}.
The function τ is a set operator on V 2; that is,

τ : 2V 2 → 2V 2
.

The operator τ is finitary, because τ(R) is determined by the action of τ
on two-element subsets of R. �

Prefixpoints and Fixpoints

A prefixpoint of an operator τ on U is an element x ∈ U such that τ(x) ≤ x.
A fixpoint of τ is an element x ∈ U such that τ(x) = x. Every operator
on U has at least one prefixpoint, namely supU . Monotone operators also
have fixpoints, as we show below.

For set operators τ : 2X → 2X , we often say that a subset A ⊆ X is
closed under τ if A is a prefixpoint of τ , that is, if τ(A) ⊆ A.
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Example A.2 By definition, a binary relation R on a set V is transitive if (a, c) ∈ R
whenever (a, b) ∈ R and (b, c) ∈ R. Equivalently, R is transitive iff it is
closed under the finitary set operator τ defined in Example A.1. �

Lemma A.3 The infimum of any set of prefixpoints of a monotone operator τ is a pre-
fixpoint of τ .

Proof. Let A be any set of prefixpoints of τ . We wish to show that inf A
is a prefixpoint of τ . For any x ∈ A, we have inf A ≤ x, therefore

τ(inf A) ≤ τ(x) ≤ x,

because τ is monotone and x is a prefixpoint. Because x ∈ A was arbitrary,
τ(inf A) ≤ inf A. �

For x ∈ U , define

PF τ (x) def= {y ∈ U | τ(y) ≤ y, x ≤ y}, (A.1)

the set of all prefixpoints of τ above x. Note that PF τ (⊥) is the set of all
prefixpoints of U , and all PF τ (x) are nonempty, because � is in there at
least.

It follows from Lemma A.3 that PF τ (⊥) forms a complete lattice under
the induced ordering ≤; however, whereas the infimum in PF τ (⊥) of any
set of prefixpoints A is inf A, the supremum is inf PF τ (sup A), which is not
the same as supA in general, because sup A is not necessarily a prefixpoint
(Miscellaneous Exercise 22). Thus we must be careful to say whether we
are taking suprema in U or in PF τ (⊥).

For x ∈ U , define

τ†(x) def= inf PF τ (x). (A.2)

By Lemma A.3, τ†(x) is the least prefixpoint of τ such that x ≤ τ†(x).

Lemma A.4 Any monotone operator τ has a ≤-least fixpoint.

Proof. We show that τ†(⊥) is the least fixpoint of τ in U . By Lemma
A.3, it is the least prefixpoint of τ . If it is a fixpoint, then it is the least one,
because every fixpoint is a prefixpoint. But if it were not a fixpoint, then by
monotonicity, τ(τ†(⊥)) would be a smaller prefixpoint, contradicting the
fact that τ†(⊥) is the smallest. �

Closure Operators

An operator σ on a complete lattice U is called a closure operator if it
satisfies the following three properties.
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(i) The operator σ is monotone.

(ii) For all x, x ≤ σ(x).

(iii) For all x, σ(σ(x)) = σ(x).

Because of clause (ii), fixpoints and prefixpoints coincide for closure
operators. Thus an element is closed with respect to a closure operator σ
iff it is a fixpoint of σ. As shown in Lemma A.3, the set of closed elements
of a closure operator forms a complete lattice.

Lemma A.5 For any monotone operator τ , the operator τ† defined in (A.2) is a closure
operator.

Proof. The operator τ† is monotone, because

x ≤ y ⇒ PF τ (y) ⊆ PF τ (x) ⇒ inf PF τ (x) ≤ inf PF τ (y),

where PF τ (x) is the set defined in (A.1).
Property (ii) of closure operators follows directly from the definition of

τ†. Finally, to show property (iii), because τ†(x) is a prefixpoint of τ , it
suffices to show that any prefixpoint of τ is a fixpoint of τ†. But

τ(y) ≤ y ⇔ y ∈ PF τ (y) ⇔ y = inf PF τ (y) = τ†(y).

�

Example A.6 The transitive closure of a binary relation R on a set V is the least transitive
relation containing R; that is, it is the least relation containing R and closed
under the finitary transitivity operator τ of Example A.1. The transitive
closure of R is the relation τ†(R). Thus the closure operator τ† maps an
arbitrary relation R to its transitive closure. �

Example A.7 The reflexive transitive closure of a binary relation R on a set V is the least
reflexive and transitive relation containing R; that is, it is the least rela-
tion that contains R, is closed under transitivity, and contains the identity
relation ι = {(a, a) | a ∈ V }. Note that “contains the identity relation”
just means closed under the (constant valued) monotone operation R �→ ι.
Thus the reflexive transitive closure of R is σ†(R), where σ denotes the
finitary set operator R �→ τ(R) ∪ ι. �

The Knaster–Tarski Theorem

The Knaster–Tarski theorem is a useful theorem describing how least fix-
points of monotone operators can be obtained either “from above,” as in
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the proof of Lemma A.4, or “from below,” as a limit of a chain of elements
defined by transfinite induction.

Let U be a complete lattice and let τ be a monotone operator on U .
Let τ† be the associated closure operator defined in (A.2). We show how
to attain τ†(x) starting from x and working up. The idea is to start with x
and then apply τ repeatedly until achieving closure. In most applications,
the operator τ is continuous, in which case this takes only ω iterations; but
for monotone operators in general, it can take more.

Formally, we construct by transfinite induction a chain of elements
τα(x) indexed by ordinals α:

τα+1(x) def= x ∨ τ(τα(x))

τλ(x) def= sup
α<λ

τα(x), λ a limit ordinal

τ∗(x) def= sup
α∈Ord

τα(x).

The base case is included in the case for limit ordinals:

τ0(x) = ⊥.

Intuitively, τα(x) is the set obtained by applying τ to x α times, reincluding
x at successor stages.

Lemma A.8 If α ≤ β, then τα(x) ≤ τβ(x).

Proof. We proceed by transfinite induction on α. For two successor
ordinals α + 1 and β + 1,

τα+1(x) = x ∨ τ(τα(x)) ≤ x ∨ τ(τβ(x)) = τβ+1(x),

where the inequality follows from the induction hypothesis and the mono-
tonicity of τ . For a limit ordinal λ on the left-hand side and any ordinal β
on the right-hand side,

τλ(x) = sup
α<λ

τα(x) ≤ τβ(x),

where the inequality follows from the induction hypothesis. Finally, for a
limit ordinal λ on the right-hand side, the result is immediate from the
definition of τλ(x). �

Lemma A.8 says that the τα(x) form a chain in U . The element τ∗(x)
is the supremum of this chain over all ordinals α.

Now there must exist an ordinal κ such that τκ+1(x) = τκ(x), because
there is no one-to-one function from the class of ordinals to the set U . The
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least such κ is called the closure ordinal of τ . If κ is the closure ordinal of
τ , then τβ(x) = τκ(x) for all β > κ, therefore τ∗(x) = τκ(x).

If τ is chain-continuous, then its closure ordinal is at most ω, but not
for monotone operators in general (Miscellaneous Exercise 23).

Theorem A.9 (Knaster–Tarski) τ†(x) = τ∗(x).

Proof. First we show the forward inclusion. Let κ be the closure ordinal
of τ . Because τ†(x) is the least prefixpoint of τ above x, it suffices to show
that τ∗(x) = τκ(x) is a prefixpoint of τ . But

τ(τκ(x)) ≤ x ∨ τ(τκ(x)) = τκ+1(x) = τκ(x).

Conversely, we show by transfinite induction that for all ordinals α,
τα(x) ≤ τ†(x), therefore τ∗(x) ≤ τ†(x). For successor ordinals α + 1,

τα+1(x) = x ∨ τ(τα(x))
≤ x ∨ τ(τ†(x)) induction hypothesis and monotonicity
≤ τ†(x) definition of τ†.

For limit ordinals λ, τα(x) ≤ τ†(x) for all α < λ by the induction hypoth-
esis; therefore

τλ(x) = sup
α<λ

τα(x) ≤ τ†(x).

�



Lecture 7

Alternation

In this lecture we present a useful generalization of nondeterminism called
alternation. The word “alternation” refers to the alternation of and and
or. We introduce alternating Turing machines and present some simula-
tion results relating alternating machines to deterministic machines. These
results are useful for studying the complexity of problems with a natural
alternating and/or structure, such as games or logical theories. Alternating
Turing machines were introduced by Chandra, Kozen, and Stockmeyer [26].

We usually think of a nondeterministic computation as a single process
that makes guesses at choice points, following a guessed computation path
and accepting if that path causes the machine to enter an accept state.

Alternatively, we can think of a nondeterministic machine as a mul-
tiprocessor machine with a potentially unbounded number of processors
available for allocation and assignment to tasks. In this view, the machine
starts with a single root process in the start configuration. It computes as
a normal Turing machine until it reaches a nondeterministic choice point.
At that point, it spawns as many independent subprocesses as there are
possible next configurations, then suspends execution, waiting for a report
from one of the subprocesses it just spawned. Each of the subprocesses
takes one of the possible next configurations and continues execution from
there. This continues down the tree. If there are m configurations in the
computation tree at depth i, then there will be m independent parallel
processes running simultaneously at time i. When a process enters an ac-
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cept state, it reports a Boolean 1 indicating acceptance to its parent and
terminates. When a process enters a reject state, it reports a Boolean 0 in-
dicating rejection to its parent and terminates. A suspended process, upon
receiving a 1 from a subprocess, immediately reports the 1 up to its parent
process and terminates. A suspended process, upon receiving a 0 from a
subprocess, waits for a report from another subprocess. If and when all the
subprocesses have reported 0, it reports 0 up to its parent and terminates.
The input is accepted if a 1 is ever reported to the root process.

This description is of course just an intuitive device; there is no explicit
mechanism for spawning subprocesses or reporting Boolean values back up
the tree.

Now we wish to extend this idea by allowing “and” as well as “or”
branching. In normal nondeterminism as described above, a suspended pro-
cess waiting at a choice point checks whether any one of its subprocesses
leads to acceptance. It essentially computes the “or” (∨) of the Boolean
values returned to it by its subprocesses. We might also allow a process
to check whether all subprocesses lead to acceptance by computing the
Boolean “and” (∧) of the Boolean values returned to it by its subprocesses.
Whether a nondeterministic choice point is an ∧-branch or an ∨-branch is
determined by the state. The word “alternation” refers to the alternation
of ∧ and ∨ in the course of a computation.

We give a formal definition of alternating Turing machines below and
prove a remarkable correspondence between alternation and determinism:
alternating time is the same as deterministic space, and alternating space
is the same as exponentially more deterministic time.

It will often be convenient to allow negating steps (¬) as well as ∧ and
∨ branches in alternating Turing machines. It turns out we can get rid of
negations at no cost in either space or time.

Definition 7.1 An alternating Turing machine (ATM) is exactly like a nondeterministic
TM, except there is included in the specification of the machine a function

type : Q → {∧,∨,¬},

where Q is the set of states. The function type tells whether a state is an
and-state, an or-state, or a not-state. A configuration is called an and-
configuration, an or-configuration, or a not-configuration according as the
state in the configuration is an and-state, an or-state, or a not-state, re-
spectively. We impose the restriction that not-configurations have exactly
one successor.

Accept and reject states do not need to be explicitly specified in the de-
scription of the machine. We can take an accept state to be an and-state
with no successors and a reject state to be an or-state with no successors.
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Acceptance for ATMs is defined in terms of an inductive labeling of the
computation tree. For this definition, we consider two partial orders on the
set {0, 1,⊥}:

• the natural order 0 ≤ ⊥ ≤ 1 of three-valued logic, and

• the information order � in which ⊥ � 0 and ⊥ � 1.

The symbol ⊥ stands for “don’t know” and is used to handle infinite com-
putations. The Boolean operations ∨, ∧, and ¬ extend in a natural way to
the three-element set {0, 1,⊥} according to the following tables.

∨ 1 ⊥ 0
1 1 1 1
⊥ 1 ⊥ ⊥
0 1 ⊥ 0

∧ 1 ⊥ 0
1 1 ⊥ 0
⊥ ⊥ ⊥ 0
0 0 0 0

¬
1 0
⊥ ⊥
0 1

Thus ∨ gives supremum and ∧ gives infimum in the natural order 0 ≤ ⊥ ≤
1.

Now we consider an inductive labeling of configurations with 1, 0, or
⊥ that corresponds to the intuitive procedure of passing Boolean values
back up the computation tree as outlined above. We do things this way in
order to be completely precise about how the machine deals with infinite
computation paths and negations.

Let C denote the set of configurations, and let 1−→
M

denote the next

configuration relation of M . Thus α
1−→
M

β if configuration β follows from

configuration α in one step according to the transition rules of M .
A labeling is a map � : C → {0, 1,⊥}. The order � extends pointwise to

labelings; that is, define

� � �′ def⇐⇒ ∀α ∈ C �(α) � �′(α).

The set of labelings forms a complete lattice under �. Thus every set of
labelings has a �-least upper bound. There is a least labeling λα.⊥,1 which
is the least upper bound of the empty set of labelings.

Now define the labeling �∗ to be the �-least solution of the recursive
equation

�∗(α) =

⎧⎪⎨⎪⎩
∧

α→β �∗(β) if α is an ∧-configuration∨
α→β �∗(β) if α is an ∨-configuration

¬�∗(β) if α is a ¬-configuration and α → β.

1λx.E(x) is the function that on input x returns E(x).
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This is the least fixpoint of the �-monotone map τ : {labelings} →
{labelings} defined by

τ(�)(α) def=

⎧⎪⎨⎪⎩
∧

α→β �(β) if α is an ∧-configuration∨
α→β �(β) if α is an ∨-configuration

¬�(β) if α is a ¬-configuration and α → β.

The labeling �∗ exists by the Knaster–Tarski theorem (Theorem A.9). In
this case, the closure ordinal of the inductive definition is ω, thus the la-
beling �∗ is the supremum of the chain

�0 � �1 � �2 � · · · , (7.1)

where

�0
def= λα.⊥,

�i+1
def= τ(�i).

Definition 7.2 The machine accepts x if �∗(start) = 1, where start is the start config-
uration on input x. It rejects x if �∗(start) = 0.

Of course, �∗(start) = ⊥ is also possible, in which case the machine neither
accepts nor rejects.

Intuitively, accept configurations (∧-configurations with no successors)
are labeled 1 and reject configurations (∨-configurations with no succes-
sors) are labeled 0 by �1, and the definition of �2, �3, . . . models the
computation of these Boolean values back up the tree. The supremum �∗
of these labelings labels a configuration 1 if it is ever labeled 1 by some �i

and labels a configuration 0 if it is ever labeled 0 by some �i.

Lemma 7.3 Every alternating Turing machine with negations can be simulated by an
alternating Turing machine without negations at no extra cost in space or
time.

Proof. The dual of an alternating TM M is the alternating TM M ′ that
looks exactly like M except that ∨- and ∧-states are exchanged; that is, if
state q is an ∨-state of M , then the corresponding state q′ of M ′ is an ∧-
state, and if q is an ∧-state, then q′ is an ∨-state. One can show by induction
that for every configuration α of M and its corresponding configuration α′

of M ′, and for all i, �i(α) = ¬� ′i(α
′), thus �∗(α) = ¬� ′∗(α′).

Now form a new machine M ′′ by taking the disjoint union of the fi-
nite controls of M and M ′ and altering the transition function such that
if p is a ¬-state and ((p, a), (q, b, d)) is a transition of M (hence p′ is
a ¬-state and ((p′, a), (q′, b, d)) is a transition of M ′), we make p an ∧-
state and p′ an ∨-state of M ′′ and replace the transitions ((p, a), (q, b, d))
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and ((p′, a), (q′, b, d)) with ((p, a), (q′, b, d)) and ((p′, a), (q, b, d)) in M ′′.
Everything else in M ′′ is the same as in M and M ′. Thus instead of
negating, we jump to the dual machine. One can show inductively that
�′′i (α) = ¬�′′i (α′) = �i(α), thus �′′∗(α) = ¬�′′∗(α′) = �∗(α). �

For an ATM without negations, one can show that acceptance of x is
tantamount to the existence of a finite accepting subtree of the computa-
tion tree on input x. This is a finite subtree T of the computation tree
containing the start configuration such that every ∨-configuration has at
least one successor in T and every ∧-configuration has all its successors in
T (Miscellaneous Exercise 26).

Alternating Complexity Classes

An ATM is said to be T (n)-time-bounded if for any input of length n, all
paths in the computation tree are of length at most T (n). It is said to be
S(n)-space-bounded if for any input of length n, no path in the computation
tree uses more than S(n) tape cells. The complexity class ATIME(T (n))
is the class of sets accepted by T (n)-time-bounded ATMs, and the class
ASPACE (S(n)) is the class of sets accepted by S(n)-space-bounded ATMs.
We also define

ALOGSPACE def= ASPACE (log n)

APTIME def= ATIME (nO(1))

APSPACE def= ASPACE (nO(1))

AEXPTIME def= ATIME (2nO(1)
),

and so on.

Complexity Results

The following four simulations show a strong correspondence between de-
terministic machines and alternating machines: to within a polynomial,
alternating time is the same as deterministic space and alternating space
is the same as exponentially more deterministic time.

Theorem 7.4 Let T (n) ≥ n and S(n) ≥ log n. Then

(i) ATIME(T (n)) ⊆ DSPACE(T (n));

(ii) DSPACE (S(n)) ⊆ ATIME(S(n)2);

(iii) ASPACE (S(n)) ⊆ DTIME(2O(S(n)));

(iv) DTIME (T (n)) ⊆ ASPACE (log T (n)).
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Proof. We assume for simplicity that the functions S(n) and T (n) are
constructible. These assumptions can be removed.

(i) The proof of this result is similar to the proof of Theorem 2.6. We
can perform a depth-first search on the computation tree of a T (n)-time-
bounded alternating machine, computing the Boolean labels �∗(α). The
position in the computation tree of the configuration currently being visited
can be represented by a binary string of length at most T (n).

(ii) We can actually show the stronger result

NSPACE (S(n)) ⊆ ATIME(S(n)2)

using a parallel implementation of Savitch’s theorem (Theorem 2.7). The
main routine is a parallel recursive procedure PARSAV(α, β, k) that de-
termines whether α goes to β in k or fewer steps. If k = 0 or 1, it checks
directly whether α = β or, in the case k = 1, whether α goes to β in one
step. If k ≥ 2, it guesses γ ∈ ∆S(n) using ∨-branching. This takes time S(n)
and results in 2S(n) independent parallel processes, each with a different
γ. The process handling γ checks in parallel whether PARSAV(α, γ, 
k/2�)
and PARSAV(γ, β, �k/2) using ∧-branching. This alternating procedure
can be implemented in alternating time S(n)2; the analysis is essentially
the same as in the proof of Savitch’s theorem.

(iii) For this simulation, we can write down all configurations that fit
in S(n) space (there are 2O(S(n)) of them) and compute the labeling �∗
inductively. We start by labeling all configurations ⊥. This is the labeling
�0. Now suppose we have computed the labeling �i. We make a pass across
the tape, computing �i+1 = τ(�i). This takes time 2O(S(n)). We keep doing
this until there are no more changes; we have found the least fixpoint.
There are at most 2O(S(n)) passes in all, each taking time 2O(S(n)). Thus
the entire algorithm runs in deterministic time 2O(S(n)).

(iv) Given a T (n)-time-bounded deterministic machine M and input
x, an alternating machine can construct and evaluate on the fly a circuit
describing the T (n)×T (n) computation matrix of M on input x like the one
in the proof of the P -completeness of the circuit value problem (Theorem
6.1). Each process of the alternating machine tries to determine the value
of some Boolean variable P b

ij or Qq
ij ; it needs only log T (n) space to record

the indices i, j of the variable. �

Corollary 7.5 For T (n) ≥ n and S(n) ≥ log n,

ATIME (T (n)O(1)) = DSPACE(T (n)O(1)),
ASPACE(S(n)) = DTIME(2O(S(n))).

In other words, alternating time and deterministic space are the same
to within a polynomial, and alternating space is the same as exponentially
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more deterministic time. Thus the hierarchy

LOGSPACE ⊆ P ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE ⊆ · · ·
shifts by exactly one level when alternation is introduced; in other words,

ALOGSPACE = P
APTIME = PSPACE

APSPACE = EXPTIME
AEXPTIME = EXPSPACE

...

.
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Problems Complete for PSPACE

We have seen natural complete problems for NLOGSPACE , P , and NP ,
namely MAZE, CVP, and SAT, respectively. Here is a natural problem
complete for PSPACE , the quantified Boolean formula problem. The prob-
lem has a natural alternating and/or structure, so we use ATMs liberally
in proofs, but the theorem itself predated the invention of ATMs [118].

Definition 8.1 The quantified Boolean formula problem (QBF) is the problem of deter-
mining the truth of quantified expressions

Q1x1 Q2x2 · · · Qnxn B(x1, . . . , xn),

where B(x1, . . . , xn) is a Boolean formula with variables x1, . . . , xn, each
Qi is either ∃ or ∀, and the quantification is over the two-element Boolean
algebra {0, 1}. This is essentially the decision problem for the first-order
theory of the two-element Boolean algebra.

The Boolean satisfiability problem, which is NP-complete, is the restriction
of QBF to existential formulas only, that is, formulas in which all Qi are ∃.
The Boolean validity problem, which is co-NP-complete, is the restriction
of QBF to universal (∀) formulas only.

Theorem 8.2 (Stockmeyer and Meyer [118]) QBF is ≤log
m -complete for PSPACE.
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Proof. We can determine the truth of a given quantified Boolean formula
with an alternating TM by eliminating the quantifiers using ∨- and ∧-
branching, then evaluating the formula on the resulting truth assignment.
Given a suitable encoding, this can be done in alternating linear time. By
Theorem 7.4(i), QBF is in PSPACE .

To show PSPACE -hardness, we encode the computation of polynomial-
time-bounded ATMs. The construction is very similar to the proof of the
Cook–Levin theorem (Theorem 6.2).

Let A be an arbitrary set in PSPACE . We can assume without loss of
generality that A ⊆ {0, 1}∗, because any set over a larger input alphabet
is trivially ≤log

m -reducible to a set over a binary alphabet. By Theorem
7.4(ii), there is a polynomial-time-bounded ATM M accepting A, say with
time bound nc. By Lemma 7.3, we can assume without loss of generality
that M has no ¬-states. We can also assume without loss of generality,
by adding dummy states if necessary, that the computation tree of M is
binary branching and strictly alternates between ∨- and ∧-configurations
beginning with ∨.

Let x be an input to M of length n, say x = x1x2 · · ·xn. The computa-
tion tree of M on input x is of depth at most nc, and each path is specified
by a binary string y of length nc. Exactly as in the proof of Theorem 6.2,
construct a formula B(X1, . . . , Xn, Y1, . . . , Ync) that has value 1 on a given
instantiation x, y of the Boolean variables X, Y iff the computation path
of M on input x specified by y leads to acceptance. Then M accepts x iff
the quantified Boolean formula

∃Y1 ∀Y2 ∃Y3 · · · QncYnc B(x1, . . . , xn, Y1, . . . , Ync)

is true; the alternation of quantifiers in the quantifier prefix of the formula
exactly reflects the alternation of ∨- and ∧-configurations in the computa-
tion tree. �

Complexity of Games

A two-person perfect information game, for our purposes, is a graph G =
(boards,move) and a distinguished start node s ∈ boards. The edge
relation move is a binary relation on boards that specifies the legal moves
of the game. The game starts at s0 = s and the players alternate with Player
I moving first. Player I chooses s1 ∈ boards such that move(s0, s1). Player
II then chooses s2 ∈ boards such that move(s1, s2), and so forth. A player
wins by forcing the opponent into a position from which no move is possible
(a “checkmate”), that is, a position t such that no u exists with move(t, u).

Most common two-person games—chess, checkers, go—are of this form.
For chess, the set boards consists of

{legal chessboards} × {white, black},
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the second component telling whose move it is. The start board is

(the starting chessboard, white).

The relation move encodes the legal chess moves.
In the game of geography, two players alternate thinking of names of

countries. The first player may pick any country. Thereafter, each player
must think of a country whose name begins with the same letter that the
previously named country ends with; for example: Albania, Azerbaijan,
Norway, Yemen, Nicaragua, and so on. A country may not be named more
than once. Here the elements of the set boards are pairs (A, B), where A
is a set of countries and B is a set of letters of the alphabet. The starting
board is ({all countries},{all letters}). A move (A, B) → (A′, B′) is a legal
move if A′ = A− {c} for some country c whose name begins with a letter
in B, and B′ = {a} where a is the last letter of c’s name.

Definition 8.3 Define

checkmate(y) def⇐⇒ ∀z ¬move(y, z).

A board position x ∈ boards is a forced win for the player whose move it
is if x satisfies the predicate win(x), where the predicate win is the least
solution of the recursive equation

win(x) ⇔ ∃y move(x, y) ∧ (8.1)
(checkmate(y) ∨ ∀z (move(y, z) → win(z))); (8.2)

equivalently, if win is the least fixpoint of the monotone map τ on predicates
defined by

τ(ϕ)(x) ⇔ ∃y move(x, y) ∧
(checkmate(y) ∨ ∀z (move(y, z) → ϕ(z))).

The least fixpoint exists by the Knaster–Tarski theorem (Theorem A.9).

Intuitively, if it is Player I’s move, then the current board is a forced win
for Player I if Player I can make a legal move that results in either (i) an
immediate checkmate, or (ii) a board position from which all moves for
Player II lead to a forced win for Player I.

A little elementary logic shows that (8.2) can be simplified to

win(x) ⇔ ∃y move(x, y) ∧ ∀z (move(y, z) → win(z)).

This is because if checkmate(y), then ∀z (move(y, z) → win(z)) is vac-
uously true.

We wish to study the complexity of deciding whether Player I has a
forced win from a given board position. For this to make sense in terms of
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asymptotic complexity, we need to generalize the games in some reasonable
way to allow arbitrarily large games. For example, we need to say explic-
itly what we mean by chess on an n × n board. This has been done for
many common games, and the generalized versions have been shown to be
complete for various complexity classes.

For example, we might generalize the game of geography as follows. An
instance of the game is a tuple (C, E, s), where (C, E) is a directed graph
and s ∈ C. The vertex set C corresponds to the cities. We start with a
token on s0 = s. In the even stages, Player I moves the token from s2i to
some vertex s2i+1 adjacent to s2i, and in the odd stages, Player II moves
the token from s2i+1 to some vertex s2i+2 adjacent to s2i+1. No player may
move to a vertex that has already been visited. A player wins by forcing
the opponent to a position from which there is no legal next move.

The decision problem for generalized geography then becomes: given an
instance (C, E, s), does Player I have a forced win?

Theorem 8.4 (Stockmeyer and Chandra [116]) Generalized geography is ≤log
m -complete

for PSPACE.

Proof. We show first that the problem is in PSPACE by giving an al-
ternating polynomial time algorithm for it. Start by marking the vertex
s0 = s as visited, then iterate the following procedure. Choose nondeter-
ministically, using ∨-branching, a move s1 for Player I. Move the token
to that position and mark s1 as visited. Then, using ∧-branching, try all
possible moves for Player II. Each new subprocess moves the token to some
s2 and marks it as visited. Then choose nondeterministically a move for
Player I from s2; and so on, alternating between the two players. When-
ever it is Player I’s move and there is no legal next move, halt and report
failure (0). If it is Player II’s move and there is no legal next move, halt
and report success (1). Each computation path terminates after at most
|C | steps, because at least one new vertex gets marked as visited in each
step.

Now we show that the problem is PSPACE -hard by reducing QBF to
it. Given a quantified Boolean formula, we want to construct an instance
of the game such that Player I has a forced win iff the formula is true.
By applying elementary transformations of first-order logic and inserting
dummy variables if necessary, we can assume without loss of generality that
the given formula consists of a quantifier prefix followed by a quantifier-free
part in conjunctive normal form, there are an even number of quantifiers,
and the quantifiers alternate strictly beginning with ∃:
∃x1 ∀x2 ∃x3 · · · ∀xn c1 ∧ · · · ∧ cm,

where each ci is a clause of the form �1 ∨ · · · ∨ �k and each �i is a literal,
either x or x for some variable x.
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From such a formula, we construct an instance of generalized geography
as follows.

(i) For each i, 1 ≤ i ≤ n, we create four vertices xi, xi, ui, and vi. We
have edges from ui to xi and to xi and from xi and xi to vi.

(ii) We insert an edge from vi to ui+1, 1 ≤ i ≤ n− 1.

(iii) We create a vertex for each clause cj and an edge from vn to each of
c1, c2, . . . , cm.

(iv) We insert an edge from cj to the literal � if � appears in cj .

The start vertex is u1.
For example, for the formula

∃x1 ∀x2 (x1 ∨ x2)︸ ︷︷ ︸
c1

∧ (x1 ∨ x2)︸ ︷︷ ︸
c2

,

the construction would produce the game

start��u1�����
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The first few moves of the game that take place on parts (i) and (ii) of the
graph choose a truth assignment. The values of the odd-numbered variables
are chosen by Player I and the values of the even-numbered variables are
chosen by Player II. Each literal chosen is assigned the value 0 (false).

The last two steps are played on parts (iii) and (iv). Here Player II
must choose a clause. Of course, Player II is trying to make the formula
false, so if there is a clause that is false under the chosen truth assignment,
then Player II chooses that clause. Player I has no move, because all the
literals reachable from that clause are false, which means they have already
been visited. On the other hand, if all clauses are true under that truth
assignment, then each one must contain a true literal, so no matter what
clause Player II picks, Player I will have a next move, after which Player II
will be stuck. Thus Player I wins iff the chosen truth assignment satisfies
the quantifier-free part of the formula.

In the example above, the formula is false, so Player II should always
get the win by playing optimally. Indeed, if Player I chooses x in the first
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move, then Player II should choose y in the fourth move and c1 in the sixth
move (the other moves are forced); and if Player I chooses x in the first
move, then Player II should choose y in the fourth move and c2 in the sixth
move. In either case Player II wins by checkmate. �

See the exercises for more PSPACE -complete problems (Homework 6,
Exercise 2 and Miscellaneous Exercises 31 and 29).



Lecture 9

The Polynomial-Time Hierarchy

The polynomial-time hierarchy (PH ) is a hierarchy of complexity classes
lying over P and inside PSPACE . It was first identified by Stockmeyer [117].
It is most easily defined in terms of alternating polynomial-time-bounded
TMs, although it was originally defined in terms of oracle Turing machines.
The hierarchy is analogous in many ways to the arithmetic hierarchy, which
we introduce later in Lecture 35. However, unlike the arithmetic hierarchy,
it is not known whether PH is strict.

In this lecture and the next, we define PH in two different ways, in terms
of ATMs and oracle TMs, and prove the equivalence of the two definitions.
We also give generic ≤log

m -complete problems for each level of the hierarchy.

Definition of PH in Terms of ATMs

Informally, a Σk-machine (respectively, Πk-machine) is an ATM without
negations that on any input makes at most k alternations of ∨- and ∧-
configurations along any computation path, beginning with ∨ (respectively,
∧).

Definition 9.1 A Σk-machine is an ATM such that on any input, every computation path
can be divided into contiguous intervals such that

(i) in any interval, all configurations are either ∨-configurations or all
are ∧-configurations;
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(ii) there are at most k intervals; and

(iii) the first interval consists of ∨-configurations.

A Πk-machine is similar, except we change (iii) to:

(iii′) the first interval consists of ∧-configurations.

A Σ1-machine is just a nondeterministic TM. By convention, Σ0- and Π0-
machines are deterministic TMs.

Definition 9.2 The complexity classes Σp
k and Πp

k are defined as follows.

Σp
k

def= {L(M) | M is a polynomial-time-bounded Σk-machine},
Πp

k
def= {L(M) | M is a polynomial-time-bounded Πk-machine}.

Thus Σp
1 = NP , Πp

1 = co-NP , and Σp
0 = Πp

0 = P .

Lemma 9.3

Πp
k = co-Σp

k = {∼A | A ∈ Σp
k},

Σp
k ∪ Πp

k ⊆ Σp
k+1 ∩ Πp

k+1,⋃
k

Σp
k =

⋃
k

Πp
k ⊆ PSPACE .

Here ∼A denotes the complement of A.

Proof. The first equation is obtained by interchanging ∨- and ∧-states.
This gives the dual machine, which accepts the complement of the set
accepted by the original machine (provided the machine halts along all
computation paths, which it does in this case because it is polynomial-
time-bounded). The second inclusion is immediate from the definition. The
third inclusion follows from the fact that PSPACE = APTIME , in which
there are no restrictions on the number of alternations. �

It is not known whether any of the inclusions in Lemma 9.3 are strict.

Generic Complete Problems

We can define generic problems that are complete for the various levels of
the polynomial-time hierarchy. Define

Hk
def= {M#x#m | Mm

k accepts x},
where M is any ATM and Mm

k is M modified so as to halt on any com-
putation path that tries to alternate between ∨ and ∧ states more than k
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times, beginning with an ∨, or tries to take more than m steps. In other
words, the computation tree of Mm

k on any input is essentially the same as
that of M , except that it is artificially truncated to depth m and k alterna-
tions. Any leaves of the computation tree of Mm

k that are not leaves of the
computation tree of M are either accept or reject configurations of Mm

k ,
according as the corresponding configuration of M is an ∧-configuration or
an ∨-configuration, respectively.

Theorem 9.4 The set Hk is ≤log
m -complete for Σp

k.

Proof. To show that Hk is in Σp
k, we describe a polynomial-time-bounded

Σk-machine N that accepts Hk. The machine N first checks that its input
is of the form M#x#m, where M is a valid ATM description and x is a
valid encoding of a string over M ’s input alphabet. It then simulates M
on input x, counting the number of simulated steps of M and the number
of alternations. In the simulation, N makes ∨-branches whenever M would
and ∧-branches whenever M would. Because the branching degree of M
may be arbitrarily large and that of N must be fixed, it may take several
branches of N to simulate one branch of M ; but this is ok, because the
number of alternations is the same. If during the simulation, the number
of steps of M exceeds m (the number provided in the input to N), or if M
tries to make more than k alternations, N halts on that computation path.
Otherwise, N accepts or rejects as M does.

It takes a small polynomial in the length of M#x#m to simulate one
step of M , and there are at most m steps simulated, so N runs in polynomial
time; moreover, the computation is Σk. Thus Hk ∈ Σp

k.
To show that Hk is≤log

m -hard for Σp
k, let A ∈ Σp

k be arbitrary. Then there
is a Σk-machine M accepting A with time bound nc. Thus for m = |x |c,
the computation trees of M and Mm

k are essentially the same on input x;
that is, no truncation takes place. Thus M accepts x iff Mm

k accepts x iff
M#x#m ∈ Hk. Therefore the map

x �→ M#x#|x |c

constitutes a reduction from A to Hk, and this map is easily computed in
logspace. �

Corollary 9.5 The set ∼Hk is ≤log
m -complete for Πp

k.

Oracle Machines and Relativized Complexity Classes

Originally, the polynomial-time hierarchy was defined in terms of ora-
cle Turing machines. An oracle TM is like an ordinary TM, except it
is equipped with an oracle, a means of answering membership questions
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about some set B in one step. It is useful for studying computation relative
to free knowledge about the set B.

There are a few equivalent ways of defining oracle machines formally.
In one definition, the machine is equipped with a special write-only oracle
query tape on which finite strings can be written. The finite control also
contains a special oracle query state as well as a special “yes” state and a
special “no” state. When the machine enters the oracle query state, it is
asking whether the string y currently written on the oracle tape is in B.
The machine magically moves to the “yes” state if y ∈ B and to the “no”
state if y �∈ B. There is no explicit representation of the set B. The oracle
must give the same answer if queried with y again in the future. Note that
the same oracle machine may be used with different oracles; the results of
the oracle queries will be different.

Here is another equivalent definition. An oracle machine is a TM that in
addition to its ordinary input and worktapes is equipped with a special one-
way-infinite read-only input tape on which some infinite string is written.
The extra tape is called the oracle tape, and the string written on it is called
the oracle. The machine can move its oracle tape head one cell in either
direction in each step and make decisions based on the symbols written on
the oracle tape. Other than that, it behaves exactly like an ordinary Turing
machine.

In the latter definition, we usually think of the oracle as a specification
of a set B ⊆ N. If the oracle is an infinite string over {0, 1}, then we can
regard it as the characteristic function of B, where the nth bit of the oracle
string is 1 iff n ∈ B.

Definition 9.6 Let B be a set and let C be a complexity class.

PB def= {L(M) | M is a deterministic polynomial-time-bounded
oracle machine with oracle B},

NPB def= {L(M) | M is a nondeterministic polynomial-time-
bounded oracle machine with oracle B},

PC def=
⋃

B∈C

PB,

NPC def=
⋃

B∈C

NPB .

Other relativized complexity classes such as PSPACEB and PSPACEC can
be defined similarly. These classes are called relativized complexity classes.

If B is ≤p
m-complete for C, then PC = PB and NPC = NPB. This is

because the reduction from some arbitrary A ∈ C to B can be performed
before an oracle query is made. For example, PNP = PSAT and NPNP =
NPSAT.
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Definition 9.7 We write A ≤p
T B if A ∈ PB. The relation ≤p

T is called polynomial-time
Turing reducibility or Cook reducibility.

Essentially, A ≤p
T B means that A can be computed in polynomial time,

given free information about B. If A ≤p
m B then A ≤p

T B, but the converse
would imply NP = co-NP, because SAT ≤p

m ∼SAT.

Definition of PH in Terms of Oracle Machines

Theorem 9.8 Consider the hierarchy

NP ⊆ NPNP ⊆ NPNPNP ⊆ NPNPNPNP

⊆ · · · .

More formally, define

NP1
def= NP ,

NPk+1
def= NPNPk .

Then NPk = Σp
k for all k ≥ 1.

We prove this theorem next time.



Lecture 10

More on the Polynomial-Time Hierarchy

Recall from the last lecture the hierarchy

NP ⊆ NPNP ⊆ NPNPNP ⊆ NPNPNPNP

⊆ · · ·
defined in terms of oracle machines. Formally, we defined

NP1
def= NP

NPk+1
def= NPNPk .

Recall also that Σp
k is the class of sets accepted by polynomial-time-

bounded alternating TMs that make at most k alternations of ∨- and
∧-configurations along any computation path, beginning with ∨. In this
lecture we show that these two definitions characterize the same hierarchy
of complexity classes.

Theorem 10.1 NPk = Σp
k for all k ≥ 1.

Proof. This is proved by induction on k. The basis k = 1 is immediate
from the definitions: NP1 = Σp

1 = NP .
For the induction step, we need only show that NPΣp

k = Σp
k+1. We show

the inclusion in both directions separately, the easier direction first.
(⊇) For this inclusion, assume that we have a Σk+1-machine M run-

ning in time nc, A = L(M). We wish to show that A ∈ NPΣk . Let the
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configurations of M be encoded as strings over a finite alphabet ∆ in some
reasonable way. We can assume that all configurations reachable from the
start configuration on any input x, |x | = n, are represented as strings in
∆nc

.
Now consider the set

D
def= {α | α is an ∧-configuration of M , |α | = nc, and α leads to

acceptance via a Πk computation in time at most nc}.

Membership in D can be determined by a polynomial-time-bounded Πp
k

machine that just simulates M starting from the configuration α; therefore,
D ∈ Πp

k and∼D ∈ Σp
k. Moreover, M accepts x iff there exists a computation

path leading from the start configuration through only ∨-configurations to
some α ∈ D.

Thus A can be accepted by a nondeterministic polynomial-time-
bounded oracle machine with oracle∼D that on input x guesses a computa-
tion path from the start configuration of M through only ∨-configurations
to some ∧-configuration α, then consults the oracle to check whether α ∈ D.

(⊆ ) For this inclusion, assume that we have a nondeterministic nc-
time-bounded oracle machine M with oracle B ∈ Σp

k, and let A = L(M).
We wish to show that A ∈ Σp

k+1.
Build a Σk+1 machine N that works as follows. On input x, N will begin

by simulating M on input x, except that every time M wants to query the
oracle on some string y, N nondeterministically guesses the answer that
the oracle would return (that is, whether y ∈ B) and remembers y and the
guessed answer. It continues the simulation until M arrives at an accept
or reject state, which must happen by time nc. If M wants to reject at
that point, N just rejects. If M wants to accept, N has to verify that the
guessed oracle answers were correct.

So far the computation tree of N looks like the computation tree of M ,
except that at each oracle query, N has a nondeterministic branch for the
two possible responses of the oracle. Up to this point N has made only
existential branches. At each leaf there is a process with a list of oracle
queries and guessed responses that need to be verified. The lists may be
different for different computation paths, because later queries may depend
on the responses to earlier queries, but all lists are at most nc in length.

Thus each process has a list y1, . . . , ym of oracle queries for which the
guessed response from the oracle was positive and a list z1, . . . , z� for which
the guessed response was negative. The total combined length of the yi and
zj concatenated together is at most nc, because the machine had to write
them all down on its oracle query tape. It must now verify with a Σk+1

computation in polynomial time that yi ∈ B, 1 ≤ i ≤ m, and zj �∈ B,
1 ≤ j ≤ �. That Σk+1 computation combined with the Σ1 computation up
to this point is still a Σk+1 computation.
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We have reduced the problem to showing that for B ∈ Σp
k, the set

{y1# · · ·#ym##z1# · · ·#z� | yi ∈ B, 1 ≤ i ≤ m; zj �∈ B, 1 ≤ j ≤ �}

is in Σp
k+1. Each guess yi ∈ B can be verified with a Σk computation, and

each guess zj �∈ B can be verified with a Πk computation.
Our first thought might be to make an (m + �)-way ∧-branch, each

process taking a yi or zj and independently verifying yi ∈ B with a Σk

computation and zj �∈ B with a Πk computation. Unfortunately, this does
not work, because it results in a Πk+1 computation, which cannot in general
be simulated by a Σk+1 computation.

Instead, we do the first round of existential guessing for all the yi se-
quentially. Let nd be the time bound on a Σk-machine for B. Nondeter-
ministically guess binary strings w1, . . . , wm, each of length nd. This takes
time at most mnd ≤ nc+d. These strings will direct the first round of ex-
istential guesses in the Σk computations to verify yi ∈ B. Now make an
(m + �)-way universal branch, each process taking a positive query yi or a
negative query zj . So far the computation is Σ2. For each negative query
zj , we just verify zj �∈ B using a Πk computation for ∼B. This combines
with the preceding Σ2 computation to give a Σk+1 computation. For each
positive query yi, we simulate the Σk computation for B to verify yi ∈ B,
but use the guessed wi to direct the first level of existential branches, thus
making the first level deterministic. The remaining computation is Πk−1,
so the total computation is Σk+1. �

The trick we used at the end is essentially an instance of skolemization,
a common technique used in logic:∧

i∈A

∨
w∈B

ϕ(i, w) =
∨

f :A→B

∧
i∈A

ϕ(i, f(i)).

This is actually a generalized version of the distributive law of Boolean al-
gebra. In our application, A = {1, 2, . . . , m}, B = {0, 1}nd

, and ϕ(i, w) says
that yi is accepted by a Πk−1 machine that simulates the Σk computation
of B, but uses w to direct the first level of nondeterministic choices.

Ordinarily an application of skolemization or the distributive law results
in an exponential blowup in the size of the formula: if |A | = m and |B | = r,
then |A → B | = rm. However, here we are ok, because |A | = m ≤ nc

and |B | = 2nd

, so |A → B | = (2nd

)m ≤ (2nd

)nc

= 2nc+d

. The functions
f : A → B in our application represent the possible choices of binary strings
w1, . . . , wm, and these can be guessed in time at most nc+d.

Another characterization of the polynomial time hierarchy can be given
in terms of quantified expressions. Let t be a numeric term. Define the
bounded quantifiers ∃t and ∀t that limit the quantification to range over
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those strings whose length is bounded by the value of t. We can consider
∃t and ∀t to be abbreviations for

∃ty ϕ(y) def⇐⇒ ∃y |y | ≤ t ∧ ϕ(y)

∀ty ϕ(y) def⇐⇒ ∀y |y | ≤ t → ϕ(y).

Theorem 10.2 A set A is in Σp
k if and only if there is a deterministic polynomial-time

computable (k + 1)-ary predicate R and constant c such that

A = {x | ∃|x |cy1 ∀|x |cy2 ∃|x |cy3 · · · Q|x |cyk R(x, y1, . . . , yk)},
where Q = ∃ if n is odd, ∀ if n is even.

Proof. Miscellaneous Exercise 32. �



Lecture 11

Parallel Complexity

In this lecture we take a look at parallel computation from a complexity-
theoretic point of view. Many machine models have been developed to
study parallelism, perhaps the most prominent of which are parallel ran-
dom access machines (PRAMs) and uniform families of circuits. Many of
these models can simulate one another with relatively low overhead, so the
parallel complexity classes they define are robust and natural.

Uniform Families of Circuits and NC

Uniform families of circuits were first defined and studied as a model of
parallel complexity by Allan Borodin [22]. The most popular parallel com-
plexity class defined in terms of uniform circuits is NC , for Nick’s class,
named after Nicholas Pippenger. The class first appeared in print under
that name in a paper of Stephen Cook [32], who attributed the definition
of the class to Pippenger, except for the uniformity condition.

NC lies between NLOGSPACE and P . It is to parallel computation as
P is to sequential computation—a robust and natural (albeit imperfect)
approximation to the notion of efficiently parallelizable.

Many efficient NC algorithms have been developed for important prob-
lems. In particular, it has been shown that virtually all of linear algebra
can be done in NC . Other problems have defied parallelization; for ex-
ample, there is no known efficient parallel algorithm for the circuit value
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problem or for calculating integer greatest common divisors (gcd); however,
polynomial gcd is in NC .

The P = NP question asks whether a host of important combinatorial
problems have efficient sequential solutions. The NC = P question, in
turn, asks whether a host of problems that are known to have efficient
sequential solutions have efficient parallel solutions. Any problem that is
≤log

m -complete for P , such as CVP, is in NC iff P = NC .
One popular definition of NC is in terms of PRAMs: a set is in NC if it

has a (log n)O(1)-time (polylog-time) solution on a PRAM using polynomi-
ally many processors. This model is well suited to the analysis of parallel
graph algorithms and other combinatorial problems. We concentrate on an
alternative definition in terms of uniform families of circuits, which is more
useful in algebraic problems. In this definition, a set is in NC if it has a
logspace-uniform family of Boolean circuits of polylog depth and polyno-
mial size. Formally:

Definition 11.1 (Cook [32]) A family of Boolean circuits C0, C1, C2, . . . is a logspace-
uniform family of Boolean circuits of polylog depth and polynomial size
if:

(i) Cn has n input wires and is composed of ∨-, ∧-, and ¬-gates;

(ii) Cn is of depth at most (log n)O(1) (polylog depth), where the depth is
the length of the longest path from an input to an output;

(iii) Cn is has no more than nO(1) gates (polynomial size); and

(iv) the family is logspace-uniform, which means that there is a logspace
transducer that produces the circuit Cn on input 0n.

A set A ⊆ {0, 1}∗ is in NC if there exists such a family in which each Cn

has one output wire, and for all x ∈ {0, 1}∗, x ∈ A iff C|x |(x) = 1.

The uniformity condition (iv) is there mostly for technical reasons. It
allows PRAMs and other models to simulate circuits. It is a very reasonable
restriction, because in most applications the circuits can be constructed
that easily. Note that without some kind of uniformity condition, there
would exist trivial circuit families that decide undecidable problems; for
example, take Cn to be a circuit with a single gate that outputs 1 if TM
Mn halts on input n, 0 otherwise.

Boolean Matrix Multiplication

Here is an example of a family of logspace-uniform, polylog-depth circuits
to compute the Boolean matrix product of two n × n matrices. The nth
circuit has 2n2 input wires and n2 output wires and computes the Boolean
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matrix product of two given n × n input matrices. (For the other input
sizes, take some trivial circuit.) The size of the nth circuit will be O(n3)
and the depth will be logn.

The inputs supplied to the nth circuit are the entries of the two given
matrices A, B. In the first step, the circuit computes Aij ∧Bjk in parallel
for all choices of i, j, k. This takes one step and n3 ∧-gates. Then for each
i and k, the Boolean sums

∨
j(Aij ∧ Bjk) are computed in parallel in a

treelike fashion. This requires depth log n and O(n) gates for each i and k,
or O(n3) in all. The outputs are

(AB)ik =
∨
j

(Aij ∧Bjk). (11.1)

The family is logspace-uniform, because the circuits are quite simple to
describe and could be created by a logspace transducer. Note that the n2

subcircuits that produce (11.1) are identical except for the indices i, k,
which take only logspace to write down in binary.

Reflexive Transitive Closure

Here is another example. We describe a family of logspace-uniform, polylog-
depth, and polynomial-size circuits to compute the reflexive transitive clo-
sure R∗ of a given binary relation R on a set of size n. Recall that R∗
consists of pairs (u, v) such that there exists an R-path of length zero or
greater from u to v.

Suppose R is given by its n× n adjacency matrix. Note that

R∗ =
∨

i≥0 Ri =
∨n−1

i=0 Ri = (R ∨ I)n−1, (11.2)

where I = R0 is the n × n identity matrix. Note that (Ri)uv = 1 if there
is an R-path of length exactly i from u to v. We can limit the powers of R
in the Boolean sum (11.2) to n− 1 (or any greater finite number) because
if there exists a path at all from u to v, then there exists one of length at
most n− 1 obtained by cutting out loops.

The circuit that computes R∗ from R has n2 input wires, on which are
supplied the Boolean entries of the adjacency matrix of R. The circuit first
computes R∨I, then repeatedly squares the matrix 
log n� times to obtain
R∗:

(R ∨ I)2, (R ∨ I)4, (R ∨ I)8, (R ∨ I)16, . . . .

Each squaring step takes log n depth and polynomial size by the previous
example, and there are log n squaring steps, so the total depth is (log n)2.

Again, the family is logspace-uniform, because the circuits are quite
simple to describe and could be constructed by a logspace transducer.
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Relation to Time-Space Classes

In order to describe the relationship of NC to conventional time and space
complexity, we need to define a family of complexity classes for alternating
machines that simultaneously keep track of time, space, and number of
alternations.

Definition 11.2 The class

STA(S(n), T (n), A(n))

is the class of all sets accepted by ATMs that are simultaneously S(n)-space-
bounded, T (n)-time-bounded, and make at most A(n) alternations on inputs
of length n. A ∗ in any position means “don’t care.” In other words, no
bound is imposed. We also write Σ or Π in the third position if we need to
specify that the alternations should start with an ∨ or ∧, respectively.

For example,

LOGSPACE = STA(log n, ∗, 0),
NLOGSPACE = STA(log n, ∗, Σ1),

P = STA(log n, ∗, ∗) = STA(∗, nO(1), 0),
NP = STA(∗, nO(1), Σ1),
Σp

k = STA(∗, nO(1), Σk),

Πp
k = STA(∗, nO(1), Πk),

PSPACE = STA(∗, nO(1), ∗) = STA(nO(1), ∗, 0),

and so on.
The following theorem of Ruzzo relates NC to more conventional com-

plexity classes.

Theorem 11.3 (Ruzzo [106]) NC = STA(log n, ∗, (log n)O(1)).

One can see from this theorem that NLOGSPACE ⊆ NC ⊆ P , be-
cause

NLOGSPACE = STA(log n, ∗, Σ1),
NC = STA(log n, ∗, (log n)O(1)),

P = STA(log n, ∗, ∗).
We prove this theorem next time.
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Relation of NC to Time-Space Classes

Recall that NC is the class of sets computable by polylog-depth,
polynomial-size, logspace-uniform families of Boolean circuits C0, C1, . . . .
The following theorem relates this class to more conventional time-space
classes and places NC between NLOGSPACE and P .

Theorem 12.1 (Ruzzo [106]) NC = STA(log n, ∗, (log n)O(1)).

Proof. We show the inclusion in both directions.
(⊆ ) We said before that logspace-uniform means that there is a logspace

transducer M that on input 0n produces the nth circuit Cn. Let us be a
little more careful about what we mean by this.

Because Cn has only polynomially many gates, there is a naming scheme
in which each gate can be named with a string of length O(log n). We
reserve the names 1, 2, . . . , n in binary for the names of the n input ports.
On input 0n, the logspace transducer M must produce

(i) an enumeration of the names of all gates in the circuit Cn;

(ii) for each gate c, a tag indicating whether c is an ∧-gate, an ∨-gate, a
¬-gate, or an input port;

(iii) a list of all wires (c, d) in the circuit, where c and d are legal gate
names enumerated in (i); and
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(iv) for one of the gates c, a tag indicating that c is the output gate.

We assume for simplicity that ∨- and ∧-gates have exactly two inputs, ¬-
gates exactly one, and input ports none. Circuits with unbounded fan-in
can be simulated with at most an O(log n) factor increase in depth and at
most double the size.

Because we can construct the dual circuit in logspace (the construction
is similar to the proof of Lemma 7.3), we can assume without loss of gen-
erality that Cn has no negate gates other than those applied immediately
to inputs. That is, if d is a negate gate and (c, d) is the unique wire coming
into d, then c is an input port.

Now we design an alternating logspace machine N to simulate this
family of circuits. On input x of length n, the machine N will use M to
produce Cn on the fly and evaluate Cn(x). First N runs M to find the
name of the output gate and its type, which it writes on its worktape. Now
suppose some process of N has the name and type of a gate d written on
its worktape.

• If d is an ∧- or an ∨-gate, it starts M from scratch, enumerating wires
to find the two wires (c, d), (c′, d) coming into d. When it has found
these wires, it makes an existential or universal branch according as
d is an ∨- or ∧-gate, respectively. Each of the two subprocesses takes
one of c and c′ and repeats.

• If d is an input port 1 ≤ d ≤ n, N accepts or rejects according as the
dth bit of the input x is 1 or 0, respectively.

• If d is a ¬-gate, N runs M to find the input port c such that (c, d) is
the unique wire coming into d. It accepts or rejects according as the
cth bit of the input x is 0 or 1, respectively.

The machine N needs no more than logarithmic space to do any of these
tasks, because all it has to remember at any time is the name of the current
gate c it is visiting. Moreover, the number of alternations that N makes is
bounded by the depth of the circuit it is simulating, which is (logn)O(1).

(⊇) For this inclusion, assume that we are given an alternating logspace
machine N making at most (log n)c alternations on inputs of length n. We
wish to construct a logspace-uniform family of circuits of polylog depth
and polynomial size simulating N .

As argued in Theorem 7.4, we can assume without loss of generality that
N runs in polynomial time. Encoding configurations in some reasonable
way as strings over a finite alphabet, each configuration reachable from the
start configuration on an input of length n can be represented as a string
of length log n, and there are only nc such configurations for some constant
c.
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For inputs x ∈ {0, 1}n, we can represent the next-configuration rela-
tion of N on input x as an nc × nc Boolean matrix Rx whose rows and
columns are indexed by configurations; thus Rx(α, β) = 1 if configuration
β is an immediate successor of configuration α on input x according to the
transition rules of N .

The circuit Cn will first compute the entries of Rx. Because configu-
rations are encoded as strings of length O(log n), the pairs (α, β) can also
serve as the names of the gates for purposes of generating the circuit uni-
formly in logspace. A logspace machine can easily compare α and β and
determine whether there is a possible transition from α to β and build a
trivial circuit to output the value of Rx(α, β). This will depend on the in-
put symbol being scanned in configuration α, so the circuit will access the
ith input port of Cn, where i is the position of N ’s input head encoded in
the configuration α. The depth of the circuit constructed so far is 1.

Once Cn has computed Rx, it constructs matrices for the relations

Sx
def= {(α, β) | Rx(α, β) = 1 and type(α) = type(β)},

Tx
def= {(α, β) | Rx(α, β) = 1 and type(α) �= type(β)},

S∗x def= reflexive transitive closure of Sx,

and the product S∗x Tx. A pair (α, β) is in S∗x if there is a computation
path in N of length zero or greater on input x from α to β such that all
configurations on the path have the same type. A pair (α, β) is in S∗x Tx if
there is a computation path from α to β such that all configurations on the
path except β have the same type as α, and β has a different type.

The matrices Sx and Tx are just the componentwise Boolean meet of
Rx with the relation {(α, β) | type(α) = type(β)} and its complement,
respectively. The reflexive transitive closure S∗x and the product S∗x Tx can
be computed using constructions given in Lecture 11.

Now think of the computation tree of N on input x, |x | = n, as di-
vided into (log n)c levels. Within each level, either all configurations are
existential or all are universal.
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Number the levels 0, 1, 2, . . . from bottom to top. An existential config-
uration α at level i + 1 is an accepting configuration iff there exists a
configuration β at level i such that S∗x Tx(α, β) = 1 and β is an accepting
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configuration. A universal configuration α at level j + 1 is an accepting
configuration iff for all existential configurations β at level j such that
S∗x Tx(α, β) = 1, β is an accepting configuration.

Now the circuit computes a series of Boolean vectors b0, b1, . . . , each of
length nc and indexed by configurations, such that bi(α) = 1 iff α is an
accepting configuration at the ith level.

For existential levels i+1, the circuit computes the matrix–vector prod-
uct

bi+1 := S∗x Txbi.

For universal levels i + 1, the circuit computes

bi+1 := ¬(S∗x Tx(¬bi)),

where ¬ applied to a vector is interpreted componentwise.
We can take the initial vector b0 to be the zero vector. Recalling our

convention that an accept configuration is an ∧-configuration with no suc-
cessors and a reject configuration is an ∨-configuration with no successors,
this does the right thing. For example, an ∧-configuration α at level 1 is an
accepting configuration if there does not exist a computation path leading
to an ∨-configuration, in which case b1(α) = 1.

One can show by induction that a configuration α of the appropriate
type is an accepting configuration at the ith level iff bi(α) = 1. The output
value is b(log n)c(start), where start is the start configuration.

There are at most (log n)c levels, and each level requires log n depth
and polynomial size for the matrix–matrix and matrix–vector products and
other Boolean operations. Moreover, the circuit is uniform at each level and
can be generated by a logspace transducer. �



Lecture 13

Probabilistic Complexity

There are many instances of problems with efficient randomized or proba-
bilistic algorithms for which no good deterministic algorithms are known.
In the next few lectures we take a complexity-theoretic look at probabilistic
computation. We define a simple model of randomized computation, the
probabilistic Turing machine, define some basic probabilistic complexity
classes, and outline the relationship of these classes to conventional time
and space classes. Our main result, which we prove next time, is that the
class BPP of sets accepted by polynomial-time probabilistic algorithms
with error probability bounded below 1

2 is contained in Σp
2 ∩ Πp

2 [112].
Many probabilistic algorithms have only a one-sided error; that is, if the

input string is in the set, then the algorithm accepts with high probability;
but if the string is not in the set, then the algorithm rejects always. The
corresponding probabilistic complexity class is known as RP and is called
random polynomial time.

Discrete Probability

Before we begin, let us recall some basic concepts from discrete probability
theory.

Law of Sum The law of sum says that if A is a collection of pairwise
disjoint events, that is, if A ∩ B = ∅ for all A, B ∈ A, A �= B, then the
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probability that at least one of the events in A occurs is the sum of the
probabilities:

Pr(
⋃

A) =
∑
A∈A

Pr(A).

Expectation The expected value EX of a discrete random variable X is the
weighted sum of its possible values, each weighted by the probability that
X takes on that value:

EX =
∑

n

n · Pr(X = n).

For example, consider the toss of a coin. Let

X =
{

1, if the coin turns up heads
0, otherwise. (13.1)

Then EX = 1
2 if the coin is unbiased. This is the expected number of heads

in one flip. Any function f(X) of a discrete random variable X is a random
variable with expectation

Ef(X) =
∑

n n · Pr(f(X) = n) =
∑

m f(m) · Pr(X = m).

It follows immediately from the definition that the expectation function
E is linear. For example, if Xi are the random variables (13.1) associated
with n coin flips, then

E(X1 + X2 + · · ·+ Xn) = EX1 + EX2 + · · ·+ EXn,

and this gives the expected number of heads in n flips. The Xi need not be
independent; in fact, they could all be the same flip.

Conditional Probability and Conditional Expectation The conditional prob-
ability Pr(A | B) is the probability that event A occurs given that event B
occurs. Formally,

Pr(A | B) =
Pr(A ∩B)

Pr(B)
.

The conditional probability is undefined if Pr(B) = 0.
The conditional expectation E(X | B) is the expected value of the ran-

dom variable X given that event B occurs. Formally,

E(X | B) =
∑

n

n · Pr(X = n | B).

If the event B is that another random variable Y takes on a particular
value m, then we get a real-valued function E(X | Y = m) of m. Composing
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this function with the random variable Y itself, we get a new random
variable, denoted E(X | Y ), which is a function of the random variable Y .
The random variable E(X | Y ) takes on value n with probability∑

E(X|Y =m)=n

Pr(Y = m),

where the sum is over all m such that E(X | Y = m) = n. The expected
value of E(X | Y ) is just EX :

E(E(X | Y )) =
∑
m

E(X | Y = m) · Pr(Y = m)

=
∑
m

∑
n

n · Pr(X = n | Y = m) · Pr(Y = m)

=
∑

n

n ·
∑
m

Pr(X = n ∧ Y = m) (13.2)

=
∑

n

n · Pr(X = n)

= EX

(see [39, p. 223]).

Independence and Pairwise Independence A set of events A are independent
if for any subset B ⊆ A,

Pr(
⋂

B) =
∏

A∈B

Pr(A).

They are pairwise independent if for every A, B ∈ A, A �= B,

Pr(A ∩B) = Pr(A) · Pr(B).

For example, the probability that two successive flips of a fair coin both
come up heads is 1

4 .
Pairwise independent events need not be independent. Consider the

following three events:

• The first flip gives heads.

• The second flip gives heads.

• Of the two flips, one is heads and one is tails.

The probability of each pair is 1
4 , but the three cannot happen simultane-

ously.
If A and B are independent, then Pr(A | B) = Pr(A).
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Inclusion–Exclusion Principle It follows from the law of sum that for any
events A and B, disjoint or not,

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B).

More generally, for any collection A of events,

Pr(
⋃

A)

=
∑
A∈A

Pr(A) −
∑

B⊆A
|B |=2

Pr(
⋂

B) +
∑

B⊆A
|B |=3

Pr(
⋂

B)− · · · ± Pr(
⋂

A).

This equation is often used to estimate the probability of a join of several
events. The first term alone gives an upper bound and the first two terms
give a lower bound:

Pr(
⋃

A) ≤
∑
A∈A

Pr(A)

Pr(
⋃

A) ≥
∑
A∈A

Pr(A)−
∑

A,B∈A
A �=B

Pr(A ∩B).

Probabilistic Turing Machines

Intuitively, we can think of a probabilistic Turing machine as an ordinary
deterministic TM, except that at certain points in the computation it can
flip a fair coin and make a binary decision based on the outcome. The prob-
ability of acceptance is the probability that its computation path, directed
by the outcomes of the coin tosses, leads to an accept state.

Formally, we define a probabilistic Turing machine to be an ordinary
deterministic TM with an extra semi-infinite read-only tape containing a
binary string called the random bits . The machine runs as an ordinary
deterministic TM, consulting its random bits in a read-only fashion. We
write M(x, y) for the outcome, either accept or reject, of the computation
of M on input x with random bits y. We say that M is T (n) time bounded
(respectively, S(n) space bounded) if for every input x of length n and
every random bit string, it runs for at most T (n) steps (respectively, uses
at most S(n) worktape cells).

In this model, the probability of an event is measured with respect to
the uniform distribution on the space of all sequences of random bits. This
is the measure that would result if a fair coin were flipped infinitely many
times with the ith random bit determined by the outcome of the ith coin
flip.

In practice, we consider only time-bounded computations, in which case
the machine can look at only finitely many random bits. This makes the
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calculation of the probabilities of events easier. For example, if M is T (n)
time bounded, then the probability that M accepts its input string x is

Pry(M(x, y) accepts) =
|{y ∈ {0, 1}k | M(x, y) accepts}|

2k
,

where k is any number exceeding T (|x |). The notation Pry(E) refers to
the probability of event E with a bit string y chosen uniformly at random
among all strings of length k.

Randomness can be regarded as a computational resource, much like
time and space. One can measure the number of random bits consulted in
a computation. We show some examples of this in Lectures 18 to 20.

The following are two basic complexity classes defined for probabilistic
Turing machines.

Definition 13.1 A set A is in RP if there is a probabilistic Turing machine M with poly-
nomial time bound nc such that

• if x ∈ A, then Pry(M(x, y) accepts) ≥ 3
4 ; and

• if x �∈ A, then Pry(M(x, y) accepts) = 0.

The definition of BPP is the same, except we replace the second condition
with:

• if x �∈ A, then Pry(M(x, y) accepts) ≤ 1
4 .

Equivalently, a set A is in BPP if there is a probabilistic Turing machine
M with time bound nc such that for all inputs x,

Pry(M(x, y) errs in deciding whether x ∈ A) ≤ 1
4 .

We have used 1
4 and 3

4 in the definition of RP and BPP , but actually
any 1

2 − ε and 1
2 + ε will do. It matters only that the probabilities be

bounded away from 1
2 by a positive constant ε independent of the input

size.
Also, as previously observed, the length of the random bit string is not

important; any set of strings of sufficient length will do, as long as the
machine has access to as many random bits as it needs.

It is easy to see that P ⊆ RP ⊆ NP , RP ⊆ BPP , and BPP is closed
under complement. We show next time that BPP ⊆ Σp

2 ∩ Πp
2 .

Other classes such as RPSPACE and RNC can be defined similarly.

Probabilistic Tests with Polynomials

Here is an example of a probabilistic test for which no equally efficient de-
terministic test is known: determining whether a given multivariate poly-
nomial p(x1, . . . , xn) of low degree with integer coefficients is identically
0.



Probabilistic Complexity 79

We assume that p is given in the form of a straight-line program with
operations +, ·, and scalar operations, or equivalently, in the form of an
arithmetic circuit. We could check deterministically if p is identically 0 by
multiplying it out to represent it as a sum of terms and checking whether
all the terms cancel, but this would take exponential time in general.

Alternatively, we can evaluate p on some a1, . . . , an chosen at ran-
dom from some sufficiently large set of integers. If p is identically 0, then
p(a1, . . . , an) = 0. If not, then p(a1, . . . , an) �= 0 with high probability. The
reason for this is that the zero set of a nonzero polynomial is sparse.

This works even over finite fields, provided the field is large enough and
the degree of the polynomial is not too large. Here we can use the following
result, commonly known as the Schwartz–Zippel lemma, but also discovered
independently by DeMillo and Lipton [36, 110, 127] (see [75] for a proof):

Theorem 13.2 (Schwartz–Zippel Lemma) Let F be a field and let S ⊆ F be an arbitrary
subset of F. Let p(x) be a nonzero polynomial of n variables x = x1, . . . , xn

and total degree1 d with coefficients in F. Then the equation p(x) = 0 has
at most d · |S |n−1 solutions in Sn.

Corollary 13.3 Let p(x1, . . . , xn) be a nonzero polynomial of total degree d with coefficients
in a field F, and let S ⊆ F. If p is evaluated on an element (s1, . . . , sn)
chosen uniformly at random from Sn, then

Pr(p(s1, . . . , sn) = 0) ≤ d

|S | .

This lemma is useful in quite a number of combinatorial applications.
Here are two examples.

Example 13.4 A perfect matching in a bipartite graph is a subset M of the edges such
that

(i) no two edges in M share a common vertex, and

(ii) every vertex is the endpoint of some edge in M .

It is known how to test for the existence of a perfect matching in a bipartite
graph G and find one if it exists in polynomial time [62]. It is unknown
whether this problem is in NC . However, the following approach, based on
an observation of Lovász [80], gives a random NC algorithm.

Assign to each edge (i, j) of G an indeterminate xij and consider the
n × n bipartite adjacency matrix X with these indeterminates instead of
1. For example,

1Maximum degree of any term.
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The determinant detX is a polynomial of degree n in the indeterminates
xij with one term for each perfect matching, and none of these terms cancel.
For example, the graph above has two perfect matchings
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corresponding to the two terms of the determinant

detX = x12x23x31 − x11x23x32.

Thus G has a perfect matching iff detX does not vanish identically. This
is difficult to test deterministically, because det X may be quite large.

However, the determinant of an integer matrix can be calculated in
NC using Csanky’s algorithm [34] (see [75] for a proof), and we can use
this to test in RNC whether detX is identically 0. We can simply assign
randomly chosen elements of a large enough finite field (say Zp, where p is
some prime greater than 2n) to the xij , then ask whether the determinant
evaluated at those random elements is 0. This will happen with probability
1 if detX is indeed identically 0, and with probability at most n

2n = 1
2 if

not, by Corollary 13.3.
Given the ability to test for the existence of a perfect matching, we can

then find one by deleting edges and their endpoints one by one and testing
for the existence of a perfect matching without that edge. �

Example 13.5 Here is an efficient probabilistic test for deciding whether two unordered2

directed trees of height h and size n are isomorphic. Associate with each
vertex v a polynomial fv in the variables x0, x1, . . . , xh inductively, as
follows. For each leaf v, set fv = x0. For each internal node v of height k
with children v1, . . . , vm, set

fv = (xk − fv1)(xk − fv2) · · · (xk − fvm).

The degree of fv is equal to the number of leaves in the subtree rooted at v.
Using the fact that polynomial factorization is unique, it can be shown that
two trees are isomorphic iff the polynomials associated with the roots of

2A directed tree is ordered if the left-to-right order of each node’s children is given.
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the trees are equal. This gives an efficient probabilistic test for isomorphism
of unordered trees: test whether the difference of these two polynomials is
identically zero by evaluating it on a random input. �

Another example of a problem with an efficient probabilistic solution
is primality testing: given a positive integer, is it prime? For many years,
this problem was known to be in P only under the assumption of the
extended Riemann hypothesis , an unproved conjecture of analytic number
theory [86], but was known to be in RP via the Miller–Rabin test [86, 100]
(see [75]). This test is quite efficient and always answers “prime” if the
given number is prime and “composite” with high probability if the given
number is composite. An improved probabilistic primality test was given
recently by Agrawal and Biswas [2]. The problem was also known to be in
NP ∩ co-NP (Theorem C.4).

Quite recently, Agarwal, Kayal, and Saxena have shown that primality
testing is in P unconditionally [3]. However, their algorithm runs in time
O(n12) and is currently not yet competitive with the best probabilistic
methods in practice.
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BPP ⊆ Σp
2 ∩ Πp

2

In this lecture we prove that BPP ⊆ Σp
2 ∩ Πp

2 . It suffices to show that
BPP ⊆ Σp

2 , because BPP is closed under complement. This result is due
to Sipser [112].

Amplification

By repeating trials in an RP or BPP computation, we can cause the prob-
ability of error to diminish exponentially.

Lemma 14.1 (Amplification Lemma) If A ∈ RP, then for any polynomial nd there is
a probabilistic polynomial-time-bounded Turing machine M such that for
inputs x of length n,

(i) if x ∈ A, then Pry(M(x, y) accepts) ≥ 1− 2−nd

; and

(ii) if x �∈ A, then Pry(M(x, y) accepts) = 0.

If A ∈ BPP, then for any polynomial nd there is a probabilistic
polynomial-time-bounded Turing machine M such that for inputs x of
length n,

Pry(M(x, y) errs in deciding whether x ∈ A) ≤ 2−nd

.
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Proof. For RP , let M be a probabilistic polynomial-time-bounded TM
such that for all x,

• if x ∈ A then Pry(M(x, y) accepts) ≥ 3
4 ; and

• if x �∈ A then Pry(M(x, y) accepts) = 0.

Build another probabilistic TM N that on input x just runs M on x nd

times, using a new block of random bits for each trial, and accepts if any
one of the trials accepts. If M is time-bounded by nc, hence uses at most
nc random bits, then N will be nc+d-time-bounded and use at most nc+d

random bits, which is still polynomial. If x �∈ A, then M always rejects, so
N rejects; and if x ∈ A, then the probability that N errs is

Pry1,... ,y
nd

(N(x, y1, . . . , ynd) rejects) =
nd∏
i=1

Pryi(M(x, yi) rejects)

= Pry(M(x, y) rejects)nd

≤ 4−nd

.

For BPP , the construction of N is exactly the same, except that to de-
cide whether to accept or reject, N does nd+1 trials and picks the majority
outcome. The probability of error is the probability that at most half of
the nd+1 outcomes are correct; this is bounded by

nd+1/2∑
k=0

(
nd+1

k

)(
3
4

)k (1
4

)nd+1−k

≤ 4−nd+1
3nd+1/2

nd+1/2∑
k=0

(
nd+1

k

)
= 4−nd+1

3nd+1/2 2nd+1−1

≤
(

3
4

)nd+1/2

≤ 2−nd+1/6

≤ 2−nd

for sufficiently large n. �

BPP ⊆ Σp
2 ∩ Πp

2
Let A ∈ BPP . By the amplification lemma (Theorem 14.1), there is a c > 1
and a deterministic polynomial-time-bounded TM M running in time nc

such that for all inputs x,

• if x ∈ A, then Pry(M(x, y) accepts) ≥ 1− 2−n, and
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• if x �∈ A, then Pry(M(x, y) accepts) ≤ 2−n,

where Pry(E) denotes the probability of the event E taken over all strings
y chosen uniformly at random from the set {0, 1}nc

.
Fix an input string x of length n, and let m = nc. Define

Ax
def= {y ∈ {0, 1}m | M(x, y) accepts}

Rx
def= {y ∈ {0, 1}m | M(x, y) rejects} = {0, 1}m −Ax.

Then for x ∈ A,

|Ax | ≥ 2m − 2m−n and |Rx | ≤ 2m−n,

and for x �∈ A,

|Rx | ≥ 2m − 2m−n and |Ax | ≤ 2m−n.

Claim 14.2 The string x is in A if and only if there exist m strings z1, . . . , zm, each of
length m, such that

{y ⊕ zj | 1 ≤ j ≤ m, y ∈ Ax} = {0, 1}m,

where ⊕ denotes exclusive-or or bitwise mod 2 sum.

The idea here is that if x ∈ A, then the set Ax is so big that by mapping
it around with some small set of permutations of the form y �→ y ⊕ z, we
hit every string; and if x �∈ A, then Ax is so small that no small collection
of such permutations does this.

If the claim is true, then this is all we need to show A ∈ Σp
2 : to determine

whether x ∈ A,

(i) guess z1, . . . , zm using existential branching;

(ii) generate all w of length m using universal branching; and

(iii) check that w ∈ {y ⊕ zj | 1 ≤ j ≤ m, y ∈ Ax}, or equivalently that
{w ⊕ zj | 1 ≤ j ≤ m} intersects Ax, by running M(x, w ⊕ zj) for all
1 ≤ j ≤ m.

Part (iii) of the computation can be done deterministically, so this is a Σp
2

computation.

Proof of Claim 14.2. We can prove this lemma just by counting. First,
assume that x �∈ A. Then |Ax | ≤ 2m−n. For any choice of z1, . . . , zm,

{y ⊕ zj | 1 ≤ j ≤ m, y ∈ Ax} =
m⋃

j=1

{y ⊕ zj | y ∈ Ax}.
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An upper bound on the size of this set is

m∑
j=1

|{y ⊕ zj | y ∈ Ax}| =
m∑

j=1

|Ax | ≤ m2m−n < 2m

for sufficiently large n. Thus

{y ⊕ zj | 1 ≤ j ≤ m, y ∈ Ax} �= {0, 1}m.

Now suppose x ∈ A. Then |Rx | ≤ 2m−n. Let us call z1, . . . , zm bad if
for some w,

{w ⊕ zj | 1 ≤ j ≤ m} ⊆ Rx,

good otherwise. We wish to show that there exists a good z1, . . . , zm. But
each bad z1, . . . , zm is determined by a subset of Rx of size m, of which
there are at most (2m−n)m, and a string w ∈ {0, 1}m, of which there are
2m. Thus an upper bound on the number of bad z1, . . . , zm is

(2m−n)m2m = 2m(m−n+1) < 2m2
,

and the right-hand side is the total number of choices of z1, . . . , zm, so
some z1, . . . , zm must be good. �
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Chinese Remaindering

The following is a very useful theorem with many applications in computer
science. It says that a large number can be faithfully represented as a
sequence of remainders modulo a list of small relatively prime moduli.

Let Zn denote the ring of integers modulo n. Recall that two positive
integers are relatively prime if they have no common factor except 1.

Theorem B.1 (Chinese Remainder Theorem) Let n1, . . . , nk be pairwise relatively prime
positive integers, and let n =

∏k
i=1 ni. The ring Zn and the direct product

of rings Zn1 × · · · × Znk
are isomorphic under the function

σ : Zn → Zn1 × · · · × Znk

σ(x) def= (x mod n1, . . . , x mod nk).

This just says that the numbers modulo n and the k-tuples of numbers mod-
ulo ni, 1 ≤ i ≤ k, are in one-to-one correspondence, and that arithmetic is
preserved under the map f . For example, the following table compares Z15

to Z3 × Z5.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x mod 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
x mod 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
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Note that each pair in Z3 × Z5 occurs exactly once. This is because 3 and
5 are relatively prime. Arithmetic is preserved as well: for example, 4 and
7 correspond to the pairs (1, 4) and (1, 2), respectively; multiplying these
pairwise gives the pair (1, 3) (modulo 3 and 5, respectively), which occurs
under 13; and 4× 7 = 28 ≡ 13 (mod 15).

Also, σ and σ−1 are computable in polynomial time. To compute σ(x),
we just reduce x modulo n1, . . . , nk. To compute σ−1(x1, . . . , xk), we first
compute, for each 1 ≤ i ≤ k, positive integers s and t such that s(n/ni)−
tni = 1 and take ui

def= sn/ni. Because ni and n/ni are relatively prime,
the numbers s and t exist and are available as a byproduct of the Euclidean
algorithm (Miscellaneous Exercise 42). For each 1 ≤ i, j ≤ k, ui ≡ 1 (mod
ni) and ui ≡ 0 (mod nj), i �= j. Then

σ−1(x1, . . . , xk) = x1u1 + · · ·+ xkuk (mod n).

For further details see [4, pp. 289ff].

A Stronger Version

The Chinese remainder theorem actually holds in a much more general
form. We need this stronger form for Berlekamp’s factoring algorithm in
Lecture D.

Recall from algebra that an ideal of a commutative ring R is a set I
such that

• 0 ∈ I,

• if x, y ∈ I then x + y ∈ I, and

• if x ∈ I and y ∈ R, then xy ∈ I.

Ideals are the kernels of ring homomorphisms (the set of elements mapped
to 0). It is easy to check that if h : R → R′ is a ring homomorphism, then
{x ∈ R | h(x) = 0} is an ideal; conversely, if I is an ideal, then there is
a homomorphism [ ]I : R → R/I whose kernel is I. The ring R/I is the
quotient ring consisting of equivalence classes [x]I

def= {y ∈ R | x ≡I y},
where x ≡I y iff x− y ∈ I.

Let us call two ideals relatively prime if the smallest ideal containing
them both is all of R.

For example, in Z, the set of multiples of n ≥ 1 forms an ideal, and it
is the kernel of the ring homomorphism x �→ x mod n. The quotient ring
is Zn. The ideals generated by m and n in this way are relatively prime as
ideals iff m and n are relatively prime as integers in the usual sense.
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Theorem B.2 Let I1, I2, . . . , Ik be pairwise relatively prime ideals of commutative ring R,
and let I =

⋂k
i=1 Ii. There is an isomorphism

R/I ∼= R/I1 × · · · ×R/Ik

given by the map

σ : R/I → R/I1 × · · · ×R/Ik

σ([x]I)
def= ([x]I1 , . . . , [x]Ik

).

Proof. We must first argue that the map σ is well defined on ≡I -
equivalence classes; that is, the action of σ on [x]I does not depend on
the choice of the representative x. But this is true, because if x ≡I y, then
x ≡Ii y for 1 ≤ i ≤ k by definition of I.

It is a routine matter to check that σ is a ring homomorphism. Also, σ
is one-to-one, because if x ≡Ii y, 1 ≤ i ≤ k, then x ≡I y. The only difficulty
is showing that σ is onto.

To show that σ is onto, by analogy with the proof of Theorem B.1, it
suffices to show that for each 1 ≤ i ≤ k there exists x ∈ R such that x ≡Ii 1
and x ≡Ij 0 for j �= i. Equivalently, we must show that there exists x ∈ R
such that x − 1 ∈ Ii and x ∈ ⋂

j �=i Ij . Without loss of generality, assume
i = 1.

By the assumption of relative primality, for each j ≥ 2 there exist
xj ∈ I1 and yj ∈ Ij such that 1 = xj + yj (note that the smallest ideal
containing both I and J is the set of sums {x + y | x ∈ I and y ∈ J},
and this ideal is all of R iff it contains 1). Now we proceed by induction.
Suppose we have constructed um and vm such that

• um ∈ I1,

• vm ∈ ⋂m
j=2 Ij , and

• 1 = um + vm.

Let

um+1
def= xm+1 + ym+1um

vm+1
def= ym+1vm.

Then um+1 ∈ I1, vm+1 ∈
⋂m+1

j=1 Ij , and

um+1 + vm+1 = xm+1 + ym+1um + ym+1vm

= xm+1 + ym+1(um + vm)
= 1.

When done, we have vk ∈ ⋂k
j=2 Ij and vk − 1 = uk ∈ I1, thus vk is the

desired element. �
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In our application in Lecture D, R is a ring of polynomials over a finite
field.
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Complexity of Primality Testing

Testing whether a given binary integer is prime was for a long time one of
the few known examples of a problem in NP ∩ co-NP that was not known
to be in P . For many years, this problem was known to be in P only
under the assumption of the extended Riemann hypothesis , an unproved
conjecture of analytic number theory [86]. It was known to be in co-RP via
the Miller–Rabin test [86, 100] (see [75]) and also known to be in RP by
results of Adleman and Huang [1]. In 2002, Agarwal, Kayal, and Saxena
showed that primality testing is in P unconditionally [3]. An improved
probabilistic primality test was given recently by Agrawal and Biswas [2].

For our applications in Lecture 16, it suffices to show that the problem
is in NP ∩ co-NP. This was first shown by Pratt in 1975 [97]. We give
Pratt’s proof in this lecture (Theorem C.4).

Let PRIMES be the set of binary representations of primes. It is easy
to see that ∼PRIMES, the set of composite numbers , is in NP : guess two
nontrivial factors of the given number and multiply them. Thus PRIMES
is in co-NP. It is much harder to show that PRIMES is also in NP .

Pratt’s NP algorithm for primality is based on Fermat’s theorem. If
1 ≤ a ≤ n− 1 and there exists an m ≥ 1 such that am ≡ 1 (mod n), then
we define the order of a modulo n to be the least such m. For example,
the first few powers of 3 modulo 10 are 1, 3, 9, 7, 1, therefore the order of
3 modulo 10 is 4. If n is prime, then all numbers in the range 1, . . . , n− 1
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have an order modulo n, but not so if n is composite. For example, all
powers of 5 are 5 modulo 10.

In general, a positive integer a has an order modulo n iff a is relatively
prime to n (that is, if gcd(a, n) = 1) iff a is invertible modulo n; that is,
if there exists b, 1 ≤ b ≤ n − 1, such that ab ≡ 1 (mod n) (Miscellaneous
Exercise 43).

Lemma C.1 (Fermat’s Theorem) A number p ≥ 2 is prime if and only if some element
of {1, . . . , p− 1} has order p− 1 modulo p.

To prove Fermat’s theorem, we need a few basic facts of number theory
and finite fields.

Define

Z∗n def= {a | 1 ≤ a ≤ n− 1, gcd(a, n) = 1}.
For example, Z∗10 = {1, 3, 7, 9}. Because Z∗n consists of the invertible el-
ements of Zn, it forms a group under multiplication modulo n. This is
known as the group of units modulo n. The size of Z∗n is denoted ϕ(n). The
function ϕ is known as the Euler ϕ function.

We can calculate ϕ(n) for any n if we know the prime factorization of n.
For a prime power pk, ϕ(pk) = pk−1(p− 1), because a number is relatively
prime to pk iff it is not a multiple of p, and there are pk−1 − 1 multiples
of p in {1, . . . , pk − 1}. By the Chinese remainder theorem (Theorem B.1),
if m and n are relatively prime, then the map x �→ (x mod m, x mod n)
is a ring isomorphism Zmn → Zm × Zn, therefore a group isomorphism
Z∗mn → Z∗m × Z∗n, thus ϕ(mn) = ϕ(m)ϕ(n). Combining these facts, it
follows that if n = pk1

1 · · · pkm
m is the prime factorization of n, then

ϕ(n) =
m∏

i=1

pki−1
i (pi − 1). (C.1)

We must show that for prime p, the group Z∗p has an element of order
p−1. Because ϕ(p) = p−1 is the size of the whole group Z∗p , that is the same
as saying that Z∗p is cyclic; that is, {1, 2, . . . , p− 1} = {1, a, a2, . . . , ap−2}
(modulo p) for some 1 ≤ a ≤ p − 1. Such an element a is called a cyclic
generator of Z∗p .

It is actually true that the multiplicative group of any finite field is
cyclic. This is no harder to show for arbitrary finite fields than for the
fields Zp, so that is what we do.

Recall that the characteristic of a finite field F is the smallest number
p such that 1 + · · ·+ 1︸ ︷︷ ︸

p

= 0. This must be a prime, because otherwise F

would contain zero divisors. The prime subfield of F is the smallest subfield
of F and is isomorphic to Zp, where p is the characteristic. The number of
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elements in F must be pk for some k, because F is a vector space over its
prime subfield of some dimension k, therefore is isomorphic (as a vector
space, not as a field) to Zk

p.
In fact, up to isomorphism there is only one finite field of cardinality

q for each prime power q, and it is called GFq (for the Galois field on q
elements). It is not Zq if q is not prime, because Zq has zero divisors.

Write m | n if m divides n.

Lemma C.2 n =
∑

m |n ϕ(m).

Proof. By induction on the prime factorization of n. If n is a prime
power pk, then∑

m |n ϕ(m) =
∑k

i=0 ϕ(pi) = 1 +
∑k

i=1(p
i − pi−1) = pk.

If n = n1n2 where n1 and n2 are relatively prime, then∑
m |n

ϕ(m) =
∑

m |n1n2

ϕ(m) =
∑

m1 |n1
m2 |n2

ϕ(m1m2) =
∑

m1 |n1
m2 |n2

ϕ(m1)ϕ(m2)

= (
∑

m1 |n1

ϕ(m1))(
∑

m2 |n2

ϕ(m2)) = n1n2.

�

The nonzero elements of GFq are all invertible and thus form a group
GF∗q of size q− 1. Moreover, all elements of GF∗q have order dividing q− 1,
thus all are roots of the polynomial xq−1 − 1. Because xq−1 − 1 can have
at most q − 1 roots, that is all of them. Thus∏

a∈GF∗q
(x− a) = xq−1 − 1. (C.2)

Let Φk(x) be the polynomial whose roots are the elements of GF∗q of
order k:

Φk(x) def=
∏

a∈GF
∗
q

order a=k

(x− a).

By (C.2),

xq−1 − 1 =
∏

k | q−1

Φk(x).

Lemma C.3 For k | q − 1, the degree of Φk(x) is ϕ(k).
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Proof. By induction. For k = 1, Φ1(x) = x−1 and deg Φ1(x) = 1 = ϕ(1).
For k > 1,

k = deg (xk − 1)

= deg
∏
m | k

Φm(x)

=
∑
m | k

deg Φm(x)

= deg Φk(x) +
∑
m | k
m<k

deg Φm(x)

= deg Φk(x) +
∑
m | k
m<k

ϕ(m) induction hypothesis

= deg Φk(x) +
∑
m | k

ϕ(m)− ϕ(k)

= deg Φk(x) + k − ϕ(k) Lemma C.2,

therefore deg Φk(x) = ϕ(k). �

Proof of Lemma C.1. For any prime power q, the roots of Φq−1(x) are
the cyclic generators of GF∗q . By Lemma C.3, there are exactly ϕ(q− 1) =
deg Φq−1(x) of them. This number is nonzero for any prime power q ≥ 2,
therefore GF∗q has a cyclic generator. In the special case q is prime, this
gives a number with order q − 1 modulo q.

Conversely, unless n is prime, the number ϕ(n) as defined in (C.1) is
strictly less than n − 1. Moreover, any element a ∈ {1, . . . , n − 1} that
has an order modulo n, being a member of the group Z∗n, must have order
dividing ϕ(n). �

Primality Testing

Now we show how to use Fermat’s theorem to get an NP algorithm for
primality.

Theorem C.4 (Pratt [97]) PRIMES ∈ NP ∩ co-NP.

Proof. We have already observed that PRIMES is in co-NP . To show
that it is in NP , we perform the following nondeterministic computation
on input p ≥ 2.

1. If p = 2, accept. If p > 2 and p is even, reject.
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2. Guess the prime factorization of p− 1, say p− 1 = pk1
1 · · · pkm

m . Verify
by multiplication that this equation holds.

3. Guess a ∈ {2, . . . , p − 1} and verify by modular arithmetic that
ap−1 ≡ 1 (mod p).

4. Verify for each 1 ≤ i ≤ m that a(p−1)/pi �≡ 1 (mod p).

5. Recursively verify that p1, . . . , pm are prime.

Steps 3 and 4 together imply that the order of a modulo p is p− 1. Once
we have verified 3, we know that the order of a exists and must divide
p − 1. This is because if ak ≡ 1 (mod p) and am ≡ 1 (mod p), then
agcd(k,m) ≡ 1 (mod p), because by the Euclidean algorithm, there exist
s, t such that gcd(k, m) = sk− tm. Thus if the order of a were strictly less
than p− 1, then it would divide (p− 1)/q for some prime q dividing p− 1,
in which case we would have a(p−1)/q ≡ 1 (mod p). The check 4 verifies
that this does not happen.

Step 1 is constant time. Step 2 takes time polynomial in log p. Steps 3
and 4 can be performed in time polynomial in log p by repeated squaring
and reducing modulo p. Thus the time taken is polynomial in log p plus the
time taken by the recursive calls in step 5.

To analyze the total time taken by this recursive algorithm, rather than
solving a recurrence relation, it is easier just to look at the whole tree of
recursive calls. Each node in the tree is labeled with the parameter of the
recursive call represented by that node. If a node is labeled q and the
guessed prime factorization of q − 1 is qk1

1 · · · qkm
m , then that node has m

children labeled q1, . . . , qm. The leaves of the tree are labeled 2. Because 2
is a prime factor of every q− 1, every node has at least two children unless
its label is of the form 2k + 1, in which case it has one child and that child
is a leaf.

One can show inductively that the product of the labels of all the leaves
of a subtree with root label q is at most q. Because the leaves are all
labeled 2, this says that the number of leaves of that subtree is at most
log2 q. Moreover, because the tree is at least binary branching except at the
lowest level, one can show inductively that the total number of nodes in any
subtree is at most 3�− 1, where � is the number of leaves in that subtree.
Thus, if p is the label of the root of the entire tree, the total number of
nodes is at most 3 log2 p− 1.

Thus the total amount of time taken by the algorithm is the time to per-
form steps 1–4 times the number of nodes in the tree, which is polynomial
in log p. �
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Berlekamp’s Algorithm

Here is an efficient probabilistic algorithm due to Berlekamp [13] for factor-
ing a given univariate polynomial over a finite field of large characteristic.
No deterministic polynomial time algorithm is known. However, one can
give an efficient deterministic irreducibility test, and the factorization prob-
lem can be reduced deterministically to the special case in which the given
polynomial is guaranteed to split into linear factors over the prime subfield.

This is an example of a Las Vegas algorithm: the expected running time
is polynomial with a small probability that it may run for longer, but the
answer is guaranteed to be correct. There are also Monte Carlo probabilistic
algorithms, in which the answer is always produced quickly and is very
probably correct, but there is no absolute guarantee of correctness.

For this result, we need a few more basic facts about finite fields be-
yond those presented in Supplementary Lecture C. Recall that there exists
a finite field GFq of q elements iff q is a prime power q = pk. The field
GFp

∼= Zp is the smallest subfield of GFq and is called the prime sub-
field of GFq, and p is called the characteristic of GFq. The field GFq is
the unique field of q elements, not just up to isomorphism, but absolutely
unique among subfields of a given algebraic closure GFp of GFp. This is
because the elements of GFq are exactly the roots of the polynomial xq−x.
As we observed in Supplementary Lecture C, the nonzero elements all have
order dividing q − 1, the size of GF∗q , thus they are all roots of xq−1 − 1;
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and throwing in 0 gives xq − x. Thus

GFq = {a ∈ GFp | aq = a}.

The field GFq is a subfield of GFr iff r is a power of q. In particular, GFq

and GFr have the same characteristic. For finite extensions of GFq, this says
that GFqm ⊆ GFqn iff m divides n. Thus the lattice of finite extensions
of GFq in GFp is isomorphic to the lattice of nonnegative integers under
divisibility.

The Galois group of the extension GFqm : GFq (the group of auto-
morphisms of GFqm fixing GFq pointwise) is cyclic and generated by the
automorphism a �→ aq. Because GFqm is unique, the extension is normal
(all automorphisms fix GFqm setwise).

Representation

For computational purposes, the field GFq for q = pk is usually represented
as a quotient Zp[y]/h of the ring of univariate polynomials with coefficients
in Zp modulo an irreducible polynomial h ∈ Zp[y] of degree k. Thus if f is a
polynomial of degree m with coefficients in GFq, the coefficients of f would
be represented as polynomials in Zp[y] modulo h. Then f is represented
as an element of Zp[x, y]/h. This representation allows us to perform the
usual ring operations using polynomial arithmetic modulo h.

The Factorization Problem

Let f be a polynomial of degree m, not necessarily irreducible, with coef-
ficients in a finite field GFq of prime characteristic p. As described above,
f is represented as a polynomial in Zp[x, y]/h, where h is an irreducible
polynomial in Zp[y].

We wish to find the irreducible factors of f . We can assume that f
is squarefree (no multiple roots) by taking the gcd of f with its formal
derivative with respect to x, except when the formal derivative vanishes
identically. But in that case, all terms of f have degree a multiple of p, so
f has a nontrivial factorization

f(x) =
m/p∑
i=0

aix
ip =

⎛⎝m/p∑
i=0

a
q/p
i xi

⎞⎠p

.

Suppose f factors into irreducible factors f1, . . . , fn over GFq. Each
GFq[x]/fi is a finite extension of GFq isomorphic to GFqmi , where mi

is the degree of fi. Because the fi are pairwise relatively prime, by the
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Chinese remainder theorem there is an isomorphism

GFq[x]/f ∼= GFq[x]/f1 × · · · ×GFq[x]/fn

∼= GFqm1 × · · · ×GFqmn (D.1)

given by the map

σ : GFq[x]/f → GFq[x]/f1 × · · · ×GFq[x]/fn

σ(g) def= (g mod f1, . . . , g mod fn).

The elements g ∈ GFq[x]/f are represented as polynomials in Zp[x, y]
modulo h and f .

Consider the subalgebra GFn
p of (D.1), where p is the characteristic. This

is an algebra of dimension n over GFp and contains exactly pn elements.
Its preimage under σ is the subalgebra

A
def= {g | g mod fi ∈ GFp, 1 ≤ i ≤ n} = {g | gp ≡ g (mod f)}

of GFq[x]/f . This follows from the fact that the automorphism a �→ ap

fixes every element of GFp and moves every element not in GFp, and mul-
tiplication in (D.1) is componentwise, so this map applied to (D.1) fixes
exactly the elements of GFn

p . Because the coefficients of g as a polyno-
mial in GFp[x, y] are fixed by a �→ ap, this is equivalent to the condition
g(x, y)p = g(xp, yp). By computing all the powers xipyjp modulo f and h
for i ≤ m and j ≤ k by repeated squaring and reducing modulo f and h,
then equating the coefficients of g(x, y) and g(xp, yp), we obtain a system of
linear equations in the indeterminate coefficients of g(x, y) over Zp, which
we know how to solve in polynomial time by Gaussian elimination. This
allows us to determine n and compute a basis for the subspace A over Zp.
In particular, f is already irreducible iff n = 1.

If n > 1, for any polynomial g ∈ A, we have

σ(g) = (a1, . . . , an)

with ai ∈ GFp, 1 ≤ i ≤ n. We do not know the ai, but we know that they
exist. If we can get our hands on a g ∈ A such that at least one ai = 0
and at least one aj �= 0, then we get a nontrivial factorization, because
ai ≡ g mod fi = 0 iff fi divides g, so f and g would have a nontrivial
common factor, which can be found by computing the gcd.

If the characteristic is small enough, we can solve the problem deter-
ministically: just pick an element g ∈ A of degree at least 1, so that it is not
in Zp, then consider the elements g − a for a ∈ Zp. One of these must work.
Because g �∈ Zp, there must be some ai �= aj in σ(g), thus σ(g − ai) is 0 in
position i and nonzero in position j. This gives a nontrivial factorization.

If the characteristic is large, here is how to get such a g with high
probability. Pick an � ∈ A at random and take

g = �(q−1)/2 − 1 mod f.
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We pick � ∈ A at random by picking a random linear combination of the
basis for A. We compute the appropriate power of � modulo f by repeated
squaring and reducing modulo f .

We now show that the chances are about even or better that g and f
have a nontrivial common factor. Because the characteristic is odd, exactly
half the nonzero elements of GFq are squares; that is, elements of the form
b2 for some b ∈ GFq. The squares are exactly the roots of x(q−1)/2−1. If � is
chosen at random, and if σ(�) = (a1, . . . , an), then for each i we have about
an even chance that ai is a square, and these events are independent. Thus
we have about an even chance or better that at least one ai is a square and
at least one is not. Computing �(q−1)/2− 1, we get 0 in location i iff ai was
a square.

To reduce the problem deterministically to the case in which f splits
into linear factors over GFp, pick g ∈ A of degree at least 1. Thus if
σ(g) = (a1, . . . , an), not all the ai are equal. The elements ai are exactly
the elements a ∈ GFp such that g−a and f have a root in common, because

σ(g − a) = (a1 − a, . . . , an − a),

which has a 0 in position i iff a = ai iff fi divides g − a. Thus the ai are
all the roots of the resultant

r(z) = Resx(g(x) − z, f(x))

lying in GFp (see [64, 75] for an introduction to resultants). We can pick
out the roots of r lying in GFp by taking the gcd of r(z) and zq−1−1. This
is done by computing r(z) first, which is of degree m, then computing zq−1

modulo r by repeated squaring and reducing modulo r to get a low-degree
polynomial s, then taking the gcd of s− 1 and r.

After removing repeated roots as above, the resulting polynomial is of
degree at most m and splits into linear factors over GFp. Moreover, if a is
any root of this polynomial, then the gcd of f and g−a will be a nontrivial
factor of f . We have thus reduced the problem of factoring a polynomial
of degree m to the problem of factoring a polynomial of degree at most m,
all of whose roots lie in the prime field.
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Interactive Proofs

In the next few lectures we take a look at a model of computation involving
interactive protocols between two agents. One of the agents wants to convey
some information to the other, and the other wants to be convinced with
a high degree of certainty that the information is correct. Such protocols
arise in cryptography and message authentication.

Polynomial-time interactive protocols give rise to a complexity class IP .
Whereas we can think of a set in NP as a set of theorems admitting short
proofs, we can think of a set in IP as a set of theorems having efficient
interactive proofs.

Interactive Proof Systems

The machine model consists of two independent Turing machines P (the
prover) and V (the verifier). The two machines share a common read-only
input tape and a read/write communication tape, but otherwise operate
independently. Each machine has its own private worktape. We assume in
addition that

• V has access to a private string of random bits;

• V runs in polynomial time; and
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• P is not bounded in time or space, but must halt on all inputs and
may only write strings of polynomial length on the communication
tape. In fact, we could even have defined P to be some kind of oracle
or black box computing some noncomputable function—the exact
nature of P does not really matter.

� a b b a b a a a a b  

�
�

	
�input, read only

� a a b a b b · · ·

�
�

�
�

communication, r/w
� 0 1 1 0 · · ·
�

random bits

� a a b a · · ·

�
�
work, r/w

P V

The two machines alternate. When it is V ’s turn, it runs for polynomial
time, accessing its random bits whenever it needs to make a probabilistic
decision. At some point it writes a message to P on the communication
tape and enters a special state that causes control to transfer to P . The
machine P then runs for as long as it likes, reading the message from V
and eventually writing a message back to V of polynomial length on the
communication tape and transferring control back to V . Control passes
back and forth between the two agents for some polynomial number of
rounds determined by V , after which V decides whether to accept or reject.

We can think of P as trying to convince V that the input string satisfies
some property, and of V as trying to verify that that information is correct.
When that property is indeed true of the input string, it should be possible
for P to convince V of that fact with high probability. By accepting, V
indicates that it is convinced that the property is true.

Now imagine substituting an evil intruder P ′ for P . Let us say that V
runs its part of the protocol as before, but P ′ may behave differently from
P . In particular, P ′ might try to convince V that the property of interest
holds of the input string when in fact it does not. The verifier V should
be able to detect this type of dishonest behavior with high probability and
reject.

The formal definition is as follows.

Definition 15.1 The protocol (P, V ) is an interactive proof system for a set of strings A if
for all x,
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• if x ∈ A, then

Pry((P, V ) accepts x) ≥ 3
4 ,

• and if x �∈ A, then for any P ′,

Pry((P ′, V ) accepts x) ≤ 1
4 ,

where the probability is with respect to the random bits y chosen uniformly
from the set of all strings of some length exceeding the polynomial time
bound of the verifier.

A set A is in IP if it has an interactive proof system.

The constants 3
4 and 1

4 in Definition 15.1 are inconsequential. By ampli-
fication, we could specify 1− ε and ε for any ε > 0 (Miscellaneous Exercise
44).

Examples of Interactive Proofs

The best way to get a feel for this model is to look at some examples.

Example 15.2 Boolean satisfiability (and in fact, any set A ∈ NP) is in IP , because there
is a one-round protocol that does not use any random bits. The prover
would like to convince the verifier that a given Boolean formula written on
the input tape is satisfiable. The prover just sends the verifier a satisfying
assignment if one exists. Because the prover is not restricted by any time
bound, it can search exhaustively for a satisfying assignment and send
the first one it finds to V . If no satisfying assignment exists, it just sends
something arbitrary. The verifier then evaluates the input formula on the
truth assignment communicated by P . If the formula is satisfied, then V
accepts; if not, it rejects.

Now if the given formula really is satisfiable, then (P, V ) accepts with
probability 1. The verifier is completely convinced, because it has a proof
in the form of a satisfying assignment. On the other hand, if the formula is
not satisfiable, then no prover P ′, regardless of how clever or malicious it
is, can convince V otherwise. In this case, (P ′, V ) accepts with probability
0. �

Example 15.3 Here is an example due to Goldreich, Micali, and Wigderson [48] that is a
bit more complicated: graph nonisomorphism is in IP . This is interesting,
because graph isomorphism is in NP (given a pair of graphs, guess an
isomorphism and verify that it is an isomorphism in polynomial time), but
it is not known to be in co-NP.

Here is an IP protocol for graph nonisomorphism. The input is an
encoding of two graphs G, H on n vertices. The following procedure is
executed k times.



102 Lecture 15

(i) The verifier V chooses a random permutation of {1, 2, . . . , n}. This
requires roughly n log n random bits. It applies the permutation to
the vertices of the graphs G and H to get G′ and H ′, respectively.
Then V flips a coin. If it comes up heads, it sends G′ to P , and if it
comes up tails, it sends H ′ to P .

(ii) The prover P checks whether G on its input tape and the graph
sent to it by V are isomorphic, say by exhautively searching
for an isomorphism, and communicates its finding—isomorphic or
nonisomorphic—honestly to V .

(iii) V takes the following action based on its coin flip and the prover’s
response.

If the flip is and P responds then do this
heads isomorphic continue
heads nonisomorphic reject immediately
tails isomorphic reject immediately
tails nonisomorphic continue

If the protocol makes it all the way through k rounds, then V accepts,
convinced with a high degree of certainty that G and H are not isomorphic.

Now let us argue that V has good reason to be convinced. Suppose
that G and H really are not isomorphic. The prover P , because it plays
honestly, will always answer “isomorphic” when passed a permutation of G
and “nonisomorphic” when passed a permutation of H , so the second and
third rows of the table will never occur. The protocol will make it through
all k rounds successfully and V will accept with probability 1.

On the other hand, suppose G and H are isomorphic. In each round, V
will send the prover a random permutation of G or H , depending on the
result of its coin flip, but the prover cannot tell the difference. It cannot
see V ’s random bits or worktape; it must make its decisions purely on
the basis of the message from V . A dishonest prover P ′, trying to fool V
into erroneously accepting, must respond “nonisomorphic” whenever V ’s
flip was tails and “isomorphic” whenever V ’s flip was heads, but there
is no way it can tell which of these two events occurred. The chances of
accidentally choosing the correct alternative k times in a row are 2−k. �

In the next two lectures we prove a remarkable theorem: IP = PSPACE .
Interactive proof systems and the class IP were defined by Goldwasser,

Micali, and Rackoff [49]. A related model, called Arthur–Merlin games, was
defined by Babai [8].
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PSPACE ⊆ IP

In this lecture we show that any set in PSPACE has an IP protocol. This
result is due to Shamir [111], based on work of Lund, Fortnow, Karloff, and
Nisan [81].

It suffices to show that the QBF problem has an IP protocol. That is,
given any quantified Boolean formula B, if B is true then the prover P can
convince the verifier V of that fact with high probability, and if B is false
then no prover P ′ can convince V that B is true with more than negligible
probability.

The proof consists of several steps.

1. We first show how to transform the given formula into a special simple
form.

2. We then transform a simple Boolean formula B into an arithmetic
expression A by replacing the Boolean operators with arithmetic op-
erators. The arithmetic expression A represents a nonzero value iff
the Boolean formula B is true. This step is called arithmetization.

3. We reduce the problem to determining whether an arithmetic expres-
sion A is zero modulo a sufficiently large prime p. This step uses the
Chinese remainder theorem and the fact that primality is in NP , as
shown previously in Lectures B and C.
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4. Finally, we describe a protocol for the prover to convince the verifier
with high probability that an arithmetic expression A vanishes mod-
ulo p. The protocol consists of several rounds and is inductive on the
structure of A.

Step 1

Definition 16.1 A quantified Boolean formula B is simple if negations are applied only to
variables, and for every subformula of the form ∃x C(x) or ∀x C(x) of B,
any free (unquantified) occurrence of x in C(x) occurs in the scope of at
most one universal quantifier ∀y in C(x). In other words, there is at most
one ∀y between any occurrence of a variable and its point of quantification.

For example, the Boolean formula

∀x ∀y ∃z ((x ∨ y) ∧ ∀w (¬y ∨ z ∨ w)) (16.1)

is simple, whereas the formula

∀x ∀y ∃z ((x ∨ y) ∧ ∀w (¬x ∨ z ∨ w)) (16.2)

is not, because the second occurrence of x occurs in the scope of both the
∀w and the ∀y, both of which occur in the scope of the ∀x. In the formula

∀x ∀y ∀z F (x, y, z),

if x occurs free in F (x, y, z), then the formula is not simple.

Lemma 16.2 Every quantified Boolean formula can be put into simple form by a logspace
transducer with at most a quadratic blowup in size.

Proof. First move all negations inward using the two De Morgan laws
¬(x ∨ y) = ¬x ∧ ¬y and ¬(x ∧ y) = ¬x ∨ ¬y, the law of double negation
¬¬x = x, and the quantifier rules ¬∀xϕ = ∃x¬ϕ and ¬∃xϕ = ∀x¬ϕ. This
allows us to assume without loss of generality that all negations are applied
only to variables.

Now for every subformula of the form

∀x C(x, y1, . . . , yn), (16.3)

where y1, . . . , yn are the free variables of (16.3) (that is, they are quanti-
fied outside the subformula (16.3)), introduce new variables y′

1, . . . , y′
n and

replace (16.3) with

∀x (∃y′
1 . . .∃y′

n

n∧
i=1

(yi ↔ y′
i) ∧ C(x, y′

1, . . . , y′
n)) (16.4)
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in the original formula. Do this from the outside in, larger subformulas
first. For example, applying this transformation to (16.2) would yield

∀x ∀y ∃x′((x ↔ x′) ∧ ∃z ((x′ ∨ y)

∧ ∀w ∃x′′ ∃z′ (x′′ ↔ x′) ∧ (z′ ↔ z) ∧ (¬x′′ ∨ z′ ∨ w))).

In (16.4), the variables yi now occur exactly once each, just inside the ∀x.
Occurrences of yi in C are replaced by y′

i, which are quantified inside the
∀x. �

The reason for this transformation becomes apparent when we do the arith-
metization. It leads to polynomials of low degree.

Step 2 This is the arithmetization step. Suppose we have a simple quan-
tified Boolean formula B. Change this to an arithmetic formula A with
variables ranging over the integers Z as follows.

• Replace each negative literal ¬x with 1− x.

• Keep each positive literal x as it is.

• Replace each ∧ by · (multiplication).

• Replace each ∨ by +.

• Replace each ∃x by
∑

x∈{0,1}. The expression
∑

x∈{0,1} C(x) is just a
succinct way of writing C(0) + C(1) without having to duplicate the
subexpression C.

• Replace each ∀x by
∏

x∈{0,1}. The expression
∏

x∈{0,1} C(x) is just a
succinct way of writing C(0) · C(1).

Let A be the resulting arithmetic expression. For example, if B is the simple
formula (16.1), then A would be∏

x∈{0,1}

∏
y∈{0,1}

∑
z∈{0,1}

((x + y) ·
∏

w∈{0,1}
(1 − y + z + w)). (16.5)
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Each such expression denotes a number obtained by evaluating the expres-
sion. For example, (16.5) evaluates to∏

x∈{0,1}

∏
y∈{0,1}

∑
z∈{0,1}

((x + y) ·
∏

w∈{0,1}
(1 − y + z + w))

=
∏

x∈{0,1}

∏
y∈{0,1}

∑
z∈{0,1}

(x + y)(1− y + z)(2− y + z)

=
∏

x∈{0,1}

∏
y∈{0,1}

(x + y)(1− y)(2 − y) + (x + y)(2− y)(3 − y)

=
∏

x∈{0,1}
16x(x + 1)

= 0.

Because the arithmetic formula evaluates to 0, the original quantified
Boolean formula (16.1) was false.

Step 3 Because of the operators
∑

x and
∏

x, these arithmetic expressions
can be too costly to evaluate directly. The value of the expression can be
as big as 22n

, where n is the size of the original formula; for example,∏
x1

∏
x2

. . .
∏
xn

2 = 22n

.

However, we can also prove by induction on the depth of the expression
that 22n

is an upper bound on the value. Thus, using the Chinese remainder
theorem (Theorem B.1), we can show that the expression is nonzero iff it
is nonzero modulo some prime p, where p can be written in binary using
polynomially many bits.

The task for the prover is therefore reduced to providing a small (nc-
bit) prime p and a nonzero value a ∈ Z∗p = Zp − {0} and convincing the
verifier that

(i) p is prime, and

(ii) the arithmetic expression A− a vanishes modulo p.

Proving that p is prime is easily done in one round using the fact that
primes are in NP (Theorem C.4).

Step 4 We must show how to convince the verifier that an arithmetic
expression A vanishes modulo p, where p is a prime of polynomially many
bits. Let Zp denote the field of integers modulo p. We can also assume
without loss of generality that p ! n.
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For an expression of the form
∑

x B(x) or
∏

x B(x), the subexpression
B(x) reduces modulo p to a polynomial in x with coefficients in Zp. For
example, removing the outermost

∏
x from (16.5) yields∏

y∈{0,1}

∑
z∈{0,1}

((x + y) ·
∏

w∈{0,1}
(1− y + z + w)) = 16x(x + 1),

and if p = 7, this would be 2x(x + 1). In general:

Lemma 16.3 If
∑

x D(x) or
∏

x D(x) is an arithmetic formula derived from a simple
Boolean formula, then D(x) is equivalent modulo p to a polynomial d(x) of
linear degree with coefficients in Zp.

Proof. Every occurrence of x in D(x) is in the scope of at most one
∏

y.
Replace each subexpression

∏
y E(x, y) with E(x, 0) · E(x, 1). Because all

these subexpressions are disjoint, this at most doubles the size of the expres-
sion. Now a simple inductive argument shows that the resulting polynomial
is of degree at most linear in the size of the expression. �

Lemma 16.4 Let d(x) ∈ Zp[x] be a polynomial of degree at most n. The probability that
d vanishes on a randomly chosen element of Zp is at most n/p.

Proof. The polynomial d(x) has at most n roots in Zp. �

Now say the prover wants to persuade the verifier that some expression
A vanishes modulo p. Write the expression as

B(
∏
z1

D1(z1),
∑
z2

D2(z2), . . . ,
∏
zm

Dm(zm)),

where the
∑

zi
Di(zi) and

∏
zi

Di(zi) are the maximal subexpressions of
B of this form; in other words, B(y1, . . . , ym) has no occurrence of

∑
z or∏

z. As we have argued, each of the subexpressions Di(zi) is equivalent to
a polynomial di(zi) ∈ Zp[zi] of low degree. The prover sends the verifier

d1(z), . . . , dm(z) ∈ Zp[z],

asserting that

Di(z) ≡ di(z) (mod p), 1 ≤ i ≤ m. (16.6)

The verifier checks that

B(
∏
z1

d1(z1),
∑
z2

d2(z2), . . . ,
∏
zm

dm(zm)) ≡ 0 (mod p)

by direct evaluation. Then the prover needs to prove (16.6) to the verifier.
The verifier picks random elements ai ∈ Zp and asks the prover to verify

Di(ai) ≡ di(ai) (mod p), 1 ≤ i ≤ m,
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or in other words

Di(ai)− di(ai) ≡ 0 (mod p), 1 ≤ i ≤ m.

We are back to the beginning of Step 4 with a strictly simpler expression.



Lecture 17

IP ⊆ PSPACE

In this lecture we show that IP ⊆ PSPACE . The interesting thing about
this result is that no time or space bounds are assumed about the prover.

Recall that IP protocols are defined in terms of two communicating
agents P and V , the prover and the verifier, respectively. Each has read-
only access to the input and read/write access to its own private worktape.
They communicate by means of communication tapes. In addition, V has
access to a source of random bits.

Computation proceeds in rounds. The verifier runs for at most poly-
nomial time, composing a message m1 which it sends to P , then transfers
control to P . The prover may then run for as long as it wants, after which it
sends a message �1 of polynomial length back to V , then transfers control
back to V , and the process is repeated, generating the messages m2, �2,
and so on. After polynomially many (say N) rounds, V indicates in its last
message its acceptance (mN = 1) or rejection (mN = 0).

The set L is said to be accepted by this protocol if on input x, |x | = n,

(i) if x ∈ L, then the probability that V accepts is at least 3/4, assuming
all random bit strings are equally likely; and

(ii) if x �∈ L, then the probability that V accepts is at most 1/4; moreover,
this is still true even if P is replaced by an arbitrarily malicious
impostor.
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By amplification (Miscellaneous Exercise 44), we can replace the probabil-
ities 3/4 and 1/4 in (i) and (ii) with 1− ε and ε, respectively.

Intuitively, if x ∈ L, then P can convince V of this fact with high
probability; whereas if x �∈ L, then no one can convince V otherwise with
more than negligible probability.

Suppose (i) and (ii) are true. Let N = nc be a time bound on the
entire protocol (excluding P ’s private computation). Thus all messages are
bounded in length by N , there are at most N rounds, and V uses at most
N random bits on inputs of length n.

First let us assume that the prover P runs in PSPACE . In this case it is
easy to decide membership in L in PSPACE . On input x, |x | = n, we just
cycle through all possible strings of random bits of length N sequentially,
simulating the entire protocol on each and counting the number of times
V accepts. We accept the input x if this number is at least 2N−1, which
guarantees probability at least 1/2 of acceptance. By (i) and (ii), this occurs
iff x ∈ L. The entire computation can be done in PSPACE .

Now let us drop the assumption that P runs in PSPACE . In fact,
we do not place any requirements at all on P ’s behavior except that it
be deterministic and its messages polynomially bounded. Formally, P is
simply a function that takes the history of messages m1, . . . , mk previ-
ously received from V and the input string x and produces a new message
�k = P (x, m1, . . . , mk) to send to V . The function need not even be com-
putable!

Now because there exists a protocol P satisfying (i) and (ii), on any
input the prover might as well choose its messages so as to maximize the
probability of V ’s acceptance. Then (i) and (ii) will still be true if the
prover plays this optimizing strategy. Moreover, as we show below, such a
strategy (call it Popt) can be computed in PSPACE .

We can assume without loss of generality that all of the prover’s mes-
sages are just one bit in length; if necessary, the protocol can easily be mod-
ified so that the verifier asks for the prover’s responses one bit at a time.
Thus we can think of P as an oracle that, whenever queried on the string
x#m1# · · ·#mk consisting of the input x and the history m1, . . . , mk of
previous messages from V , returns a single bit: 1 if x#m1# · · ·#mk is in
the oracle set and 0 if not. We also assume for technical reasons that V ’s
random tape head moves only to the right; that is, V reads each random
bit at most once. If V needs to remember a random bit, it just saves it on
the worktape.

Under these assumptions, the protocol is described by a computation
tree T . The vertices of T are labeled by configurations describing V ’s cur-
rent state and the contents and head positions of V ’s input, work, and
message tapes (but not the contents or head position of V ’s random tape).
A query to the random tape is modeled by a binary branch in T , deter-
mined by the value of the new random bit just read. We call such a branch
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a random branch. The tree T also has another kind of binary branch called
an oracle branch corresponding to calls to the oracle, which model P ’s one-
bit responses to messages from V . The tree is of depth at most N and all
of its vertex labels can be described by strings of length N over a finite
alphabet ∆.

For each fixed strategy P , that is, for each fixed oracle, the oracle
branches are completely determined by P . This allows us to prune one
subtree from every oracle branch to obtain a tree TP with only random
branches. The probability of V ’s acceptance under strategy P is the sum
of the probabilities of all paths in TP leading to acceptance (mN = 1). The
probability of a path is the product of the edge probabilities along that
path, where the probability of an edge out of a random branch is 1/2 and
out of any other vertex is 1.

Now on input x, Popt must calculate the optimal response �i to each
oracle query from V that maximizes the probability of V ’s acceptance.
The prover Popt has complete knowledge of V ’s program, but it does not
know the random bits, except for whatever information is contained in the
sequence of messages from V up to now. The verifier’s messages mi are
random variables ranging over strings of length at most N and depend on
the previous random branches in the tree, the input string, and the prover’s
responses to previous messages.

Denote by Propt(E) the probability that event E occurs, assuming that
the prover always behaves optimally; that is, that the prover’s messages
�1, . . . , �N are always chosen whenever possible so as to maximize the prob-
ability of acceptance. More generally, denote by Propt(E | F ) the condi-
tional probability that event E occurs given that event F occurs, assuming
that the prover always behaves optimally (subject to any constraints im-
posed by F ). Formally,

Propt(E | F ) def=

⎧⎪⎨⎪⎩
Propt(E ∧ F )

Propt(F )
, if Propt(F ) �= 0

undefined, otherwise.

We use the fact that if Fi are disjoint events and F =
∨

i Fi, then

Propt(E | F ) =
∑

i

Propt(E | Fi) · Propt(Fi | F ) (17.1)

(Miscellaneous Exercise 73).
The acceptance condition is the event mN = 1. For any y1, . . . , yi ∈

{0, 1}N and z1, . . . , zi ∈ {0, 1}, let Ri and Si denote the events

Ri
def=

i∧
j=1

mj = yj Si
def=

i∧
j=1

�j = zj .
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The events Ri and Si are thus functions of y1, . . . , yi and z1, . . . , zi, re-
spectively, although we do not make this dependence explicit. Then

Propt(mN = 1 | Ri−1 ∧ Si−1)

=
∑

yi∈{0,1}N

Propt(mN = 1 | Ri ∧ Si−1) · Propt(Ri | Ri−1 ∧ Si−1)

=
∑

yi∈{0,1}N

max
zi∈{0,1}

Propt(mN = 1 | Ri ∧ Si) · Propt(Ri | Ri−1 ∧ Si−1).

(17.2)

The first equation in (17.2) is from (17.1) and the second reflects the
prover’s desire to maximize the probability of acceptance. The quantities

Propt(Ri | Ri−1 ∧ Si−1) = Propt(mi = yi | Ri−1 ∧ Si−1)

can be calculated directly in PSPACE by simulating V ’s computation on all
random bit strings of length N , supplying z1, . . . , zi−1 as responses to the
oracle queries, discarding all computations for which V does not generate
messages y1, . . . , yi−1 in that order, and calculating the fraction of those
remaining computations for which V generates the message mi = yi. Using
this PSPACE computation as a subroutine, the values of

Propt(mN = 1 | Ri ∧ Si) (17.3)

can be calculated by depth-first search on the computation tree using
(17.2). Of course, the probability of acceptance is

Propt(mN = 1) = Propt(mN = 1 | R0 ∧ S0).

The entire computation can be done in PSPACE . The prover can also
calculate its optimal move at any point in the protocol in PSPACE by
calculating (17.3) for zi ∈ {0, 1} and choosing �i to be the value that gives
the maximum.

This result is attributed to Paul Feldman in a paper of Goldwasser and
Sipser [50] and also follows from results in their paper.



Lecture 18

Probabilistically Checkable Proofs

In the next few lectures we take a look at some complexity-theoretic results
about the relationship between interactive protocols and approximation
algorithms. The model we use is known as probabilistically checkable proofs
(PCP). This model of computation is essentially the same as the interactive
proof model introduced in Lecture 15 with the minor modification that we
do not allow errors in the positive case. Thus we amend the definition
slightly to say that a set L has probabilistically checkable proofs if there is
an interactive protocol (P, V ) such that V runs in polynomial time and

(i) if x ∈ L, then (P, V ) accepts with probability 1; and

(ii) if x �∈ L, then for any P ′, (P ′, V ) accepts with probability at most 1
2 .

The 1
2 in (ii) is inconsequential. Using amplification (Miscellaneous Exercise

44), we could require any ε > 0 without loss of generality.
As in Lecture 17, we can assume without loss of generality that V

includes the input x and all previous messages in its queries to P , and
that P ’s messages consist of a single bit. Thus we can view P as an oracle;
that is, the prover’s strategy is nonadaptive. In the literature on PCP , one
normally regards the oracle as encoding a binary string constituting a proof
that x ∈ L and the queries as the extraction of bits of this string.

We also place bounds on the number of random bits V uses and the
number of oracle queries it makes. We say that an interactive protocol
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is (r(n), q(n))-bounded if on inputs of length n, the verifier uses at most
r(n) random bits and makes at most q(n) oracle queries along any com-
putation path. We denote by PCP(r(n), q(n)) the family of sets having
(O(r(n)), O(q(n)))-bounded protocols.

The main result in this area is:

Theorem 18.1 (Arora et al. [6]) NP = PCP(log n, 1).

Theorem 18.1 is quite powerful and is the culmination of a long string
of related research [6, 7, 9, 11, 19, 38, 57, 58, 69, 81, 105]. It says that all
sets in NP have interactive protocols that use at most O(log n) random
bits and query at most a constant number of bits of the proof independent
of the size of the input.

We do not prove Theorem 18.1 in this course—it would take more time
that we have!—however, in Lectures 19 and 20, we prove a weaker version
of it that contains many of the main ideas, namely that NP ⊆ PCP(n3, 1).
First, however, we indicate some consequences of this theorem in the realm
of approximation algorithms.

PCP and Hardness of Approximation

Probabilistically checkable proofs are strongly related to approximation al-
gorithms for combinatorial problems. We have seen various decision prob-
lems with yes/no answers such as 3SAT and MAZE. Often these problems
have an associated optimization problem that can be a maximization prob-
lem or a minimization problem. For example, the problem MAX-3SAT asks
for a truth assignment to a given Boolean formula in 3CNF that maximizes
the number of satisfied clauses. Another typical example is the problem
MAX-CLIQUE, which asks for a maximum clique (complete subgraph) of
a given undirected graph.

An α-approximation algorithm for an optimization problem is an al-
gorithm that produces an answer that is within a fixed constant ratio
α of the optimal. For a maximization problem such as MAX-3SAT or
MAX-CLIQUE, this means producing an answer of size at least α times
the size of the maximum solution for some fixed 0 < α ≤ 1, independent
of the size of the input. The constant α is called the approximation ratio.

A polynomial-time approximation scheme (PTAS) for an optimization
problem is a family of polynomial-time algorithms that allow the answer to
be approximated to within any prechosen approximation ratio at the cost
of a higher (but still polynomial) running time. Thus the running time for
any algorithm in the scheme is O(nf(α)), where the exponent f(α) may
depend on the desired approximation ratio.

The following lemma shows that there is a polynomial-time 7/8-approxi-
mation algorithm for MAX-3SAT.
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Lemma 18.2 (Johnson [66]) There is a polynomial-time algorithm that, given a
Boolean formula B in 3CNF with n variables and m clauses such that
each clause contains three distinct variables, finds a truth assignment that
satisfies 7m/8 clauses.

The assumption that each clause contain three distinct variables is neces-
sary. For example, in the formula

(x ∨ y ∨ y) ∧ (x ∨ y ∨ y) ∧ (x ∨ y ∨ y) ∧ (x ∨ y ∨ y),

it is impossible to satisfy more than 3/4 of the clauses.

Proof. Choose a random truth assignment r1, . . . , rn to the variables
x1, . . . , xn by flipping a fair coin independently for each variable. Let Si

and S be the random variables

Si
def=

{
1, if r1, . . . , rn satisfies clause i
0, otherwise

S
def= S1 + · · ·+ Sm.

Then S is the number of clauses satisfied by the random assignment. The
expected value of Si is 7/8, the probability that clause i is satisfied. By
linearity of expectation, the expected value of S is 7m/8. Because this is
the expected number of satisfied clauses, there must be an assignment that
satisfies at least this many clauses.

This argument shows that there exists an assignment that satisfies at
least 7/8 of the clauses, but does not tell us how to find one. However, a
greedy algorithm does it. We assign truth values to x1, . . . , xn in that order.
Suppose we have already determined a partial assignment a1, . . . , ak−1 to
x1, . . . , xk−1. Calculate the expected number of clauses satisfied by assign-
ing xk = 0 and the remaining truth values xk+1, . . . , xn randomly. Do the
same for xk = 1. Let ak be the value for xk that gives the maximum. If Ek

is the event
∧k

i=1 ri = ai, then the conditional expectation E(S | Ek) is the
expected number of clauses satisfied by assigning a1, . . . , ak to x1, . . . , xk

and the remaining variables randomly. One can show that by choice of
ak, the sequence of E(S | Ek) is nondecreasing with k, therefore the final
number of satisfied clauses is

E(S | En) ≥ E(S | E0) = E(S) = 7m/8.

Further implementation details and a proof of correctness are left as exer-
cises (Miscellaneous Exercise 45). �

Is it possible to do better? Barring P = NP , the next best situation
would be if MAX-3SAT had a polynomial-time approximation scheme,
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which would allow it to be approximated in polynomial time to any desired
approximation ratio. For certain other combinatorial optimization prob-
lems, this is provably impossible unless P = NP . In fact, MAX-CLIQUE
has no polynomial-time approximation algorithm to any nontrivial approx-
imation ratio unless P = NP :

Theorem 18.3 (Feige et al. [38]) There is a polynomial-time α-approximation algorithm
for MAX-CLIQUE for some 0 < α ≤ 1 if and only if P = NP.

Proof. If P = NP , then MAX-CLIQUE can be solved exactly in polyno-
mial time (Miscellaneous Exercise 46(b)). Conversely, suppose there were
an α-approximation algorithm for MAX-CLIQUE, 0 < α ≤ 1. Let L be an
arbitrary set in NP . By the PCP theorem (Theorem 18.1), L has a PCP
protocol that uses c log n random bits and k oracle queries on inputs of
length n, where c, k are constants. By amplification (Miscellaneous Exer-
cise 44), we can assume that the acceptance probability for x �∈ L is strictly
less than α.

For input string x, each random bit string y ∈ {0, 1}nc

and sequence of
oracle responses a ∈ {0, 1}k determine a unique sequence of oracle queries
z1, . . . , zk. The first oracle query z1 is determined by y alone. After the
verifier sees the response a1, that and y uniquely determine the next query
z2, and so on. Build an undirected graph G = (V, E) with

V
def= {(y, a) ∈ {0, 1}nc × {0, 1}k | the computation path determined

by (y, a) accepts x}
E

def= {((y, a), (y′, a′)) | (y, a) and (y′, a′) are consistent},
where (y, a) and (y′, a′) are consistent if ai = a′

j whenever zi = z′j. Note
that (y, a) and (y, b) are not consistent if a �= b. One can show that if x ∈ L,
then the maximum clique of G is of size nc, whereas if x �∈ L, the maximum
clique of G is of size strictly less than αnc. Thus the α-approximation
algorithm could be used to decide membership in L: if x ∈ L, then the
approximation algorithm will give a clique of size at least αnc, whereas if
x �∈ L, it will give a clique of size strictly less than αnc. Further details are
left as an exercise (Miscellaneous Exercise 47). �

It is unknown whether MAX-3SAT has a polynomial-time approxi-
mation scheme. However, it turns out that this question is equivalent to
P = NP .

Theorem 18.4 (Arora et al. [6]) There is a polynomial-time approximation scheme for
MAX-3SAT if and only if P = NP.

Proof. If P = NP , then MAX-3SAT can be solved exactly in polynomial
time (Miscellaneous Exercise 46(a)). For the converse, we use the PCP
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theorem (Theorem 18.1). Suppose L ∈ NP . Because NP ⊆ PCP(log n, 1),
there is a PCP protocol (P, V ) for L using at most c log n random bits
and k oracle queries on inputs x of length n for constants c, k. Normally, a
reduction from L to 3SAT (such as the one given in Theorem 6.2) would
produce, for a given x, a Boolean formula ϕx in 3CNF such that ϕx has a
satisfying assignment iff x ∈ L. However, because we have a PCP protocol
for L, we can get a reduction satisfying the stronger property:

(i) If x ∈ L, then ϕx is satisfiable.

(ii) If x �∈ L, then no truth assignment satisfies more than a 1−ε fraction
of the clauses of ϕx, where ε = (k − 2)−12−(k+1).

Thus if we could approximate the maximum number of clauses to within
an arbitrary constant ratio, then we could distinguish between (i) and (ii).

As argued in Lecture 17, the PCP protocol for L determines a compu-
tation tree T for V containing random branches and oracle branches. The
random branches are determined by the random bits of V and the oracle
branches are determined by the responses to the oracle queries. There are
only nc possible random bit strings with c log n random bits. For each such
random bit string y, let Ty be the subtree of T obtained by determinizing
all the random branches according to y. Thus Ty has only oracle branches.

Along each path in Ty, at most k oracle queries are made, thus there
are at most 2k possible paths. However, there may be as many as 2k − 1
distinct queries to the oracle in Ty, because later queries can depend on the
responses to earlier queries. Let z1, . . . , zm be a list of all the oracle queries
in Ty. Associating a Boolean variable with each zi, we can write down a
formula in CNF describing the oracle responses that lead to acceptance.
For example, suppose Ty looks like
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First write down a DNF formula that describes the query responses that
lead to rejection. For the example pictured above, this would give

(z1 ∧ z2 ∧ z5) ∨ (z1 ∧ z3 ∧ z6) ∨ (z1 ∧ z3 ∧ z7).

Negating and applying the De Morgan laws yields a formula in CNF de-
scribing the query responses that lead to acceptance:

(z1 ∨ z2 ∨ z5) ∧ (z1 ∨ z3 ∨ z6) ∧ (z1 ∨ z3 ∨ z7).
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In this example, we already have a 3CNF formula, but for larger k we can
reduce to 3CNF using k − 3 applications of the resolution rule of proposi-
tional logic:

(w1 ∨ · · · ∨wk) �→
(w1 ∨ w2 ∨ x1) ∧ (x1 ∨ w3 ∨ x2) ∧ · · · ∧ (xk−3 ∨ wk−1 ∨ wk),

where x1, . . . , xk−3 are new variables. Denote the resulting CNF formula
by Cy. Then Cy consists of at most (k − 2)2k clauses.

Let ϕx be the conjunction of all the constraints Cy for all nc random
bit strings y. Then ϕx is a 3CNF formula with at most nc(k−2)2k clauses.
If x ∈ L, then (P, V ) accepts x with probability 1, so for all random bit
strings y with oracle queries determined by P , the tree Ty accepts, and the
corresponding truth assignment satisfies Cy. In this case ϕx is satisfied. On
the other hand, if x �∈ L, then no (P ′, V ) accepts x with probability more
than 1/2, so with oracle queries determined by P ′, at least half of the trees
Ty reject, and the corresponding constraints Cy are not satisfied. For this
to occur, at least one clause of each of these constraints is not satisfied,
which is at least a (k − 2)−12−(k+1) = ε fraction of all clauses in ϕx.

Now if MAX-3SAT had a polynomial-time α-approximation algorithm
with approximation ratio α > 1 − ε, then we could decide membership
in L deterministically in polynomial time: if x ∈ L, our approximation
algorithm would give an assignment satisfying at least an α > 1−ε fraction
of the clauses, whereas if x �∈ L, the largest fraction of clauses that can be
simultaneously satisfied is at most 1− ε. �



Lecture 19

NP ⊆ PCP(n3, 1)

In this lecture and the next, we show that NP ⊆ PCP(n3, 1). This is still
a far cry from the stronger result NP ⊆ PCP(log n, 1), but many of the
main ideas used in that proof are already present in this weaker version.

The proof of NP ⊆ PCP(n3, 1) breaks down into several steps:

1. Arithmetization of Boolean formulas over Z2;

2. Probabilistically testing whether a vector is the zero vector;

3. Probabilistic linearity testing;

4. Random self-correction to avoid a sparse set of errors.

Arithmetization

Let B be a Boolean formula in 3CNF with m clauses over Boolean variables
x = x1, . . . , xn. We encode B as an m-vector of polynomials pi ∈ Z2[x],
1 ≤ i ≤ m, each pi of degree 3. Each clause of B is represented as a
product of linear polynomials xi or 1−xi, the former if ¬xi appears in the
clause and the latter if xi appears in the clause. For example, the clause
x1 ∨ ¬x2 ∨ x3 would become the polynomial (1 − x1)x2(1 − x3). Then for
any truth assignment a = a1, . . . , an, a satisfies the clause (regarding a as
a vector of Boolean values) iff the corresponding polynomial evaluated at
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a is 0 (regarding a as a vector of elements of Z2). This argument uses the
fact that Z2 is a field, therefore has no zero divisors; in our example above,
(1 − a1)a2(1− a3) = 0 iff 1− a1 = 0, a2 = 0, or 1− a3 = 0.

We thus have a vector p(x) = p1(x), . . . , pm(x) of m degree-3 polyno-
mials over x = x1, . . . , xn with coefficients in Z2. The original formula is
satisfiable iff there is a vector of values a = a1, . . . , an ∈ Zn

2 such that
pi(a) = 0, 1 ≤ i ≤ m. How can the verifier be convinced of this fact af-
ter only a constant number of queries to the prover? If the verifier could
ask the prover for all n bits of a, then it could evaluate the polynomials
pi(a) and check that they are all 0. However, this would take more than a
constant number of queries.

Instead, the verifier can ask the prover for the value of r • p(a), where
r = r1, . . . , rm is a vector of m elements of Z2 chosen uniformly at random
and • is the inner product

r • p(a) def=
m∑

i=1

ri · pi(a). (19.1)

If p(a) = 0, then surely r • p(a) = 0, and if p(a) �= 0, then r • p(a) = 0
with probability 1/2. To see this, note that we are testing whether r lies
in the kernel of the linear map r �→ r • p(a), which is a subspace of the
m-dimensional vector space Zm

2 over Z2. Recall from linear algebra that
the dimension of the domain of a linear map is equal to the sum of the
dimensions of its kernel and its image. Thus the kernel is of dimension m
if p(a) = 0 and m− 1 if p(a) �= 0, and a vector space of dimension n over
Z2 is isomorphic to Zn

2 , thus contains 2n elements.
The good news is that each test (19.1) requires only one query. The bad

news is that we have no guarantee that the answers returned by these tests
in any way correspond to the linear map r �→ r • p(a). This brings us to
steps 3 and 4 of the proof, which we develop below. But for now, suppose
we are convinced that the answers returned by the prover on queries r are
indeed r • p(a) for some a. If we perform the test (19.1) k times and the
answer is always 0, then we can accept with high confidence, because the
probability of that happening by accident when p(a) �= 0 is 2−k. If the
answer is ever 1, then we reject immediately. If indeed p(a) = 0, then we
accept with probability 1; and if p(a) �= 0, then we accept erroneously with
probability 2−k.

Linearity Testing

We would eventually like to show how the verifier can convince itself that
the prover is returning values corresponding to some linear map r �→ r •

p(a). First, we show how the verifier can convince itself that the values
returned correspond to some linear map r �→ r • b. Recall that a function
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f : V → F from a finite-dimensional vector space V over a field of scalars
F is linear if for all a, b ∈ F and u, v ∈ V , f(au + bv) = af(u) + bf(v). For
V = Fm, the linear maps f : Fm → F are exactly the maps of the form
r �→ r • b for some b ∈ Fm. This is because over the standard basis in Fm,
any such linear map is represented by multiplication by a 1 × m matrix,
which is the same as the inner product with an m-vector. This is a good
start, although we still need to verify that b = p(a) for some a.

If the scalar field F is Zp, linearity is equivalent to additivity: f(u+v) =
f(u) + f(v) for all u, v ∈ V .1 Here is a proposal for a linearity test in this
case.

1. Pick u, v ∈ V uniformly at random. Query the prover for f(u), f(v),
and f(u + v).

2. If f(u)+f(v) �= f(u+v), halt immediately and reject. If f(u)+f(v) =
f(u + v), keep going.

3. Repeat steps 1 and 2 k times. If we have not rejected after k trials,
accept.

Random Self-Correction

Note that the protocol above requires only a constant number (3k) of
queries. Unfortunately, this is not enough to verify with certainty, or even
with high probability, that the map f is linear. The function f could agree
with a linear function on all but one input, and if we did not query f on
that input, we would never find out that it is not linear, and the chances
of missing that one input are pretty high.

However, the protocol does convince the verifier that there is a linear
function g that agrees with f on a very large fraction of the inputs. We
argue this below (Lemma 19.1). This is good enough for our purposes. For
suppose there is such a g. When we are asking the prover for the value of
f(u), what we really want is the value of g(u). So instead of asking the
prover for the value of f(u) directly, we can spend two queries and ask the
prover for the values of f(u + v) and f(v) for some randomly chosen v.
Chances are pretty good that we will get g(u + v) and g(v), because f and
g agree on a very large fraction of the inputs, and g(u + v) − g(v) = g(u)
because g is linear. That way we can avoid errors in f with high probability.
This trick is known as random self-correction.

1This is false for finite fields not of the form Zp. For n ≥ 2, the map x �→ xp is a linear map of the
n-dimensional vector space GFpn over GFp

∼= Zp, therefore additive; but it is not a linear map of GFpn as a
one-dimensional vector space over itself, because for x ∈ GFp2 − GFp, xp �= x · 1p.
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Lemma 19.1 Let F = Zp for some prime p, and let V be an n-dimensional vector space
over F. If ε < 1/6 and f : V → F satisfies

Pru,v(f(u + v) = f(u) + f(v)) > 1− ε, (19.2)

then there exists a linear map g : V → F that agrees with f on at least a
1− 3ε fraction of the inputs.

Proof. It follows from the law of sum that for any events E and F ,

Pr(E ∨ F ) ≤ Pr(E) + Pr(F ) (19.3)
Pr(E ∧ F ) ≥ Pr(E) + Pr(F )− 1. (19.4)

E → F ⇒ Pr(E) ≤ Pr(F ). (19.5)

Assume that f satisfies (19.2). We define g(u) to be the majority value
of f(u + w)− f(w) over all choices of w ∈ V . We must first show that the
majority exists. Fix u ∈ V . For v, w ∈ V , define

v ≡u w
def⇐⇒ f(u + v)− f(v) = f(u + w)− f(w).

Let δ1, . . . , δk be the sizes of the equivalence classes of ≡u as a fraction of
the size of V , listed in increasing order. Thus the size of the ith equivalence
class is δi|V | and

∑k
i=1 δi = 1. The probability that two randomly chosen

elements of V are ≡u-equivalent is

Prv,w(v ≡u w) =
∑

i(δi|V |)2
|V |2 . (19.6)

The numerator of the right-hand side of (19.6) is the number of ways of
choosing two equivalent elements of V , and the denominator is the total
number of ways of choosing two elements of V . Simplifying (19.6), we get∑

i(δi|V |)2
|V |2 =

∑
i

δ2
i ≤ (

∑
i

δi)δk = δk. (19.7)

We also have

Prv,w(v ≡u w) = Prv,w(f(u + v)− f(v) = f(u + w)− f(w))
= Prv,w(f(u + v) + f(w) = f(u + w) + f(v))
≥ Prv,w(f(u + v) + f(w) = f(u + v + w)

∧ f(u + w) + f(v) = f(u + v + w))
≥ Prv,w(f(u + v) + f(w) = f(u + v + w))

+ Prv,w(f(u + w) + f(v) = f(u + v + w)) − 1
≥ 1− 2ε.
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The three inequalities follow from (19.5), (19.3), and (19.2), respectively.
Combining this with (19.6) and (19.7), we have that 1 − 2ε ≤ δk, and
because ε < 1/4, we have that δk > 1/2. Thus the largest ≡u-class contains
a majority of the elements of V .

Let ∆u be the majority equivalence class of ≡u. We have shown

Prw(w ∈ ∆u) = δk ≥ 1− 2ε. (19.8)

Now we show that under the assumption ε < 1/6, the function g is linear;
that is, for all u, v ∈ V , g(u + v) = g(u) + g(v). Note that if there exists
w ∈ V such that w ∈ ∆u+v ∩ ∆v and v + w ∈ ∆u, then

g(u + v) = f(u + v + w)− f(w) because w ∈ ∆u+v

g(u) = f(u + v + w)− f(v + w) because v + w ∈ ∆u

g(v) = f(v + w)− f(w) because w ∈ ∆v,

and the desired equation g(u + v) = g(u) + g(v) would follow. It therefore
suffices to show the existence of such a w. But by (19.4) and (19.8), the
probability that a randomly chosen w satisfies the desired properties is

Prw(w ∈ ∆u+v ∧ w ∈ ∆v ∧ v + w ∈ ∆u)
≥ Prw(w ∈ ∆u+v) + Prw(w ∈ ∆v) + Prw(v + w ∈ ∆u)− 2
≥ 1− 6ε > 0.

The probability is nonzero, therefore such a w must exist.
Finally, we show that f and g agree on a large fraction of their inputs.

By (19.5), (19.4), and (19.2),

Pru(f(u) = g(u)) = Pru,v(f(u) = g(u))
≥ Pru,v(f(u) = g(u) ∧ v ∈ ∆u)
= Pru,v(f(u) = f(u + v)− f(v) ∧ v ∈ ∆u)
≥ Pru,v(f(u) = f(u + v)− f(v)) + Pru,v(v ∈ ∆u)− 1
≥ 1− 3ε.

�

By Lemma 19.1, if there is no linear function g that agrees with f
on at least a 1 − 3ε fraction of the inputs, then the probability that the
linearity test f(u+v) = f(u)+f(v) succeeds for k rounds and we continue
erroneously is at most (1 − ε)k, which can be made as small as we like by
picking k large. Thus if we pass the linearity test, we can be confident that
such a g exists.

We complete the proof next time.
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More on PCP

In this lecture we complete the proof that NP ⊆ PCP(n3, 1).
Let F = Z2 and let p(x) = p1(x), . . . , pm(x) be the vector of degree-3

polynomials over variables x = x1, . . . , xn obtained in the arithmetization
step (Lecture 19). We wish to be convinced that there exists an assignment
a = a1, . . . , an to the variables x such that pi(a) = 0, 1 ≤ i ≤ m.

Let y = y1, . . . , ym be a new set of variables, and form the polynomial
y • p(x). This is a polynomial of degree 3 in the x’s and linear in the y’s.
Collecting terms of like degree in the x’s, rewrite this as

y • p(x) = A(y) +
∑

i

Bi(y)xi +
∑
i,j

Cij(y)xixj +
∑
i,j,k

Dijk(y)xixjxk.

(20.1)

We can simplify this expression further. Let B(y), C(y), and D(y) be the
following n-, n2-, and n3-vectors, respectively.

B(y) def= B1(y), . . . , Bn(y)

C(y) def= C11(y), C12(y), . . . , C1n(y), C21(y), . . . , Cnn(y)

D(y) def= D111(y), D112(y), . . . , D11n(y), D121(y), . . . , Dnnn(y).

For vectors u = u1, . . . , uk and v = v1, . . . , v�, define the Kronecker (ten-
sor) product of u and v to be the k�-vector

u⊗ v
def= u1v1, u1v2, . . . , u1v�, u2v1, . . . , ukv�.
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Then (20.1) can be rewritten

y • p(x) = A(y) + B(y) • x + C(y) • (x⊗ x) + D(y) • (x ⊗ x⊗ x).

Evaluating at r ∈ Fm and a ∈ Fn, we get

r • p(a) = A(r) + B(r) • a + C(r) • (a⊗ a) + D(r) • (a⊗ a⊗ a).
(20.2)

We wish to be convinced that there exists a ∈ Fn such that (20.2) vanishes
for all r ∈ Fm.

Instead of asking the prover to provide values of r • p(a) for random
r, we instead ask for the values of three different functions f : Fn → F,
g : Fn2 → F, and h : Fn3 → F purporting to be the linear functions

r �→ r • a s �→ s • (a⊗ a) t �→ t • (a⊗ a⊗ a), (20.3)

respectively, for some a ∈ Fn. Our queries to the prover consist of a spec-
ification of which of f , g, or h we wish to query and an input to that
function.

Suppose we can convince ourselves that f , g, and h are very close to lin-
ear functions of the form (20.3). Using random self-correction as described
in Lecture 19, we can assume that for any input, we get the values of the
functions (20.3) with very high probability. Then we can convince ourselves
that p(a) = 0 using the following protocol.

1. Pick a random r ∈ Fm and compute A(r), B(r), C(r), and D(r).

2. Ask the prover for the values of B(r) • a, C(r) • (a⊗ a), and D(r) •

(a⊗ a⊗ a) by querying f , g, and h, respectively, using random self-
correction. For example, to find out the value of C(r) • (a ⊗ a), we
would ask the prover for the values of g(C(r) + v) and g(v) for a
randomly chosen v and subtract.

3. Compute the sum of these values and A(r). This should be r • p(a) as
in (20.2). If the result is nonzero, reject immediately, otherwise keep
going.

4. Repeat steps 1–3 for k rounds. If we make it all the way through
without rejecting, accept.

This protocol uses 3k queries and O(n3) random bits. Note that even
though r is uniformly distributed, B(r), C(r), and D(r) may not be; but
the random self-correction ensures that we obtain accurate values of the
linear functions (20.3) in step 2.

It remains to show how to convince ourselves that f , g, and h are close
to linear functions of the form (20.3). By the linearity test of Lecture 19,
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we can convince ourselves that f , g and h are close to linear functions of
the form

r �→ r • a s �→ s • b t �→ t • c, (20.4)

respectively, for some a ∈ Fn, b ∈ Fn2
, and c ∈ Fn3

, but we would like to
know that b = a⊗ a and c = a⊗ a⊗ a.

To verify that b = a ⊗ a, perform the following test k times: choose
u, v ∈ Fn at random and check that

(u • a)(v • a) = (u⊗ v) • b. (20.5)

Here we are using the law

(u • c)(v • d) = (u⊗ v) • (c⊗ d) (20.6)

relating inner products and Kronecker products; both sides are equal to∑
i,j uicivjdj . The values of u • a, v • a, and (u ⊗ v) • b are obtained by

querying f and g using random self-correction. If this test succeeds k times,
accept; if it ever fails, reject.

To see why this works, note that because s �→ s • b is linear, the function
(Fn)2 → F defined by

(u, v) �→ (u ⊗ v) • b

is bilinear (linear in both variables). Over the standard basis in Fn, any
bilinear function (Fn)2 → F can be written

(u, v) �→ uT Bv,

where B is an n × n matrix. Here u, v are considered column vectors and
uT denotes the transpose of u, which is a row vector. The matrix B is just
b rearranged:

Bij = eT
i Bej = (ei ⊗ ej) • b,

where ei is the basis vector consisting of 1 in position i and 0 elsewhere.
To say that b = a⊗ a is the same as saying B = aaT .

Thus we can rewrite (20.5) as

(uT a)(aT v) = uT Bv.

Each step of our protocol tests for randomly chosen u, v whether this equa-
tion holds, or equivalently, whether

uT (aaT −B)v = 0.

Surely if B = aaT , the test succeeds. It remains only to show that if
B �= aaT , then the test fails with positive probability independent of n.
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But for any nonzero n× n matrix C,

Pru,v(uT Cv = 0)
= Pru,v(Cv = 0 ∨ (Cv �= 0 ∧ uT Cv = 0))
= Pru,v(Cv = 0) + Pru,v(Cv �= 0 ∧ uT Cv = 0)
= Pru,v(Cv = 0)

+ Pru,v(uT Cv = 0 | Cv �= 0) · Pru,v(Cv �= 0). (20.7)

As argued in Lecture 19, the conditional probability in (20.7) is

Pru,v(uT Cv = 0 | Cv �= 0) = 1
2 ,

because this is the event that u lies in the kernel of the linear map u �→
u • Cv, a subspace of dimension n− 1. Also, if C �= 0, then the rank of C
(number of linearly independent columns) is at least 1, and the probability
that Cv = 0 is the probability that v lies in the kernel of C, which is a
subspace of dimension n− rank C. Thus

Pr(Cv = 0) = Pr(v ∈ ker C) = |F |dim ker C/|F |n
= |F |n−rank C/|F |n = |F |−rank C ≤ 1

2 ,

because |F | ≥ 2 and rankC ≥ 1. Combining these observations with (20.7),
we have

Pru,v(Cv = 0) + Pru,v(uT Cv = 0 | Cv �= 0) · Pru,v(Cv �= 0)
= Pru,v(Cv = 0) + 1

2 (1− Pru,v(Cv = 0))
= 1

2Pru,v(Cv = 0) + 1
2

≤ 3
4 .

The protocol to verify that c = a ⊗ a ⊗ a is similar (Miscellaneous
Exercise 48).
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A Crash Course in Logic

In this lecture we present the basics of first-order logic as background for
the lectures on the complexity of logical theories (Lectures 21–25).

What Is Logic?

Logic typically has three parts: syntax , semantics , and deductive apparatus .
Syntax is concerned with the correct formation of expressions—whether the
symbols are in the right places. Semantics concerns itself with meaning—
how to interpret syntactically correct expressions as meaningful statements
about something. Finally, the deductive apparatus gives rules for deriving
theorems mechanically. We do not concern ourselves much with deductive
apparatus here.

Relational Structures

First-order logic is good for expressing and reasoning about basic math-
ematical properties of algebraic and combinatorial structures. Examples
of such structures are: groups, rings, fields, vector spaces, graphs, trees,
ordered sets, and the natural numbers.

Such a structure A typically consists of a set A, called the domain or
carrier of A, along with some distinguished n-ary functions fA : An → A



A Crash Course in Logic 129

for various n, constants cA ∈ A (which can be viewed as 0-ary functions),
and n-ary relations RA ⊆ An for various n. The number of inputs n is
called the arity of the function or relation. Functions or relations of arity
0, 1, 2, 3, and n are called nullary, unary, binary, ternary, and n-ary,
respectively.

The list of distinguished functions and relations of A along with their
arities is called the signature of A. It is usually represented by an alphabet
Σ of function and relation symbols, one for each distinguished function or
relation of A, each with a fixed associated arity.

Example E.1 The structure N of number theory consists of the set ω = {0, 1, 2, . . .}, the
natural numbers, along with the binary operations of addition and multi-
plication, constant additive and multiplicative identity elements, and the
binary equality relation. The signature of number theory is (+, ·, 0, 1, =),
where + and · are binary function symbols, 0 and 1 are constant symbols,
and = is a binary relation symbol.

A group is any structure consisting of a set with a binary multiplica-
tion operation, a unary inverse operation, a constant identity element, and
a binary equality relation, satisfying certain properties. The signature of
group theory is (·, −1, 1, =), where · is a binary function symbol, −1 is a
unary function symbol, 1 is a constant symbol, and = is a binary relation
symbol.

A partial order is any set with a binary inequality relation and a binary
equality relation satisfying certain properties. The signature of the theory
of partial orders is (≤, =), where ≤ and = are binary relation symbols. �

When discussing structures in general, we usually assume a fixed but
arbitrary signature Σ. We usually use f, g, . . . to denote function symbols
of arity at least one, c, d, . . . to denote constant symbols, and R, S, . . . to
denote relation symbols. The functions and relations they represent in the
structure A are denoted fA, cA, RA, and so on.

At the risk of confusion, when working in a specific structure, we often
use the same symbol for both the symbol of Σ and the semantic object it
denotes; for example, in number theory, we might use + to denote both
the symbol of the signature of number theory and the addition operation
on the natural numbers.

Syntax

The syntax of first-order logic can be separated into two parts, the
first application-specific and the second application-independent. The
application-specific part specifies the correct formation of terms from the
symbols of Σ. The application-independent part specifies the correct forma-
tion of formulas from propositional connectives ∨, ∧, ¬, →, ↔, 0 (falsity),
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and 1 (truth), variables x, y, z, . . . , quantifiers ∀ and ∃, and parentheses.
These symbols are part of every first-order language.

Terms

Fix a signature Σ, and let X be a set of variables. A term is a well-formed
expression built from the function symbols of Σ and variables X , regarding
elements of X as symbols of arity 0. Here well formed means that the arities
of all the symbols are respected. For example, if f is a binary function
symbol, g is a unary function symbol, c, d are constant symbols, and x, y
are variables, then

c x f(g(x), f(c, g(y))) g(f(g(x), c), f(d, g(y)))

are typical terms.
Depending on custom, terms involving binary function symbols are

sometimes written in infix notation, as in (x + 1) · y, and those involv-
ing unary function symbols are sometimes written in postfix notation, as
in x−1.

Valuations and the Meaning of Terms

A valuation over a structure A with domain A is a map from variables to
values:

u : X → A.

These maps are often called environments in programming language se-
mantics. Any valuation extends uniquely by induction to a map

u : {terms} → A

as follows: for any terms t1, . . . , tn and n-ary function symbol f ,

u(f(t1, . . . , tn)) def= fA(u(t1), . . . , u(tn)).

This definition also includes the case n = 0: for constants c, u(c) = cA.
A term with no variables is called a ground term. Note that for ground
terms t, the value u(t) is independent of u. For this reason we often write
tA instead of u(t) for ground terms t.

If u is a valuation, x is a variable, and a ∈ A, we denote by u[x/a] the
valuation that agrees with u except on variable x, on which it takes the
value a. In other words,

u[x/a](y) def=
{

u(y), if y �= x,
a, otherwise.

The operator [x/a] is called a rebinding operator .
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Formulas and Sentences

An atomic formula is either a Boolean constant 0 or 1 or an expression of
the form R(t1, . . . , tn), where R is an n-ary relation symbol of the signature
and t1, . . . , tn are terms. Depending on the application, atomic formulas
involving binary relation symbols are sometimes written in infix notation,
as in g(x) = y.

Formulas are defined inductively:

• Every atomic formula is a formula;

• If ϕ and ψ are formulas and x is a variable, then the following are
formulas: ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ, ϕ ↔ ψ, ¬ϕ, ∃x ϕ, and ∀x ϕ.

We use parentheses in ambiguous situations when it is not clear how to
parse the formula. Quantifiers may appear more than once with the same
variable in the same formula.

For example,

∃x ((∀z y ≤ z) → x ≤ y) (E.1)

is a typical formula of the first-order language of ordered structures.

Scope, Free and Bound Occurrences of Variables

Suppose the formula ϕ has an occurrence of a subformula of the form
Qx ψ, where Q is a quantifier, either ∃ or ∀. The scope of the Qx in that
occurrence of Qx ψ is that occurrence of ψ. (We have to say “occurrence”
because quantifiers and subformulas can have more than one occurrence in
a given formula.)

Consider an occurrence of a variable x in a formula ϕ (as a term, not as
part of a quantifier expression Qx). Such an occurrence of x is called bound
if it is in the scope of a quantifier Qx, free if not. A bound occurrence of
x is bound to the occurrence of Qx with the smallest scope in which that
occurrence of x occurs.

For example, in (E.1), the scope of the ∃x is ((∀z y ≤ z) → x ≤ y), and
the scope of the ∀z is y ≤ z. The single occurrence of x is bound to the ∃x,
the single occurrence of z is bound to the ∀z, and the two occurrences of y
are free. In

∃x ((∀y y ≤ z) → x ≤ y), (E.2)

on the other hand, the single occurrence of x is bound to the ∃x, the first
occurrence of y is bound to the ∀y, and the single occurrence of z and the
second occurrence of y are free.

A sentence is a formula with no free variables.
It is customary to write ϕ(x1, . . . , xn) to indicate that all free variables

of ϕ are among x1, . . . , xn.
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Interpretation of Formulas and Sentences

Given a structure A and a valuation of variables u over A, every formula
has a truth value defined inductively as follows. We write

A, u � ϕ

and say “ϕ is true in A under valuation u” if the truth value associated
with the formula ϕ is 1 (true) under the inductive definition we are about
to give.

For atomic formulas, A, u � 1 always, A, u � 0 never, and

A, u � R(t1, . . . , tn) def⇐⇒ RA(u(t1), . . . , u(tn)).

For compound formulas,

A, u � ϕ ∧ ψ
def⇐⇒ A, u � ϕ and A, u � ψ

A, u � ϕ ∨ ψ
def⇐⇒ A, u � ϕ or A, u � ψ

A, u � ¬ϕ
def⇐⇒ it is not the case that A, u � ϕ

A, u � ∃x ϕ
def⇐⇒ there exists a ∈ A such that A, u[x/a] � ϕ

A, u � ∀x ϕ
def⇐⇒ for all a ∈ A, A, u[x/a] � ϕ.

Whether A, u � ϕ depends only on the values that u assigns to the free
variables of ϕ. In other words, if u and v agree on all variables with a free
occurrence in ϕ, then A, u � ϕ iff A, v � ϕ. This can be shown by induction
on the structure of ϕ. In particular, for sentences (formulas with no free
variables), whether A, u � ϕ does not depend on u at all. In this case we
omit the u and write A � ϕ and say “ϕ is true in A” if the sentence ϕ is
true in A under any valuation (hence all valuations).

If Φ is a set of sentences, we write A � Φ if A � ϕ for all ϕ ∈ Φ.
If the free variables of ϕ are all among x1, . . . , xn, that is, if ϕ =

ϕ(x1, . . . , xn), and if a1, . . . , an ∈ A, it is common to abuse notation by
writing

A � ϕ(a1, . . . , an) (E.3)

for

A, u � ϕ(x1, . . . , xn), (E.4)

where u is some valuation such that u(xi) = ai, 1 ≤ i ≤ n. This is an
abuse of notation because it is mixing syntactic objects (ϕ) with semantic
objects (a1, . . . , an). Some authors deal with this by including a constant
for each element of the domain of A and substituting the constant ai for
xi in the definition of truth. Please just remember that anytime you see
(E.3), although strictly speaking it is a type error, it really should be taken
as an abbreviation for (E.4).
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Prenex Form

There are semantics-preserving rules for transforming first-order formulas
to a semantically equivalent special form called prenex form. In prenex
form, all quantifiers occur first, followed by a quantifier free part. The rules
are

ϕ ∧ ∀x ψ(x) ⇔ ∀x (ϕ ∧ ψ(x))
ϕ ∨ ∀x ψ(x) ⇔ ∀x (ϕ ∨ ψ(x))
ϕ ∧ ∃x ψ(x) ⇔ ∃x (ϕ ∧ ψ(x))
ϕ ∨ ∃x ψ(x) ⇔ ∃x (ϕ ∨ ψ(x))
¬∀x ψ(x) ⇔ ∃x ¬ψ(x)
¬∃x ψ(x) ⇔ ∀x ¬ψ(x),

provided x does not occur free in ϕ. If x does occur free in ϕ, one can
change the bound variable by applying the rule

∀x ψ(x) ⇔ ∀y ψ(y),

where y is a new variable. To transform a formula to prenex form, the rules
would be applied from left to right.

First-Order Theories

The first-order theory of a structure A, denoted Th(A), is the set of sen-
tences in the first-order language of A that are true in A:

Th(A) def= {ϕ | A � ϕ}.
For example, first-order number theory is the set of first-order sentences

true in N.
If C is a class of structures all of the same signature, the first-order

theory of C, denoted Th(C), is the set of sentences in appropriate first-
order language that are true in all structures in C:

Th(C) def=
⋂

A∈C

Th(A).

For example, first-order group theory is the set of sentences in the language
of groups that are true in all groups.

Axiomatization

If Φ is a set of sentences over some signature Σ, the class of models of Φ
is the class of structures of signature Σ that satisfy all the sentences of Φ.
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This class is denoted Mod(Φ):

Mod(Φ) def= {A | A � Φ}.
A sentence ϕ is called a logical consequence of a set of sentences Φ if it

is true in all models of Φ. In other words, the set of logical consequences
of Φ is the set Th(Mod(Φ)).

We often specify a class of structures by giving a set of axioms, which
are just first-order sentences. The class being specified is defined to be the
class of models of those sentences.

Example E.2 A group is a structure of signature (·, 1, −1, =) satisfying the first-order
group axioms

∀x ∀y ∀z x(yz) = (xy)z
∀x x1 = x
∀x 1x = x
∀x xx−1 = 1
∀x x−1x = 1

and the axioms of equality

∀x x = x ∀x ∀y ∀z x = y → xz = yz
∀x ∀y x = y → y = x ∀x ∀y ∀z x = y → zx = zy
∀x ∀y ∀z (x = y ∧ y = z) → x = z ∀x ∀y x = y → x−1 = y−1.

�

The Decision Problem

The decision problem for a first-order theory is to determine whether a
given sentence is an element of the theory. For a theory of a structure
such as N, this is just the problem of deciding whether a given sentence
in the language of number theory is true in N. For the theory of a class of
structures C, the decision problem is to determine whether a given sentence
is true in all structures in the class; that is, whether it is in Th(C). For a
set of first-order axioms Φ, the decision problem is to determine whether a
given sentence is a logical consequence of Φ.
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Complexity of Decidable Theories

Here we outline a general treatment of the complexity of first-order theories
in terms of Ehrenfeucht–Fraissé games . A good general introduction to this
technique is given in Ferrante and Rackoff’s monograph [41].

Ehrenfeucht–Fraissé Games

A game is specified by a tuple (boards,move), where boards is a set
of boards and move is a binary relation giving the legal moves. Often
the decision problem for a logical theory can be reduced to a finite game,
where the board positions represent arrangements or equivalence classes of
k-tuples of elements obtained by eliminating quantifiers one by one, and
the next move relation represents the different new arrangements that can
be obtained by picking the next element. We show that in many cases,
finding an efficient decision procedure amounts to finding a finite game of
a particular size and shape.

Dense Linear Order Without Endpoints

The motivating example is the theory of dense linear order without end-
points. The signature for this theory is (≤, =). We write s < t as an
abbreviation for s ≤ t ∧ s �= t and s ≥ t for t ≤ s.
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Recall that a binary relation ≤ on a set A is a partial order if it is
reflexive, antisymmetric, and transitive. These properties are expressed by
the first-order formulas

∀x x ≤ x
∀x ∀y (x ≤ y ∧ y ≤ x) ↔ x = y
∀x ∀y ∀z (x ≤ y ∧ y ≤ z) → x ≤ z,

respectively. The usual axioms of equality

∀x x = x
∀x ∀y x = y → y = x
∀x ∀y ∀z (x = y ∧ y = z) → x = z

follow from these.
In addition, ≤ is a linear or total order if

∀x ∀y x ≤ y ∨ y ≤ x.

Thus the elements of the set A are lined up in a straight line. A linear order
≤ is dense if there is a point strictly between any pair of distinct points:

∀x ∀z (x < z → ∃y x < y ∧ y < z).

The order has no endpoints if

∀x (∃y x < y ∧ ∃z z < x).

The rational numbers Q and real numbers R with their natural orders are
examples of dense linear orders without endpoints. The integers Z with
their natural order are not, as they are not dense.

Back and Forth

The first thing to notice about dense linear orders without endpoints is that
the countable ones all look the same. There is a theorem of logic called the
Löwenheim–Skolem theorem that states that any first-order theory over
a countable language that has a model of some infinite cardinality has a
countable model, so we can without loss of generality restrict our attention
to countable models. But for dense linear orders without endpoints, there is
only one countable model up to isomorphism, and it looks like the rationals
Q. There are no finite models.

Theorem 21.1 Any two countable dense linear orders without endpoints are isomorphic.
More generally, if D = (D,≤) and E = (E,≤) are countable dense linear
orders without endpoints, and if a0, . . . , ak−1 and b0, . . . , bk−1 are k-tuples
of elements of D and E, respectively, such that the map f : ai �→ bi is a local
isomorphism (that is, a one-to-one function such that ai ≤ aj iff bi ≤ bj),
then f extends to an isomorphism f : D → E.
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Proof. This is a standard back-and-forth argument . Pick the first element
D in some enumeration of D that is not among the ai, 0 ≤ i ≤ k − 1, and
call it ak. It lies in some relation to all the ai; that is, for each ai, either
ak > ai or ak < ai. Because E is dense and has no endpoints, there must
exist an element bk that lies in the same relationship to the bi, 0 ≤ i ≤ k−1.
Pick the first such bk in some enumeration of E and set f(ak) = bk. We
have extended the domain of f by one and preserved the fact that it is a
local isomorphism.

Now do the same thing from the other side: pick the first unmatched
element bk+1 of E and find an element ak+1 of D to match with it (that
is, make f(ak+1) = bk+1) preserving local isomorphism. Go back and forth
like this forever. Every element of D and E is eventually matched with
something on the other side, so we get an isomorphism. �

A Decision Procedure

Let D be a dense linear order without endpoints. (By the result of the
previous section, we might as well take D to be Q.) To decide the sentence

∃x ∀y ∃z x < y ∧ (x ≥ z ∨ y = z),

for example, it suffices to pick an arbitrary point a ∈ D and then check
whether

∀y ∃z a < y ∧ (a ≥ z ∨ y = z). (21.1)

It does not matter which a is chosen, because all such a look the same: by
Theorem 21.1, for every a, a′ ∈ D, there is an automorphism of D mapping
a to a′. Now to check (21.1), we wish to check whether for all b ∈ D,

∃z a < b ∧ (a ≥ z ∨ b = z). (21.2)

However, there are essentially only three choices for b: either less than a,
equal to a, or greater than a. If we pick any b0, b1, and b2 representing
these three respective possibilities respectively, then any other pair (a′, b′)
of elements of D looks like one of (a, b0), (a, b1), or (a, b2). Therefore it
suffices to check (21.2) for b ∈ {b0, b1, b2}. Finally, to eliminate the last
quantifier ∃z in (21.2), we pick a c ∈ D in one of finitely many ways. For
(a, b0), because b0 < a, there are essentially five ways to pick c: either
c < b0, c = b0, b0 < c < a, c = a, or c > a. For (a, b1), there are essentially
three ways to pick c, and for (a, b2) there are five.

Once we have chosen three elements a, b, c ∈ D and know their relative
order in D, we have enough information to determine the truth or falsity
of the quantifier-free part

a < b ∧ (a ≥ c ∨ b = c). (21.3)
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We did not really need to pick out actual elements a, b, c of D. We could
do the whole procedure symbolically. Define a linear arrangement of the
variables x1, . . . , xk to be a list of the variables x1, . . . , xk in some order,
with either < or = in between each adjacent pair. The linear arrangements
will be the board positions of our game.

A linear arrangement determines for each pair i, j ∈ {1, . . . , k} whether
xi < xj , xi = xj , or xi > xj by transitivity. It therefore determines the
truth of all atomic formulas xi ≤ xj and xi = xj . These in turn determine
the truth of any quantifier-free formula with variables among x1, . . . , xk.

For a linear arrangement α of x1, . . . , xk and a quantifier-free formula
ϕ with all free variables among x1, . . . , xk, we write

α |= ϕ (21.4)

if ϕ is true under arrangement α.
We now extend the relation |= of (21.4) to formulas ϕ with quantifiers.

For any linear arrangement α of x1, . . . , xk, let move(α) be the set of
arrangements β of x1, . . . , xk, xk+1 obtained from α by inserting xk+1 in
all possible ways. The set move(α) could be as large as 2k + 1 or as small
as 3, depending on how many equal signs (=) appear in α.

For a formula of the form

∃xk+1 Qk+2xk+2 · · · Qnxn ψ(x1, . . . , xk, xk+1, . . . , xn),

where ψ is quantifier-free and contains only variables among x1, . . . , xn,
and for α a linear arrangement of x1, . . . , xk, define

α |= ∃xk+1 Qk+2xk+2 · · · Qnxn ψ(x1, . . . , xk, xk+1, . . . , xn)

if there exists a β ∈ move(α) such that

β |= Qk+2xk+2 · · · Qnxn ψ(x1, . . . , xk, xk+1, . . . , xn).

Similarly, define

α |= ∀xk+1 Qk+2xk+2 · · · Qnxn ψ(x1, . . . , xk, xk+1, . . . , xn)

if for all β ∈ move(α),

β |= Qk+2xk+2 · · · Qnxn ψ(x1, . . . , xk, xk+1, . . . , xn).

The basis of this inductive definition is given by (21.4).
Let α0 be the null arrangement, and let ϕ be a prenex formula of the

form

Q1x1 · · · Qnxn ψ(x1, . . . , xn),

where ψ is quantifier-free. It is not difficult to show by induction that
α0 |= ϕ iff ϕ is true in all dense linear orders without endpoints. This gives
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an alternating polynomial-time algorithm for the theory of dense linear
order without endpoints, as follows. The initial process will attempt to
check whether

α0 |= Q1x1 · · · Qnxn ψ(x1, . . . , xn).

Subsequently, a process attempting to check whether

α |= ∃xk+1 Qk+2xk+2 · · · Qnxn ψ(x1, . . . , xn)

will produce all β ∈ move(α) using existential branching, and for each such
β, check whether

β |= Qk+2xk+2 · · · Qnxn ψ(x1, . . . , xn).

To check whether

α |= ∀xk+1 Qk+2xk+2 · · · Qnxn ψ(x1, . . . , xn),

universal branching is used. Once all quantifiers are eliminated, the truth
of the quantifier-free part is easily determined from the arrangement of
x1, . . . , xn in polynomial time.

We have given an alternating polynomial-time algorithm for deciding
the first-order theory of dense linear orders without endpoints. The theory
is also PSPACE -hard, as is any nontrivial first-order theory (Miscellaneous
Exercise 49). We have shown

Theorem 21.2 The first-order theory of dense linear order without endpoints is PSPACE-
complete.



Lecture 22

Complexity of the Theory of Real Addition

Among Alfred Tarski’s many significant achievements, one of the most im-
portant was showing the decidability of Th(R, +, ·, =), the first-order the-
ory of reals with addition and multiplication. This is often called the theory
of real closed fields . This result stands in stark contrast to the undecidabil-
ity of number theory Th(N, +, ·, =).

In the next two lectures, we show that the weaker theory of real addition
Th(R, +, ≤), the first-order theory of the real numbers with addition + and
order ≤, is complete for the complexity class STA(∗, 2O(n), n).

We have not included a constant for the real number 0 in the language,
but it is definable: it is the unique x such that ∀y x + y = y. The identity
relation = is also definable: x = y iff x ≤ y ∧ y ≤ x. The element 1 is not
definable, but any positive element is as good as 1 in this theory, because for
any a > 0, the map x �→ ax is an isomorphism of the structure (R, +, ≤).
This says that R � ϕ(1) iff R � ∃z z > 0∧ϕ(z), so we might as well assume
that the constant 1 is in the language.

Ferrante and Rackoff [40] showed that the theory is decidable in expo-
nential space, or STA(∗, 2O(n), ∗). Fischer and Rabin [42] showed that the
theory is hard for NEXPTIME , or STA(∗, 2O(n), Σ1). These arguments are
given in [63]. Berman [14] improved both the upper and lower bounds and
showed that the exact complexity is STA(∗, 2O(n), n). We prove the upper
bound in this lecture and the lower bound in Lecture 23.
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Extend the first-order language to allow multiplication by rational con-
stants. Thus we now allow statements such as ∀x ∃y 2

3x+ 4
5y ≤ 8

9 . It suffices
to show the upper bound for this extended language.

Definition 22.1 An integer affine function is a function f : Rk → R defined by a linear
polynomial with integer coefficients:

f(x1, . . . , xk) = c0 +
k∑

i=1

cixi

for some c0, . . . , ck ∈ Z. For such functions, define

‖f ‖ =
k

max
i=0

|ci |.

Let Ak be the set of all affine functions f : Rk → R with integer
coefficients, and let Ak

m
def= {f ∈ Ak | ‖f ‖ ≤ m}.

As with the theory of dense linear order without endpoints, we partition
the set of all k-tuples of reals into finitely many equivalence classes that
determine the formulas that a given k-tuple satisfies.

Definition 22.2 For a, b ∈ Rk, define

a ≡k
m b

def⇐⇒ ∀f ∈ Ak
m sign(f(a)) = sign(f(b)),

where

sign(x) def=

⎧⎨⎩
−1 if x < 0,

0 if x = 0,
1 if x > 0.

Equivalently, a ≡k
m b iff a = a1, . . . , ak and b = b1, . . . , bk satisfy the same

linear inequalities
∑

i cixi ≤ c0 with integer coefficients ci of absolute value
at most m.

Unlike the theory of dense linear order, the definition here depends on
a parameter m, which will determine the size of constants and quantifier
depth of formulas on which two ≡k

m-equivalent k-tuples are guaranteed to
agree. For more complex formulas, we need to take larger m. Note that the
equivalence relation ≡k

m is finer (equates fewer elements) for larger values
of m.

The following lemma is used inductively to eliminate one quantifier.

Lemma 22.3 Let a, b ∈ Rk. If a ≡k
2m2 b, then for all a′ ∈ R there exists b′ ∈ R such that

a, a′ ≡k+1
m b, b′.
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Proof. Suppose a ≡k
2m2 b. Let a′ ∈ R be arbitrary. We would like to find

b′ ∈ R such that for any f ∈ Ak
m and |c | ≤ m,

sign(f(a) + ca′) = sign(f(b) + cb′), (22.1)

or equivalently,

sign(a′ + f(a)/c) = sign(b′ + f(b)/c), (22.2)

assuming c �= 0 (if c = 0 then (22.1) is immediate from the assumption
a ≡k

2m2 b). Now (22.2) is equivalent to the assertion that

a′ ≤ −f(a)
c

⇔ b′ ≤ −f(b)
c

.

In order to show the existence of such a b′ for an arbitrarily chosen a′, it
suffices to show that the numbers f(a)/c for all affine functions f ∈ Ak

m

and nonzero c such that |c | ≤ m lie in the same order on the real line as the
corresponding numbers f(b)/c. This occurs if and only if for all f, g ∈ Ak

m

and nonzero c, d such that |c |, |d | ≤ m,

f(a)
c

≤ g(a)
d

⇔ f(b)
c

≤ g(b)
d

,

or in other words,

sign(df(a) − cg(a)) = sign(df(b)− cg(b)). (22.3)

But the affine function

h(x) = df(x) − cg(x)

satisfies ‖h‖ ≤ 2m2, so (22.3) follows from the assumption a ≡k
2m2 b. �

Let σ be an ≡k
2m2-equivalence class and and τ an ≡k+1

m -equivalence
class. We say that τ is consistent with σ if there exist a ∈ Rk and a′ ∈ R
such that a ∈ σ and a, a′ ∈ τ .

Lemma 22.4 Let a ∈ Rk and σ the ≡k
2m2-equivalence class of a. The set

{(a, f(a)/c) | f ∈ Ak
2m2 , |c | ≤ 2m2}

contains a representative of every ≡k+1
m -equivalence class consistent with

σ.
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Proof. Let a′, b′ ∈ R. Then a, a′ ≡k+1
m a, b′ iff for all nonzero c such that

|c | ≤ m and f ∈ Ak
m,

sign(ca′ + f(a)) = sign(cb′ + f(a));

in other words, a′ ≤ −f(a)/c iff b′ ≤ −f(a)/c. This says that all ≡k+1
m -

equivalence classes are represented by a, a′, where a′ is either

(i) a rational number f(a)/c for |c | ≤ m and f ∈ Ak
m;

(ii) a rational number contained in an interval strictly between adjacent
rational numbers f(a)/c and g(a)/d for |c |, |d | ≤ m, c, d �= 0, and
f, g ∈ Ak

m; or

(iii) a rational number strictly less than the smallest rational number of
the form f(a)/c for |c | ≤ m and f ∈ Ak

m, or strictly greater than the
largest such rational number.

For (i), take a′ = f(a)/c. For (ii), take the midpoint of the interval:

a′ = 1
2 (f(a)/c + g(a)/d) =

f(a)d + g(a)c
2cd

.

Letting h(a) = f(a)d + g(a)c, we have h ∈ Ak
2m + 1 and |2cd | ≤ 2m2. For

(iii), take a′ = f(a)/c− 1 = (f(a)− c)/c or a′ = f(a)/c + 1 = (f(a) + c)/c.
�

Let us say a formula with variables x = x1, . . . , xk is in reduced form
if it is in prenex form and all atomic formulas are linear inequalities of
the form f(x) ≥ 0 for some affine function f with integer coeffients. Any
formula can be put into reduced form efficiently and without significant
increase in size, so we assume henceforth that all formulas are of this form.

Define

r(0, �) def= � r(n + 1, �) def= 2r(n, �)2.

It follows inductively that r(n, �) = 22n−1�2n

, which is 22O(n+log log �)
. Thus

a number whose absolute value is bounded by r(n, �) can be written down
in binary with exponentially many bits.

Lemma 22.5 If a, b ∈ Rk and a ≡k
r(n, �) b, then for any formula ϕ(x) in reduced form

with free variables x = x1, . . . , xk and at most n quantifiers such that all
integer constants are of size at most �,

R � ϕ(a) ⇔ R � ϕ(b).
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Proof. The proof is by induction on the structure of the formula. For
atomic formulas, the result is immediate from the definition of ≡k

� . For
formulas of the form ϕ ∧ ψ, the argument is by straightforward appeal to
the induction hypothesis for the simpler formulas ϕ and ψ:

R � ϕ(a) ∧ ψ(a)
⇔ R � ϕ(a) and R � ψ(a)
⇔ R � ϕ(b) and R � ψ(b)
⇔ R � ϕ(b) ∧ ψ(b).

The argument for the other propositional operators is equally straight-
forward. Finally, for formulas ∃x ϕ(a, x), suppose R � ∃x ϕ(a, x), and let
a′ ∈ R be such that R � ϕ(a, a′). By Lemma 22.3, there exists b′ such that

a, a′ ≡k+1
r(n − 1, �) b, b′,

and by the induction hypothesis, R � ϕ(b, b′), thus

R � ∃x ϕ(b, x).

The case where the leading quantifier is ∀ is similar. �

Theorem 22.6 Th(R, +, ≤) ∈ STA(∗, 2O(n), n).

Proof. We describe an alternating Turing machine that accepts the set
of true formulas of the theory of real addition. The machine M runs in time
2n and makes n alternations on formulas of length n.

The first step is to put the formula into reduced form. This can be done
in polynomial time and entails no significant increase in size. Let n and �
be the quantifier depth and maximum absolute value of a constant in the
formula, respectively.

Suppose the first quantifier is ∃x1. Using existential branching, choose
a rational number a1 = d/c, where |c |, |d | ≤ r(n, �). If the first quantifier is
∀, do the same thing with universal branching. By the bound on |c | and |d |,
this takes exponential time. By Lemma 22.4, the leaves of the computation
tree have a representative of each ≡1

r(n, �)-equivalence class.
We eliminate the second quantifier Q2x2 by choosing f ∈ A1

r(n − 1, �) and
c such that |c | ≤ r(n− 1, �) either existentially or universally according as
Q2 is ∃ or ∀, respectively, and let a2 = f(a1)/c. By Lemma 22.4, the leaves
of the computation tree have a representative a1, a2 of each ≡2

r(n − 1, �)-
equivalence class consistent with the ≡1

r(n, �)-equivalence class of a1.
Continuing in this fashion, after eliminating all quantifiers, we have

chosen a sequence a = a1, . . . , an representing some ≡n
� -equivalence class.
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We then evaluate the quantifier-free part of the formula on a, which takes
exponential time.

The correctness of this alternating algorithm follows from Lemma 22.5.
�



Lecture 23

Lower Bound for the Theory of Real Addition

Last time we proved that Th(R, +,≤), the theory of real addition, is con-
tained in the complexity class STA(∗, 2nO(1)

, n). In this lecture we show
that the theory is hard for this complexity class as well. We actually only
show hardness for STA(∗, 2nO(1)

, Σ1) = NEXPTIME , as most of the main
ideas are already contained there. This result is originally due to Fischer
and Rabin [42], and the improvement to STA(∗, 2nO(1)

, n) is due to Berman
[14].

The idea is to encode full arithmetic—addition and multiplication—on
integers up to a certain magnitude with short formulas of Th(R, +,≤).

The language does not contain a predicate that picks out the integers,
and there is no way to define such a predicate. Quantifiers range over reals,
and we have no way of saying “x is an integer” in general. However, we can
say that “x is an integer in the range 0 ≤ x ≤ n” for any large constant n.
In fact, the formula

x = 0 ∨ x = 1 ∨ x = 1 + 1 ∨ · · · ∨ x = 1 + · · ·+ 1︸ ︷︷ ︸
n

(23.1)

does this, albeit very inefficiently. We can even encode multiplication on
integers in this range in the same way, just by writing down the multipli-
cation table. However, this is too inefficient an encoding to get a decent
lower complexity bound.
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To get the lower complexity bound we want, we show how to encode
full arithmetic on integers in the range 0 ≤ x < 22n

with formulas of length
O(n). This allows us to manipulate bit strings of length 2n with short
formulas and index into them to extract their bits, which in turn allows
us to describe computation histories of exponential-time machines, thereby
encoding the halting problem for such machines.

Constructing Short Formulas for Large Integers

We make use of a trick due to Fischer and Rabin [42] for constructing
short formulas for full arithmetic on large integers. We illustrate the trick
by constructing a formula of length O(n) that says x = 22n

. We actually
construct inductively a formula ψn(x, z) that says x = 22n

z. Then x = 22n

is expressed by ψn(x, 1).
Here is an inductive construction that produces formulas that are ex-

ponentially smaller than (23.1), although still too big:

ψ0(x, z) def⇐⇒ x = z + z, (23.2)

ψn+1(x, z) def⇐⇒ ∃y ψn(x, y) ∧ ψn(y, z). (23.3)

Note that we have used only addition +, thus the ψn are syntactically
correct. Under this definition, the ψn express the desired property:

ψ0(x, z) ⇔ x = z + z ⇔ x = 220
z,

and by induction,

ψn+1(x, z) ⇔ ∃y ψn(x, y) ∧ ψn(y, z)
⇔ ∃y x = 22n

y ∧ y = 22n

z

⇔ x = 22n

22n

z

⇔ x = 22n+1
z.

The problem is that ψn appears twice in the inductive definition (23.3) of
ψn+1, so the length of ψn+1 is roughly twice the length of ψn. Thus the
formulas ψn grow exponentially with n.

Here is where the trick comes in. We use universal quantification to
write ψn+1 with only one occurrence of ψn. Instead of the definition (23.3),
we take

ψn+1(x, z) def⇐⇒
∃y ∀u ∀v ((u = x ∧ v = y) ∨ (u = y ∧ v = z)) → ψn(u, v).

This says the same thing, but now ψn+1 contains only one occurrence of
ψn, so its length is that of ψn plus a constant. Thus the formulas ψn grow
only linearly with n.
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Encoding Multiplication

Let

In
def= {z | z is an integer and 0 ≤ z < 22n}.

We now show how to construct a formula of length O(n) that says, “z ∈ In

and x = yz.” The basis is given by:

mult0(x, y, z) def⇐⇒ (z = 0 ∧ x = 0) ∨ (z = 1 ∧ x = y). (23.4)

Before we give the induction step, let us prove a motivating lemma.

Lemma 23.1 In+1 = {z1z2 + z3 + z4 | zi ∈ In, 1 ≤ i ≤ 4}.

Proof. (⊇) The sum of four integers in the range 0 ≤ zi < 22n

must be
an integer and cannot be less than 0 nor more than

(22n − 1)(22n − 1) + (22n − 1) + (22n − 1) = 22n+1 − 1.

(⊆ ) If 0 ≤ z < 22n+1
= 22n

22n

, and if we divide z by 22n

using
integer division with remainder, we obtain z = 22n

q + r, 0 ≤ q < 22n

, and
0 ≤ r < 22n

. Thus

z = (22n − 1)q + q + r.

�

This gives us a way of defining multn+1 inductively in terms of multn.
By Lemma 23.1,

z ∈ In+1 ∧ x = yz

⇔ ∃z1 ∃z2 ∃z3 ∃z4

4∧
i=1

zi ∈ In ∧ z = z1z2 + z3 + z4 ∧ x = yz1z2 + yz3 + yz4

⇔ ∃z1 ∃z2 ∃z3 ∃z4 ∃s ∃t ∃u ∃v ∃w z = s + z3 + z4 ∧ x = u + v + w

∧
4∧

i=1

zi ∈ In ∧ s = z1z2 ∧ t = yz1 ∧ u = tz2

∧ v = yz3 ∧ w = yz4

⇔ ∃z1 ∃z2 ∃z3 ∃z4 ∃s ∃t ∃u ∃v ∃w z = s + z3 + z4 ∧ x = u + v + w

∧ multn(s, z1, z2) ∧ multn(t, y, z1) ∧ multn(u, t, z2)
∧ multn(v, y, z3) ∧ multn(w, y, z4).

The last of these formulas is semantically correct but way too large, because
it involves five occurrences of multn; however, we can combine these into
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one occurrence using the Fischer–Rabin trick. We define multn+1(x, y, z)
to be the resulting formula.

Once we have defined multn, we can express membership in the set In

with the formula

In(x) def⇐⇒ multn(x, 1, x).

Bitstring Manipulation

Once we know how to define and manipulate large integers with short
formulas, we are on our way to manipulating long bitstrings. Here are
some useful formulas that will help us with this task.

• Integer division with remainder: “y, q, r ∈ In, q is the quotient and r
the remainder obtained when dividing x by y” = “y, q, r ∈ In ∧ x =
yq + r ∧ 0 ≤ r < y”:

intdivn(x, y, q, r) def⇐⇒ In(q) ∧ In(r) ∧ ∃u multn(u, q, y)
∧ x = u + r ∧ 0 ≤ r < y

remn(x, y, r) def⇐⇒ ∃q intdivn(x, y, q, r).

• “x, y ∈ In and y divides x”:

divn(y, x) def⇐⇒ remn(x, y, 0).

• “x ∈ In and x is even”:

evenn(x) def⇐⇒ divn(2, x).

Here 2 is an abbreviation for 1 + 1.

• “p ∈ In and p is prime”:

primen(p) def⇐⇒ In(p) ∧ ∀z divn(z, p) → (z = 1 ∨ z = p).

• “y has no odd factors less than 22n

except 1”:

power2n(y) def⇐⇒ ∀z divn(z, y) → (z = 1 ∨ evenn(z)).

For numbers y ∈ In, this says that y is a power of 2.
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• “x, y ∈ In, y is a power of two, say 2k, and the kth bit of the binary
representation of x is 1”:

bitn(x, y) def⇐⇒ In(x) ∧ In(y) ∧ power2n(y)
∧ ∀q ∀r (intdivn(x, y, q, r) → ¬evenn(q)).

Here is an explanation of the formula bitn(x, y). Suppose x and y are num-
bers satisfying bitn(x, y). Because y is a power of two, its binary represen-
tation consists of a 1 followed by a string of zeros. The formula bitn(x, y)
is true precisely when x’s bit in the same position as the 1 in y is 1. We
get hold of this bit in x by dividing x by y using integer division; the quo-
tient q and remainder r are the binary numbers illustrated. The bit we are
interested in is 1 iff q is odd.

y = 1 0 0 0 0 0 0 0 0 0 0 0 0
x = 1 1 0 1 1 0 0 1︸ ︷︷ ︸

q

0 1 0 0 0 1 0 1 1 0 1 1︸ ︷︷ ︸
r

.

This formula is useful for treating numbers as bit strings of exponential
length and indexing into them with other numbers to extract bits.

Now we can use this capability to write a formula ϕM,x(w) that ex-
presses the fact that w is a bitstring of exponential length encoding an
accepting computation history of a nondeterministic exponential-time-
bounded Turing machine M on input x. Then M accepts x iff R �
∃w ϕM,x(w). The accepting computation history is a sequence of expo-
nentially many configurations of M beginning with the start configuration
on input x and ending with an accepting configuration such that each suc-
cessive configuration follows from the previous according to the transition
rules of M . A string of exponential length is used as a yardstick to compare
corresponding bits of adjacent configurations. The construction of ϕM,x(w)
is fairly standard using the tools we have provided; for a detailed account,
see the proof of Gödel’s incompleteness theorem as given in Lectures 38
and 39 of [76]. The only difference here is that because of the bound on the
length of strings we can talk about, we can only encode accepting compu-
tation histories of Turing machines running in exponential time.
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Lower Bound for Integer Addition

The theory of integer addition, Th(Z, +,≤), also known as Presburger arith-

metic, is complete for the complexity class STA(∗, 22nO(1)

, n)—one expo-
nential up from Th(R, +,≤). In this lecture we describe how to obtain the
lower bound.

The decidability of Presburger arithmetic is due to Presburger [98]. The
precise upper and lower bounds are due to Berman [14], based on work of
Fischer and Rabin [42], Cooper [33], Oppen [91], and Ferrante and Rackoff
[41].

As with Th(R, +,≤), the trick is to encode full arithmetic—addition and
multiplication—on large integers with short formulas. Intepreting integers
as bit strings, this enables us to describe accepting computation histories
of time-bounded Turing machines.

The main difference between Th(Z, +,≤) and Th(R, +,≤) is that quan-
tifiers in Th(Z, +,≤) range over Z, so we do not have to encode this as we
did with Th(R, +,≤). This allows us to encode full arithmetic on integers
in the range 0 ≤ x < 222n

with formulas of length O(n), which in turn
allows us to encode computation histories of Turing machines running in
double-exponential time.
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Encoding Huge Numbers

Recall from Lecture 23 the definition

In = {z | z is an integer and 0 ≤ z < 22n}.
Let

�n =
∏

p∈In

p prime

p,

the product of all the primes less than 22n

. By [51, Theorem 414, p. 341],

�n ≥ 2c22n

for some constant c > 0; so for n ≥ 1 + log log 1
c , �n ≥ 222n−1

.
We can define the number �n with a short formula:

Ln(x) def⇐⇒ x ≥ 1 ∧ ∀p (primen(p) → divn(p, x))
∧ ∀y ≥ 1 (∀p (primen(p) → divn(p, y))) → x ≤ y.

In other words, �n is the least positive integer divisible by all primes less
than 22n

. Once we have defined �n, we can say that x is an integer in the
range 0 ≤ x < �n by just saying ∃� Ln(�) ∧ 0 ≤ x < �. Here we are also
using the fact that variables range over integers, which was not true with
Th(R, +,≤).

Chinese Remaindering

The Chinese remainder theorem (Theorem B.1) says that we can do arith-
metic on numbers modulo �n by doing arithmetic on their remainders mod-
ulo primes less than 22n

.
We can express that r is the remainder of x modulo a prime p < 22n

with the predicate remn(x, p, r) defined in Lecture 23. However, to get the
higher complexity bound, we must amend the definition slightly to avoid
saying anything about the size of x. We therefore redefine

intdivn(x, y, q, r)
def⇐⇒ ∃u multn(u, q, y) ∧ x = u + r ∧ 0 ≤ r < y. (24.1)

Here we are taking advantage of the fact that quantifiers range over integers,
so that we do not have to include the predicates In(q) and In(r). We also
amend the definition of bitn(x, y) to replace the subexpression In(x) ∧
In(y) with x < �n ∧ y < �n. The definitions of the other predicates—
remn(x, y, r), divn(y, x), and so on—are the same. The inductive definition
of multn(u, q, y) given in Lecture 23 constrains y to be in In, but does not
say anything about u and q. Thus intdivn(x, y, q, r), defined as in (24.1),
says nothing about the size of x or q. Consequently, divn(y, x), although
constraining y to be in In, says nothing about x.
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Write x ≡ y (mod p) if x and y are congruent modulo p; that is, if p
divides x− y. The Chinese remainder theorem says that x ≡ yz (mod �n)
iff for all primes p < 22n

, x ≡ yz (mod p). For p < 22n

, we can express
x ≡ yz (mod p) using multn and divn:

multmod
n (x, y, z, p)

def⇐⇒ ∃u ∃v multn(u, y, v) ∧ divn(p, x− u) ∧ divn(p, z − v).

This does not place any size constraints on x, y, or z, because multn does
not care how big its first two arguments are (it does care how big its third
argument is, which is why we need the v), and divn does not care how big
its second argument is. Also, we have used the subtraction operator in the
above definition, but we can express subtraction because we can express
addition:

z = x− y
def⇐⇒ x = y + z.

We can now define a multiplication predicate that expresses x ≡
yz (mod �n):

mult′
n(x, y, z) def⇐⇒ ∀p primen(p) → multmod

n (x, y, z, p).

This is all the machinery we need to do full arithmetic on numbers in
the range 0 ≤ x ≤ 222n

with formulas of length O(n). The rest of the
construction is the same as in Lecture 23.
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Automata on Infinite Strings and S1S

Here is a logical theory that is decidable, but not in elementary time; that
is, not in any time bounded by a stack of exponentials

222..
.2n

of any fixed height. It is the monadic second-order theory of successor
(S1S). This is the set of true statements about the natural numbers
ω = {0, 1, 2, . . .} expressible in a language with a symbol s for the suc-
cessor function and allowing quantification over elements and subsets of
ω. The term second-order refers to the fact that we allow quantification
over relations, not just individual elements. The term monadic means that
we allow quantification only over sets (monadic or unary relations). If we
allow quantification over dyadic (binary) relations, the theory becomes un-
decidable. The theory S1S was originally shown to be decidable by Büchi
[23, 24]. The result was generalized to the monadic second-order theory of
n successors (SnS) by Rabin [99].

The structure in question is (ω, s ,∈), where ω is the set of natural
numbers, s is the successor function x �→ x+1, and ∈ ⊆ ω×2ω is the usual
membership relation between elements and sets. The variables x, y, z, . . .
range over elements and X, Y, Z, . . . range over sets, and quantification is
allowed over both types of variables.

Here are some predicates definable in this language.
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• “x = y”: ∀X x ∈ X ↔ y ∈ X .

• “X ⊆ Y ”: ∀x x ∈ X → x ∈ Y .

• “X = Y ”: X ⊆ Y ∧ Y ⊆ X .

• “x = 0”: ∀y ¬(x = sy); in other words, x has no predecessor.

• “x = 1”: x = s0. Because we can define 0, we can use 0 informally as
if it were a symbol in the language.

• “x ≤ y”:

∀X (x ∈ X ∧ (∀z z ∈ X → sz ∈ X)) → y ∈ X.

In other words, any set X that contains x and is closed under suc-
cessor also contains y.

• “X is finite”: ∃x ∀y y ∈ X → y ≤ x.

Automata on Infinite Strings

We prove the decidability of S1S using automata on infinite strings. We
define three types of such automata, namely Büchi, Rabin, and Muller .
These automata are similar in most respects, but differ in the form of their
acceptance conditions.

Let Σ be a finite alphabet, and let Σω denote the set of infinite strings
a0a1a2 · · · over Σ. If |Σ | ≥ 2, then Σω is uncountable—it contains as many
elements as there are real numbers. These are the inputs to our automata.

A nondeterministic Büchi automaton is a structure

M = (Q, Σ, δ, s, F ),

where Q is a finite set of states, δ ⊆ Q× Σ×Q is the transition relation,
s ∈ Q is the start state, and F ⊆ Q is the set of accept states.

The transition (p, a, q) ∈ δ means that M can move from state p to
state q under input symbol a. The machine M is deterministic if δ is single-
valued; that is, if it is equivalent to a function δ : Q× Σ → Q.

A run of M on input a0a1a2 · · · ∈ Σω is a sequence q0q1q2 · · · ∈ Qω such
that

• q0 = s;

• (qi, ai, qi+1) ∈ δ, i ≥ 0.
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If M is deterministic, there is a unique run on each input string. If M is
nondeterministic, there could be anywhere from zero to uncountably many
runs on a given input string.

The IO set of a run σ, denoted IO(σ), is the set of states of Q that
appear in σ infinitely often. Formally, if σ = q0q1q2 · · · , then

IO(σ) def= {q ∈ Q | q = qi for infinitely many i},
or equivalently,

IO(σ) def=
⋂
n≥0

{qi | i ≥ n}.

A run of a Büchi automaton is an accepting run if its IO set intersects
F ; that is, if IO(σ)∩F �= ∅. A string is accepted by M if it has an accepting
run. The set of strings in Σω accepted by M , denoted L(M), is the set of
strings that have accepting runs:

L(M) def= {x ∈ Σω | there is a run σ of M on x such that
IO(σ) ∩ F �= ∅}.

Example 25.1 Here is a deterministic Büchi automaton that accepts the set

{x ∈ {a, b, c}ω | every a is followed sometime later by a b}
= cω + (a + b + c)∗b(b + c)ω + ((a + c)∗b)ω.

b, c a, c
a

b

� �
��� ���
�
�


��

(The short arrow indicates the start state and a circle around a state indi-
cates that it is an accept state.) �

Example 25.2 Here is a nondeterministic Büchi automaton that accepts the set (0+1)∗0ω,
the set of infinite strings over the alphabet {0, 1} with only finitely many
occurrences of 1.

0, 1 0
0� �
��� ���

�
�


�

�

This was the original definition used by Büchi to prove that S1S is decid-
able. Unfortunately, the acceptance condition is not quite general enough
for our needs, because it turns out that nondeterministic and determinis-
tic Büchi automata are not equivalent. For example, the set of Example
25.2 is not accepted by any deterministic Büchi automaton (Homework 8,
Exercise 1).
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Muller Automata

To correct this inadequacy, we generalize the acceptance condition as fol-
lows. Instead of a set of accept states F , we designate a set of sets of states
F; that is, F ⊆ 2Q. We think of the sets in F as the “good” IO sets. We
define a run σ to be accepting if IO(σ) ∈ F. The new acceptance condition
is called Muller acceptance, and this type of automaton is called a Muller
automaton [89].

Every Büchi automaton is a Muller automaton: take F = {A ⊆ Q |
A ∩ F �= ∅}. We show in Lectures 26 and 27 that nondeterministic Büchi
automata, nondeterministic Muller automata, and deterministic Muller au-
tomata are all equivalent. For the remainder of this lecture, we assume this
has been done. We use the equivalence between deterministic and nonde-
terministic Muller automata to eliminate existential quantifiers in S1S.

Encoding S1S with Automata

Büchi showed that S1S was decidable by reducing it to the emptiness prob-
lem for nondeterministic Büchi automata [23, 24]. In fact, S1S and nonde-
terministic Büchi automata are equivalent in expressive power.

To make sense of this statement, let us represent a set A ⊆ ω by its
characteristic string , the infinite string over {0, 1} with a 1 in position i iff
i ∈ A. For example, the characteristic strings of the sets {multiples of 3}
and {primes} are

100100100100100100100 · · · ,

001101010001010001010 · · · ,

respectively. We represent an element a ∈ ω as we would the singleton {a}.
For example, we would represent the number 4 as the string

000010000000000000000 · · · .

For a tuple a1, . . . , an, A1, . . . , Am ∈ ωn × (2ω)m, the characteristic
string is a string over the alphabet {0, 1}m+n. Think of the string as divided
into m + n tracks, each of which contains the characteristic string of one
of the ai or Ai. For example, the characteristic string of the 5-tuple

3, 5, {even numbers}, {multiples of 3}, {primes}
would be

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 · · · .
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0
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Theorem 25.3 (i) Let ϕ(x,X) be a formula of S1S with free individual variables among
x = x1, . . . , xn and free set variables among X = X1, . . . , Xm. There
exists a Muller automaton Mϕ over alphabet {0, 1}m+n such that

L(Mϕ) = {(a,A) | ϕ(a,A) is true},
where a = a1, . . . , an and A = A1, . . . , Am.

(ii) For any nondeterministic Büchi automaton M over the alphabet
{0, 1}, there is a formula ϕM (X) of S1S such that ϕM (A) is true
iff M accepts the characteristic string of A.

Proof. We only prove (i), leaving (ii) as an exercise.
To prove (i), we proceed by induction on the structure of the given

formula ϕ. Any atomic formula is of the form

ss · · · s︸ ︷︷ ︸
k

x ∈ X

for some fixed k ≥ 0. A deterministic Büchi automaton can be built to
read the tracks corresponding to x and X only, checking that the track
corresponding to x has a unique 1, say in position i, and that the track
corresponding to X has a 1 in position i + k. Here is the automaton for
k = 3: � � � � �� � � �

�

��� ���

�


(0, –) (0, –)
(1, 0) (0, –) (0, –) (0, 1)

In the label (b, c), b and c represent the input bits on the tracks correspond-
ing to x and X , respectively, and − indicates that the transition is enabled
under either bit. Transitions not shown can be assumed to go to a dead
state.

For a formula of the form

ϕ1(x,X) ∧ ϕ2(x,X), (25.1)

assume that we have already constructed deterministic Muller automata
Mi = (Qi, Σ, δi, si, Fi) for ϕi, i ∈ {1, 2}. To get an automaton for (25.1),
we do a product construction. Let

M3 = (Q3, Σ, δ3, s3, F3),

where

Q3
def= Q1 ×Q2,

s3
def= (s1, s2),

δ3((q1, q2), a) def= (δ1(q1, a), δ2(q2, a)),

F3
def= {A ⊆ Q3 | π1(A) ∈ F1 and π2(A) ∈ F2},
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where π1 and π2 are the appropriate projections:

π1(A) def= {p ∈ Q1 | ∃q ∈ Q2 (p, q) ∈ A}
π2(A) def= {q ∈ Q2 | ∃p ∈ Q1 (p, q) ∈ A}.
For a formula of the form

¬ϕ(x,X),

assume we have constructed a deterministic Muller automaton

M = (Q, Σ, δ, s, F)

for ϕ. To get an automaton for the negation, take the complement of F in
2Q.

The constructions for ∨, →, and ↔ are obtained by composing the
constructions above.

For a formula of the form

∃X1 ϕ(x, X1, . . . , Xm),

assume we have constructed the deterministic Muller automaton Mϕ (we
show how to do this in Lectures 26 and 27). Build a new automaton M
that on input a1, . . . , an, A2, . . . , Am nondeterministically guesses A1 and
simulates Mϕ on a1, . . . , an, A1, . . . , Am.

The construction for a formula of the form

∃x1 ϕ(x1, . . . , xn, X)

is similar, except that the automaton only guesses strings of the form 0∗10ω;
that is, strings containing a single 1.

For universal quantifiers ∀, we use the fact that ∃x ϕ is equivalent to
¬∀x ¬ϕ and compose the constructions for ¬ and ∃ above.

Continuing inductively in this fashion, we can obtain a nondeterministic
Büchi automaton Mϕ such that L(Mϕ) is nonempty iff the sentence ϕ is
true. For Büchi automata, nonemptiness can be tested by checking if there
is an accessible loop containing a state of F . �

In Lectures 26 and 27 we discuss the relationship between Büchi and
Muller automata and give an efficient determinization construction due to
Safra.

Undecidability of the Dyadic Theory

The monadic second-order theory of successor, which is decidable, allows
second-order quantification only over sets (monadic predicates, unary re-
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lations). The dyadic theory, which allows quantification over dyadic pred-
icates (binary relations), is undecidable. To show this we encode the Post
correspondence problem (PCP), a well-known undecidable problem.

An instance of the PCP consists of a pair of monoid homomorphisms
f, g : Σ∗ → Γ∗, where Σ and Γ are finite alphabets. Recall that a monoid
homomorphism is a map that satisfies f(xy) = f(x)f(y) and f(ε) = ε.
A solution of the instance is a string x ∈ Σ∗ such that f(x) = g(x). Of
course, there is always the trivial solution ε; the interesting question is
whether there exists a nonnull solution. This problem is undecidable, and
we use this fact to show the undecidability of dyadic second-order theory
of successor. See [61, §9.4] for more details and a proof of undecidability
of PCP (or, if you are in a do-it-yourself mood, try Miscellaneous Exercise
96).

Let f, g be an instance of PCP with Γ = {0, 1}. We encode the problem
as a formula of dyadic S1S as follows. Let z ∈ {0, 1}∗. Considering subsets
A ⊆ ω as infinite-length strings A ∈ {0, 1}ω, let ψz(A, i) be the predicate,
“z is the substring of A of length |z | beginning at position i.” This predicate
is easily expressible in our language: for example,

ψ10011(A, i) = i ∈ A ∧ s(i) �∈ A ∧ s2(i) �∈ A ∧ s3(i) ∈ A ∧ s4(i) ∈ A.

Now let R be a dyadic predicate (binary relation) variable, and consider
the formula

ϕ(A, R) def= R(0, 0) ∧ ∀i ∀j
∧
a∈Σ

(R(i, j) ∧ ψf(a)(A, i) ∧ ψg(a)(A, j)

→ R(s |f(a) |(i), s |g(a) |(j))).

If this formula is true of A, R, then R(i, j) holds for any pair of numbers
i, j such that for some x ∈ Σ∗, the prefix of A of length i is f(x) and the
prefix of A of length j is g(x); in other words,

{(|f(x) |, |g(x) |) | f(x), g(x) are prefixes of A} ⊆ R. (25.2)

Note that for each A, the intersection of all relations R satisfying ϕ(A, R)
is also a relation satisfying ϕ(A, R), and is the smallest such. For that
relation, equality holds in (25.2). Then there is a solution iff the sentence

∃A ∀R ϕ(A, R) → ∃i > 0 R(i, i)

is true.



Lecture 26

Determinization of ω-Automata

Rabin Automata

Last time we defined Büchi and Muller automata. Recall that in Büchi
acceptance, we specify a subset F ⊆ Q and call a run accepting if IO(σ) ∩
F �= ∅. In Muller acceptance, we specify a set F ⊆ 2Q and call a run
accepting if IO(σ) ∈ F. Every Büchi automaton is a Muller automaton:
take F = {A ⊆ Q | A ∩ F �= ∅}.

A third type that lies somewhere in between is Rabin automata. In
the Rabin acceptance condition, we specify a finite set of pairs (Gi, Ri),
1 ≤ i ≤ k, where Gi and Ri are subsets of Q. Think of a green light flashing
every time the machine enters a state in Gi and a red light flashing every
time the machine enters a state in Ri. A run is defined to be accepting if
for some i, the ith green light flashes infinitely often and the ith red light
flashes only finitely often. Formally, a run σ is accepting if there exists an
i such that IO(σ) ∩ Gi �= ∅ and IO(σ) ∩ Ri = ∅.

Every Büchi automaton is a Rabin automaton: take k = 1, G1 = F ,
and R1 = ∅. In turn, every Rabin automaton is a Muller automaton: take

F = {A ⊆ Q |
∨
i

(A ∩ Gi �= ∅ ∧A ∩ Ri = ∅)}.
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In this lecture and the next we show that nondeterministic and deter-
ministic Rabin automata, nondeterministic and deterministic Muller au-
tomata, and nondeterministic Büchi automata are all equivalent. As men-
tioned last time, deterministic Büchi automata are strictly weaker (Home-
work 8, Exercise 1).

We show the equivalence of all these automata by means of the inclu-
sions in the following diagram, where the arrows mean “can be simulated
by.”

F

�

��

nondeterministic Muller

D E
�

���
�

���

nondeterministic Rabin deterministic Muller

B C
�

���
�

���

deterministic Rabin

A�

nondeterministic Büchi

Inclusions B and E are immediate. Inclusions C and D are straightforward
and have already been argued above.

For inclusion F, let M be a nondeterministic Muller automaton with
acceptance set F. Design a nondeterministic Büchi automaton N (a Rabin
automaton with a single green light) that operates as follows. On any input
x, N simulates the computation of M on x, guessing some run σ of M
nondeterministically. At some point, N nondeterministically guesses that
all states of M not in IO(σ) have already been seen for the last time. It
also guesses the IO set A and verifies that A ∈ F. For the remainder of the
computation, it verifies that A is indeed IO(σ). It checks that from that
point on,

• every state of σ is in A, and

• σ hits every state in A infinitely often.

To do this, it continues to simulate M , marking each state that M ever
enters. If at any point M enters a state not in A, N just rejects. As soon
as all the states of A become marked, N flashes its green light, erases all
the marks, and begins the process anew.

The most difficult of the six inclusions is A. This was first shown by
McNaughton in 1966 [84], but his construction was doubly exponential. A
more efficient singly exponential construction was given by Safra in 1988
[107].

In order to motivate the construction, we start with an incorrect con-
struction and show why it does not work. Our attempt to rectify the sit-
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uation leads us to a second incorrect construction that errs too far in the
opposite direction. Finally we give a correct construction.

First construction (incorrect) Let M = (Q, Σ, ∆, s, F ) be a nondetermin-
istic Büchi automaton with n states. Recall that a nondeterministic tran-
sition function is of type ∆ : Q× Σ → 2Q. Intuitively, if the machine is in
state p and sees input symbol a, then it can move to any state in ∆(p, a).

The function ∆ extends uniquely to

∆̂ : 2Q × Σ∗ → 2Q

by induction as follows: for x ∈ Σ∗ and a ∈ Σ,

∆̂(A, ε) def= A ∆̂(A, xa) def=
⋃

q∈�∆(A,x) ∆(q, a).

It follows that

∆(p, a) = ∆̂({p}, a) ∆̂(A, xy) = ∆̂(∆̂(A, x), y).

Build a deterministic Rabin automaton N that keeps track of all the states
M could possibly be in. It starts with a single token on the start state
of M . In each step, there is a set of tokens occupying the states of N ,
which mark all states M could possibly be in at that point according to
the nondeterministic choices M has made so far. On each input symbol,
N moves the tokens on M in all possible ways according to the transition
relation of M . Thus N is deterministic.

Now N must somehow decide if there is a run of M that hits a state
in F infinitely often. Let us make N flash a green light every time one of
the tokens on M occupies a state of F . Thus N is actually a deterministic
Büchi automaton.

Formally, take

N = (2Q, Σ, ∆̂, {s}, G),

where ∆̂ is defined above, and

G
def= {A ⊆ Q | A ∩ F �= ∅}.

It is true that L(M) ⊆ L(N), because if there is an accepting run of
M (that is, a run that hits F infinitely often), then in N ’s simulation, a
state of F is occupied by a token infinitely often, therefore N flashes green
infinitely often, hence N accepts. Unfortunately, the reverse inclusion does
not hold. Here is a counterexample:

s t
0, 1

0� �
���
�
� �
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(The short arrow indicates the start state and a circle indicates an accept
state.) This automaton accepts no strings, because there is only one infinite
run, and that run has IO set {s}, which does not contain a final state.
However, the construction above gives the automaton

1 0
0

1
� �
��� ���
�
�

�
��

where the state on the left represents the set {s} and the state on the right
represents the set {s, t}. This automaton accepts the set of strings with
infinitely many zeros.

Second construction (also incorrect) The problem with the previous con-
struction was that it is possible for M to hit F at infinitely many time
instants, even though none of those hits occur on the same run. To remedy
this, we modify the construction to make sure that when such a situation
arises, we can always reconstruct an infinite run of M that hits F infinitely
often.

We describe N in terms of blue and white tokens on the states of M . It
starts with a single blue token on the start state of M . On each input sym-
bol, it moves the tokens according to the transition rules of M , preserving
colors; except that if a blue and white token both occupy a state M , then
the blue token is removed, and if a blue token occupies a state of F , then
it is replaced by a white token. Whenever all the tokens become white, N
flashes green and replaces all the white tokens with blue tokens. Again, N
is a deterministic Büchi automaton.

Formally, the set of states of N is 2Q × 2Q, where a state (B, W ) of N
represents the set of states B of M occupied by blue tokens and the set of
states W of M occupied by white tokens. Define

N = (2Q × 2Q, Σ, δ, ({s}, ∅), G)

with

δ : 2Q × 2Q × Σ → 2Q × 2Q

δ((B, W ), a) def= (B′, W ′),

where

W ′ def= ∆̂(W, a) ∪ (F ∩ ∆̂(B, a))

B′ def= ∆̂(B, a)−W ′

if B �= ∅, and

W ′ def= ∆̂(W, a) ∩ F

B′ def= ∆̂(W, a)− F
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if B = ∅; and

G
def= {(∅, W ) | W ⊆ Q}.

The idea here is that at any green flash, any token occupying any state
must have gotten there via a path through a state of F since the last green
flash, because that is the only way the token could have become white. If
there are infinitely many green flashes, we can reconstruct an accepting run
of M (one whose IO set intersects F infinitely often). We do this with the
aid of König’s lemma:

Lemma 26.1 (König’s lemma) Every infinite finite-degree tree has an infinite path.

Proof. If the root has infinitely many descendants but only finitely many
children, then some child must have infinitely many descendants. Move
down to that child and repeat the argument. In this way we can trace an
infinite path down through the tree. �

König’s lemma is false without the degree restriction. A tree consisting
of a root with countably many childen is an infinite tree, all of whose paths
are finite.

���������

������

����
�

�
�

�

����

������

��������� � � � � � � � � · · · ·
Now suppose that N flashes green infinitely often on input x. At every

green flash, every state occupied by a token is accessible from a state at
the previous green flash by a path segment that goes through a state of F .
Let these path segments be the edges of an infinite tree whose nodes are
labeled with pairs (q, t), where t is a time instant at which N flashes green
and q is a state of M occupied by a token at time t. By the construction,
every node labeled (q, t + 1) has a parent labeled (p, t), thus we have an
infinite tree of finite degree. By König’s lemma, there exists an infinite path
in this tree, which represents an infinite run intersecting F infinitely often.

The problem here is that we have erred too far in the other direction.
It is true that if N flashes green infinitely often on input x, then there is
an accepting run of M on x, so L(N) ⊆ L(M), but not vice versa.

Unfortunately, it is not necessarily the case that L(M) ⊆ L(N). Here
is a counterexample:

s

t

u

�
�
�

 a

a

a

a

���

���������

					


�
�

�
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This automaton accepts aω, but the construction above gives

a
a� ����

� �
�

which does not. Here the state on the left represents the pair ({s}, ∅) and
the state on the right represents the pair ({u}, {t}).

Thus the first construction gives a deterministic automaton that accepts
too many strings and the second too few. Next time we give a construction
due to Safra [107] that achieves a happy compromise.
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Safra’s Construction

In Lecture 26 we gave two incorrect constructions for the determinization
of Büchi automata. The first constructed a deterministic automaton that
accepted too many strings; the second erred in the opposite direction by
accepting too few strings.

In this lecture we give a third construction due to Safra [107] that is
a compromise between the first two. This construction correctly produces
a deterministic Rabin automaton equivalent to a given nondeterministic
Büchi automaton.

For a given nondeterministic Büchi automaton B = (Q, Σ, ∆, s, F )
with n states, the equivalent deterministic Rabin automaton R will have
2O(n log n) states and n pairs in the acceptance condition.

Say we have a collection of colors, each with an associated bell and
buzzer. There are several tokens of each color, which are placed on the
states of B at various times, moved around, and sometimes removed. A
stack is a pile of tokens on a state. The height of a stack σ is the number
of tokens in σ and is denoted |σ |.

A token is in play at time t if it is in some stack on some state at time
t. A color is in play at time t if it is the color of a token in play at time t.
A color is visible at time t if it is the color of the top token of some stack
at time t.

The colors in play at time t are ordered by age, which is the time they
last came into play. All tokens of any one color in play will always come into
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play at the same time, therefore will have the same age. When we bring a
new token into play, we always place it on top of a stack; when we remove
a token from play, we always remove all the tokens above it; and when we
move tokens around, we always move an entire stack at once. Thus it is an
invariant of the simulation that the tokens on any stack are always ordered
by age from the oldest on the bottom to the youngest on top.

The stacks are linearly ordered at time t as follows: σ $t τ if either

• σ is a proper extension of τ (that is, τ can be obtained by removing
tokens from the top of σ); or

• neither σ nor τ is an extension of the other and σ is lexicographically
older than τ ; that is, starting from the bottom and moving up, at the
first position where σ and τ differ in color, the color of σ is older.

The ages of colors and the order $t are time-dependent, because colors
can go in and out of play.

The simulation starts with a single white token on the start state s.
Now assume we have stacks of colored tokens on the states of B at time
t. To construct the configuration at time t + 1, execute the following three
steps. (In this construction, the intermediate configurations are transitory
and do not count as states of the simulating automaton.)

Move Suppose the next input symbol is a. For each state q, remove the
stack currently on q. For each p ∈ ∆(q, a), clone the stack that was on q
and try to put it on p. If we try to put more than one stack on p, resolve
in favor of the $t-least stack. If any color completely disappears from the
board in this process, buzz its buzzer.

Cover For each accept state q ∈ F , place a token of an unused color on top
of q’s stack. For this purpose we bring k unused colors into play, where k is
the number of distinct visible colors on states q ∈ F . If two stacks on two
different accept states have the same visible color, then we cover them with
the same new color. We bring the new colors into play in some arbitrary
order to determine their relative age, but the order is not important.

This is the only way new colors can come into play; thus it is an invariant
of the simulation that if a token of color c in play is directly over a token of
color d, then all tokens of color c in play are directly over a token of color
d.

Audio Check For every invisible color c in play, ring its bell and remove all
tokens above any token of color c. Buzz the buzzers of the removed tokens.
Note that if any token is removed in this process, then all tokens of that
color are removed. There may be more than one invisible color in play, but
the order in which we process them does not matter.
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After these three steps are executed, there are at most n colors remain-
ing in play; otherwise there must be an invisible one, contradicting the
Audio Check step.

Claim 27.1 B accepts x iff there is a color whose bell rings infinitely often but whose
buzzer buzzes only finitely often.

Proof. Suppose there is a color, say cyan, whose bell rings infinitely often
but whose buzzer buzzes only finitely often. Let t0, t1, . . . be the times at
which cyan’s bell rings after its buzzer has already buzzed for the last time.
From t0 on, cyan is continuously in play, otherwise its buzzer would have
buzzed. At the times ti, all cyan tokens are visible. Between ti and ti+1,
each cyan token gets covered with another token of a different color, because
the only way cyan’s bell can ring at time ti+1 is if cyan becomes invisible.
Thus for every state q with a cyan token at time ti+1, there is a segment of
a run from some state with a visible cyan token at time ti through a state
of F to q. As in the previous lecture, König’s lemma (Lemma 26.1) can be
used to construct a run with infinitely many occurrences of states in F .

Conversely, suppose there is an accepting run ρ of B. Let σt be the stack
on the state of ρ at time t. Let m = lim inf |σt |; that is, m is the maximum
height such that from some point on, the stacks along ρ reach height m and
then never go below height m again. Note that m ≥ 1 because white (the
oldest color) is always in play, and m ≤ n because there are at most n colors
in play. From some point on, the stack is of height at least m, and infinitely
often exactly m. After that point, the colors on the stack at height m and
below may change due to being replaced by a $t-lesser stack in the Move
step, but this can happen only finitely often because lexicographic order
on the age space ωm is well-founded. So from some point on, the colors at
height m and below do not change. Say the color at height m at this point
is magenta. Then infinitely often after that point, the run ρ goes through a
state of F , because it is an accepting run, at which point the stack acquires
a new token; but sometime after that the stack must shrink back to height
m again, and the only way that can happen is if magenta’s bell rings. Thus
magenta rings infinitely often and buzzes only finitely often. �

A state of the simulating Rabin automaton R will consist of a stack of
tokens (possibly empty) on each state of B, the current ordering $t, and
an indication of which bells rang. Each token configuration can be specified
by a map Q → {colors} ∪ {none} giving the top color of the stack on each
state and a map {colors} → {colors} ∪ {none} telling for each color in play
the color immediately below it. There are at most n! orderings $t and 2n

ways the bells can ring. Thus there are at most nn ·nn ·n! · 2n = 2O(n log n)

states in all. The acceptance condition consists of n pairs, one for each
color.

We have shown
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Theorem 27.2 (Safra [107]) Every nondeterministic Büchi automaton with n states can
be simulated by a deterministic Rabin automaton with at most 2O(n log n)

states and n pairs in the acceptance condition.



Lecture 28

Relativized Complexity

Many fundamental questions in complexity theory remain unanswered.
Probably the most important of these is the P = NP question. Although
it is generally believed that P �= NP—mainly because it is inconceivable
how one might perform an exhaustive search through exponentially many
candidates in polynomial time—we have up to now been unable to prove
this formally.

In trying to understand this question and similar questions regarding
containment and separation of complexity classes, researchers have looked
at relativized versions, for which answers are somewhat easier to obtain.
Fairly early on, Baker, Gill, and Solovay [10] constructed oracles A and
B such that PA = NPA and PB �= NPB (oracle Turing machines and
relativized complexity classes were defined in Lecture 9). We present these
results below.

Rise and Fall of the Random Oracle Hypothesis

Not long after the Baker–Gill–Solovay results, Bennett and Gill [12] showed
that with respect to a random oracle C (every element is either in or out of
C with probability 1

2 ), P �= NP with probability 1. This and similar results
for other classes agreed well with the generally accepted beliefs about what
happens in the corresponding unrelativized cases. These observations led to
the random oracle hypothesis: every containment or separation result that
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holds with probability 1 with respect to a random oracle also holds in the
unrelativized case. Intuitively, as the argument went, one should be able to
get no more information from a random oracle than from no oracle at all.
This conjecture went through a series of qualifications and reformulations
to rule out simple counterexamples that kept popping up, ultimately to be
refuted by Chang et al. in 1994 [27]: with respect to a random oracle C,
IPC �= PSPACEC with probability 1.

Relativized PA = NPA

Theorem 28.1 There exists a recursive oracle A such that PA = NPA.

Proof. This is the easier of the two relativized P versus NP results. For
the oracle A we can take QBF, the set of true quantified Boolean formulas,
a PSPACE -complete set. Then

PSPACE ⊆ PQBF ⊆ NPQBF ⊆ NPSPACEQBF

⊆ NPSPACE ⊆ PSPACE .

The first inclusion holds because membership in a set in PSPACE can be
determined by reducing to QBF, then consulting the oracle. The next-to-
last inclusion holds because an NPSPACE machine has enough space to
decide membership in QBF directly without consulting the oracle. The last
inclusion is Savitch’s theorem. �

The following result is somewhat harder and requires diagonalization.

Theorem 28.2 There exists a recursive oracle B such that PB �= NPB.

Proof. Let Σ contain at least two elements. Let C ⊆ Σ∗ be any oracle,
and consider the set

EC def= {x ∈ Σ∗ | ∃y ∈ C |y | = |x |}.

That is, x ∈ EC if C contains an element of the same length as x. The set
EC can be accepted by a nondeterministic oracle machine N with oracle
C that operates as follows. On input x, guess a string y of the same length
as x, then query the oracle C to determine whether y ∈ C. Regardless of
the oracle, this is a nondeterministic polynomial time algorithm, therefore
EC ∈ NPC for any C.

Now we construct by diagonalization an oracle B such that EB �=
L(MB) for any deterministic polynomial time oracle machine M . This
says that EB ∈ NPB − PB. The idea behind the construction is that a
polynomial-time-bounded oracle machine M has only time enough to ask



Relativized Complexity 173

polynomially many questions of the oracle, but there are exponentially
many strings of length n. This allows us to adjust the oracle by throwing
in or leaving out elements that M never looks at, thereby causing M to
have been wrong.

Let M0, M1, . . . be a list of all deterministic polynomial time bounded
oracle machines. Assume without loss of generality that each Mi is equipped
with a uniform clock and parameter c such that Mi shuts itself off after nc

steps; thus for each i, the time bound nc of Mi is recognizable from the
description of Mi.

We construct the oracle B as the limit of a sequence of finite approx-
imations. Each approximation Bk is a partial function Bk : Σ∗ → {0, 1}
with finite domain. Bk(x) = 1 means x ∈ B, Bk(x) = 0 means x �∈ B, and
Bk(x) undefined means it has not yet been determined whether x ∈ B. The
approximations Bk become more defined at later stages of the construction;
that is, Bk � Bk+1, which means that Bk+1 is defined wherever Bk is, and
where both are defined, they take equal values.

In this construction, we maintain the invariant that, just before
commencing stage k, we have successfully diagonalized away from
M0, M1, . . . , Mk−1; that is, we have built Bk such that for any total exten-
sion C of Bk and for any i < k, there exists an x such that

MC
i accepts x ⇔ x �∈ EC

⇔ C contains no elements of length |x |. (28.1)

We start at stage 0 with B0 completely undefined. Now say at stage
k we have constructed Bk satisfying (28.1). We now look at Mk. Say the
time bound of Mk is nc. Pick n greater than the length of all elements in
the domain of Bk—this is possible because the domain of Bk is finite—and
large enough that 2n > nc. Initially set Bk+1 := Bk.

Now simulate Mk on some input of length n, say an. Whenever Mk

attempts to query its oracle on some string y, if Bk+1 is already defined
on y, we supply the value of Bk+1(y). If Bk+1 is undefined on y, we set
Bk+1(y) := 0 and supply the value 0. The machine runs to completion and
either accepts or rejects.

Now we adjust the oracle so that Mk is guaranteed to have been wrong
in its attempt to accept EC . Note that because Mk runs in time nc < 2n,
there must be at least one string of length n that was never the subject
of an oracle query by Mk during the computation, therefore Bk+1 is still
undefined on those strings. If Mk accepted, we set Bk+1(y) := 0 for all
remaining strings y of length n on which Bk+1 is still undefined. In this
case Bk+1(y) = 0 for all strings y of length n. If Mk rejected, we set
Bk+1(y) := 1 for all remaining strings y of length n on which Bk+1 is still
undefined, and there is at least one such string. These adjustments do not
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affect the computation of Mk on input an, because they were never the
subject of an oracle query.

Then for any total extension C of Bk+1, (28.1) holds, therefore
L(MC

k ) �= EC . If we take B to be any total extension of all the Bk for
k ≥ 0, then we are guaranteed that L(MB

k ) �= EB for any Mk. Thus
EB ∈ NPB − PB. �



Lecture 29

Nonexistence of Sparse Complete Sets

Here are some results that lend a little insight into the P = NP question.
Let Σ be a finite alphabet of at least two letters. A subset S ⊆ Σ∗ is sparse
if there is a polynomial bound on the number of elements of length n; that
is, if there exists a constant k ≥ 0 such that for all n ≥ 2, |S ∩ Σn | ≤ nk.
A set is dense if it is not sparse.

Intuitively, if P �= NP , we would not expect a sparse set to be NP -
complete. If it were, then the few elements of the set would have to be well
hidden so that they could not be found in polynomial time; but then this
would make reductions difficult.

This intuition was confirmed in a series of results by Berman [15], For-
tune [43], and Mahaney [82]. Berman showed that no set of strings over a
single-letter alphabet can be NP -complete unless P = NP . Fortune showed
that no sparse set can be co-NP-complete unless P = NP . Finally, Mahaney
showed that no sparse set can be NP -complete unless P = NP . All known
NP - and co-NP-complete sets are dense, so this confirms our expectations.
Of course, if P = NP , then all nontrivial sets in NP , including sparse
ones, are NP -complete. We prove the Fortune and Mahaney results below
(Theorems 29.1 and 29.2, respectively).

The proof of Theorem 29.1 is a little easier and we start with that. The
proof of Theorem 29.2 is built on Theorem 29.1 but requires an extra idea,
namely census functions. We saw the use of census functions in the proof of
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the Immerman–Szelepcsényi theorem in Lecture 4, but this is where they
were first introduced.

The proof of Theorem 29.1 is based on the idea of self-reducibility. This
technique allows a polynomial-time decision procedure for Boolean satis-
fiability to be converted to an algorithm for computing a satisfying truth
assignment for a given satisfiable Boolean formula. Given a satisfiable for-
mula ϕ(x1, . . . , xn) of n variables, we instantiate x1 with both truth val-
ues and use the decision procedure to determine which of ϕ(0, x2, . . . , xn)
or ϕ(1, x2, . . . , xn) is satisfiable; at least one of them must be. Say it
is the former. We then instantiate x2 in both ways and ask which of
ϕ(0, 0, x3, . . . , xn) or ϕ(0, 1, x3, . . . , xn) is satisfiable, and so on. Continuing
in this fashion, we can instantiate all the variables while always maintaining
satisfiability. The final result is a satisfying truth assignment.

Theorem 29.1 (Fortune [43]) If there exists a sparse set that is ≤p
m-hard for co-NP,

then P = NP.

Proof. Let Boolean formulas be coded as strings over a binary alphabet
Γ. It is reasonable to assume of the coding that a formula of length n
has at most n variables and that the length of any formula obtained by
substituting Boolean values 0 or 1 for any of the variables is no greater
than the length of the original formula.

Suppose S ⊆ Σ∗ is sparse with |S ∩ Σn | ≤ nk. If in addition S is
co-NP-hard, then ∼SAT ≤p

m S, where ∼SAT is the set of unsatisfiable
Boolean formulas. Let σ : Γ∗ → Σ∗ be a polynomial-time many–one reduc-
tion that reduces ∼SAT to S with time bound nc. Thus for all formulas ϕ
coded as a string in Γ∗, ϕ ∈ ∼SAT iff σ(ϕ) ∈ S, and if ϕ is of length at
most n, then σ(ϕ) is of length at most nc.

Let S′ be the set of elements of S of length nc or less. An upper bound
on the size of S′ is N = nc(k+1). If a formula ϕ is of length n or less, and
if ϕ is unsatisfiable, then σ(ϕ) must be in S′.

We show that under these assumptions, there exists a deterministic
polynomial-time algorithm to decide Boolean satisfiability.

Let T be the full binary tree of depth n. The nodes of T are binary
strings of length n or less, the root is ε, and each string α of length less
than n has exactly two children α0 and α1. Denote the set of nodes at
depth m by Tm. We interpret the α as partial truth assignments to Boolean
variables x1, . . . , xn. If α is of length m, then the truth value of xi is given
by the ith symbol of α, 1 ≤ i ≤ m; the values of xm+1, . . . , xn are not
determined by α.

Say we are given a Boolean formula ϕ of length n with (at most) n
Boolean variables x1, . . . , xn. If α is a node of T , let α(ϕ) denote the
formula obtained by substituting the values determined by α in ϕ. If |α | =
m, then α(ϕ) is a formula with variables xm+1, . . . , xn.
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The full tree T has exponentially many nodes, but we now show how to
prune it to get a subtree T ′ satisfying the following properties at all levels
m.

(i) T ′
m has at most N + 1 elements.

(ii) ϕ is satisfiable iff at least one α(ϕ), α ∈ T ′
m, is satisfiable.

We build T ′
m inductively from the top down. At stage 0, we take T ′

0 =
{ε}. Now suppose we have constructed T ′

m satisfying properties (i) and (ii).
For each α ∈ T ′

m, calculate σ(α0(ϕ)) and σ(α1(ϕ)), and let A be the set
of values obtained, up to a maximum of N + 1 distinct values. If there are
more than N +1, just take A to be any subset of size N +1 of the set of all
values obtained. Now define T ′

m+1 to be any subset of {α0, α1 | α ∈ T ′
m}

of size |A | representing all the values in A; that is, such that

{σ(β(ϕ)) | β ∈ T ′
m+1} = A.

It is obvious from the construction that (i) holds for all m. Also, if
α(ϕ) is satisfiable for some α ∈ T ′

m, then ϕ is satisfiable, because α(ϕ)
is a substitution instance of ϕ. It therefore remains to show that if ϕ is
satisfiable, then at least one α(ϕ), α ∈ T ′

m, is satisfiable. We prove this by
induction on m. The basis m = 0 holds trivially. Now suppose it holds for m.
By the induction hypothesis, α(ϕ) is satisfiable for some α ∈ T ′

m. Then at
least one of α0(ϕ) or α1(ϕ) is satisfiable. In the construction of T ′

m+1 above,
either |A | ≤ N or |A | = N + 1. If |A | ≤ N , then σ(α0(ϕ)) = σ(β(ϕ))
and σ(α1(ϕ)) = σ(γ(ϕ)) for some β, γ ∈ T ′

m+1, because A contains the
values σ(α0(ϕ)) and σ(α1(ϕ)). Thus either β(ϕ) or γ(ϕ) is satisfiable. On
the other hand, if |A | = N + 1, then σ(β(ϕ)) �∈ S′ for some β ∈ T ′

m+1

because |S′ | ≤ N , therefore β(ϕ) is satisfiable.
This construction can be carried out in polynomial time. By (ii), we can

determine whether ϕ is satisfiable by evaluating α(ϕ) for all α ∈ T ′
n. This

gives a deterministic polynomial-time algorithm for Boolean satisfiability.
�

Mahaney’s Theorem

Now we show how census functions can be combined with Theorem 29.1 to
prove nonexistence of sparse NP -complete sets.

Theorem 29.2 (Mahaney [82]) If there exists a sparse set that is ≤p
m-complete for NP,

then P = NP.

Proof. Suppose that S is sparse and NP-complete. Let σ be a
polynomial-time reduction from SAT to S with time bound nc. Let C(n)
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be the number of elements of S of length nc or less:

C(n) def= |S ∩ Σ≤nc |.
We know that C(n) is bounded by a polynomial in n, say nk. If we could
only compute the exact value of C(n) in polynomial time, then ∼S would
be in NP , because

∼S = {x | ∃y1 · · · ∃yC(|x |)
∧
i

(|yi | ≤ |x |c ∧ yi �= x ∧ yi ∈ S)

∧
∧
i�=j

yi �= yj}.

Because S is NP-complete, ∼S ≤p
m S. Then S ≤p

m ∼S by the same reduc-
tion, so S ≡p

n ∼S, therefore S is also co-NP-complete. But then we could
apply Theorem 29.1.

The trouble is that we do not know the true value of C(|x |). Nev-
ertheless, we can do the construction of Theorem 29.1 for all guesses
m = 0, 1, 2, . . . , |x |k for the value of C(|x |). For all m �= C(|x |), we will
get garbage results. But for m = C(|x |), we are sure to get a satisfying
truth assignment to the given formula ϕ if indeed ϕ is satisfiable. If ϕ is
unsatisfiable, then no value of m will give a satisfying assignment.

Interestingly, we may never know when we hit the true value of C(|x |).
But we try them all, and we know one of them must be correct. Therefore
if we try all values m = 0, 1, 2, . . . , |x |k and fail to find a satisfying assign-
ment, we know that ϕ must be unsatisfiable. Of course, if we ever find a
satisfying assignment, even for the wrong value of m, then ϕ is satisfiable.

More formally, define

Ŝ
def= {(x, m) | ∃y1 . . . ∃ym

∧
i

(|yi | ≤ |x |c ∧ yi �= x ∧ yi ∈ S)

∧
∧
i�=j

yi �= yj}.

This is like the characterization of ∼S above, but parameterized by m. The
number m is represented in unary. Note that

• if m < C(|x |), then (x, m) ∈ Ŝ,

• if m = C(|x |), then (x, m) ∈ Ŝ iff x �∈ S, and

• if m > C(|x |), then (x, m) �∈ Ŝ.

Thus

Ŝ = {(x, m) | m < C(|x |) ∨ (m = C(|x |) ∧ x �∈ S)}.
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Also Ŝ ∈ NP , therefore Ŝ ≤p
m S via some polynomial-time reduction τ .

Then (x, m) ∈ Ŝ iff τ(x, m) ∈ S.
Now consider the polynomial-time maps ϕ �→ τ(σ(ϕ), m). We have

τ(σ(ϕ), C(|σ(ϕ) |)) ∈ S ⇔ (σ(ϕ), C(|σ(ϕ) |)) ∈ Ŝ

⇔ σ(ϕ) �∈ S

⇔ ϕ ∈ ∼SAT.

Also, if m < C(|σ(ϕ) |), then τ(σ(ϕ), m) ∈ S, and if m > C(|σ(ϕ) |), then
τ(σ(ϕ), m) �∈ S, but this is not really relevant.

Thus if we attempt to perform the construction of Theorem 29.1 for all
functions τ(·, m) for m up to nkc, we are sure to hit the correct value of
C(|σ(ϕ) |), and the construction of Theorem 29.1 will give us a satisfying
assignment if there is one. �

An alternative proof of Mahaney’s theorem is given in Miscellaneous
Exercise 59.
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Unique Satisfiability

In this lecture and the next, we study some interesting reducibility rela-
tions involving randomness and counting and prove two notable results in
structural complexity theory. The first is a result of Valiant and Vazirani
[125] that Boolean satisfiability is no easier for formulas that are guaranteed
to have at most one solution than for arbitrary formulas. The second is a
result of Toda [120] that the ability to count solutions to instances of NP -
complete problems allows one to compute any set in the polynomial-time
hierarchy. In this lecture we prove the Valiant–Vazirani result, on which
Toda’s theorem is partly based.

As shown in Theorem 10.2, problems in NP can be defined in terms
of the existence of polynomial-size witnesses that can be recognized easily.
For instance, Boolean satisfiability (SAT) is characterized by the existence
of satisfying truth assignments. The number of witnesses for different in-
stances of the problem can vary over an exponential range, and one might
ask whether this variation is at least partly responsible for the difficulty of
NP -complete problems.

Valiant and Vazirani [125] answered this question in the negative. They
showed that the general satisfiability problem SAT reduces by an efficient
randomized reduction to USAT, the satisfiability problem for Boolean for-
mulas that are promised to have at most one satisfying assignment.

The proof is based on the following idea. Consider the vector space Fn

of dimension n over a finite field F. One can construct a random tower of
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linear subspaces

{0} = E0 ⊂ E1 ⊂ · · · ⊂ En = Fn (F.1)

such that Ei has dimension i, all such towers equally likely. This can be
done by choosing a random basis x1, . . . , xn of Fn and defining Ei =
{x1, . . . , xn−i}⊥, where

A⊥ def= {y | ∀x ∈ A x • y = 0},
the orthogonal complement of A, and where • denotes inner product. A
random basis x1, . . . , xn can be obtained efficiently (Miscellaneous Exercise
60(b)).

For F = GF2, the field on two elements, Valiant and Vazirani [125,
Theorem 4(ii)] show that for any nonempty set S ⊆ GFn

2 , for a randomly
chosen tower (F.1), some S ∩ Ei contains exactly one vector with proba-
bility at least 1/2. This leads to a randomized reduction from the general
satisfiability problem to the unique satisfiability problem.

The proof of this result as given in [125] is inductive on dimension. We
give an alternative proof here that achieves a slightly better lower bound
of 3/4.

Lemma F.1 Let S be a nonempty subset of GFn
2 . Let E0, . . . , En be a random tower of

linear subspaces of GFn
2 with dimEi = i. Then

Pr(∃i |S ∩ Ei | = 1) ≥ 3
4 . (F.2)

Proof. If 0 ∈ S, then the probability is 1, because S ∩ E0 = {0}. Simi-
larly, if |S | = 1, then the probability is 1, because |S | = |S ∩ En | = 1. Rul-
ing out these two cases, we can assume that |S ∩ En | ≥ 2 and |S ∩ E0 | = 0.

Because S ∩ Ei ⊆ S ∩ Ei+1 for 0 ≤ i ≤ n−1, we have that |S ∩ Ei | ≤
|S ∩ Ei+1 | for 0 ≤ i ≤ n − 1. Thus there exists a least k ≥ 1 such that
|S ∩ Ek | ≥ 2. Here k is a random variable whose value depends on the
choice of the random tower Ei as well as S.

If A is a set of vectors, let <A> denote the linear span of A in GFn
2 . Over

GF2, any pair of distinct nonzero vectors x, y are linearly independent,
because there are only three nonzero linear combinations, namely x, y, and
x + y, and the last is 0 iff x = y. Thus dim <S ∩ Ek> is at least 2.

Now (F.2) is equivalent to the statement

Pr(S ∩ Ek−1 = ∅) ≤ 1
4 , (F.3)

and this is what we would like to show. Let H = {xn−k+1}⊥, the hyperplane
consisting of all vectors orthogonal to xn−k+1, and let T be a maximal
linearly independent subset of S ∩ Ek. Then Ek−1 = Ek ∩ H and

T ∩ H ⊆ S ∩ Ek ∩ H = S ∩ Ek−1,
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so it suffices to show

Pr(T ∩ H = ∅) ≤ 1
4 .

Because dim <T> = dim <S ∩ Ek> ≥ 2, by Miscellaneous Exercise 73,

Pr(T ∩ H = ∅) ≤ max
d≥2

Pr(T ∩ H = ∅ | dim <T> = d), (F.4)

thus it suffices to bound

Pr(T ∩ H = ∅ | dim <T> = d) (F.5)

for d ≥ 2. Using the fact that for subspaces A and B of a finite-dimensional
vector space, codimA ∩ B ≤ codimA + codimB (Miscellaneous Exercise
61), we have that if dim <T> = d, then dim(<T> ∩ H) is either d or d− 1.
Again by Miscellaneous Exercise 73, (F.5) is bounded by the maximum of

Pr(T ∩ H = ∅ | dim <T> = d ∧ dim(<T> ∩ H) = d) (F.6)
Pr(T ∩ H = ∅ | dim <T> = d ∧ dim(<T> ∩ H) = d− 1). (F.7)

But (F.6) is 0, because dim <T> = dim(<T> ∩ H) = d implies T ⊆ H ,
therefore T ∩ H cannot be empty. Thus we must bound (F.7). But this is
the same as the probability, given a set Q of d ≥ 2 linearly independent
vectors and a random hyperplane G in <Q>, that none of the vectors of Q
lie in G:

Pr(Q ∩ G = ∅). (F.8)

Let x be a vector in <Q> such that G = {x}⊥. Then (F.8) becomes

Pr(∀y ∈ Q y • x �= 0). (F.9)

To bound this expression, we use the inclusion–exclusion principle (see
Lecture 13). Over the field GFq of q elements,

Pr(∀y ∈ Q y • x �= 0) = 1− Pr(∃y ∈ Q y • x = 0)

= 1−

⎛⎜⎜⎝ |Q |∑
m=1

(−1)m+1
∑

A⊆Q
|A |=m

Pr(x ∈ A⊥)

⎞⎟⎟⎠
= 1−

(
d∑

m=1

(−1)m+1

(
d

m

)
q−m

)

=
d∑

m=0

(
d

m

)
(−1)mq−m

=
(

1− 1
q

)d

.
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This is maximized at d = 2, which for q = 2 gives 1/4. �

It can be shown that the lower bound 3/4 in Lemma F.1 is the best possible
for all n (Miscellaneous Exercise 62).

Unique Satisfiability and General Satisfiability

The class RP (for random polynomial time) was defined in Lecture 13. This
is the class of sets accepted by polynomial-time probabilistic computations
with one-sided error. Recall that RP is defined in terms of probabilistic
machines, which are exactly like nondeterministic Turing machines except
that they make choices probabilistically rather than nondeterministically.
At each choice point, the machine chooses one of its possible next configu-
rations randomly with uniform probability. Equivalently, we can supply a
deterministic polynomial-time machine with a polynomial-length string of
random bits that it can consult during its computation.

Valiant and Vazirani’s result says that an RP computation supplied
with an oracle USAT for unique satisfiability can determine general satis-
fiability with arbitrarily small one-sided error. The oracle USAT may be
any oracle that answers affirmatively when queried on a Boolean formula
that has exactly one satisfying assignment, negatively when queried on a
formula that has no satisfying assignments, and arbitrarily on any other
query.

Theorem F.2 (Valiant and Vazirani [125]) NP ⊆ RPUSAT.

Proof. We show how to decide Boolean satisfiability by an RP compu-
tation with a USAT oracle. That is, we show that there is a polynomial-
time-bounded probabilistic oracle Turing machine M with oracle USAT
such that

ϕ is satisfiable ⇒ Pr(M accepts ϕ) ≥ 3
4 ,

ϕ is unsatisfiable ⇒ Pr(M accepts ϕ) = 0.

Equivalently, encoding the random choices as part of the input, we show
that there is a deterministic polynomial-time oracle machine N such that
for w a string of random bits of sufficient polynomial length chosen with
uniform probability among all strings of that length,

ϕ is satisfiable ⇒ Prw(N accepts ϕ#w) ≥ 3
4 ,

ϕ is unsatisfiable ⇒ Prw(N accepts ϕ#w) = 0.

The machine N uses its random bits w to construct a random tower of
linear subspaces Hi ⊆ GFn

2 as in Lemma F.1, where n is the number of
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Boolean variables of ϕ. This requires O(n2) random bits. The tower can be
represented as a sequence of n linearly independent vectors, as described
in the proof of Lemma F.1.

Say the variables of ϕ are x1, . . . , xn. For each 0 ≤ i ≤ n, N constructs
a formula ψi stating that (x1, . . . , xn), regarded as an n-vector in GFn

2 , lies
in Hi. This construction is a straightforward encoding of the inner product
of (x1, . . . , xn) with the random vectors representing Hi. The machine N
then queries the oracle on the conjunctions ϕ∧ψi and accepts if the oracle
responds “yes” to any of these queries.

Let S be the set of truth assignments satisfying ϕ. Then

Prw(N accepts ϕ#w) = Pr(∃i ϕ ∧ ψi ∈ USAT),

which by Lemma F.1 is at least

Pr(∃i |S ∩ Hi | = 1) ≥ 3
4

if S �= ∅ and 0 if S = ∅. �

The error can be made arbitrarily small by amplification (Lemma 14.1).
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Toda’s Theorem

In this lecture we present Toda’s theorem (Theorem G.1), which states
that the ability to count solutions to instances of NP-complete problems
allows one to solve any decision problem in the polynomial-time hierarchy
PH . This theorem came as quite a surprise when it first appeared in 1989
[120, 121], because it showed that the power to count solutions was much
stronger than previously thought. This result is a convergence of several
important ideas and constructions involving various complexity classes and
is a fine example of structural complexity theory at its best.

Counting Classes

The power to count solutions is captured in the class P#P . We can define
the class #P to be the class of all functions fM : {0, 1}∗ → N such that
M is a nondeterministic polynomial-time Turing machine and fM (x) gives
the number of accepting computation paths of M on input x. Equivalently,
f ∈ #P iff there is a set A ∈ P and k ≥ 0 such that for all x ∈ {0, 1}∗,

f(x) = |{y ∈ {0, 1}|x |k | x#y ∈ A}| (G.1)

(Miscellaneous Exercise 64). For example, the function that returns the
number of satisfying truth assignments to a given Boolean formula is in
#P . Note that unlike other complexity classes we have studied, #P is not
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a class of decision problems, but a class of integer-valued functions. The
class P#P is the class of decision problems solvable in polynomial time with
an oracle for some f ∈ #P . The classes #P and P#P were introduced by
Valiant [124].

The formulation (G.1) suggests that we can view #P as the set of
functions that give the cardinality of a set of witnesses to an existential
formula. If p : N → N and A is a set of strings, a witness for x with respect
to p and A is a binary string y of length p(|x |) such that x#y ∈ A. Let us
denote the set of all witnesses for x with respect to p and A by W (p, A, x).
Thus

W (p, A, x) def= {y ∈ {0, 1}p(|x |) | x#y ∈ A}.

Many of the complexity classes we have considered in this course can
be defined in terms of the cardinality of witness sets W (p, A, x) for vari-
ous parameters A and p. The defining conditions often do not require full
knowledge of |W (p, A, x) |, but only bounds or certain bits. For example,

L ∈ NP def⇐⇒ ∃A ∈ P ∃c ≥ 0 ∀x x ∈ L ⇔ |W (nc, A, x) | > 0

L ∈ Σp
k+1

def⇐⇒ ∃A ∈ Πp
k ∃c ≥ 0 ∀x x ∈ L ⇔ |W (nc, A, x) | > 0

L ∈ RP def⇐⇒ ∃A ∈ P ∃c ≥ 0 ∀x
x ∈ L ⇒ |W (nc, A, x) | ≥ 3

4 · 2|x |c

x �∈ L ⇒ |W (nc, A, x) | = 0

L ∈ BPP def⇐⇒ ∃A ∈ P ∃c ≥ 0 ∀x
x ∈ L ⇒ |W (nc, A, x) | ≥ 3

4 · 2|x |c

x �∈ L ⇒ |W (nc, A, x) | ≤ 1
4 · 2|x |c

L ∈ PP def⇐⇒ ∃A ∈ P ∃c ≥ 0 ∀x x ∈ L ⇔ |W (nc, A, x) | ≥ 2|x |c−1

L ∈ ⊕P def⇐⇒ ∃A ∈ P ∃c ≥ 0 ∀x x ∈ L ⇔ |W (nc, A, x) | is odd

L ∈ #P def⇐⇒ ∃A ∈ P ∃c ≥ 0 ∀x L(x) = |W (nc, A, x) |.

Note that PP and ⊕P are defined in terms of the first and last bit, respec-
tively, of |W (nc, A, x) |.

We can generalize further to define a set of operators BP ,R, #, and so
on, on complexity classes C. These operators can be viewed as reducibility
relations. The definitions are assembled in the following table, which should
be read as follows. The complexity class whose name appears in the left-
hand column is defined to be the class of sets or functions L for which there
exist A ∈ C and k ≥ 0 such that for all x, the condition in the right-hand
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column holds.

Class Defining Condition

R · C x ∈ L ⇒ |W (nk, A, x) | ≥ 3
4 · 2|x |k

x �∈ L ⇒ |W (nk, A, x) | = 0

BP · C x ∈ L ⇒ |W (nk, A, x) | ≥ 3
4 · 2|x |k

x �∈ L ⇒ |W (nk, A, x) | ≤ 1
4 · 2|x |k

P · C x ∈ L ⇔ |W (nk, A, x) | ≥ 1
2 · 2|x |k

⊕ ·C x ∈ L ⇔ |W (nk, A, x) | ≡ 1 (mod 2)
Σp · C x ∈ L ⇔ |W (nk, A, x) | > 0

Πp · C x ∈ L ⇔ |W (nk, A, x) | = 2|x |k

Σlog · C x ∈ L ⇔ |W (
k log n�, A, x) | > 0

Πlog · C x ∈ L ⇔ |W (
k log n�, A, x) | = 2�k log |x |�

# · C L(x) = |W (nk, A, x) |
Thus RP = R · P , BPP = BP ·P , PP = P · P , ⊕P = ⊕ ·P , NP = Σp ·P ,
co-NP = Πp · P , Σp

k+1 = Σp · Πp
k, and # · P = #P . Note that all of these

operators are monotone with respect to set inclusion.
The characterization of complexity classes in terms of operators and

witnesses reveals an underlying similarity among the classes that is quite
striking. It also provides a common framework in which to carry out the
constructions in the proof of Toda’s theorem. Many of the closure properties
we need are naturally expressed as algebraic properties of these operators,
such as commutativity and idempotence.

Toda’s Theorem

Theorem G.1 (Toda [120]) PH ⊆ P#P .

Much of the proof of Toda’s theorem can be broken down into a series of
inclusions (Lemma G.2(i)–(vi)) that establish basic algebraic properties of
the operators on complexity classes defined in the previous section. These
are combined to show that PH ⊆ BP · ⊕P . In addition, there is a final
ingenious argument showing that BP · ⊕P ⊆ P#P .

Lemma G.2 Let C be a complexity class closed downward under the polynomial-time
Turing reducibility relation ≤p

T. Then

(i) Σp · C ⊆ R · Σlog · ⊕ · C;

(ii) Πlog · ⊕ · C ⊆ ⊕ · C;

(iii) ⊕ · BP · C ⊆ BP · ⊕ · C;
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(iv) BP · BP · C ⊆ BP · C;

(v) ⊕ · ⊕ · C ⊆ ⊕ · C;

(vi) BP · C and ⊕ · C are closed downward under ≤p
T.

Proof. Believe it or not, clause (i) is a minor variant of the result of
Valiant and Vazirani presented in Lecture F (Lemma F.1). We prove this
clause explicitly and leave the remaining clauses (ii)–(vi) as exercises (Mis-
cellaneous Exercise 66).

By definition, L ∈ Σp · C iff there exist A ∈ C and k ≥ 0 such that for
all x,

x ∈ L ⇔ W (nk, A, x) �= ∅.

Let N = nk. As in Lemma F.1, let Hw
i , 0 ≤ i ≤ N , be a random tower

of linear subspaces of GFN
2 with dimHw

i = i. Recall that the tower is
specified by a random nonsingular matrix over GFN

2 , where Hw
i is the

orthogonal complement of the first N−i columns of the matrix. The random
nonsingular matrix in turn is determined by a string w of random bits of
length O(N2). By Lemma F.1,

x ∈ L ⇒ W (N, A, x) �= ∅

⇒ Prw(∃i ≤ N |W (N, A, x) ∩ Hw
i | = 1) ≥ 3

4

⇒ Prw(∃i ≤ N |W (N, A, x) ∩ Hw
i | is odd) ≥ 3

4 ,

x �∈ L ⇒ W (N, A, x) = ∅

⇒ Prw(∃i ≤ N |W (N, A, x) ∩ Hw
i | is odd) = 0.

Let p be such that p(|x#w#i |) = |x |k. The function p can be made
to depend only on the length of x#w#i provided we represent i in binary
with 
k log |x |� bits. Similarly, let q be such that q(|x#w |) = 
k log |x |�.
Define

A′ def= {x#w#i#y | x#y ∈ A ∧ y ∈ Hw
i }

A′′ def= {z | |W (p, A′, z) | is odd}
A′′′ def= {u | |W (q, A′′, u) | > 0}.

Because A ∈ C and A′ ≤p
T A, we have A′ ∈ C, A′′ ∈ ⊕ · C, and A′′′ ∈

Σlog · ⊕ · C by definition of these classes. Then

W (p, A′, x#w#i) = {y ∈ {0, 1}|x |k | x#w#i#y ∈ A′}
= {y ∈ {0, 1}|x |k | x#y ∈ A} ∩ Hw

i

= W (N, A, x) ∩ Hw
i ,
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therefore

∃i ≤ N |W (N, A, x) ∩ Hw
i | = 1

⇒ ∃i ≤ N |W (N, A, x) ∩ Hw
i | is odd

⇔ ∃i ≤ N |W (p, A′, x#w#i) | is odd

⇔ ∃i ≤ N x#w#i ∈ A′′

⇔ |{i ∈ {0, 1}�k log |x |� | x#w#i ∈ A′′}| > 0

⇔ |W (q, A′′, x#w) | > 0
⇔ x#w ∈ A′′′.

It follows that

x ∈ L ⇒ W (N, A, x) �= ∅

⇒ Prw(∃i ≤ N |W (N, A, x) ∩ Hw
i | = 1) ≥ 3

4

⇒ Prw(x#w ∈ A′′′) ≥ 3
4

x �∈ L ⇒ W (N, A, x) = ∅

⇒ ∀i ≤ N |W (N, A, x) ∩ Hw
i | is even

⇒ Prw(x#w ∈ A′′′) = 0.

Thus L ∈ R ·Σlog · ⊕ · C. �

Proof of Theorem G.1. We first argue that the various inclusions of
Lemma G.2 combine to imply that PH ⊆ BP · ⊕P . The proof is by in-
duction on the level of the polynomial-time hierarchy. Certainly Σp

0 = P ⊆
BP · ⊕P . Now suppose that Σp

k ⊆ BP · ⊕P . By Lemma G.2(vi), BP · ⊕P
is closed under complement, therefore Πp

k ⊆ BP · ⊕P . Then

Σp
k+1 = Σp · Πp

k

⊆ Σp · BP · ⊕P by monotonicity

⊆ R · Σlog · ⊕ · BP · ⊕P by Lemma G.2(i)
⊆ R · ⊕ · BP · ⊕P by Lemma G.2(ii) and (vi)

⊆ BP · ⊕ · BP · ⊕P because R · C ⊆ BP · C trivially
⊆ BP · BP · ⊕ · ⊕P by Lemma G.2(iii)

⊆ BP · ⊕P by Lemma G.2(iv) and (v).

We have shown that Σp
k ⊆ BP · ⊕P for all k, therefore

PH =
⋃
k

Σp
k ⊆ BP · ⊕P .
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It remains to show that BP ·⊕P ⊆ P#P . Let L ∈ BP ·⊕P . Then there
exist A ∈ ⊕P and k ≥ 0 such that for all x,

x ∈ L ⇒ Prw(x#w ∈ A) ≥ 3
4

x �∈ L ⇒ Prw(x#w ∈ A) ≤ 1
4 ,

where the w are chosen uniformly at random among all binary strings of
length |x |k. Equivalently,

x ∈ L ⇒ |W (nk, A, x) | ≥ 3
4 · 2|x |k

x �∈ L ⇒ |W (nk, A, x) | ≤ 1
4 · 2|x |k .

(G.2)

Furthermore, because A ∈ ⊕P , there exists a polynomial-time nondeter-
ministic TM M such that x#w ∈ A iff f(x#w) is odd, where f(x#w) is
the number of accepting computation paths of M on input x#w.1

Now we modify M to obtain a new machine N that on input x#w
has p(f(x#w)) accepting computation paths instead of f(x#w), where
p is a polynomial function represented by a certain polynomial in N[z].
Specifically, the polynomial p we are interested in is hm(z), where

h(z) def= 4z3 + 3z4 ∈ N[z],

hi(z) is the i-fold composition of h with itself, that is,

h0(z) def= z

hi+1(z) def= h(hi(z)),

and m = log(nk + 1). One can show inductively that hm(z) is of degree
4m = (nk + 1)2 and has coefficients that can be represented by at most
2
3 (4m − 1) = 2

3 ((nk + 1)2 − 1) bits. Moreover, the polynomial hm(z) can be
constructed from x#w in polynomial time. The construction of N from M
is detailed in Miscellaneous Exercise 67(d).

One can show by induction that hm(z) has the following agreeable prop-
erty:

z is odd ⇒ hm(z) ≡ −1 (mod 22m

)
z is even ⇒ hm(z) ≡ 0 (mod 22m

)

(Miscellaneous Exercise 65), thus

z is odd ⇒ p(z) ≡ −1 (mod 2nk+1)
z is even ⇒ p(z) ≡ 0 (mod 2nk+1).

(G.3)

1This characterization of ⊕P and the characterization involving witness sets are equivalent; this follows
immediately from the corresponding equivalence for #P (Miscellaneous Exercise 64).
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Now we can determine membership in L by a P#P computation as
follows. Build a new machine K that on input x of length n

(i) generates all possible strings x#w with |w | = nk by nondeterministic
branching, one computation path for each such string;

(ii) for each x#w, runs N on x#w.

The number of accepting computation paths of K on input x is then∑
|w |=nk

p(f(x#w)).

Modulo 2nk+1, this quantity is∑
|w |=nk

p(f(x#w)) ≡
∑

|w |=nk

f(x#w) odd

−1 by (G.3)

≡ 2nk+1 − |{w | |w | = nk ∧ f(x#w) is odd}|
= 2nk+1 − |{w | |w | = nk ∧ x#w ∈ A}|
= 2nk+1 − |W (nk, A, x) |.

But by (G.2),

x ∈ L ⇒ 3
4 · 2nk ≤ |W (nk, A, x) | ≤ 2nk

⇒ 2nk ≤ 2nk+1 − |W (nk, A, x) | ≤ 5
4 · 2nk

x �∈ L ⇒ 0 ≤ |W (nk, A, x) | ≤ 1
4 · 2nk

⇒ 7
4 · 2nk ≤ 2nk+1 − |W (nk, A, x) | ≤ 2nk+1,

and these are disjoint intervals. Thus the number of accepting computation
paths of K, reduced modulo 2nk+1, determines membership in L. This says
that L ∈ P#P . �



Lecture 30

Circuit Lower Bounds and Relativized
PSPACE = PH

In this lecture and the next we study lower bounds for families of Boolean
circuits of constant depth and their application to relativized complexity.
These results are interesting not only from the point of view of the design
and analysis of algorithms, but also for their consequences regarding the
structure of the polynomial-time hierarchy.

The first lower bound results for constant-depth circuits were obtained
by Furst, Saxe, and Sipser [46] and Ajtai [5] in the mid-1980s. They showed
the nonexistence of circuit families of constant depth and polynomial size
for the Parity function and other Boolean functions. A series of later
papers established explicit superpolynomial lower bounds on the size of
constant-depth circuits for some of these functions, culminating in a nearly
optimal result of H̊astad [56]. A detailed history and exposition of this work
can be found in the survey article of Boppana and Sipser [20].

In this lecture we introduce the complexity class AC 0 of Boolean func-
tions that can be computed by a family of constant-depth, polynomial-size
circuits of unbounded indegree. We then show that a sufficiently strong
superpolynomial lower bound on the size of constant-depth circuits for
Parity implies the existence of an oracle separating PSPACE from PH .
This relationship was first observed by Furst, Saxe, and Sipser [46] and
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was one of the primary motivations for the study of the complexity of
constant-depth circuits.

At the end of this lecture, we set up the machinery needed to prove that
Parity is not in AC 0, then dive into the details in Lecture 31. Our proof is
a minor variant of the original proof of Furst, Saxe, and Sipser [46], which
introduced the idea of a random partial valuation. This was one of the first
applications of probability to lower bound proofs, although the conclusion
is not probabilistic at all.

Unfortunately, this result is not strong enough to obtain an oracle sepa-
rating PSPACE from PH . Stronger bounds achieving separation were first
obtained by Yao [126] and H̊astad [56]. A complete proof of H̊astad’s result
is given in Supplementary Lecture H.

Parity and the Class AC 0

A parity function is a Boolean function {0, 1}n → {0, 1} whose value
changes whenever any one of its inputs changes. There are exactly two
such functions for any n, namely the function that computes the mod-2
sum of its inputs and the function that computes the complement of this
value. We refer to these functions collectively as Parity.

We have studied uniform families of Boolean circuits previously in Lec-
tures 11 and 12. Recall that the complexity class NC discussed in those lec-
tures was defined in terms of logspace-uniform families of Boolean circuits
of polylog depth and polynomial size. There was also a degree restriction:
the gates of the circuits were binary ∧ and ∨ or unary ¬ gates.

To define the class AC 0, we restrict to constant depth, but we relax
the degree restriction to allow ∧ and ∨ gates to compute the conjunction
and disjunction, respectively, of an unbounded number of Boolean inputs
in one step. (It is easy to show that no function of a single output that
depends on all its inputs can be computed by a circuit of bounded degree
in o(log n) depth.)

For example, for fixed k, the Boolean function that returns 1 if at least
k of its inputs are 1 can be computed by an AC 0 circuit of size

(
n
k

)
+1 and

depth 2 as∨
S ⊆{x1,... ,xn}

|S |=k

∧
S.

As with NC , the official definition of AC 0 includes a uniformity con-
dition. However, we are concerned here only with lower bounds, and any
lower bound that we can derive for nonuniform circuits holds a fortiori for
uniform circuits, so we can conveniently ignore this issue.

We can also assume without loss of generality that all negations are ap-
plied to inputs only, and that the gates are arranged in levels with inputs
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and their negations at level 0 and conjunctions and disjunctions strictly
alternating level by level. The assumption regarding negations can be en-
forced by constructing the dual circuit as in Lecture 12. The assumption
regarding the alternation of ∧ and ∨ can be enforced by the addition of
dummy gates if necessary without significantly increasing the depth or size.

Separating PH from PSPACE

The main result of this lecture is that a sufficiently strong lower bound on
the size of constant-depth circuits for Parity implies the existence of an
oracle separating PSPACE from the polynomial-time hierarchy.

Theorem 30.1 (Furst, Saxe, and Sipser [46]) Suppose that there exists no family of cir-
cuits for Parity of depth d and size 2(log n)c

for any constants c and d.
Then there exists an oracle A ⊆ {0, 1}∗ such that PH A �= PSPACEA.

Proof. Let A ⊆ {0, 1}∗. The characteristic function of A, also denoted
by A, is the function

A(x) def=
{

1, if x ∈ A
0, otherwise.

Define the set

P (A) def= {x ∈ {0, 1}∗ |
∑

y∈A, |y |=|x |
A(y) ≡ 1 (mod 2)}

= {x ∈ {0, 1}∗ | the number of strings in A of length |x |
is odd}.

For the set A shown in the diagram below, P (A) would contain all strings
of length 4, as the number of strings of length 4 in A is 9, which is odd.

	
	

	
	

	
	

	
	

		























0110100010111101 {0, 1}4 ∩ A

A

There is an oracle Turing machine that for any oracle A accepts the
set P (A) and runs in linear space. The machine on input x simply steps
through all the strings of length |x | in some order, querying the oracle on
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each one and keeping track of the number of positive responses mod 2.
Thus P (A) ∈ PSPACEA for any A.

Now for any oracle machine M , let us say that M is correct on n if,
supplied with any oracle A and input x of length n, M accepts x iff x ∈
P (A); that is, for any A and x of length n, M correctly computes the parity
of the number of elements of A of length n. We argue that there can be
no polynomial-time Σd-machine that is correct on all but finitely many n,
otherwise we could build a family of circuits violating the assumption of
the theorem.

Suppose for a contradiction that there were such a machine M . On
inputs of length n, M runs in time nc and makes at most d alternations of
universal and existential states along any computation path, where c and d
are constants. The computation tree of M on any input can be divided into
d levels such that the configurations on any level are either all universal
configurations or all existential configurations, and the first level contains
only existential configurations.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

∧
∨
∧
∨

We can assume without loss of generality that on input x, M never
queries its oracle on any string that is not the same length as x, because
these strings are irrelevant in determining whether x ∈ P (A). If M does so,
we can build another machine N that simulates M , supplying an arbitrary
truth value whenever M would attempt to query the oracle on a string of
the wrong length. The machine N must be correct on n if M is.

Now we build a parity circuit Cn for each n on which M is correct.
The circuit Cn is built from the computation tree of N on input 0n and
all possible oracles A. The gates of the circuit are the configurations of
N on input 0n; there are at most 2nc

of these for some constant c. The
inputs are Boolean variables representing the truth values of A(y), |y | = n.
There are 2n of these. The output gate is the start configuration of N . An
oracle query just reads the input gate corresponding to the query string.
An existential configuration α becomes an ∨-gate of unbounded indegree,
taking its inputs from all the universal or halting configurations β for which
there exists a computation path α → β in which all configurations, except
possibly the last, are existential. A universal configuration becomes an ∧-
gate of unbounded indegree in a similar fashion. Thus we have flattened
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each existential and each universal level of the computation tree into a
circuit of depth 1:
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The resulting circuits Cn are of depth d and size 2nc

, have 2n inputs,
and compute the parity of their inputs. In terms of the number of inputs
m = 2n, the size is 2(log m)c

. We only have circuits whose input sizes are
powers of 2, but we can obtain parity circuits for other input sizes m by
taking the circuit for the next larger power of 2 and setting all but m inputs
to 0. Thus we have a family of circuits of constant depth d and size 2(log m)c

for Parity. This contradicts the assumption of the theorem.
Now we use this to construct an oracle A separating PH from PSPACE .

We know from the contradiction that the premise that M was correct on all
but finitely many n was erroneous. Thus there must exist arbitrarily large n
on which M is incorrect. Proceeding by diagonalization, let M0, M1, . . . be
a list of all polynomial-time Σd machines for all constants d. We construct
A in stages. At the ith stage, let ni be a number larger than any number
chosen at any earlier stage such that Mi is incorrect on ni. Let Bi be an
oracle on which Mi gives the incorrect answer on input 0ni , let Ai = Bi ∩
{0, 1}ni, and let A =

⋃
i Ai. Then Mi with oracle A is also incorrect on

ni, because it receives the same responses from A as from Bi. Thus no Mi

computes P (A). �

Lower Bounds for Parity

In Lecture 31, we present the result of Furst, Saxe, and Sipser [46] that
Parity is not in AC 0. The proof is based on the observation that if we
set some of the inputs of a parity circuit to 0 or 1, the resulting circuit still
computes a parity function, albeit on fewer inputs. If we have a circuit of
constant depth d, we set each input randomly and independently to 0 or 1,
each with a certain probability (1−p)/2 close to but strictly less than 1/2,
or leave it unset with the remaining probability p. This is called a random
partial valuation. By choosing p carefully, we can to show that with high
likelihood, the resulting circuit is equivalent to one of depth strictly less
than d while still retaining a good percentage of unassigned variables. By
repeating this process, we can reduce the depth to 2 with bounded indegree
at the first level; but we can show independently that no such family can
compute Parity.
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Note that the degree of the gates and uniformity of the family of circuits
are not issues here. The lower bounds hold even for nonuniform circuits
containing gates of unbounded indegree and outdegree.



Lecture 31

Lower Bounds for Constant Depth Circuits

In this lecture we present the details of the result of Furst, Saxe, and Sipser
[46] that Parity is not in AC 0.

Recall that a formula or circuit is in t-conjunctive normal form (t-
CNF ) if it is a conjunction of clauses, each clause a disjunction of at most
t literals, each literal a variable or its negation. Dually, a formula or circuit
is in t-disjunctive normal form (t-DNF ) if it is a disjunction of terms, each
term a conjunction of at most t literals. We can assume without loss of
generality that no term or clause contains a pair of complementary literals.
By convention, the empty conjunction is equivalent to 1 and the empty
disjunction is equivalent to 0.

Given a parity circuit of constant depth d, we can assume without loss
of generality that the gates are arranged in levels with variables and their
negations at level 0 and other levels alternating between disjunctions and
conjunctions. We can also assume that the gates at level 1 are disjunctions;
if not, consider the dual circuit instead, which is also a parity circuit.

The length of a term or clause M , denoted |M |, is the number of literals
in M . We often omit the symbol ∧ in terms and write x for ¬x. Thus xyz
means the same as ¬x ∧ y ∧ ¬z.

A partial valuation of a set X of Boolean variables is an assignment
of constants to some of the variables of X , possibly leaving some variables
unassigned. Formally, a partial valuation on X is a map ρ : X → X ∪ {0, 1}
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such that for each x ∈ X , ρ(x) ∈ {x, 0, 1}. We say that x is unassigned
under ρ if ρ(x) = x.

Any partial valuation ρ on X extends to a function on Boolean formulas
over X in a natural way, replacing each variable x with ρ(x) and then
simplifying wherever possible using the Boolean algebra axioms 0 ∨ x = x,
0 ∧ x = 0, 1 ∨ x = 1, 1 ∧ x = x. For example, if ρ(x) = 1, ρ(y) = 0, and
ρ(z) = z, then

ρ((x ∨ y) ∧ (x ∨ z)) = z.

For the remainder of this lecture, we consider randomly chosen partial
valuations in which each variable is independently assigned 0 or 1, each
with probability (1− 1/

√
n)/2, or left unassigned with probability 1/

√
n.

The central idea of the proof is that all the CNF subcircuits at level 2
will very likely become equivalent to DNF circuits after applying a finite
number of partial valuations chosen randomly according to this distribu-
tion. Thus the chances are good that we will be able to replace all the CNF
gates at level 2 with DNF gates, then absorb the disjunctions at level 2
into the disjunctions at level 3, thereby reducing the depth by one level.
Continuing in this fashion, we will be able to get rid of all levels except
two.

Lemma 31.1 After a random partial valuation, the probability that there are fewer than√
n/2 unassigned variables is at most (2/e)

√
n/2.

Proof. Each variable remains unassigned with probability 1/
√

n. There
are n variables in all, so the mean number of unassigned variables is n/

√
n =√

n. The result now follows immediately from the Chernoff bound (I.7) with
µ =

√
n and δ = 1/2. �

Lemma 31.1 is important, because it says that after the application
of a random partial valuation, it is very likely that there are still enough
unassigned variables left that the size of the circuit is still polynomial in
the number of inputs.

The following are two technical lemmas that are used in our main de-
velopment.

Lemma 31.2 Let c be a constant, and let A be any set of variables of size at least c but
o(n1/c). The probability that a random partial valuation leaves more than c
variables of A unassigned is bounded above by n1−c/2 for sufficiently large
n.

Proof. Let X be a random variable representing the number of variables
of A left unassigned by the random partial valuation. We wish to estimate
Pr (X ≥ c). If s = |A |, then the expected number of unassigned variables
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is µ = sn−1/2. Plugging this into the Chernoff bound (I.6), for sufficiently
large n,

Pr (X ≥ c) < ec−µ(µ/c)c ≤ (eµ/c)c

= (esn−1/2/c)c = n−c/2(es/c)c ≤ n1−c/2,

the last inequality by the assumption that s is o(n1/c). �

Lemma 31.3 Let a and b be constants. Let S be any set of pairwise disjoint sets of vari-
ables such that S has size at least b log n and all elements of S have size less
than a. For A ∈ S, let E(A) be the event that a random partial valuation
assigns 0 to all variables in A. For sufficiently large n, the probability that
E(A) does not occur for any A ∈ S is bounded above by nb log(1−2−a).

Proof. Let A ∈ S and let s = |A |. For sufficiently large n, the probability
of E(A) is 2−s(1−n−1/2)s ≥ 2−s/2 ≥ 2−a. The probability that E(A) does
not occur is thus bounded by 1−2−a. Because the elements of S are pairwise
disjoint, the events E(A) are independent, therefore the probability that
E(A) fails for all A ∈ S is the product of the probabilities that it fails for
each of them, which is bounded by (1− 2−a)|S |. But

(1− 2−a)|S | ≤ (1− 2−a)b log n = nb log(1−2−a).

�

Now we are ready to give the main part of the argument, which we
have split into three lemmas. Let t be a constant. Call a circuit a t-circuit
if every level-1 gate is of degree at most t; that is, if every level-2 gate is a
t-CNF circuit.

Lemma 31.4 If Parity has polynomial-size circuits of depth d, then Parity has
polynomial-size t-circuits of depth d for some constant t.

Lemma 31.5 If Parity has polynomial-size t-circuits of depth d ≥ 3 and t ≥ 1, then
Parity has polynomial-size (t− 1)-circuits of depth d.

Lemma 31.6 If Parity has polynomial-size 1-circuits of depth d ≥ 1, then Parity has
polynomial-size circuits of depth d− 1.

Proof of Lemma 31.4. Suppose Parity has circuits of depth d and
size nk. Consider a random partial valuation ρ on the variables of the nth
circuit. Let t = 2k + 4 and b = (k + 1)/ log(3/2). For some level-1 clause
C, consider the event |ρ(C) | > t; that is, more than t literals of C remain
unassigned. We show that for sufficiently large n, this event occurs with
probability at most n−(k+1).

There are three cases, depending on the size of C.
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Case 1 If |C | ≤ t, then the probability is already 0, so we are done.

Case 2 If t ≤ |C | ≤ b logn, then by Lemma 31.2, for sufficiently large n,
the probability that a random partial valuation leaves more than t literals
in C unassigned is bounded above by n1−t/2 = n−(k+1).

Case 3 The last case is |C | ≥ b logn. If any literal of C is assigned 1, then
ρ(C) = 1, so |ρ(C) | = 0. Thus the probability that there are at least t
literals remaining unassigned is bounded by the probability that no literal
in C is assigned 1. To calculate this probability, note that for sufficiently
large n, the probability that any particular literal is not assigned 1 is

1− 1
2
(1 − 1√

n
) =

1
2
(1 +

1√
n

) ≤ 2
3
.

These events are independent, thus the probability that no literal in C is
assigned 1 is at most(

2
3

)|C |
≤

(
2
3

)b log n

≤ nb log(2/3) = n−(k+1).

We have shown that for sufficiently large n, for each level-1 clause C,
the probability that |ρ(C) | > t is at most n−(k+1). By the law of sum, the
probability that there exists a level-1 clause with more than t literals is
bounded by the sum of these probabilities. Because there are at most nk

level-1 clauses in all,

Pr (∃C |ρ(C) | > t) ≤
∑
C

Pr (|ρ(C) | > t) ≤ nkn−(k+1) = n−1,

which is vanishingly small.
Now by Lemma 31.1, the probability that there are fewer than

√
n/2

unassigned variables is also vanishingly small. Again by the law of sum, the
probability that either event occurs in a single random partial valuation is
vanishingly small. That is, with probability tending to 1, the random partial
valuation leaves at least

√
n/2 variables unassigned and knocks all level-1

gates down to degree at most t. As the probability of this event is nonzero,
there must be a partial valuation that realizes it. By making this partial
valuation (and by assigning a few other inputs if necessary), we obtain a
circuit for Parity on

√
n/2 variables and all level-1 gates of degree at most

t. These circuits are still polynomial-size, because polynomial in n is still
polynomial in

√
n/2. �

Proof of Lemma 31.5. Suppose Parity has t-circuits of depth d ≥ 3,
t ≥ 1, and size nk. Let S be the set of clauses in some level-2 conjunction.
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Let T be a maximal subset of S such that no two clauses of T contain the
same variable, either positively or negatively. By maximal, we mean that
there is no proper superset of T satisfying this property. Such a set T can
be constructed by considering all the clauses in S in some order, taking the
next clause into T if it does not have a variable in common with any of the
clauses previously taken.

Let a = 2k + 4 and b = −(k + 1)/ log(1− 2−a). Consider the effect of a
random partial valuation on the variables of T . We consider two cases.

Case 1 If T contains at least b logn elements, then we have at least
b log n clauses, no two of which share a variable. By Lemma 31.3, for suf-
ficiently large n, some clause in T receives all 0 with probability at least
1−nb log(1−2−a) = 1−n−(k+1), in which case the entire conjunction at level
2 disappears.

Case 2 If T contains at most b log n elements, then
⋃

T contains at most
bt log n elements and shares a variable with all clauses in S (otherwise T was
not maximal). By Lemma 31.2, for sufficiently large n, the probability that
a random partial valuation leaves more than a variables of

⋃
T unassigned

is bounded above by n1−a/2 = n−(k+1). Thus with very high probability,
there are at most 2a literals �1, . . . , �2a of

⋃
T unassigned, and every clause

of ρ(S) that is still of size t must contain one of these literals. Let ϕ0 be
the conjunction of all clauses of ρ(S) of size at most t−1. Of the remaining
clauses of ρ(S), let ϕj be the conjunction of those containing the literal
�j and no literal �i for i < j, and let ϕ′

j be ϕj with all occurrences of �j

deleted. Then ϕj is equivalent to �j ∨ϕ′
j , and the original conjunction after

the partial evaluation is equivalent to

2a∧
j=0

ϕj ≡ ϕ0 ∧
2a∧

j=1

(�j ∨ ϕ′
j).

Using the distributive laws of Boolean algebra, this can be expressed as a
disjunction of at most 22a (t−1)-CNF circuits of the form ϕ0∧ψ1∧· · ·∧ψ2a,
where each ψi is either �i or ϕ′

i.

We have shown that for sufficiently large n, with probability at least
1−n−(k+1), any t-CNF gate at level 2 becomes equivalent to a disjunction of
a constant number of (t− 1)-CNF gates under a random partial valuation.
This disjunction can be merged with the disjunctions at level 3 to give a
(t− 1)-circuit.

The remainder of the proof proceeds as in Lemma 31.4. Briefly, the
probabilities of each of these events and the event that there remain at
least

√
n/2 unassigned variables tend to 1 sufficiently fast that they all

occur simultaneously with nonzero probability. �
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Proof of Lemma 31.6. This is the easy one. A polynomial-size 1-circuit
of depth d ≥ 1 is equivalent to a circuit of depth d− 1 simply by bypassing
the singleton gates at level 1. (In fact, this is just a special case of Lemma
31.5 for t = 1.) �

Lemma 31.7 There is no (n− 1)-CNF or (n− 1)-DNF parity circuit on n inputs.

Proof. An (n − 1)-CNF circuit on n inputs is a conjunction of clauses
with at most n − 1 literals per clause. Any partial valuation of a parity
circuit is a parity circuit on the remaining variables. But by setting at
most n−1 variables, we can make all the literals in some clause 0, thus the
whole circuit has constant value 0 regardless of the values of the remaining
variables, so it cannot be a parity circuit. The argument for (n − 1)-DNF
circuits is similar. �

Combining Lemmas 31.4–31.7, we have

Theorem 31.8 (Furst, Saxe, and Sipser [46]) Parity �∈ AC 0.

Proof. By repeating the constructions of Lemmas 31.4–31.6, we could
start with any family of circuits for Parity of constant depth and poly-
nomial size and reduce them to a family of circuits for Parity of depth
2, polynomial size, and constant indegree at level 1. These circuits would
be t-DNF or t-CNF circuits for some constant t. But this is impossible by
Lemma 31.7. �
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The Switching Lemma

In this lecture we prove the H̊astad switching lemma [56], which can be
used to derive the lower bound on circuit size needed to achieve separation
of PH A and PSPACEA as described in Theorem 30.1.

Any set of variables X generates a free Boolean algebra FX , which
is essentially the set of Boolean formulas over X modulo the axioms of
Boolean algebra. If |X | = n, the algebra FX has 22n

elements. There is a
natural partial order ≤ on FX corresponding to propositional implication;
thus ϕ ≤ ψ iff ϕ → ψ is a propositional tautology.

Recall that a term of X is a conjunction of literals, no two of which
form a complementary pair. For terms M and N , M ≤ N if every literal
appearing in N also appears in M . The empty term 1 is the ≤-maximum
element of FX . For a term M and CNF formula ϕ, M ≤ ϕ if M contains
at least one literal from each clause of ϕ.

A minterm of a formula ϕ is a ≤-maximal term M such that M ≤ ϕ. If
ϕ is a CNF formula, then M is a minterm of ϕ iff M contains at least one
literal from each clause of ϕ and no proper subterm of M has this property
(Miscellaneous Exercise 71). One can show using the distributive laws of
Boolean algebra that the disjunction of all minterms of ϕ is a DNF formula
equivalent to ϕ (Miscellaneous Exercise 72). The set of minterms of ϕ is
denoted m(ϕ).

A partial valuation ρ : X → X ∪ {0, 1} gives rise to a Boolean algebra
homomorphism FX → FY , where Y ⊆ X is the set of variables not as-
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signed by ρ. If A ⊆ X , we write ρ(A) = A if no variable of A is assigned
by ρ, that is, if ρ(x) = x for all x ∈ A. For any term M , either ρ(M) = 0
or M ≤ ρ(M).

Because ρ is a homomorphism, it preserves ≤. Thus if M ≤ ϕ, then
ρ(M) ≤ ρ(ϕ). One can show that any minterm N of ρ(ϕ) is ρ(M) for some
minterm M of ϕ (Miscellaneous Exercise 80). However, it is not true that
ρ(M) is a minterm of ρ(ϕ) whenever M is a minterm of ϕ. For example,
if ψ = (x ∨ z) ∧ (y ∨ z) and ρ(x) = x, ρ(y) = y, and ρ(z) = 0, then xy
is a minterm of ψ and ρ(xy) = xy, but xy is not a minterm of ρ(ψ) = x.
However, we have the following special case.

Lemma H.1 Let ϕ be a formula, C a clause, and M ∈ m(ϕ ∧ C). Let var(M, C) be the
set of variables that occur in both M and C (not necessarily with the same
polarity). Let σ : var(M, C) → {0, 1} be the unique valuation such that
σ(M) �= 0. Then σ(ϕ ∧ C) = σ(ϕ) and σ(M) is a minterm of σ(ϕ).

Proof. The valuation σ is unique, because there is only one way to assign
values to variables in var(M, C) so that the corresponding literals in M get
the value 1. Because M must contain a literal of C, the set var(M, C) is
nonempty and σ(C) = 1, thus σ(ϕ ∧C) = σ(ϕ) ∧ σ(C) = σ(ϕ).

The term M can be written as a conjunction of terms M = σ(M)M ′,
where M ′ contains all the variables in var(M, C). Note that σ(M) contains
no variables in var(M, C). Similarly, ϕ can be written as a conjunction
ϕ0∧ϕ1, where ϕ1 is a CNF formula each of whose clauses contains a literal
of M ′ and ϕ0 is a CNF formula none of whose clauses contains a literal of
M ′. Then σ(ϕ) ≤ ϕ0 and M ′ ≤ ϕ1 ∧ C.

We now show that σ(M) is a minterm of σ(ϕ). Surely σ(M) ≤ σ(ϕ),
because M ≤ ϕ. If N were any other term such that σ(M) ≤ N ≤ σ(ϕ),
then

M = σ(M)M ′ ≤ NM ′ ≤ σ(ϕ) ∧ ϕ1 ∧C ≤ ϕ ∧ C.

But M is a minterm of ϕ ∧ C, therefore M = σ(M)M ′ = NM ′. Because
σ(M) and M ′ are on disjoint sets of variables, σ(M) = N . �

Lemma H.2 Let ϕ be a formula and W a set of variables. Let

ϕ−W def=
∧

τ :W→{0,1}
τ(ϕ).

(i) If ϕ is written in CNF, then ϕ−W is equivalent to a CNF formula
with no more clauses than ϕ.

(ii) If M ∈ m(ϕ) such that var(M, W ) = ∅, then M ∈ m(ϕ−W ).

(iii) If ρ(W ) = W , then ρ(ϕ)−W = ρ(ϕ−W ).
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(iv) If ρ(W ) = W , then ρ(ϕ) = 1 iff ρ(ϕ−W ) = 1.

Proof. For (i), let ϕ be written in CNF. We show that ϕ−W is equivalent
to ϕ with all literals involving variables in W erased. It suffices to show
this for each clause C individually. For each τ : W → {0, 1}, τ(C) is either
1 or the clause with all literals involving variables in W erased. The former
occurs if τ sets one of these literals to 1. The latter occurs if τ sets all
these literals to 0, and there is at least one τ . Thus the conjunction C−W

is equivalent to this clause.
For (ii), we use (i). Let ϕ be written in CNF. Because var(M, W ) = ∅,

M still has a literal in common with all clauses even after the variables in
W are erased, thus M ≤ ϕ−W . Also, because each clause C is a disjunction
of literals, C−W ≤ C, therefore ϕ−W ≤ ϕ. Because M ≤ ϕ−W ≤ ϕ and
M is a minterm of ϕ, it is also a minterm of ϕ−W (Miscellaneous Exercise
78).

We leave (iii) and (iv) as exercises (Miscellaneous Exercise 79). �

Lemma H.3 (Switching Lemma [56]) Let ϕ be a t-CNF formula over variables X. Let
ρ be a random partial valuation in which every variable is independently
assigned 0 or 1 each with probability (1−p)/2 or left unassigned with prob-
ability p. Then

Pr(ρ(ϕ) is not equivalent to an s-DNF formula) ≤ αs,

where α = 4pt/ ln 2 ∼ 5.77pt.

Proof. Every formula is equivalent to the disjunction of its minterms,
so it suffices to show

Pr(∃M ∈ m(ρ(ϕ)) |M | ≥ s) ≤ αs.

The proof is by induction on the number of clauses of ϕ. We actually need
a stronger induction hypothesis, namely that the bound holds even when
conditioned on an arbitrary formula ψ becoming 1 under ρ:

Pr(∃M ∈ m(ρ(ϕ)) |M | ≥ s | ρ(ψ) = 1) ≤ αs. (H.1)

For the basis ϕ = 1, the only minterm is 1, so the probability on the
left-hand side is 0 unless s = 0, in which case the right-hand side is 1.

For the induction step, consider a formula ϕ∧C of at least one nonempty
clause. If the Gi are a family of mutually exclusive and exhaustive events,
then to show that Pr(E | F ) ≤ a, it suffices to show separately that Pr(E |
Gi ∧ F ) ≤ a for all i (Miscellaneous Exercise 73). Thus to show (H.1), it
suffices to show separately that

Pr(∃M ∈ m(ρ(ϕ ∧ C)) |M | ≥ s | ρ(C) = 1 ∧ ρ(ψ) = 1) ≤ αs (H.2)
Pr(∃M ∈ m(ρ(ϕ ∧ C)) |M | ≥ s | ρ(C) �= 1 ∧ ρ(ψ) = 1) ≤ αs. (H.3)
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The inequality (H.2) is the easier of the two. This is where we need the
stronger induction hypothesis. Under the conditioning ρ(C) = 1, we have
ρ(ϕ∧C) = ρ(ϕ)∧ρ(C) = ρ(ϕ), and ρ(C∧ψ) = 1 iff ρ(C) = 1 and ρ(ψ) = 1,
thus (H.2) is equivalent to

Pr(∃M ∈ m(ρ(ϕ)) |M | ≥ s | ρ(C ∧ ψ) = 1) ≤ αs.

This follows immediately from the induction hypothesis.
Now for (H.3). For a partial valuation ρ, suppose

M ∈ m(ρ(ϕ ∧C)) ∧ |M | ≥ s.

Let A = var(M, ρ(C)) �= ∅. By Lemma H.1, there exist σ : A → {0, 1} and
N ∈ m(σ(ρ(ϕ))) (namely N = σ(M)) such that

• |N | = |M | − |A | ≥ s− |A |
• var(N, C) = ∅

• σ(C) = 1.

In addition, ρ(A) = A because A ⊆ var(ρ(C)), and σ and ρ commute,
because they assign disjoint sets of variables.

Similarly, we can express ρ as a composition ρ1 ◦ ρ0, where ρ0 is a
partial valuation on var(C) and ρ1 is a partial valuation on X − var(C).
Thus ρ1(C) = C, ρ0(X − var(C)) = X − var(C), and ρ1 and ρ0 commute.

Now we have

N ∈ m(σ(ρ(ϕ)))
⇒ N ∈ m(ρ(σ(ϕ))) because σ and ρ commute
⇒ N ∈ m(ρ1(ρ0(σ(ϕ))))
⇒ N ∈ m(ρ1(ρ0(σ(ϕ)))−C ) Lemma H.2(ii), var(N, C) = ∅

⇒ N ∈ m(ρ1(ρ0(σ(ϕ))−C )) Lemma H.2(iii), ρ1(C) = C.

We have shown that under the premise

∃M ∈ m(ρ(ϕ ∧C)) |M | ≥ s ∧ var(M, ρ(C)) = A, (H.4)

where A ⊆ var(C) and A �= ∅, one can derive the conclusion

∃σ : A → {0, 1} ∃N ∈ m(ρ1(ρ0(σ(ϕ))−C ))

|N | ≥ s− |A | ∧ ρ(A) = A ∧ σ(C) = 1.
(H.5)

Now we are ready to prove the inequality (H.3). Using the law of sum,
we can rewrite the left-hand side of (H.3) as∑

A⊆ var(C)
A �=∅

Pr(E(A) | ρ(C) �= 1 ∧ ρ(ψ) = 1), (H.6)
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where E(A) is the event (H.4). Because (H.4) implies (H.5), this is at most

∑
A⊆ var(C)

A �=∅

Pr(F (A) | ρ(C) �= 1 ∧ ρ(ψ) = 1), (H.7)

where F (A) is the event (H.5). By the law of sum, this is at most

∑
A⊆ var(C)

A �=∅

∑
σ:A→{0,1}

σ(C)=1

Pr(G(A) | ρ(C) �= 1 ∧ ρ(ψ) = 1), (H.8)

where G(A) is the event

G(A) def= ∃N ∈ m(ρ1(ρ0(σ(ϕ))−C )) |N | ≥ s− |A | ∧ ρ(A) = A.

To bound Pr(G(A) | ρ(C) �= 1∧ ρ(ψ) = 1), by Miscellaneous Exercise 73 it
suffices to bound

Pr(G(A) | ρ(C) �= 1 ∧ ρ(ψ) = 1 ∧ ρ0 = τ)

= Pr(G(A) | ρ0(C) �= 1 ∧ ρ1(ρ0(ψ)) = 1 ∧ ρ0 = τ) (H.9)

for all partial valuations τ of var(C) such that τ(C) �= 1. But under the
new condition ρ0 = τ , ρ1(ρ0(ψ)) becomes ρ1(τ(ψ)), ρ1(ρ0(σ(ϕ))−C) be-
comes ρ1(τ(σ(ϕ))−C ), and the condition ρ0(C) �= 1 is redundant. More-
over, using Lemma H.2(iv), we can replace the condition ρ1(τ(ψ)) = 1 by
ρ1(τ(ψ)−C) = 1. After all these changes, (H.9) becomes

Pr (∃N ∈ m(ρ1(τ(σ(ϕ))−C )) |N | ≥ s− |A | ∧ ρ0(A) = A

| ρ1(τ(ψ)−C ) = 1 ∧ ρ0 = τ). (H.10)

Now the conditions involving ρ0 and those involving ρ1 are independent,
because they refer to the action of ρ on disjoint sets of variables. Thus by
Miscellaneous Exercise 75, (H.10) can be rewritten as a product

Pr(∃N ∈ m(ρ1(τ(σ(ϕ))−C )) |N | ≥ s− |A | | ρ1(τ(ψ)−C ) = 1)

· Pr(ρ0(A) = A | ρ0 = τ).

The first factor is bounded by αs−|A | by the induction hypothesis, and the
second is bounded by (2p/(1 + p))|A | by direct calculation. Thus (H.8) is
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at most

∑
A⊆ var(C)

A �=∅

∑
σ:A→{0,1}

σ(C)=1

(
2p

1 + p

)|A |
αs−|A |

=
|C |∑
k=1

(|C |
k

)
(2k − 1)

(
2p

1 + p

)k

αs−k

≤
t∑

k=0

(
t

k

)
(2k − 1)

(
2p

1 + p

)k

αs−k

= αs

((
1 +

4p

(1 + p)α

)t

−
(

1 +
2p

(1 + p)α

)t
)

≤ αs

((
1 +

4p

α

)t

− 1

)
. (H.11)

Substituting 4pt/ ln 2 for α and using the fact that (1 + 1/x)x ≤ e for all
positive x, it follows that the larger parenthesized expression in (H.11) is
at most 1, therefore (H.11) is at most αs. �

Theorem H.4 There are no circuit families for Parity of depth d and size 2(log n)c

for
any constants c and d.

Proof. Suppose there were. Let t = (log n)c+1 and p = (ln 2)/(8t). With-
out loss of generality, assume that the level-2 circuits are all t-CNF (add
another level if necessary). Applying a random partial valuation, the proba-
bility that any given level-2 circuit does not become equivalent to a t-DNF
circuit is bounded by αt. By the law of sum, the probability that there
exists a level-2 circuit that does not become equivalent to a t-DNF circuit
is bounded by

2(log n)c · αt = 2(log n)c · 2−(log n)c+1
,

which is vanishingly small as a function of n.
Afterwards, the expected number of unassigned variables is still quite

large:

np =
n ln 2

8(log n)c+1
≥ 2n(log n)−(c+2)

for sufficiently large n. The probability that the actual number of unas-
signed variables is less than half that is also vanishingly small (Miscella-
neous Exercise 86).
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Thus for sufficiently large n, there is nonzero probability that all t-
CNF level-2 circuits can be replaced by equivalent t-DNF circuits and that
there are still at least n(log n)−(c+2) unassigned variables. The size of the
new circuit in terms of the input size m = n(log n)−(c+2) is still at most
2(log m)c+3

. Because there is nonzero probability, there must exist a partial
valuation making it true.

Iterating this construction d − 2 times, we obtain a family of circuits
for Parity of depth 2 and size 2(log m)k

for some k such that all level-1
circuits are of degree at most t. But for sufficiently large n, this contradicts
Lemma 31.7. �

Corollary H.5 There exists an oracle A such that PH A �= PSPACEA.

Proof. Theorems H.4 and 30.1. �
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Tail Bounds

In probabilistic analysis, we often need to bound the probability that a
random variable deviates far from its mean. There are various formulas
for this purpose. These are called tail bounds. The weakest of these is the
Markov bound , which states that for any nonnegative random variable X
with mean µ = EX ,

Pr(X ≥ k) ≤ µ/k (I.1)

(Miscellaneous Exercise 83). A better bound is the Chebyshev bound , which
states that for a random variable X with mean µ = EX and standard
deviation σ =

√
E((X − µ)2), for any δ ≥ 1,

Pr(|X − µ | ≥ δσ) ≤ δ−2 (I.2)

(Miscellaneous Exercise 84).
The Markov and Chebyshev bounds converge linearly and quadrati-

cally, respectively, and are often too weak to achieve desired estimates.
In particular, for the special case of Bernoulli trials (sum of independent,
identically distributed 0,1-valued random variables) or more generally Pois-
son trials (sum of independent 0,1-valued random variables, not necessarily
identically distributed), the convergence is exponential.
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Consider Poisson trials Xi, 1 ≤ i ≤ n, with sum X =
∑

i Xi and
Pr(Xi = 1) = pi. An exact expression for the upper tail is

Pr (X ≥ k) =
∑

A⊆{1,... ,n}
|A |≥k

∏
i∈A

pi

∏
i�∈A

(1 − pi).

In the special case of Bernoulli trials with success probability p, this sim-
plifies to the binomial distribution

Pr (X ≥ k) =
∑
i≥k

(
n

i

)
pi(1 − p)n−i.

However, these expressions are algebraically unwieldy. A more convenient
formula is provided by the Chernoff bound .

The Chernoff bound comes in several forms. One form states that for
Poisson trials Xi with sum X =

∑
i Xi and µ = EX , for any δ > 0,

Pr (X ≥ (1 + δ)µ) <

(
eδ

(1 + δ)1+δ

)µ

. (I.3)

Equivalently,

Pr (X ≥ (1 + δ)µ) <

(
e

(
1− δ

1 + δ

)(1+δ)/δ
)δµ

. (I.4)

In (I.4), the subexpression(
1− δ

1 + δ

)(1+δ)/δ

(I.5)

is a special case of the function (1−1/x)x, which arises frequently in asymp-
totic analysis. It is worth remembering that this function is bounded above
by e−1 for all positive x and tends to that value in the limit as x approaches
infinity. Similarly, the function (1 + 1/x)x is bounded above by e for all
positive x and tends to that limit as x approaches infinity (Miscellaneous
Exercise 57(a)).

A third form equivalent to (I.3) and (I.4) is: for all k > µ,

Pr (X ≥ k) < ek−µ(µ/k)k. (I.6)

One can see clearly from (I.4) and (I.6) that the convergence is exponential
with distance from the mean.

These formulas bound the upper tail of the distribution. There are also
symmetric versions for the lower tail: for any δ such that 0 ≤ δ < 1 and k
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such that 0 < k ≤ µ,

Pr (X ≤ (1− δ)µ) <

(
e−δ

(1− δ)1−δ

)µ

(I.7)

=

(
e−1

(
1 +

δ

1− δ

)(1−δ)/δ
)δµ

(I.8)

Pr (X ≤ k) < ek−µ(µ/k)k. (I.9)

In the case of the lower tail, we also have a fourth version given by

Pr (X ≤ (1− δ)µ) < e−δ2µ/2. (I.10)

This bound is slightly weaker than (I.7)–(I.9), but is nevertheless very useful
because of its simple form.

Proof of the Chernoff Bound

We now prove the Chernoff bound (I.3) for Poisson trials Xi. It is easy to
show that the other forms (I.4) and (I.6) are equivalent, and these are left
as exercises (Miscellaneous Exercise 87). The proofs of the corresponding
bounds (I.7)–(I.9) for the lower tail are similar and are also left as exercises
(Miscellaneous Exercise 88). The weaker bound (I.10) requires a separate
argument involving the Taylor expansion of ln(1 − δ), but is not difficult
(Miscellaneous Exercise 89).

Although the success probabilities of the Xi may differ, it is important
that the trials be independent. At a crucial step of the proof, we use the
fact that the expected value of the product of independent trials is the
product of their expectations (Miscellaneous Exercise 82).

Let Xi be Poisson trials with success probabilities pi, sum X =
∑

i Xi,
and mean µ = EX =

∑
i pi. Fix a > 0. By the monotonicity of the expo-

nential function and the Markov bound (I.1), we have

Pr (X ≥ (1 + δ)µ) = Pr (eaX ≥ ea(1+δ)µ)
≤ E(eaX) · e−a(1+δ)µ. (I.11)

Because the expected value of the product of independent trials is the
product of their expectations (Miscellaneous Exercise 82), and because the
eaXi are independent if the Xi are, we can write

E(eaX) = E(e
�

i aXi) = E(
∏

i

eaXi) =
∏

i

E(eaXi)

=
∏

i

(pie
a + (1− pi)) =

∏
i

(1 + pi(ea − 1)). (I.12)
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It follows from (1 + 1/x)x < e that 1 + y < ey for all positive y. Applying
this with y = pi(ea − 1), we have 1 + pi(ea − 1) < epi(e

a−1), thus (I.12) is
strictly bounded by∏

i

epi(e
a−1) = e

�
i pi(e

a−1) = e(ea−1)µ.

Combining this with the expression e−a(1+δ)µ gives a strict bound

e(ea−1)µ · e−a(1+δ)µ = e(ea−1−a−aδ)µ (I.13)

on (I.11). Now we wish to choose a minimizing ea−1−a−aδ. The derivative
vanishes at a = ln(1 + δ), and substituting this value for a in (I.13) and
simplifying yields (I.3).
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The Gap Theorem and Other Pathology

One might get the impression from the structure of the complexity hierar-
chies we have studied that all problems have a natural inherent complexity,
and that allowing slightly more time or space always allows more to be com-
puted. Both these statements seem to be true for most natural problems
and complexity bounds, but neither is true in general. One can construct
pathological examples for which they provably fail.

For example, one can exhibit a computable function f with no asymp-
totically best algorithm, in the sense that for any algorithm for f running
in time T (n), there is another algorithm for f running in time log T (n).
Thus f can be endlessly sped up. Also, there is nothing special about the
log function—the result holds for any total recursive function.

For another example, one can show that there is a space bound S(n)
such that any function computable in space S(n) is also computable in
space log S(n). At first this might seem to contradict Theorem 3.1, but
that theorem has a constructibility condition that is not satisfied by S(n).
Again, this holds for any recursive improvement, not just log.

Most of the examples of this lecture are constructed by intricate diago-
nalizations. They do not correspond to anything natural and would never
arise in real applications. Nevertheless, they are worth studying as a way
to better understand the power and limitations of complexity theory. We
prove these results in terms of Turing machine time and space in this lec-
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ture; however, most of them are independent of the particular measure. A
more abstract treatment is given in Supplementary Lecture J.

The first example we look at is the gap theorem, which states that there
are arbitrarily large recursive gaps in the complexity hierarchy. This result
is due independently to Borodin [21] and Trakhtenbrot [122].

Theorem 32.1 (Gap Theorem [21, 122]) For any total recursive function f : ω →
ω such that f(x) ≥ x, there exists a time bound T (n) such that
DTIME (f(T (n))) = DTIME(T (n)); in other words, there is no set ac-
cepted by a deterministic TM in time f(T (n)) that is not accepted by a
deterministic TM in time T (n).

Proof. Let Ti(x) denote the running time of TM Mi on input x. For each
n, define T (n) to be the least m such that for all i ≤ n, if Ti(n) ≤ f(m),
then Ti(n) ≤ m. To compute T (n), start by setting m := 0. As long as
there exists an i ≤ n such that m < Ti(n) ≤ f(m), set m := Ti(n). This
process must terminate, because there are only finitely many i ≤ n. The
value of T (n) is the final value of m.

Now we claim that T (n) satisfies the requirements of the theorem. Sup-
pose Mi runs in time f(T (n)). Thus Ti(n) ≤ f(T (n)) a.e.1 By construction
of T , for sufficiently large n ≥ i, Ti(n) ≤ T (n). �

What we have actually proved is stronger than the statement of the
theorem. The theorem states that for any deterministic TM Mi running
in time f(T (n)), there is an equivalent deterministic TM Mj running in
time T (n). But what we have actually shown is that any deterministic TM
running in time f(T (n)) also runs in time T (n).

Of course, all these bounds hold a.e., but we can make them hold ev-
erywhere by encoding the values on small inputs in the finite control and
computing them by table lookup.

The next example gives a set for which any algorithm can be sped up
arbitrarily many times by an arbitrary preselected recursive amount. This
result is due to Blum [17].

Theorem 32.2 (Speedup Theorem [17]) Let Ti(x) denote the running time of TM Mi

on input x. Let f : ω → ω be any monotone total recursive function such
that f(n) ≥ n2. There exists a recursive set A such that for any TM Mi

accepting A, there is another TM Mj accepting A with f(Tj(x)) < Ti(x)
a.e.

1“a.e.” means “almost everywhere” or “for all but finitely many n”. Also, “i.o.” means, “infinitely often” =
“for infinitely many n”.
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Proof. Let fn denote the n-fold composition of f with itself:

fn def= f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n

.

Thus f0 is the identity function, f1 = f , and fm+n = fm◦fn. For example,
if f(m) = m2, then fn(m) = m2n

, and if f(m) = 2m, then fn(m) is an
iterated exponential involving a stack of 2’s of height n.

We construct by diagonalization a set A ⊆ 0∗ such that

(i) for any machine Mi accepting A, Ti(0n) > fn−i(2) a.e.,2 and

(ii) for all k, there exists a machine Mj accepting A such that Tj(0n) ≤
fn−k(2) a.e.

This achieves our goal, because for any machine Mi accepting A, (ii) guar-
antees the existence of a machine Mj accepting A such that Tj(0n) ≤
fn−i−1(2) a.e.; but then

f(Tj(0n)) ≤ f(fn−i−1(2)) a.e. by monotonicity of f

= fn−i(2)
< Ti(0n) a.e. by (i).

Now we turn to the construction of the set A. Let M0, M1, . . . be a
list of all one-tape Turing machines with input alphabet {0}. Let N be an
enumeration machine that carries out the following simulation. It maintains
a finite active list of descriptions of machines currently being simulated. We
assume that a description of Mi suitable for universal simulation is easily
obtained from the index i.

The computation of N proceeds in stages. Initially, the active list is
empty. At stage n, N puts the next machine Mn at the end of the active
list. It then simulates the machines on the active list in order, smallest
index first. For each such Mi, it simulates Mi on input 0n for fn−i(2)
steps. It picks the first one that halts within its allotted time and does the
opposite: if Mi rejects 0n, N declares 0n ∈ A, and if Mi accepts 0n, N
declares 0n �∈ A. This ensures that L(Mi) �= A. It then deletes Mi from the
active list. If no machine on the active list halts within its allotted time,
then N just declares 0n �∈ A.

This construction ensures that any machine Mi that runs in time
fn−i(2) i.o. does not accept A. The machine Mi is put on the active list
at stage i. Thereafter, if Mi halts within time fn−i(2) on 0n but is not

2We are regarding fn−i(2) as a function of n with i a fixed constant. Thus “i.o.” and “a.e.” in this context
are meant to be interpreted as “for infinitely many n” and “for all but finitely many n”, respectively.
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chosen for deletion, then some higher priority machine on the active list
must have been chosen; but this can happen only finitely many times. So
if Mi halts within time fn−i(2) on 0n i.o., then eventually Mi will be the
highest priority machine on the list and will be chosen for deletion, say
at stage n. At that point, 0n will be put into A iff 0n �∈ L(Mi), ensuring
L(Mi) �= A. This establishes condition (i) above.

For condition (ii), we need to show that for all k, A is accepted by a
one-tape TM Nk running in time fn−k(2) a.e. The key idea is to hard-code
the first m stages of the computation of N in the finite control of Nk for
some sufficiently large m. Note that for each Mi, either

(A) Ti(0n) ≤ fn−i(2) i.o., in which case there is a stage m(i) at which N
deletes Mi from the active list; or

(B) Ti(0n) > fn−i(2) a.e., in which case there is a stage m(i) after which
Mi always exceeds its allotted time.

Let m = maxi≤k m(i). We cannot determine the m(i) or m effectively
(Miscellaneous Exercise 105), but we do know that they exist. The machine
Nk has a list of elements 0n ∈ A for n ≤ m hard-coded in its finite control.
On such inputs, it simply does a table lookup to determine whether 0n ∈ A
and accepts or rejects accordingly. On inputs 0n for n > m, it simulates the
action of N on stages m+1, m+2, . . . , n starting with a certain active list,
which it also has hard-coded in its finite control. The active list it starts
with is N ’s active list at stage m with all machines Mi for i ≤ k deleted.
This does not change the status of 0n ∈ A: for each Mi with i ≤ k, in
case A it has already been deleted from the active list by stage m, and in
case B it will always exceed its allotted time after stage m, so it will never
be a candidate for deletion. The simulation will therefore behave exactly
as N would at stage m and beyond. The machine Nk can thus determine
whether 0n ∈ A and accept or reject accordingly.

It remains to estimate the running time of Nk on input 0n. If n ≤ m, Nk

takes linear time, enough time to read the input and do the table lookup. If
n > m, Nk must simulate at most n−k machines on the active list on n−m
inputs, each for at most fn−k−1(2) steps. Under mild assumptions on the
encoding scheme, interpreting the binary representation of the index i as a
description of Mi, Mi has at most log i states, at most log i tape symbols,
and at most log i transitions in its finite control, and one step of Mi can
be simulated in roughly c(log i)2 steps of Nk. Thus the total time needed
for all the simulations is at most cn2(log n)2fn−k−1(2). But

cn2(log n)2 ≤ 22n−k−1
a.e.

≤ fn−k−1(2) because f(m) ≥ m2,
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therefore

cn2(log n)2fn−k−1(2) ≤ (fn−k−1(2))2 a.e.
≤ f(fn−k−1(2))
= fn−k(2).

�

There are a few interesting observations we can make about the proof
of Theorem 32.2.

First, the “mild assumptions” on the encoding scheme are inconsequen-
tial. If they are not satisfied, the condition f(m) ≥ m2 can be strengthened
accordingly. We only need to know that the overhead for universal simula-
tion of Turing machines is bounded by a total recursive function.

The value m = maxi≤k m(i) in the proof of Theorem 32.2 cannot be
obtained effectively. We know that for each Mi there exists such an m, but
it is undecidable whether Mi falls in case A or case B, so we do not know
whether to delete Mi from the active list. Indeed, it is impossible to obtain
a machine for A running in time fn−k(2) effectively from k (Miscellaneous
Exercise 105).



Lecture 33

Partial Recursive Functions and
Gödel Numberings

Partial and Total Recursive Functions

The next few lectures are an introduction to classical recursive function
theory. For a more comprehensive treatment of this subject, see [104, 114].

A partial recursive function is a computable partial function f : ω → ω.
Partial means that it need not be defined on all inputs. Computable can
be defined in several equivalent ways: by Turing machines, by Gödel’s µ-
recursive functions, by the λ-calculus, or by C programs, to name a few. A
partial recursive function is total if it is everywhere defined.

For example, we can define the partial recursive function computed by
a deterministic Turing machine M to be the partial function f such that

• if M does not halt on input x, then f(x) is undefined, and

• if M halts on input x, then f(x) is the value written on M ’s tape
when it enters its halt state.
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Pairing

We consider only unary functions ω → ω. Functions of higher arity can be
encoded using the one-to-one pairing function < > : ω2 → ω:

<i, j>
def=

(
i + j + 1

2

)
+ i. (33.1)

i

j

0 1 2 3 4 5
0 0 1 3 6 10 15
1 2 4 7 11 16
2 5 8 12 17
3 9 13 18 . . .4 14 19
5 20

The corresponding projections are denoted π2
1 and π2

2 :

π2
1(<x, y>) def= x π2

2(<x, y>) def= y.

For n > 2, we take

<x1, . . . , xn>
def= <x1, <x2, . . . , <xn−1, xn>>>,

and for m ≤ n,

πn
1

def= π2
1 πn

m
def= πn−1

m−1 ◦ π2
2 .

To save notation, we write f(x, y) instead of f(<x, y>) and f(x1, . . . , xn)
instead of f(<x1, . . . , xn>). But keep in mind that officially, all partial
recursive functions are unary.

We also overload the symbol < > by defining the following pairing op-
erator on functions:

<f, g>
def= λx.<f(x), g(x)>.

Basic Closure Properties

The partial recursive functions contain the constant functions κc
def= λx.c

and projections π2
1 , π2

2 and are closed under composition and pairing
(among other closure properties). That is, if f and g are partial recursive
functions, then so are f ◦ g

def= λx.f(g(x)) and <f, g>
def= λx.<f(x), g(x)>.

The constant functions and projections are total. The composition f ◦g
is defined on x iff g is defined on x and f is defined on g(x). The pair <f, g>
is defined on x iff both f and g are defined on x.
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Gödel Numberings

There are only countably many partial recursive functions, because there
are only countably many Turing machines (or C programs, or λ-terms, or
µ-recursive functions, . . . ). An enumeration

ϕ0, ϕ1, ϕ2, . . .

of the partial recursive functions is called a Gödel numbering or acceptable
indexing if it satisfies three properties:

(i) Every partial recursive function is ϕi for some i.

(ii) The universal function property: There is a partial recursive func-
tion U such that for all i and x,

U(i, x) = ϕi(x).

(iii) The sm
n property: There exist total recursive functions sm

n such that
for all i, x1, . . . , xn, y1, . . . , ym,

ϕsm
n (i,x1,... ,xn)(y1, . . . , ym) = ϕi(x1, . . . , xn, y1, . . . , ym).

The number i is called a Gödel number or index for the function ϕi.
Although the index i is just a number, it is convenient to think of i

as a description of an algorithm or machine to compute the function ϕi.
For example, i might encode some Turing machine to compute ϕi, or a C
program, or something similar. The exact form depends on the particular
indexing, and we are not so concerned with the exact form as we are with
the properties (i)–(iii). All we really care about is that each partial recursive
function has at least one index (property (i)), that it is possible to simulate
functions uniformly given their indices (property (ii), the universal function
property), and that it is possible to hard-code part of the input into the
program (property (iii), the sm

n property).
For example, let us take the indexing provided by Turing machines.

Writing i as a binary string, we might interpret i as an encoded description
of a Turing machine; see [61, 76] for such an encoding of a very specific
form. Any number whose binary representation does not encode a Turing
machine according to this scheme can be taken as an index of a trivial one-
state Turing machine. Because every partial recursive function is computed
by a Turing machine, and because every Turing machine has a description
that can be encoded as a binary number, property (i) holds. Because there is
a universal Turing machine that can take a description of another machine i
and an input x and simulate the machine with description i on x, property
(ii) holds. Finally, because it is possible to code parts of the input to a
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machine in the finite control, so that they can be accessed by table lookup,
this indexing scheme satisfies property (iii).

Property (iii) of acceptable indexings assumes the existence of sm
n func-

tions. Actually, we only need to assume the existence of s1
1; all the others

are definable. For example, we can take

s3
2

def= s1
1 ◦ <s1

1 ◦ <π3
1 , π

3
2>, π

3
3>,

because then

ϕi(x1, x2, y1, y2, y3) = ϕi(<x1, <x2, <y1, y2, y3>>>)
= ϕs1

1(s1
1(i,x1),x2)(<y1, y2, y3>)

= ϕs1
1◦<s1

1◦<π3
1,π3

2>,π3
3>(i,x1,x2)(<y1, y2, y3>)

= ϕs3
2(i,x1,x2)(y1, y2, y3).

Comp, Const, and Pair

We can obtain an index for the composition f ◦ g of two partial recursive
functions effectively1 from indices for f and g. In other words, there exists
a total recursive function comp such that

ϕcomp(i,j) = ϕi ◦ ϕj .

Here is the construction of comp. Let m be an index for the partial recursive
function U ◦ <π3

1 , U ◦ <π3
2 , π3

3>>. Then

(ϕi ◦ ϕj)(x) = ϕi(ϕj(x))
= U(i, U(j, x))
= U ◦ <π3

1 , U ◦ <π3
2 , π

3
3>>(i, j, x)

= ϕm(i, j, x)
= ϕs1

2(m,i,j)(x),

so we can take comp to be the total recursive function

comp
def= λ<i, j>.s1

2(m, i, j)
= λx.s1

2(κm(x), π2
1(x), π2

2(x))
= s1

2 ◦ <κm, π2
1 , π

2
2>.

This is total because s1
2, κm, π2

1 , and π2
2 are.

We can even get an index for comp if we like. Let � be an index for s1
2.

Then

comp(i, j) = s1
2(m, i, j) = ϕ�(m, i, j) = ϕs2

1(�,m)(i, j),

1effectively = by a recursive function.
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so s2
1(�, m) is an index for comp.
We can also obtain an index for the pair <f, g> of two partial recursive

functions effectively from indices for f and g and an index for the constant
function κc effectively from c. In other words, there exist total recursive
functions pair and const such that

ϕpair(i,j) = <ϕi, ϕj> ϕconst(i) = κi.

The construction of pair and const is similar to the construction of comp
given above and is left as an exercise (Homework 10, Exercise 1).

The Recursion Theorem

One of the most intriguing aspects of recursive function theory is the power
of self-reference. There is a general theorem called the recursion theorem
that is a kind of a fixpoint theorem. It says that any total recursive func-
tional (function that acts on indices) has a fixpoint. Formally,

Theorem 33.1 (Recursion Theorem) For any total recursive function σ, there exists an
index i such that ϕi = ϕσ(i). Moreover, such an i can be obtained effectively
from an index for σ.

We give several applications of this theorem in Lecture 34. For now we
point out its similarity to Gödel’s fixpoint lemma, which is used in the proof
of the incompleteness theorem (see [76]). Recall that the fixpoint lemma
states that for any formula Φ(x) of the language of number theory with
one free variable x, there is a sentence Ψ such that

N � Ψ ↔ Φ(�Ψ�),

where �Ψ� is the numeric code of the sentence Ψ in some reasonable coding
scheme. (Think: “code” = “Gödel number”.) In fact, the fixpoint lemma
and the recursion theorem are essentially the same phenomenon in different
formalisms, and their proofs are very similar. There is also a strong connec-
tion to the fixpoint combinator λf.(λx.f(xx) λx.f(xx)) of the λ-calculus.

The recursion theorem is due to Kleene [72] (see also [73]).

Proof of Theorem 33.1. Let h be a total recursive function that on input
v produces the index of a function that on input x

(i) computes ϕv(v);

(ii) if ϕv(v) is defined, applies σ to ϕv(v); and

(iii) interprets σ(ϕv(v)) as an index and applies the function with that
index to x.
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Thus

ϕh(v)(x) = ϕσ(ϕv(v))(x)

if ϕv(v) is defined, undefined otherwise. It is important to note that h itself
is a total recursive function; it does not do any of the steps (i)–(iii) above,
it only computes the index of a function that does them.

Now let u be an index for h. Then h(u) = ϕu(u) is the desired fixpoint
of σ: for all x,

ϕh(u)(x) = ϕσ(ϕu(u))(x) = ϕσ(h(u))(x).

We leave the second statement of the theorem, the fact that the fixpoint
can be obtained effectively from an index for σ, as an exercise (Homework
10, Exercise 2). �

We give several applications of the recursion theorem next time.
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Applications of the Recursion Theorem

Let ϕ0, ϕ1, . . . be a Gödel numbering of the partial recursive functions.
Recall from last time the statement of the recursion theorem: any total
recursive functional σ has a fixpoint i, that is, an index i such that ϕi =
ϕσ(i). Moreover, we can find i effectively from an index for σ.

The recursion theorem was originally conceived as a way to prove the
existence of functions defined by recursion (hence the name). For example,
the factorial function is a fixpoint of the total recursive transformation

P �→ λx.

{
1, if x = 0
x · P (x− 1), otherwise.

We explore this application in Homework 12, Exercise 2. However, the
recursion theorem has many other far-reaching consequences. It captures
in a concise way the fundamental idea of self-reference.

A Self-Printing Program
As an example of self-reference, here is a C program that prints itself out:

char *s="char *s=%c%s%c;%cmain(){printf(s,34,s,34,10,10);}%c";

main(){printf(s,34,s,34,10,10);}

Here 34 and 10 are the ASCII codes for double quote and newline, respec-
tively. In essence, the printf statement says that we should take the string
s and print it after inserting a quoted copy of itself.
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The same principle is illustrated in the following UNIX shell script. It is
written with extra spaces and line breaks for readability; the self-printing
program is actually the output of this program.

x=’y=‘echo .|tr . "\47"‘;echo "x=$y$x$y;$x"’

y=‘echo .|tr . "\47"‘;echo "x=$y$x$y;$x"

Such programs are sometimes called quines after the philosopher Willard
van Orman Quine.

Any general-purpose programming language has the power to construct
quines. In any Gödel numbering of the partial recursive functions, the
“program that prints itself out” would be an index i such that for all
x, ϕi(x) = i. To obtain such an i, take the fixpoint of the functional const
constructed in Lecture 33.

Rice’s Theorem

Rice’s theorem [102, 103] states that every nontrivial property of the recur-
sively enumerable (r.e.) sets is undecidable. Here is a proof of this using the
recursion theorem. Intuitively, if a nontrivial property were decidable, then
one could construct a recursive functional with no fixpoint, contradicting
the recursion theorem.

We show that every nontrivial property of the partial recursive functions
is undecidable, where a property of the partial recursive functions is a map
P : ω → {0, 1} such that if ϕi = ϕj , then P (i) = P (j) (thus it is a property
of functions, not of indices), and P is nontrivial if it is neither universally
false nor universally true.

Suppose P is such a property. Because P is nontrivial, there exist indices
i0 and i1 such that P (i0) = 0 and P (i1) = 1. Suppose P were decidable.
Then the function

σ(j) def=
{

i0, if P (j) = 1,
i1, if P (j) = 0

would be a total recursive function. But σ has no fixpoint: for all j,

P (σ(j)) =
{

P (i0) = 0, if P (j) = 1,
P (i1) = 1, if P (j) = 0,

therefore P (j) �= P (σ(j)). Because P is a property of functions, ϕj �= ϕσ(j).
This contradicts the recursion theorem.

Minimal Programs

There is no algorithm to find a smallest program equivalent to a given
one, for any reasonable definition of “smallest”. This is true regardless of
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the programming language. For example, for Turing machines, there is no
algorithm to find a Turing machine with the fewest states equivalent to a
given one.

In general terms, for any Gödel numbering, there does not exist a total
recursive function σ such that for all j, σ(j) is a minimal index for ϕj . Here
“minimal” means with respect to the natural order ≤ on ω. We prove an
even stronger result:

Theorem 34.1 In any Gödel numbering, there does not exist an infinite r.e. list of minimal
indices.

Proof. Suppose such a list did exist. Consider the total recursive function
σ that on input x enumerates the list until encountering an index greater
than x and takes that as its value. Then σ has no fixpoint: for all x, ϕx �=
ϕσ(x), because x < σ(x) and σ(x) is a minimal index. This contradicts the
recursion theorem. �

Effective Padding

Even though you cannot effectively find a smaller index equivalent to a
given one, you can always find a larger one. This is called effective padding.
With Turing machines and Java programs, it is easy to pad the machine
or program to get a larger one that is equivalent: for Turing machines, just
throw in some dummy inaccessible states, and for programs, just include
some dummy inaccessible statements. In general, any Gödel numbering has
this padding property:

Lemma 34.2 In any Gödel numbering, there exists a total recursive function σ such that
for all x, σ(x) > x and ϕx = ϕσ(x).

Proof. Say we are given x. To compute σ(x), we go though a number of
stages. We start at stage 0 with B := {x}. Now suppose that at some stage
we have constructed B ⊆ {0, 1, 2, . . . , x − 1, x} such that for all y ∈ B,
ϕy = ϕx. Consider the total recursive function

f(z) =
{

x + 1, if z ∈ B,
x, if z �∈ B,

and let y be a fixpoint of f ; that is, an index such that ϕy = ϕf(y). We
can get our hands on y by the effective version of the recursion theorem. If
y > x, we are done:

ϕy = ϕf(y) = ϕx,
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so we can set σ(x) = y. If y ∈ B, take σ(x) = x+1, and again we are done:

ϕσ(x) = ϕx+1 = ϕf(y) = ϕy = ϕx.

Finally, if y < x and y �∈ B, we can set B := B ∪ {y} and repeat the
process. The invariant is maintained, because

ϕy = ϕf(y) = ϕx.

This can go on for at most finitely many stages, because B can contain no
more than x+1 elements. Eventually we find a fixpoint greater than x. �

The Isomorphism Theorem

We end this lecture by showing that all Gödel numberings are essentially
the same up to recursive isomorphism. This result is due to Rogers (see
[104]).

Theorem 34.3 Let ϕ0, ϕ1, ϕ2, . . . and ψ0, ψ1, ψ2, . . . be two Gödel numberings of the par-
tial recursive functions. There exists a one-to-one and onto total recursive
function ρ : ω → ω such that for all i, ϕi = ψρ(i).

Proof. Let U be the universal function for the ϕ numbering, and let �
be an index for U in the ψ numbering. Thus

ψ�(i, x) = U(i, x) = ϕi(x).

Applying the s1
1 function in the ψ numbering,

ψs1
1(�,i)

(x) = ψ�(i, x) = ϕi(x).

Thus the total recursive function σ
def= λi.s1

1(�, i) maps an index in the
ϕ numbering to an equivalent index in the ψ numbering; that is, for all i,
ϕi = ψσ(i). The same construction in the other direction using the universal
function of the ψ numbering and the s1

1 function of the ϕ numbering yields
a total recursive function τ such that for all j, ψj = ϕτ(j).

Now we combine σ and τ into a single total recursive one-to-one and
onto function ρ : ω → ω such that for all i, ϕi = ψρ(i). We construct ρ
in stages using a back-and-forth argument. After the nth stage, say we
have constructed a finite matching ρ : An → Bn, where An and Bn are
n-element subsets of ω, ρ is one-to-one on An, and for all i ∈ An, ϕi =
ψρ(i). If n is even, let m be the least element of ∼An. Starting with σ(m),
apply the effective padding function (Lemma 34.2) of the ψ numbering
until encountering the first index k ∈ ∼Bn. This must happen eventually,
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because Bn is finite. Similarly, if n is odd, let k be the least element of
∼Bn. Starting with τ(k), apply the effective padding function of the ϕ
numbering until encountering the first index m ∈ ∼An. In either case, we
have ϕm = ψk, m �∈ An, and k �∈ Bn. Set ρ(m) = k, An+1 = An ∪ {m},
and Bn+1 = Bn ∪ {k}. We have increased the domain of definition of ρ by
one and maintained the invariant.

Because we alternate and always process the least unmatched element
on either side, eventually every element is matched. �

An alternative proof of the Rogers isomorphism theorem is given in
Miscellaneous Exercise 108.

There is another isomorphism theorem due to Myhill [90] (see [104])
known as the Myhill isomorphism theorem. It is an effective version of the
Cantor–Schröder–Bernstein theorem of set theory, which says that if there
are one-to-one functions A → B and B → A, then A and B are of the
same cardinality. The Myhill isomorphism theorem says that any two sets
that are reducible to each other via one-to-one reductions are recursively
isomorphic (Miscellaneous Exercise 109).

Both these isomorphism theorems, Rogers and Myhill, can be obtained
as special cases of an even more general theorem (Miscellaneous Exercise
107).
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Abstract Complexity

There are many different ways to measure complexity of computations,
time and space being the two most common. Among other possibilities are
the number of times a Turing machine writes to a tape cell (“ink”), or the
size and depth of Boolean circuits. These complexity measures share some
common general properties that are independent of the particular measure.
For example, the speedup theorem (Theorem 32.2) and gap theorem (The-
orem 32.1) hold for both time and space, and indeed for any complexity
measure satisfying a few easily stated axioms.

Quite early in the development of complexity theory, Blum [16] ob-
served this phenomenon and attempted to formalize an abstract notion of
complexity measure in order to derive such properties purely axiomatically.
In their simplest form, the Blum axioms postulate a collection of functions
Φi, one for each partial recursive function ϕi, such that

(i) for all x, Φi(x)↓ iff ϕi(x)↓; and

(ii) it is uniformly decidable in i, x, and m whether Φi(x) = m.

By (ii) we mean that there exists a total recursive function f of three
variables such that

f(i, x, m) =
{

1, if Φi(x) = m
0, otherwise.
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The collection Φ is called an abstract complexity measure. Time complexity
of Turing machines certainly satisfies these axioms, as does space, provided
we consider the space usage on some input undefined if the machine does
not halt on that input.

The functions Φi are partial recursive functions; moreover, one can ob-
tain an index for Φi effectively from i (Miscellaneous Exercise 116).

Given an abstract complexity measure Φ, any total recursive function
f defines a complexity class

CΦ
f

def= {ϕi | Φi(n) ≤ f(n) a.e.}.
Note that this is a class of functions, not of the programs that compute
them; thus ϕi may be in CΦ

f , even though Φi(n) exceeds f(n) i.o.
The gap and speedup theorems presented in Lecture 32 can be refor-

mulated in this more abstract setting. The proof of the gap theorem in this
more abstract setting is a fairly straightforward generalization of the proof
of Theorem 32.1, and we leave it as an exercise (Miscellaneous Exercise
120), but we redo the proof of the speedup theorem explicitly to illustrate
how the Blum axioms capture the essential properties of complexity mea-
sures.

Theorem J.1 (Gap Theorem [21]) Let Φ be an abstract complexity measure. For any
total recursive function f(x) ≥ x, there exists a total recursive function
t such that CΦ

t = CΦ
f◦t. In other words, for any total recursive f(x) ≥ x,

there is a total recursive t such that if Φi(x) ≤ f(t(x)) a.e., then there is
an index j such that ϕj = ϕi and Φj(x) ≤ t(x) a.e.

Proof. Miscellaneous Exercise 120. �

Theorem J.2 (Speedup Theorem [17]) Let Φ be an abstract complexity measure. For
all total recursive f , there exists a total recursive g such that for all indices
i for g, there exists another index j for g with f(n, Φj(n)) < Φi(n) a.e.

Proof. The proof mimics the proof of the speedup theorem for time
(Theorem 32.2) to a large extent, except we rely only on the axioms for
abstract complexity measures. It will help to understand that proof thor-
oughly before attempting to read this one.

We first diagonalize to get a gr for each ϕr such that, if ϕr is total and
i is an index for gr, then

Φi(n) > ϕr(n− i) a.e.1 (J.1)

1As in Theorem 32.2, “a.e.” and “i.o.” refer to the variable n. Other variables, such as i in this expression,
are regarded as fixed constants.
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Stage 0 Let gr(0) = 0 and D0 = ∅. (Here D corresponds to those ma-
chines that have been deleted from the active list in the proof of Theorem
32.2.)

Stage n ≥ 1 Choose the least i, if it exists, such that

(i) i ≤ n

(ii) i �∈ Dn−1

(iii) Φi(n) ≤ ϕr(n− i).

If such an i exists, let gr(n) = ϕi(n) + 1 and Dn = Dn−1 ∪ {i}. If no such
i exists, just let gr(n) = 0 and Dn = Dn−1.

Denote by ϕh(r,0,0) the above program for gr. Note that if ϕr(i) ↓ for
all 0 ≤ i ≤ n, then ϕh(r,0,0)(n)↓. Thus if ϕr is total, then ϕh(r,0,0) is total,
and the function gr computed by ϕh(r,0,0) satisfies (J.1).

Next we construct an r.e. set of programs such that if ϕr is total, then
all programs in the set are total, and gr is represented among them i.o.

For 1 ≤ k ≤ m, define ϕh(r,k,m) by:

Stages 0, . . . , m− 1 Construct ϕh(r,k,m) exactly as ϕh(r,0,0).

Stage n ≥ m Choose the least i, if it exists, such that

(i) k ≤ i ≤ n

(ii) i �∈ Dn−1

(iii) Φi(n) ≤ ϕr(n− i).

If such an i exists, let ϕh(r,k,m)(n) = ϕi(n) + 1 and Dn = Dn−1 ∪ {i}. If
no such i exists, just let ϕh(r,k,m)(n) = 0 and Dn = Dn−1.

Again, note that if ϕr(i)↓ for 0 ≤ i ≤ n− k, then ϕh(r,k,m)(n)↓. Thus
if ϕr is total, then ϕh(r,k,m) is total. Moreover, we claim that

∀k
∞
∀m ϕh(r,k,m) = gr.

2

This is true because during the computation of ϕh(r,0,0), at some stage m,
all i ≤ k that will ever be in some Dj are already in Dm. Thereafter, the
same candidates for Dj are chosen by ϕh(r,k,m) as by ϕh(r,0,0), so the same
function gr is constructed.

2Here
∞
∀ means “for all but finitely many . . . ” or “for all sufficiently large . . . ”. There is also

∞
∃ , which

means “there exist infinitely many . . . ”.
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Finally, we choose an appropriate ϕr. Define the recursive operator σ
by

ϕσ(r)(0) def= 0

ϕσ(r)(n + 1) def= 1 + max
k,m≤n

f(n + k, Φh(r,k,m)(n + k)).

By the recursion theorem, σ has a fixpoint r, so that

ϕr(0) def= 0

ϕr(n + 1) def= 1 + max
k,m≤n

f(n + k, Φh(r,k,m)(n + k)).

We can show by induction that ϕr is total. Certainly ϕr(0)↓ by definition,
and as argued above, if ϕr(i) ↓ for all 0 ≤ i ≤ n, then ϕh(r,k,m)(n + k) ↓,
therefore ϕr(n + 1)↓. But for all k, m, for sufficiently large n,

ϕr(n + 1) > f(n + k, Φh(r,k,m)(n + k)),

thus

f(n, Φh(r,k,m)(n)) < ϕr(n− k + 1) a.e.

In particular, for any i such that ϕi computes gr, by (J.1) we have

f(n, Φh(r,i+1,m)(n)) < ϕr(n− i) < Φi(n) a.e.

�

As a final example of an interesting general theorem that holds of all
abstract complexity measures, we have the union theorem of McCreight and
Meyer [83]. This theorem states that the union of any effective hierarchy of
complexity classes is itself a complexity class defined by a single function.

For example, one consequence of the union theorem is that there exists
a computable function p such that DTIME (p(n)) = P . Again, however,
the function p is nothing natural like 2(log n)2 or nlog log n or anything of
the sort. As with t in the gap theorem and g in the speedup theorem, it is
constructed by an intricate diagonalization.

Theorem J.3 (Union Theorem [83]) Let f0, f1, . . . be an r.e. list of total recursive func-
tions such that for all i and n, fi(n) ≤ fi+1(n). Then there exists a total
recursive function f such that

CΦ
f =

⋃
i

CΦ
fi

.

In other words, for any recursive function g, there is an index i for g such
that Φi(n) ≤ f(n) a.e. iff there is an index j for g and a number k such
that Φj(n) ≤ fk(n) a.e.
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Proof. We build a total recursive function f by diagonalization satisfying
the following two conditions.

(i) For all k, f(n) ≥ fk(n) a.e.

(ii) For all i, if Φi(n) > fk(n) i.o. for every k, then f(n) < Φi(n) i.o.

These two conditions pull f in opposite directions: condition (i) would like
f to be large, and (ii) would like f to be small. However, because we only
have to satisfy (i) a.e. and (ii) i.o., this gives us some flexibility in the
construction. If we can create f satisfying both conditions, we will have
achieved our goal, because (i) guarantees that CΦ

fj
⊆ CΦ

f , and (ii) says that
if Φi(n) ≤ f(n) a.e., then for some j, Φi(n) ≤ fj(n) a.e., thus CΦ

f ⊆ ⋃
i CΦ

fi
.

Now we turn to the construction of f . As in the proof of Theorem J.2, we
construct f by diagonalization. We maintain a queue of pairs (i, k), i ≤ k,
which we can view as the conjecture that Φi(n) ≤ fk(n) a.e. When a con-
jecture is violated, we take some corrective action in terms of the definition
of f , retract the conjecture, and replace it with a weaker conjecture.

Stage 0 Define f(0) := 0 and initialize the queue to contain the single
pair (0, 0).

Stage n ≥ 1 Find the first conjecture (i, k) on the queue that is violated
at n; that is, such that Φi(n) > fk(n). If such an (i, k) exists, define f(n) :=
fk(n), remove (i, k) from the queue, and append (i, k+1) at the back of the
queue. If no such (i, k) exists, define f(n) = fn(n). In either case, append
(n, n) at the back of the queue.

For any m, there are only finitely many conjectures (i, k) with k ≤ m
ever on the queue (

(
m+2

2

)
to be exact). Once a conjecture is deleted from

the queue, it never returns. If a conjecture on the queue is violated infinitely
often, it is eventually chosen for deletion. If it is violated at some stage,
then the only way it would not be chosen for deletion at that stage is if
some conjecture ahead of it on the queue is chosen instead, but this can
happen only finitely many times. At some stage, all conjectures (i, k) with
k ≤ m that will ever be deleted from the queue have already been deleted,
and thereafter f(n) ≥ fm(n). This establishes (i).

For (ii), if Φi(n) > fk(n) i.o. for every k, then the conjectures (i, k) for
i ≤ k all go on the queue eventually and are all deleted eventually. When
(i, k) is deleted, f(n) is defined to be fk(n) < Φi(n), so f(n) < Φi(n). This
happens infinitely often, therefore f(n) < Φi(n) i.o. �

The union theorem does not hold without the monotonicity condition
on the fk (Miscellaneous Exercise 126).

More of the theory of abstract complexity measures is explored in Mis-
cellaneous Exercises 116–127.
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The Arithmetic Hierarchy

Let A, B be sets of strings. We say that A is r.e. in B if A = L(MB)
for some oracle TM M with oracle B. We say that A is recursive in B if
A = L(MB) for some oracle TM M with oracle B such that MB is total;
that is, if membership in A is decidable relative to an oracle for B. We write
A ≤T B if A is recursive in B. The relation ≤T is called Turing reducibility.

We can define a hierarchy of classes above the r.e. sets analogous to the
polynomial time hierarchy as follows. Fix the alphabet {0, 1} and identify
strings in {0, 1}∗ with the natural numbers. Define

Σ0
1

def= {r.e. sets},
∆0

1
def= {recursive sets},

Σ0
n+1

def= {L(MB) | B ∈ Σ0
n}

= {A | A is r.e. in some B ∈ Σ0
n},

∆0
n+1

def= {L(MB) | B ∈ Σ0
n, MB total}

= {A | A is recursive in some B ∈ Σ0
n}

= {A | A ≤T B for some B ∈ Σ0
n},

Π0
n

def= {complements of sets in Σ0
n}.

Thus Π0
1 is the class of co-r.e. sets. The classes Σ0

n, Π0
n, and ∆0

n comprise
what is known as the arithmetic hierarchy.
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Here is perhaps a more revealing characterization of the arithmetic hi-
erarchy in terms of alternation of quantifiers. This characterization is anal-
ogous to the characterization of the polynomial time hierarchy given in
Theorem 10.2.

Recall that a set A is r.e. iff there exists a decidable binary predicate
R such that

A = {x | ∃y R(x, y)}. (35.1)

For example, the halting and membership problems can be expressed

HP = {M#x | ∃t M halts on x in t steps},
MP = {M#x | ∃t M accepts x in t steps}.

Note that the predicate “M halts on x” is not decidable, but the predicate
“M halts on x in t steps” is, because we can just simulate M on input x
with a universal machine for t steps and see if it halts within that time.
Alternatively,

HP = {M#x | ∃v v is a halting computation history of M on x},
MP = {M#x | ∃v v is an accepting computation history of M on x}.

The class Σ0
1 is the family of all sets that can be expressed in the form

(35.1).
Similarly, it follows from elementary logic that Π0

1, the family of co-r.e.
sets, is the class of all sets A for which there exists a decidable binary
predicate R such that

A = {x | ∀y R(x, y)}. (35.2)

As is well known, a set is recursive iff it is both r.e. and co-r.e. In terms
of our new notation,

∆0
1 = Σ0

1 ∩Π0
1.

These results are special cases of the following theorem, which is anal-
ogous to the characterization of PH given in Miscellaneous Exercise 32.

Theorem 35.1 (i) A set A is in Σ0
n iff there exists a decidable (n + 1)-ary predicate R

such that

A = {x | ∃y1 ∀y2 ∃y3 · · · Qyn R(x, y1, . . . , yn)},
where Q = ∃ if n is odd, ∀ if n is even.

(ii) A set A is in Π0
n iff there exists a decidable (n + 1)-ary predicate R

such that

A = {x | ∀y1 ∃y2 ∀y3 · · · Qyn R(x, y1, . . . , yn)},
where Q = ∀ if n is odd, ∃ if n is even.
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(iii) ∆0
n = Σ0

n ∩Π0
n.

Proof. Miscellaneous Exercise 128. �

One difference here from our treatment of PH is that we are lacking a
characterization of the arithmetic hierarchy in terms of something analo-
gous to alternating TMs. This deficiency is corrected in Lecture 39.

Example 35.2 The set EMPTY def= {M | L(M) = ∅} is in Π0
1, because

EMPTY = {M | ∀x ∀t M does not accept x in t steps}.
The two universal quantifiers ∀x ∀t can be combined into one using the com-
putable one-to-one pairing function (33.1) described in Lecture 33. Thus

EMPTY = {M | ∀z M does not accept π2
1(z) in π2

2(z) steps}.
�

Example 35.3 The set TOTAL def= {M | M is total} is in Π0
2, because

TOTAL = {M | ∀x ∃t M halts on x in t steps}.
�

Example 35.4 The set FIN def= {M | L(M) is finite} is in Σ0
2, because

FIN = {M | ∃n ∀x if |x | > n then x �∈ L(M)}
= {M | ∃n ∀x ∀t |x | ≤ n or M does not accept x in t steps}.

Again, the two universal quantifiers ∀x ∀t can be combined into one using
the pairing function (33.1). �

Example 35.5 A set is cofinite if its complement is finite. The set

COF def= {M | L(M) is cofinite}
is in Σ0

3, because

COF = {M | ∃n ∀x if |x | > n then x ∈ L(M)}
= {M | ∃n ∀x ∃t |x | ≤ n or M accepts x in t steps}.

�

Figure 35.1 depicts the inclusions among the lowest few levels of the
hierarchy. Each level of the hierarchy is strictly contained in the next; that
is, Σ0

n ∪ Π0
n ⊆ ∆0

n+1, but Σ0
n ∪Π0

n �= ∆0
n+1. We know that there exist r.e.

sets that are not co-r.e. (HP, for example) and co-r.e. sets that are not r.e.
(∼HP, for example). Thus Σ0

1 and Π0
1 are incomparable with respect to set

inclusion. One can show in the same way that Σ0
n and Π0

n are incomparable
with respect to set inclusion for any n (Homework 11, Exercise 2).
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Reducibility and Completeness

For A ⊆ Σ∗ and B ⊆ Γ∗, define A ≤m B if there exists a total recursive
function σ : Σ∗ → Γ∗ such that for all x ∈ Σ∗,

x ∈ A ⇔ σ(x) ∈ B.

The relation ≤m is called many–one reducibility and is analogous to the
reducibility relations ≤log

m or ≤p
m we have studied, except without the re-

source bounds.
The membership problem MP def= {M#x | M accepts x} is not only

undecidable but is in a sense a “hardest” r.e. set, because every other r.e.
set ≤m-reduces to it: for any Turing machine M , the map x �→ M#x is a
trivially computable map reducing L(M) to MP.

We say that a set is r.e.-hard if every r.e. set ≤m-reduces to it. In other
words, the set B is r.e.-hard if for all r.e. sets A, A ≤m B. As just observed,
the membership problem MP is r.e.-hard. So is any other problem to which
the membership problem ≤m-reduces (for example, the halting problem
HP), because the relation ≤m is transitive.

A set B is said to be r.e.-complete if it is both an r.e. set and r.e.-hard.
For example, both MP and HP are r.e.-complete.

More generally, if C is a class of sets, we say that a set B is ≤m-hard for
C (or just C-hard) if A ≤m B for all A ∈ C. We say that B is ≤m-complete
for C (or just C-complete) if B is ≤m-hard for C and B ∈ C.

One can prove a theorem corresponding to Lemma 5.3 that says that
if A ≤m B and B ∈ Σ0

n, then A ∈ Σ0
n, and if A ≤m B and B ∈ ∆0

n, then
A ∈ ∆0

n. Because we know that the arithmetic hierarchy is strict (each
level is properly contained in the next), if B is ≤m-complete for Σ0

n, then
B �∈ Π0

n (or ∆0
n or Σ0

n−1).
It turns out that each of the problems mentioned above is ≤m-complete

for the level of the hierarchy in which it naturally falls:

(i) HP is ≤m-complete for Σ0
1,

(ii) MP is ≤m-complete for Σ0
1,

(iii) EMPTY is ≤m-complete for Π0
1,

(iv) TOTAL is ≤m-complete for Π0
2,

(v) FIN is ≤m-complete for Σ0
2, and

(vi) COF is ≤m-complete for Σ0
3.

Because the hierarchy is strict, none of these problems is contained in any
class lower in the hierarchy or reduces to any problem complete for any
class lower in the hierarchy. If it did, then the hierarchy would collapse at
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that level. For example, EMPTY does not reduce to HP and COF does not
reduce to FIN.

We have shown (ii) above. We prove (v) here and (vi) in Lecture 36;
the others we leave as exercises (Miscellaneous Exercise 130).

We have already argued that FIN ∈ Σ0
2, because finiteness can be ex-

pressed with an ∃ ∀ predicate. To show that FIN is ≤m-hard for Σ0
2, we

need to show that any set in Σ0
2 reduces to it. We use the characterization

of Theorem 35.1. Let

A = {x ∈ Γ∗ | ∃y ∀z R(x, y, z)}
be an arbitrary set in Σ0

2, where R(x, y, z) is a decidable ternary predicate.
Let M be a total machine that decides R. We need to construct a machine
N effectively from a given x such that N ∈ FIN iff x ∈ A. Thus we want N
to accept a finite set iff ∃y ∀z R(x, y, z); equivalently, we want N to accept
an infinite set iff ∀y ∃z ¬R(x, y, z). Let N on input w

(i) write down all strings y of length at most |w |; then

(ii) for each such y, try to find a z such that ¬R(x, y, z) (that is, such
that M rejects x#y#z), and accept if all these trials are successful.
The machine N has x and a description of M hard-wired in its finite
control.

In step (ii), for each y of length at most |w |, N just enumerates strings z
in some order and runs M on x#y#z until some z is found causing M to
reject. Because M is total, N need not worry about timesharing; it can just
process the z’s in order. If no such z is ever found, N just goes on forever.
Surely such an N can be built effectively from M and x.

Now if x ∈ A, then there exists y such that for all z, R(x, y, z) (that
is, for all z, M accepts x#y#z); thus step (ii) fails whenever |w | ≥ |y |. In
this case N accepts a finite set. On the other hand, if x �∈ A, then for all y
there exists a z such that ¬R(x, y, z), and these are all found in step (ii).
In this case, N accepts Γ∗.

We have argued that L(N) is a finite set if x ∈ A and Γ∗ if x �∈ A,
therefore the map x �→ N constitutes a ≤m-reduction from A to FIN.
Because A was an arbitrary element of Σ0

2, FIN is ≤m-hard for Σ0
2.

Note that the same reduction shows that TOTAL is ≤m-hard for Π0
2.

This is because in the construction above, N is total iff x ∈ ∼A, and
∼A ∈ Π0

2 because A ∈ Σ0
2.
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Figure 35.1: The arithmetic hierarchy.



Lecture 36

Complete Problems in the
Arithmetic Hierarchy

In this lecture we give some natural problems complete for the third level
of the arithmetic hierarchy. Recall our definitions from last time:

Σ0
n+1

def= {A | A is r.e. in some B ∈ Σ0
n}

= {L(MB) | B ∈ Σ0
n},

∆0
n+1

def= {A | A is recursive in some B ∈ Σ0
n}

= {L(MB) | B ∈ Σ0
n, MB total}

= {A | A ≤T B for some B ∈ Σ0
n},

Π0
n

def= {A | ∼A ∈ Σ0
n},

and Σ0
1 = {r.e. sets} and ∆0

1 = {recursive sets}. Define the notation

M(x)↓ M halts on input x,
M(x)↓t M halts on input x within t steps,
M(x)↑ M does not halt on input x,
M(x)↑t M does not halt on input x for at least t steps.

For example, the halting problem is the set HP def= {M#x | M(x)↓}.
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We can define relativized versions of any of the sets discussed in the
last lecture. For example, the finiteness problem relative to oracle A is the
set

FINA def= {M | L(MA) is finite}.
Lemma 36.1 FINHP is ≤m-complete for Σ0

3. More generally, if A is ≤m-complete for
Σ0

n, then FINA is ≤m-complete for Σ0
n+2.

Proof. To show that FINA ∈ Σ0
n+2, note that

M ∈ FINA ⇔ L(MA) is finite ⇔ ∃y ∀z ≥ y ∀t MA(z)↑t (36.1)

(without loss of generality, consider machines without reject states, so that
halting and accepting are synonymous). The predicate MA(z) ↑t is ∆0

n+1

because it is recursive in A, which is Σ0
n-complete. By Theorem 35.1(iii), it

is also in Π0
n+1, and by Theorem 35.1(ii), it can be expressed in the form of

n+1 alternations of quantifiers beginning with ∀ and followed by a recursive
predicate. Combining this with the Σ2 quantifier prefix ∃y ∀z ≥ y ∀t in
(36.1), we obtain a Σn+2 quantifier prefix followed by a recursive predicate.
This shows that FINA is in Σ0

n+2.
To show that FINA is Σ0

n+2-hard, let us first recall the proof that FIN
is Σ0

2-hard. We had to reduce an arbitrary set in Σ0
2 to FIN, which meant

we had to construct a reduction

{x | ∃y ∀z R(x, y, z)} ≤m {M | L(M) is finite}

for an arbitrary recursive predicate R(x, y, z). Thus we needed to give a
total recursive function σ such that for all x, σ(x) is a description of a
machine M such that

∃y ∀z R(x, y, z) ⇔ L(M) is finite.

Given x, we built M that on input w enumerated all y of length at
most |w |, and for each such y tried to find z such that ¬R(x, y, z).
Thus if ∀y ∃z ¬R(x, y, z), then L(M) = Σ∗; but on the other hand, if
∃y ∀z R(x, y, z), then M looped infinitely on all inputs w of length greater
than the shortest such y, therefore accepted a finite set.

Now we can do exactly the same construction in the presence of an
oracle A. If RA(x, y, z) is recursive in A, this gives a reduction

{x | ∃y ∀z RA(x, y, z)} ≤m {M | L(MA) is finite}.

We build the oracle machine MA that on input w enumerates all y of length
at most |w |, and for each such y tries to find z such that ¬RA(x, y, z). The
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machine MA queries its oracle A as necessary to determine RA(x, y, z).
Again, if ∀y ∃z ¬RA(x, y, z), then L(MA) = Σ∗; but on the other hand, if
∃y ∀z RA(x, y, z), then MA accepts a finite set.

Now we need to argue that for any A that is Σ0
n-complete, any Σ0

n+2

set

{x | ∃y1 ∀y2 ∃y3 · · · Qyn+2 S(x, y1, . . . , yn+2)}

can be written

{x | ∃y ∀z RA(x, y, z)}

for some R recursive in A. But this follows immediately from the fact that
the Σ0

n set

{(x, y1, y2) | ∃y3 · · · Qyn+2 S(x, y1, . . . , yn+2)}

is recursive in A, because A is Σ0
n-hard. �

All the following problems are ≤m-complete for Σ0
3:

• COF def= {M | L(M) is cofinite} = {M | ∼L(M) is finite},

• REC def= {M | L(M) is recursive},

• REG def= {M | L(M) is regular},

• CFL def= {M | L(M) is context-free}.
These problems can all be shown to be in Σ0

3 by expressing their defining
predicates in the appropriate form. For example,

COF = {M | ∃y ∀z |z | ≥ |y | → ∃t M(z)↓t}
= {M | ∃y ∀z ∃t |z | < |y | ∨ M(z)↓t}.

We show that COF is ≤m-hard for Σ0
3 by a reduction from FINHP,

which is Σ0
3-hard by Lemma 36.1. We wish to construct a reduction

{M | L(MHP) is finite} ≤m {M | L(M) is cofinite};
in other words, we would like to give a total recursive σ such that for all
M , N = σ(M) is a machine such that

L(MHP) is finite ⇔ L(N) is cofinite.

Given M , let KHP be an oracle machine with oracle HP that takes the
following actions on input y.
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(i) Try to find z greater in length than y accepted by MHP. This is
done using a timesharing simulation of MHP on all inputs z such
that |z | > |y | in some order, timesharing the computations to make
sure that all MHP(z) are eventually simulated for arbitrarily many
steps. If such a z does exist, the simulation will discover it. If not,
the simulation will loop forever. As soon as such a z is found, halt
the simulation and go on to step (ii).

(ii) Just for fun, verify all “yes” oracle responses from step (i) by simulat-
ing H on input w for all strings H#w on which the oracle was queried
and to which it responded “yes”. The “no” responses are ignored. All
of these simulations terminate, because the oracle responded “yes”,
therefore H halts on w.

By our construction,

• if L(MHP) is finite, then L(KHP) is finite; and

• if L(MHP) is infinite, then L(KHP) = Σ∗.
Now let N be a machine that accepts all strings that are not accepting

computation histories of KHP on some input. (We encountered computa-
tion histories in Lecture 23.) Normally, a string represents a computation
history of a given machine if it satisfies the following properties.

1. The string encodes a sequence of configurations of the machine.

2. The first configuration is the start configuration on some input.

3. The last configuration is an accepting configuration.

4. The i + 1st configuration follows from the ith according to the tran-
sition rules of the machine.

The only difference here is that we need to account for the oracle HP. A
string that is purportedly a computation history of KHP is peppered with
oracle queries and the corresponding responses of the oracle. Thus we must
add the following condition to our definition of computation history.

5. The responses of the oracle as represented in the string are correct.

To check that a string is not an accepting computation history of KHP,
the machine N has to check that at least one of the conditions 1–5 is
violated. Conditions 1–4 present no problem; but N does not have access
to the oracle, so how can it check the validity of the oracle responses?

The answer is that N need only check the negative oracle responses.
The positive ones were checked by KHP itself, and there is a proof of the
validity of the oracle response right there in the computation history; that
was the purpose of step (ii) above!
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Thus, to accept strings that are not computation histories, N checks
first whether one of the conditions 1–4 is violated. If so, it accepts. If not, it
checks that one of the oracle responses as represented in the string is wrong.
For the positive responses, it can just check the proof in the computation
history itself. For each negative response, say on query H#w, it runs H on
input w to see whether it halts. If so, it halts and accepts, because the “no”
oracle response on query H#w as represented in the computation history
was incorrect, so condition 5 is violated. It does this in a timesharing fashion
for all such oracle queries H#w.

The set L(KHP) is finite iff the set of accepting computation histories
of KHP is finite, because there are as many accepted strings as accepting
computation histories; and this occurs iff L(N) is cofinite. We have thus
built a machine N that accepts a cofinite set iff L(MHP) is finite.

The problems REC, REG, and CFL can be shown Σ0
3-hard by a similar

but only slightly more complicated argument (Miscellaneous Exercise 133).
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Post’s Problem

One of the earliest goals of recursive function theory was to understand
the structure of the m- and T-degrees of the r.e. sets. The m-degree of a
set A is the equivalence class of A under many–one reducibility ≤m, and
the T-degree or Turing degree of A is the equivalence class of A under
Turing reducibility ≤T. The reason for considering equivalence classes is
that equivalent sets contain the same computational information, thus for
purposes of computation might as well be identified.

There are at least two distinct r.e. T-degrees, namely the degree of the
recursive sets (that is, the degree of ∅) and the degree of the r.e.-complete
sets (that is, the degree of the halting problem). Because every m-degree
is contained in a T-degree, there are at least two distinct r.e. m-degrees.
Emil Post showed in 1944 [96] that there were more r.e. m-degrees than
just these two, and posed the same problem for T-degrees. This became
known as Post’s problem. The problem stood open for 12 years until 1956,
when it was solved independently by Friedberg [45] and Muchnik [88].

The Friedberg–Muchnik theorem is a classical result of recursive func-
tion theory. We present a proof of this result in Lecture 38. The proof
illustrates a technique called a finite injury priority argument , which is
useful in many other applications as well. For the rest of this lecture, we
present a proof of Post’s theorem, which solves the problem for m-degrees.
For a more comprehensive treatment of this subject, see [104, 114].
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For this lecture and the next, we revert to the standard notation of
recursive function theory introduced in Lectures 33 and 34, which differs a
little from the notation of Lectures 35 and 36. Let ϕ0, ϕ1, . . . be a Gödel
numbering of the partial recursive functions. For ϕx a recursive function,
write ϕx(y)↓ if ϕx is defined on y, and define

Wx
def= domain of ϕx = {y | ϕx(y)↓}.

Every set Wx is an r.e. set, and every r.e. set is Wx for some x. Thus we
can consider W0, W1, . . . an indexing of the r.e. sets. Define

K
def= {x | ϕx(x)↓} = {x | x ∈ Wx}.

The set K is easily shown to be r.e.-complete: Wx ≤m K via the map
λy.comp(x, const(y)), and K itself is Wk, where k = comp(u, pair(i, i)) and
u and i are indices for the universal and identity functions, respectively.

T- and m-degrees

Recall the definitions of the reducibility relations ≤m and ≤T: for A, B ⊆
ω, A ≤m B if there exists a total recursive function σ such that for all x,

x ∈ A ⇔ σ(x) ∈ B,

and A ≤T B if A is recursive in B; that is, if there exists an oracle Turing
machine M with oracle B such that MB is total and A = L(MB). If
A ≤m B then A ≤T B, because we can build M that on input x computes
σ(x) and queries the oracle. However, the converse does not hold: ∼K ≤T K
but not ∼K ≤m K.

Define A ≡m B if A ≤m B and B ≤m A, and define A ≡T B if A ≤T B
and B ≤T A. The ≡m- equivalence class and ≡T-equivalence class of A
are called the m-degree and T-degree of A, respectively. The relation ≡m

refines the relation ≡T; in other words, for any A, the m-degree of A is
contained setwise in the T-degree of A.

The ≤m-least m-degree consists of all the recursive sets. The ≤m-
greatest r.e. m-degree is the m-degree of K, the family of r.e.-complete
sets. Post proved in 1944 that there exist other m-degrees besides these
two, and conjectured that the same was true for the T-degrees.

Theorem 37.1 (Post 1944 [96]) There exists a nonrecursive r.e. set that is not r.e.-
complete.

Immune, Simple, and Productive Sets

The proof of Theorem 37.1 involves the concepts of immune, simple, and
productive sets.
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Definition 37.2 A set A ⊆ ω is called immune if

• A is infinite, and

• A contains no infinite r.e. subset.

Definition 37.3 A set B ⊆ ω is called simple if

• B is r.e., and

• ∼B is immune.

In other words, B is simple if

• B is r.e.,

• ∼B is infinite, and

• B intersects every infinite r.e. set.

Definition 37.4 A set C ⊆ ω is productive if there exists a total recursive function σ such
that whenever Wx ⊆ C,

σ(x) ∈ C −Wx.

The function σ is called a productive function for C.�

	

�

�	�
��
�σ(x)

Wx

C

Example 37.5 For example, ∼K is productive with productive function λx.x, the identity.
To show this, suppose Wx ⊆ ∼K. For any x,

x ∈ Wx ⇔ ϕx(x)↓ by definition of Wx

⇔ x ∈ K by definition of K,

therefore either

• x ∈ Wx and x ∈ K, or

• x �∈ Wx and x �∈ K.

But the former is impossible by the assumption Wx ⊆ ∼K; therefore
x ∈ ∼K −Wx. �
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Proof of Post’s Theorem

The proof of Theorem 37.1 can be broken down into three basic lemmas
involving the concepts introduced in the last section.

Lemma 37.6 There exists a simple set.

Lemma 37.7 If B is simple, then ∼B is not productive.

Lemma 37.8 If A is r.e.-complete, then ∼A is productive.

We prove these lemmas below. For now, let us see how to use them to
prove Post’s theorem.

Proof of Theorem 37.1. Let B be a simple set, which exists by Lemma
37.6. The set B cannot be recursive, because then ∼B would be r.e.; but
this contradicts the assumption that B is simple, because ∼B is infinite
and B must intersect all infinite r.e. sets. Neither can B be r.e.-complete
because of Lemmas 37.7 and 37.8. �

Proof of Lemma 37.6. We build a simple set B. We have three conditions
to fulfill in the construction:

• B must be r.e.,

• ∼B must be infinite, and

• B must intersect every infinite r.e. set.

We describe an enumeration procedure for B. Let Mx be an enumeration
machine enumerating the r.e. set Wx. Recall (see [76]) that an enumeration
machine has a read/write worktape and a write-only output tape but no
input tape. It starts with its work and output tapes blank and runs forever,
occasionally entering a distinguished enumeration state, at which time the
string currently written on its output tape is said to be enumerated, and
the output tape is instantaneously erased and the head returned back to
the beginning of the tape.

Our enumeration procedure for B performs a timesharing simulation
of all enumeration machines. It keeps a list of machines it is currently
simulating and simulates different machines on different blocks of the tape.
It starts out by simulating M0 for one step, then M0 and M1 for one step
each, then M0, M1, and M2 for one step each, and so on. In each round of
simulation, it adds a new machine to the list and allocates a block of its
worktape for the simulation of the new machine. If at any time it runs out
of space for one of the simulations, it enters a subroutine to move other
blocks to create more space.
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When and if the simulation of Mx first attempts to enumerate some
y ≥ 2x, our enumeration procedure also enumerates y, then terminates
the simulation of Mx and removes it from the list of simulated machines.
Define g(x) to be the y that was enumerated by Mx that caused this to
happen. It may be that Mx never enumerates any y ≥ 2x, in which case
the simulation of Mx never terminates and g(x) is undefined.

Let B be the set of elements ever enumerated by this procedure. We
claim that B is simple. First, B is r.e., because we have just given a pro-
cedure to enumerate it. Second, its complement is infinite, because the 2n-
element set {0, . . . , 2n− 1} can contain at most n elements of B, namely
g(0), . . . , g(n − 1). No other g(m) can be in this set, because g(m) ≥ 2m.
Finally, B intersects every infinite r.e. set, because any such set is Wx for
some x. When Mx enumerates some y ≥ 2x, which it must eventually
because Wx is infinite, then y is enumerated as an element of B. �

Proof of Lemma 37.7. Any productive set contains an infinite r.e. subset
obtained by iterating the productive function starting with ∅. Let C be
a productive set with productive function σ. Let i0 be an index for the
totally undefined function; then

Wi0 = ∅ ⊆ C.

Now suppose we have constructed Win ⊆ C. Then σ(in) ∈ C−Win . Define

Win+1

def= Win ∪ {σ(in)}.
Then Win+1 ⊆ C. Moreover, we can get the index in+1 effectively from the
index in. The set

{σ(i0), σ(i1), σ(i2), . . . }
is therefore an infinite r.e. subset of C. �

Proof of Lemma 37.8. Suppose A is r.e.-complete. Then K ≤m A, say
by the total recursive function σ. Thus for all x,

x ∈ K ⇔ σ(x) ∈ A;

equivalently,

∼K = σ−1(∼A), (37.1)

where σ−1(∼A) def= {x | σ(x) ∈ ∼A}.
Recall from Example 37.5 that ∼K is productive with productive func-

tion λx.x. We combine this fact with the reduction σ to get a productive
function for A.
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Suppose Wi ⊆ ∼A. Let m be an index for σ and let

τ = λi.comp(i, m).

Then

Wτ(i) = Wcomp(i,m)

= {x | ϕcomp(i,m)(x)↓}
= {x | ϕi(σ(x))↓}
= {x | σ(x) ∈ Wi}
= σ−1(Wi)
⊆ σ−1(∼A) by monotonicity of σ−1

= ∼K by (37.1).

Because the identity function is a productive function for ∼K,

τ(i) ∈ ∼K −Wτ(i) = σ−1(∼A)− σ−1(Wi) = σ−1(∼A−Wi);

therefore

σ(τ(i)) ∈ ∼A−Wi.

Thus σ ◦ τ is a productive function for ∼A. �

See Miscellaneous Exercise 112 for a generalization of Lemma 37.8.
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The Friedberg–Muchnik Theorem

In this lecture we give Friedberg and Muchnik’s solution to Post’s prob-
lem. The proof illustrates a useful technique called a finite injury priority
argument that is by now quite common in recursive function theory.

Let ϕ0, ϕ1, . . . be a Gödel numbering of the partial recursive functions.
Recall from last time our notation

Wn
def= domain of ϕn = {x | ϕn(x)↓}

K
def= {n | ϕn(n)↓},

where ↓ means “is defined,” and

B ≤T C
def⇐⇒ B is recursive in C.

Define

B <T C
def⇐⇒ B ≤T C but C �≤T B.

Theorem 38.1 (Friedberg [45] and Muchnik [88]) There exists a nonrecursive r.e. set A
such that K �≤T A. In other words, there exists a set A such that

∅ <T A <T K.
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Low Sets

Our proof of Theorem 38.1 follows [114]. The proof involves the concept of
a low set .

Definition 38.2 A set A is low if it is r.e. and KA ≤T K.

In other words, A is low if halting in the presence of the oracle A is no
harder to decide than halting without the oracle.

Lemma 38.3 If A is low, then A <T K.

Proof. Certainly A ≤T K, because A is r.e. and K is r.e.-complete. Now
if K ≤T A, then KK ≤T KA. By lowness, KA ≤T K, and by transitivity
of ≤T, KK ≤T K. But this is impossible, as KK is complete for Σ0

2 and K
is complete for Σ0

1. �

Recall from last time that a set A is simple if

• A is r.e.,

• ∼A is infinite, and

• A intersects every infinite r.e. set.

Lemma 38.4 There exists a low simple set.

We prove Lemma 38.4 in the next section. For now, let us show how
the Friedberg–Muchnik theorem follows.

Proof of Theorem 38.1. Let A be a low simple set, which exists by
Lemma 38.4. By Lemma 38.3, A <T K. Because no simple set can be
recursive, ∅ <T A. �

A Finite Injury Priority Argument

In this section we give a proof of Lemma 38.4. We give a procedure for
enumerating a low simple set A as the union of infinitely many finite sets

A =
⋃
t≥0

At,

where At has t elements and At ⊆ At+1, t ≥ 0.
To ensure that A is low and simple, we need to satisfy several competing

conditions. There are some positive conditions that want to put elements
into A and some negative conditions that want to keep elements out of A.
At times, in order to satisfy some condition, we may have to break another
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condition that has already been satisfied. A condition that is broken in this
way is said to be injured . However, we assign a priority to the conditions
such that for every condition, there are only finitely many conditions of
higher priority, and the condition can be injured only by a higher priority
condition and only once by that condition. Thus a condition can only be
injured finitely many times, and will eventually be satisfied.

For A to be low and simple, we must ensure that

(i) A is r.e.;

(ii) A is coinfinite;

(iii) A intersects every infinite r.e. set;

(iv) KA ≤T K.

Condition (i) is true automatically, because we are giving a procedure for
enumerating A. Condition (ii) is a negative condition, but this presents no
difficulty; it is handled in the same way as in the proof of Post’s theorem
(Theorem 37.1).

Conditions (iii) and (iv) are the interesting ones. For each n, we consider
two conditions, one positive and one negative:

Pn: If Wn is infinite, then A ∩ Wn �= ∅.

Nn: If ϕAt
n (n)↓t for infinitely many t, then ϕA

n (n)↓.
Here ↓t means “the machine computing this function halts within t steps.”

The conditions Pn are the positive conditions; if they are satisfied for
all n, then (iii) holds. The conditions Nn are the negative conditions; if
they are satisfied for all n, then (iv) holds (we argue this below). We assign
priorities

P0 > N0 > P1 > N1 > P2 > N2 > · · ·
to the conditions. Note that for any condition, there are only finitely many
other conditions of higher priority.

Here is an explanation of Nn. Suppose ϕAt
n (n)↓t. We would like to avoid

putting any new elements into A in later stages that were the subject of
oracle queries in this computation. If we can successfully avoid this, then
we will have ϕA

n (n)↓, because A and At will agree on the elements queried.
Alas, we cannot always prevent this. Thus Nn can be injured . But we can
ensure that it can only be injured by a higher priority Pk, and only once
for each such Pk. Thus the condition Nn can be injured at most finitely
many times.

The conjunction of the conditions Nn implies lowness. To see this, ob-
serve that if Nn holds, then

∞
∃ t ϕAt

n (n)↓t ⇒ ϕA
n (n)↓ ⇒

∞
∀ t ϕAt

n (n)↓t ⇒
∞
∃ t ϕAt

n (n)↓t,
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where
∞
∃ means “there exist infinitely many” and

∞
∀ means “for all but

finitely many.” The first implication is Nn, and the other implications are
just basic set theoretic reasoning. Therefore if Nn holds for all n, then

KA = {n | ϕA
n (n)↓} = {n |

∞
∃ t ϕAt

n (n)↓t}
= {n |

∞
∀ t ϕAt

n (n)↓t} = {n | ∀k ∃t ≥ k ϕAt
n (n)↓t}

= {n | ∃k ∀t ≥ k ϕAt
n (n)↓t}. (38.1)

From the form of the quantification in (38.1), we see that

KA ∈ Σ0
2 ∩ Π0

2 = ∆0
2 = {B | B ≤T K},

therefore KA ≤T K, which is exactly condition (iv).
Now we give an event-driven enumeration of A that satisfies all the

required conditions. Let M0, M1, M2, . . . be a list of enumeration machines
such that Mm enumerates Wm. Set A0 := ∅.

Do a timesharing parallel simulation of M0, M1, . . . as in the proof of
Lemma 37.6, maintaining a list of machines currently being simulated. Con-
tinue these simulations until one of the Mm enumerates some element x.
When that happens, interrupt the simulations and take the following ac-
tion. Suppose t elements have been put into A so far, so we have constructed
At.

(a) If x < 2m, just resume the simulation.

(b) Otherwise, for all n < m, run ϕAt
n (n) for t steps. For any that halt, if

x was queried of At by that computation, just resume the simulation.

(c) Otherwise, put x ∈ A (that is, set At+1 := At ∪ {x}), and cross Mm

off the list.

Now we claim that all the desired conditions are satisfied. Certainly (i)
is satisfied. As in the proof of Lemma 37.6, (ii) is satisfied, because

|A ∩ {0, 1, . . . , 2m− 1}| ≤ m

due to action (a).
Now we show that the conditions Pn and Nn are satisfied. For each

n, there is a point in time at which every Mm, m < n, that will ever be
crossed off the list in (c) has already been crossed off. After that point, if
ever ϕAt

n (n)↓t, then ϕAs
n (n)↓t for every s ≥ t, because by (b) no changes

will ever be made to the oracle that would cause it to do anything different.
Therefore ϕA

n (n)↓t, so Nn is satisfied.
The condition Pn is also satisfied: if Wn is infinite, then eventually Mn

enumerates an element x greater than 2n and greater than any oracle query
made by any higher priority computation ϕAt

k (k) that halts. At that point
x becomes an element of A. �



Lecture 39

The Analytic Hierarchy

The arithmetic hierarchy relates to first-order number theory as the analytic
hierarchy relates to second-order number theory, in which quantification
over sets and functions is allowed. We are primarily interested in the first
level of this hierarchy, in particular the class Π1

1 of relations over N definable
with one universal second-order quantifier. A remarkable theorem due to
Kleene states that this is exactly the class of relations over N definable by
first-order induction. In the next few lectures we provide a computational
characterization of the classes Π1

1 and ∆1
1 and sketch a proof of Kleene’s

theorem.

Definition of Π1
1

The class Π1
1 is the class of all relations on N that can be defined by a univer-

sal second-order number-theoretic formula. Here “universal second-order”
means using only universal (∀) quantification over functions f : N → N.
First-order quantification is unrestricted. Using various transformation
rules involving pairing and skolemization,1 we can assume every such for-
mula is of the form

∀f ∃y ϕ(x, y, f), (39.1)

1∃x : N ∀f : N → N ϕ(f, x) �→ ∀g : N → (N → N) ∃x : N ϕ(g(x), x).
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where ϕ is quantifier free (Miscellaneous Exercise 141). This formula defines
the n-ary relation

{a ∈ Nn | ∀f ∃y ϕ(a, y, f)}.

Inductive Definability and the Programming Language
IND

Traditionally, the first-order inductive relations on a structure are defined
in terms of least fixpoints of monotone maps defined by first-order formulas.
For example, the reflexive transitive closure R∗ of a binary relation R on
a set is the least fixpoint of the monotone map

X �→ {(a, c) | a = c ∨ (∃b (a, b) ∈ R ∧ (b, c) ∈ X)} (39.2)

(see Lecture A). The theory of first-order inductive definability is quite well
established; see for example [87].

Our approach to the subject is more computational. We introduce a
programming language IND and use it to define the inductive and hy-
perelementary relations and the recursive ordinals. This turns out to be
equivalent to the more traditional approach, as we argue below. However,
keep in mind that the relations “computed” by IND programs are highly
noncomputable. IND programs were defined by Harel and Kozen [53] (see
also [54]).

An IND program consists of a finite sequence of labeled statements.
Each statement is of one of three forms:

• Assignment: � : x := ∃ � : y := ∀
• Conditional test: � : if R(t1, . . . , tn) then goto �′

• Halt statement: � : accept � : reject.

The semantics of programs is very much like alternating Turing machines,
except that the branching is infinite. The execution of an assignment state-
ment causes countably many subprocesses to be spawned, each assigning
a different element of N to the variable. If the statement is x := ∃, the
branching is existential; if it is y := ∀, the branching is universal. The con-
ditional jump tests the atomic formula R(t1, . . . , tn), and if true, jumps to
the indicated label. The accept and reject commands halt and pass a
Boolean value back up to the parent.

Computation proceeds as in alternating Turing machines. The input is
an initial assignment to the program variables. Execution causes a count-
ably branching computation tree to be generated downward, and Boolean
accept (1) or reject (0) values are passed back up the tree, a Boolean ∧
being computed at each existential node and a Boolean ∨ being computed
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at each universal node. The program is said to accept the input if the root
of the computation tree ever becomes labeled with the Boolean value 1 on
that input; it is said to reject the input if the root ever becomes labeled
with the Boolean value 0 on that input; and it is said to halt on an input
if it either accepts or rejects that input. An IND program that halts on all
inputs is said to be total .

These notions are completely analogous to alternating Turing machines,
so we forgo the formalities in favor of some revealing examples.

First, we show how to simulate a few other useful programming con-
structs with those listed above. An unconditional jump

goto �

is simulated by the statement

if x = x then goto �

More complicated forms of conditional branching can be effected by
manipulation of control flow. For example, the statement

if R(t) then reject else �

is simulated by the program segment

if R(t) then goto �′

goto �
�′: reject

A simple assignment is effected by guessing and verifying:

x := y + 1

is simulated by

x := ∃
if x �= y + 1 then reject

The process spawns infinitely many subprocesses, all but one of which im-
mediately reject!

Any first-order relation is definable by a loop-free program. For example,
the set of natural numbers x such that

∃y ∀z ∃w x ≤ y ∧ x + z ≤ w

is defined by the program

y := ∃
z := ∀
w := ∃
if x > y then reject
if x + z ≤ w then accept
reject
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The converse is true too: any loop-free program defines a first-order relation.
However, IND can also define inductively definable relations that are not

first-order. For example, the reflexive transitive closure R∗ of a relation R
is definable by the following program, which takes its input in the variables
x, z and accepts if (x, z) ∈ R∗.

�: if x = z then accept
y := ∃
if ¬R(x, y) then reject
x := y
goto �

Compare this program to (39.2).
Here is another example. Recall from Lecture 8 that a two-person perfect

information game consists of a binary predicate move. The two players
alternate. If the current board configuration is x and it is player I’s turn,
player I chooses y such that move(x, y); then player II chooses z such that
move(y, z); and so on. A player wins by checkmate; that is, by forcing the
opponent into a position from which there is no legal next move. Thus a
checkmate position is an element y such that ∀z ¬move(y, z).

We would like to know for a given board position x whether the player
whose turn it is has a forced win from x. As in Lecture 8, we might define
this as the least solution win of the recursive equation

win(x) ⇔ ∃y (move(x, y) ∧ ∀z move(y, z) → win(z)).

(The base case involving an immediate win by checkmate is included: if y
is a checkmate position, then the subformula ∀z move(y, z) → win(z) is
vacuously true.) The least solution to this recursive equation is the least
fixpoint of the monotone map τ defined by

τ(R) def⇐⇒ {x | ∃y move(x, y) ∧ ∀z move(y, z) → R(z)}.
We can express win(x) with an IND program as follows.

�: y := ∃
if ¬move(x, y) then reject
x := ∀
if ¬R(y, x) then accept
goto �

Our last example involves well-founded relations. As is well known (see
Miscellaneous Exercise 24), induction and well-foundedness go hand in
hand. Here is an IND program that tests whether a strict partial order
< is well-founded:
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x := ∀
�: y := ∀

if ¬(y < x) then accept
x := y
goto �

Any property that is expressed as a least fixpoint of a monotone map
defined by a positive first-order formula can be computed by an IND pro-
gram. Here is what we mean by this. Let ϕ(x, R) be a first-order formula
with free individual variables x = x1, . . . , xn and free n-ary relation vari-
able R. Assume further that all occurrences of R in ϕ are positive; that is,
occur under an even number of negation symbols ¬. For any n-ary relation
B, define

τ(B) def= {a | ϕ(a, B)}.
That is, we think of ϕ as a set operator τ mapping a set of n-tuples B
to another set of n-tuples {a | ϕ(a, B)}. One can show that the positivity
assumption implies that the set operator τ is monotone, therefore by Theo-
rem A.9 has a least fixpoint Fϕ, which is an n-ary relation. The traditional
treatment defines a first-order inductive relation as a projection of such a
fixpoint; that is, a relation of the form

{(a1, . . . , am) | Fϕ(a1, . . . , am, bm+1, . . . , bn)},
where bm+1, . . . , bn are fixed elements of the structure. Given the formula ϕ
and the elements bm+1, . . . , bn, one can construct an IND program that as-
signs bm+1, . . . , bn to the variables xm+1, . . . , xn, then checks whether the
values of x1, . . . , xn satisfy Fϕ by decomposing the formula top-down, exe-
cuting existential assignments at existential quantifiers, executing universal
assignments at universal quantifiers, using control flow for the propositional
connectives, using conditional tests for the atomic formulas, and looping
back to the top of the program at occurrences of the inductive variable
R. The examples above involving reflexive transitive closure, games, and
well-foundedness illustrate this process.

Conversely, any relation computed by an IND program is inductive in
the traditional sense, essentially because the definition of acceptance for
IND programs involves the least fixpoint of an inductively defined set of
labelings of the computation tree.

Inductive and Hyperelementary Relations

Many of the sample IND programs of the previous section make sense when
interpreted over any structure, not just N. We define the inductive relations
of any structure A to be those relations computable by IND programs over
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A. We define the hyperelementary relations of A to be those relations com-
putable by total IND programs over A, that is, programs that halt on all
inputs. An elementary relation of A is just a first-order relation. All elemen-
tary relations are hyperelementary, because they are computed by loop-free
programs, which always halt. Over N, the hyperelementary and elementary
relations are called hyperarithmetic and arithmetic, respectively. An ex-
ample of a hyperarithmetic set that is not arithmetic is first-order number
theory Th(N) (Miscellaneous Exercise 142).

One can show that a relation over A is hyperelementary iff it is both
inductive and coinductive: if there is an IND program that accepts R and
another IND program that accepts ∼R, then one can construct a total
IND program that runs the two other programs in parallel, as with the
corresponding result for Turing machines.
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Kleene’s Theorem

In this lecture we restrict our attention to the structure of arithmetic N.
Over this structure, the hyperelementary relations are sometimes called the
hyperarithmetic relations.

Recursive Trees, Recursive Ordinals, and ωck
1

An ordinal is countable if there exists a bijection between it and ω. The
ordinals ω · 2 and ω2, although greater than ω, are still countable. The
smallest uncountable ordinal is called ω1.

Traditionally, a recursive ordinal is defined as one for which there exists
a computable bijection between it and ω under some suitable encoding
of ordinals and notion of computability (see Rogers [104]). The smallest
nonrecursive ordinal is called ωck

1 . It is a countable ordinal, but it looks
uncountable to any computable function.

We define recursive ordinals in terms of inductive labelings of recursive
ω-trees. An ω-tree is a nonempty prefix-closed subset of ω∗. In other words,
it is a set T of finite-length strings of natural numbers such that

• ε ∈ T , and

• if xy ∈ T then x ∈ T .
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A path in T is a maximal subset of T linearly ordered by the prefix relation.
The tree T is well-founded if there are no infinite paths. A leaf is an element
of T that is not a prefix of any other element of T . An ω-tree T is recursive
if the set T , suitably encoded, is a recursive set.

Given a well-founded tree T , we define a labeling o : T → Ord induc-
tively as follows:

o(x) def= sup
n∈ω

xn∈T

(o(xn) + 1).

Thus o(x) = 0 if x is a leaf, and if x is not a leaf, then o(x) is determined
by first determining o(xn) for all xn ∈ T , then taking the supremum of all
the successors of these ordinals.

For example, consider the tree consisting of ε and all sequences of the
form (n, 0, 0, . . . , 0︸ ︷︷ ︸

m

) for n ≥ 0 and m ≤ n. The leaves are labeled 0 by o,

the next elements above the leaves are labeled 1, and so on. The root ε is
labeled ω.
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For a well-founded tree T , let o(T ) be the ordinal assigned to the root of
T . Every o(T ) is a countable ordinal, and supT o(T ) = ω1.

Now define an ordinal to be recursive if it is o(T ) for some recursive
tree T . The supremum of the recursive ordinals is ωck

1 .
An alternative definition of recursive ordinals is the set of all running

times of IND programs. The running time of an IND program on some input
is the time it takes to label the root of the computation tree with 1 or 0.
This is the closure ordinal of the inductive definition of labelings of the
computation tree in the formal definition of acceptance. It is very similar
to the definition of the labelings o of recursive trees. The ordinal ωck

1 is the
supremum of all running times of IND programs.

Kleene’s Theorem

Theorem 40.1 (Kleene [74]) Over N, the inductive relations and the Π1
1 relations coin-

cide, and the hyperelementary and ∆1
1 relations coincide.
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Proof sketch. First we show that every inductive relation is Π1
1. This

direction holds in any structure A, not just N. Let ϕ(x, R) be a positive
first-order formula with fixpoint Fϕ ⊆ An, where A is the carrier of A. We
can describe Fϕ as the intersection of all relations closed under ϕ:

Fϕ(x) ⇔ ∀R (∀y ϕ(y, R) → R(y)) → R(x).

This is a Π1
1 formula.

Conversely, consider any Π1
1 formula over N. As previously noted, using

various rules for manipulating formulas, we can assume without loss of
generality that the formula is of the form

∀f ∃x ϕ(x, f), (40.1)

where ϕ is quantifier free (Miscellaneous Exercise 141).
Regarding a function f : ω → ω as the infinite string of its values

f(0), f(1), f(2), . . . , the functions f are in one-to-one correspondence with
paths in the complete tree ω∗. Moreover, for any x, the truth of ϕ(x, f) is
determined by any finite prefix of this path that includes all arguments to
f corresponding to terms appearing in ϕ(x, f). Let f �n denote the finite
prefix of f of length n. We can think of f �n either as a string of natural
numbers of length n or as a partial function that agrees with f on domain
{0, 1, . . . , n− 1}.

Let ϕ′(n, x, f) be a formula that has the same truth value as ϕ(x, f)
if f � n has enough information to determine whether ϕ(x, f), and is 0
otherwise. We can obtain ϕ′ easily from ϕ. For example, if ϕ(x, f) is x =
f(f(x)), which is equivalent to the loop-free IND program

if x = f(f(x)) then accept else reject,

take ϕ′(n, x, f) to be a first-order formula equivalent to the loop-free IND
program

if x < n { //is f �n(x) defined?
y := f(x); //if so, let y be its value
if y < n { //is f �n(f �n(x)) defined?

z := f(y); //if so, let z be its value
if x = z accept; //test whether x = f(f(x))

}
}
reject;

Now instead of (40.1), we can write

∀f ∃n ∃x ϕ′(n, x, f �n). (40.2)
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Note that if ∃x ϕ′(n, x, f), then ∃x ϕ′(m, x, f) for all m ≥ n. This says that
(40.2) is essentially a well-foundedness condition: if we label the vertices
f �n of the infinite tree with the truth value of ∃x ϕ′(n, x, f), (40.2) says
that along every path in the tree we eventually encounter the value 1. And
as observed in the Lecture 39, well-foundedness is inductive.

We have shown that the inductive and Π1
1 relations over N coincide.

Because the hyperarithmetic relations are those that are both inductive
and coinductive and the ∆1

1 relations are those that are both Π1
1 and Σ1

1,
the hyperarithmetic and ∆1

1 relations coincide as well. �

Inductive Is Existential over Hyperelementary

Over N, it is apparent from the characterization of Π1
1 as those sets accepted

by IND programs and ∆1
1 as those sets accepted by total IND programs

that there is a strong analogy between the inductive and the r.e. sets and
between the hyperelementary and the recursive sets.

It may seem odd that the class analogous to Σ0
1 at the analytic level

should be Π1
1 and not Σ1

1. This is explained by the following result, which
corresponds to the characterization of the r.e. sets given by (35.1).

Theorem 40.2 A set A ⊆ N is inductive iff there is a hyperelementary relation R such
that

A = {x | ∃α < ωck
1 R(x, α)}

= {x | ∃y y encodes a recursive ordinal and R(x, y)}. (40.3)

Proof sketch. If R is hyperelementary, then we can build an IND program
for (40.3) consisting of the statement y := ∃ followed by a program that in
parallel checks that the Turing machine with index y accepts a well-founded
recursive tree and that R(x, y).

Conversely, if A is inductive, say accepted by an IND program p, then we
can describe A by an existential formula that says, “there exists a recursive
ordinal α such that p halts and accepts x in α steps.” More concretely,
one would say, “there exists a well-founded recursive tree T such that on
input x, p halts and accepts in o(T ) steps.” The quantification is then
over indices of Turing machines. To show that the predicate “p halts and
accepts x in o(T ) steps” is hyperelementary, one would construct an IND
program that runs p together with a program q that halts in o(T ) steps
(q just enumerates the tree T using existential branching and rejects) and
takes whichever action happens first. �
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Fair Termination and Harel’s Theorem

You may have gotten the impression from Lectures 39 and 40 that ωck
1

and Π1
1 have little to do with computer science. Here is an example of a

real application in which they arise: proving fair termination of concurrent
programs.

Termination proofs typically rely on induction to show that progress
toward termination is made with each step. For ordinary sequential pro-
grams, induction on the natural numbers ω is usually sufficient.

For example, consider the following program for computing the greatest
common divisor (gcd) of two given positive integers x, y. The gcd is the
value of the variable x upon termination.

while (y �= 0) {
z := x mod y;
x := y;
y := z;

}
This program eventually terminates for any nonnegative integers x, y be-
cause each iteration of the loop causes the value of y to remain nonnegative
but strictly decrease, thus progress is made toward termination. To prove
this formally, ordinary induction on ω suffices.

For concurrent programs , the story is a little more complicated. There
may be several processes operating simultaneously. These processes may
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be competing for resources, such as execution time on a shared processor
or access to a shared variable. In modeling the behavior of concurrent
programs, nondeterminism is often involved, because we may not know
exactly how such contention will be resolved in each instance, although we
may know the range of possibilities. Thus the computation can be modeled
by a branching tree, each path of which is a possible computation path of
the system.

Unfortunately, under the usual semantics of nondeterminism, some com-
putation paths may fail to terminate for uninteresting reasons. For example,
consider the following nondeterministic program.

x := 0;
y := 0;
while (x < 10 ∨ y < 10) {

x := x + 1 ‖ y := y + 1;
}

(41.1)

Here ‖ means, “do either p or q.” According to the usual semantics of
nondeterminism, there are nonhalting computations of this program; for
example, the one in which the left branch in the body of the loop is always
chosen. However, any scheduler that always chooses the left branch would
be considered unfair, because the right branch was never allowed to execute,
even though it was infinitely often enabled.

Thus we might want to assume that the agent that resolves the nonde-
terminism at choice points does so in a fair way, although we may not know
(or care) exactly how this is accomplished. We abstract away from the ex-
act nature of the scheduler and just assume some formal fairness property.
For example, we might want to assume that if a statement of the form p || q
is infinitely often enabled, then each of p and q is infinitely often chosen
for execution. Under this assumption, all infinite computation paths of the
example above are unfair; in other words, all fair paths terminate. Such
assumptions allow us to study correctness properties such as termination
independent of the implementation details of the scheduler.

Fair Termination

The fair termination problem is the problem of determining whether a given
concurrent program terminates under the assumption of a fair scheduler.
Intuitively, the concurrent program (41.1) terminates fairly, because any
sequence of actions causing nontermination would never be chosen by a
fair scheduler.

Formally, we define a fairness condition to be a pair (ρ, σ) of properties
that are true or false of a state of the computation. We think of ρ as
expressing a request for a resource. Thus ρ is true of a state s (written
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s |= ρ) if some resource associated with ρ, whatever it may be, is being
requested. We think of σ as expressing the condition that the request has
been satisfied.

An infinite computation path is unfair with respect to the fairness con-
dition (ρ, σ) if ρ is true infinitely often along the path but σ is true only
finitely often. This models the idea that a request is made infinitely often
along the path, but from some point on is never satisfied. The path is unfair
with respect to a set of fairness conditions if it is unfair with respect to
any one of them. (Notice the similarity to the Rabin acceptance condition
for automata on infinite strings; see Lecture 26.) A path is fair if it is not
unfair. By our definition, all finite paths are fair.

A (nondeterministic) computation is fairly terminating if there are no
infinite fair paths; equivalently, if all infinite paths are unfair. Intuitively,
we do not care if the computation tree contains infinite paths as long as
they are unfair, because a fair scheduler would never allow them to occur
anyway.

In our example (41.1) above, let � be the statement in the body of the
while loop. Maintain in the state an extra bit telling whether the left or the
right branch was taken the last time � was executed. Let ρ be the property,
“about to execute �”, and let σ0 (respectively, σ1) be the property, “the
left (respectively, right) branch was taken the last time � was executed”.
Consider the fairness conditions (ρ, σ0) and (ρ, σ1). The program terminates
fairly with respect to these conditions, because any computation path that
satisfies both σ0 and σ1 sufficiently many times eventually satisfies the
condition for exiting the while loop.

Proof Rules for Fair Termination

There is a rather large literature on fairness and fair termination (see [44]
and references therein). Much of that work was devoted to deriving proof
rules for establishing correctness and termination in various logical for-
malisms and under various fairness assumptions. A central notion is the
idea of helpful directions that move a computation toward termination.
This notion ultimately reduces to well-foundedness, but is not simply a de-
crease of an integer parameter. It was observed that transfinite induction
on ordinals higher than ω was necessary in general.

Harel’s Theorem

The situation was significantly clarified in 1986 by Harel [52]. He showed
that fair termination of finitely branching recursive trees is equivalent to
the well-foundedness of countably branching recursive trees. Because decid-
ing well-foundedness of countably branching recursive trees is Π1

1-complete
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(Homework 12, Exercise 1(b)), and the supremum of the ordinals of well-
founded countably branching recursive trees is ωck

1 , a corollary of Harel’s
theorem is that the fair termination problem is Π1

1-complete, and that the
ordinals involved in fair termination proofs can be as high as ωck

1 in general.
We prove Harel’s theorem in a special case, which nevertheless conveys

the main idea. Define a binary tree to be a nonempty prefix-closed subset
of {0, 1}∗. Similarly, an ω-tree is a nonempty prefix-closed subset of ω∗.
A path in either type of tree is a maximal subset linearly ordered by the
prefix relation.

For binary trees T , consider the fairness condition (true, last(0)), where
for x ∈ {0, 1}∗, x � last(0) if x = y0 for some string y; that is, if 0 is the
last letter of x. The unfair paths of T with respect to this fairness condition
are the sets of all finite prefixes of infinite strings of the form x1ω, where
x ∈ {0, 1}∗. Thinking of 0 as “go left” and 1 as “go right”, an unfair path
is one that goes right at all but finitely many points. The tree T is fairly
terminating if there is no infinite path that goes left infinitely often.

Now we describe an effective map from binary trees to ω-trees such
that a binary tree is fairly terminating iff the corresponding ω-tree is well-
founded.

For x ∈ {0, 1}∗, define τ(x) = x1x2 · · ·xn, where x can be uniquely
parsed as 1x101x20 · · · 01xn. For example,

τ(110100111110100111) = 2105103.

We can define τ inductively:

τ(ε) def= 0

τ(x0) def= τ(x) · 0
τ(x1) def= lastinc(τ(x)),

where lastinc(xn) def= x · (n + 1). It is easily shown that τ is one-to-one and
onto except for the empty string in ω∗.

Now if T ⊆ {0, 1}∗ is a binary tree, let

τ(T ) def= {τ(x) | x ∈ T } ∪ {ε}.
Then τ(T ) is nonempty and prefix-closed, therefore is an ω-tree.

For example, consider the following binary tree T ⊆ {0, 1}∗.�� �� � ��� � �
�

�
�

�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

0 1

0 1 0 1

0 1 1
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The maximal elements of T are 00, 010, 011, 101, and 11. The prefixes
of these strings not already listed are 01, 10, 0, 1, and ε. Applying τ to
the maximal strings gives 000, 010, 02, 11, and 2, and applying τ to the
remaining prefixes gives 01, 10, 00, 1, and 0. We must also include ε. This
gives the following ω-tree τ(T ) ⊆ ω∗. �� � �� � �� � � �

����
				

�
�

�
�

�
�

0 1 2

0
1

2
0

1

00

An intuitive way to view the construction of τ(T ) from T is to reorient
the edges of T so that those labeled 0 in T go down to the leftmost child
in τ(T ) and those labeled 1 in T go right to the next sibling in τ(T ). The
rightmost spine of T corresponds to the children of the root in τ(T ).�� � �� � �� � � �

····················
··········
······························

··········
··········

�
�

The ω-trees of the form τ(T ) have the property that if x·(n+1) ∈ τ(T ),
then x · n ∈ τ(T ). Let us say that an ω-tree is full if it has this property.
Then every τ(T ) is full, and every nontrivial full ω-tree is τ(T ) for some
binary tree T .

We now argue that T is fairly terminating iff τ(T ) is well-founded. We
wish to show that T has an infinite path with infinitely many 0’s iff τ(T )
has an infinite path. If T has an infinite path with infinitely many 0’s,
then that path is the set of finite prefixes of an infinite string of the form
1x001x101x20 · · · . Then all finite prefixes of the infinite string x0x1x2 · · ·
are members of τ(T ), and this is an infinite path. Conversely, if τ(T ) has
an infinite path, then it must be the set of finite prefixes of an infinite string
of the form x0x1x2 · · · , thus 1x001x101x2 · · · 01xn ∈ T for all n. The set of
prefixes of these strings is contained in T and constitutes an infinite unfair
path.

We have shown

Theorem 41.1 (Harel [52]) The map τ constitutes a recursive one-to-one correspon-
dence between binary trees and nontrivial full ω-trees such that the bi-
nary tree T is fairly terminating with respect to the fairness condition
(true, last(0)) if and only if τ(T ) is well-founded.

Corollary 41.2 Fair termination is Π1
1-complete.

Proof. Miscellaneous Exercise 143. �
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Homework 1
1. (a) Give a one-tape deterministic O(n log n)-time-bounded Turing ma-

chine accepting a nonregular set.

(b) Show that any set accepted by a one-tape deterministic TM in time
o(n log n) is regular.

2. A k-counter automaton with linearly bounded counters is a one-tape TM
with two-way read-only input head and a fixed finite number of integer
counters that can hold an integer between 0 and n, the length of the
input string. In each step, the machine may test each of its counters for
zero. Based on this information, its current state, and the input symbol
it is currently scanning, it may add one or subtract one from each of the
counters, move its read head left or right, and enter a new state.

(a) Give a formal definition of these machines, including a definition
of acceptance.

(b) Show that a set is in LOGSPACE (NLOGSPACE) iff it is accepted
by a deterministic (nondeterministic) k-counter machine with lin-
early bounded counters for some k.

3. Show that if P = NP then NEXPTIME = EXPTIME . (Hint. Pad the
input with extra #’s).
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Homework 2
1. Show that the reducibility relation ≤log

m is transitive: if A ≤log
m B and

B ≤log
m C, then A ≤log

m C. (Warning. This is nontrivial! You don’t have
enough space to write down an intermediate result in its entirety.)

2. A Boolean formula is in 2-conjunctive normal form (2CNF) if it is a
conjunction of disjuncts of the form � ∨ �′, where � and �′ are literals
(Boolean variables or negations of variables). The problem of deciding
satisfiability of Boolean formulas in 2CNF is denoted 2SAT. Show that
2SAT is complete for co-NLOGSPACE under ≤log

m .

3. Show that the value of a given Boolean formula under a given truth
assignment can be computed in deterministic logspace.

4. Consider the nonregular set

B = {$bk(0)$bk(1)$bk(2)$ · · · $bk(2k − 1)$ | k ≥ 0} ⊆ {0, 1, $}∗,

where bk(i) denotes the k-bit binary representation of i. Show that
this set is in DSPACE (log log n). Note that it is not enough to give
a deterministic TM for B in which every accepting computation takes
O(log log n) space. According to the official definition, in order to show
that B is in the complexity class DSPACE(log log n), we must give a
deterministic TM for B in which every computation, either accepting,
rejecting, or looping, takes O(log log n) space.
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Homework 3
1. (a) The set of strings of balanced parentheses is the set generated by

the context-free grammar

S → (S) | SS | ε
Prove that this set is in LOGSPACE .

(b) How about strings of balanced parentheses of two types

S → (S) | [S] | SS | ε ?

2. Suppose that the game of generalized geography is altered so that ver-
tices can be reused. That is, Players I and II alternate choosing edges
along a directed path (not necessarily simple) starting from a given ver-
tex s and try to force each other into a position from which there is no
next move. What is the complexity of determining whether Player I has
a winning strategy?

3. An alternating finite automaton (AFA) is a 5-tuple

M = (Q, Σ, δ, F, α),

where Q is a finite set of states, Σ is a finite input alphabet, F : Q →
{0, 1} is the characteristic function of a set of final or accept states, that
is,

F (q) =
{

1, if q is a final state
0, otherwise,

δ is the transition function

δ : (Q× Σ) → ((Q → {0, 1}) → {0, 1}),

and α is the acceptance condition

α : (Q → {0, 1}) → {0, 1}.

Intuitively, F gives a labeling of 0 or 1 at the leaves of the computation
tree, and for all q ∈ Q and a ∈ Σ, the Boolean function

δ(q, a) : (Q → {0, 1}) → {0, 1}
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takes a labeling on states and computes a new label for state q; this
is used to pass Boolean labels 0 or 1 back up the computation tree.
Formally, the transition function δ uniquely determines a map

δ̂ : (Q× Σ∗) → ((Q → {0, 1}) → {0, 1}),

defined inductively as follows. For q ∈ Q, a ∈ Σ, and x ∈ Σ∗,

δ̂(q, ε)(u) = u(q)

δ̂(q, ax)(u) = δ(q, a)(λp.(δ̂(p, x)(u))).

The machine is said to accept x ∈ Σ∗ if

α(λp.(δ̂(p, x)(F ))) = 1.

Prove that a set A ⊆ Σ∗ is accepted by a k-state alternating finite
automaton if and only if its reverse

AR = {an · · · a1 | a1 · · · an ∈ A}

is accepted by a 2k-state deterministic finite automaton (DFA).
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Homework 4
1. Prove the following generalization of Savitch’s theorem. For S(n) ≥

log n,

STA(S(n), ∗, A(n)) ⊆ DSPACE(A(n)S(n) + S(n)2).

(Hint. Let type : Q → {∧,∨} be the map in the specification of the
alternating machine telling whether a state in Q is universal or exis-
tential. Extend type to configurations in the obvious way. Consider the
predicate R(α, β, k) = “There is a computation path of length at most
k leading from configuration α to configuration β in which all configura-
tions γ, except possibly β, satisfy type(γ) = type(α).” Use a Savitch-like
argument.)

2. Give a formal definition of a hierarchy over PSPACE with levels
ΣPSPACE

k and ΠPSPACE
k analogous to PH . Show that this hierarchy

collapses to PSPACE . (Hint. Use Exercise 1.)

3. Let Hk be the complete set for ΣP
k defined in Lecture 9:

Hk = {M$x$d | M is a Σk machine accepting x in time
at most d}.

Let #(y) denote the number represented by y in binary. Show that the
set

Hω = {y$z | z ∈ H#(y)}

is ≤log
m -complete for PSPACE .

4. Define a class of sets Gk similar to Hk for space instead of time:

Gk = {M$x$d | M is a Σk machine accepting x in space
at most d}.

Show that Gk is ≤log
m -complete for ΣPSPACE

k , and that the set

Gω = {y$z | z ∈ G#(y)}

is complete for exponential time. How do you reconcile this with Exercise
2?
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Homework 5
1. Show that if NP= co-NP, then PH collapses to NP . More generally,

show that if Σp
k = Πp

k then PH collapses to Σp
k.

2. Suppose there exists a sequence of polynomial-size circuits B0, B1, B2, . . .
for the Boolean satisfiability problem. That is, Bn has n inputs, one out-
put, and nO(1) gates, and given (an encoding over {0, 1}∗ of) a Boolean
formula x with |x | = n, x is satisfiable iff Bn(x) = 1.

(a) Show that if the sequence B0, B1, . . . is polynomial-time uniform
(that is, Bn can be produced from 0n in polynomial time), then
P = NP .

(b) Show that even if the sequence is not polynomial-time uniform,
then PH collapses to Σp

3 .

3. In Lecture 5 and Homework 1, Exercise 2, we considered k-counter au-
tomata whose counter values could not exceed n, the length of the in-
put. Without this restriction, it is known that two-counter automata
are as powerful as arbitrary Turing machines (see [61, 76]). Show that
the membership problem for nondeterministic (unbounded) one-counter
automata is complete for NLOGSPACE . (Warning. The difficult part is
to detect looping. Unlike the bounded counter case, there are infinitely
many possible configurations on inputs of length n.)
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Homework 6
1. In Lecture 3 we showed the existence of an unbounded space-

constructible function S(n) ≤ O(log log n). In this exercise we show
that the function 
log log n� itself is not space constructible.

(a) Prove that for any space-constructible function S(n) ≤ o(log n),
there exists a value k such that S(n) = k for infinitely many n. In
other words,

lim
n≥0

inf
m≥n

S(m) < ∞.

(Hint. If S(n) is space-constructible, there must be a machine that
on any input of length n lays off exactly S(n) space on its worktape
without using more than S(n) space and halts. Count configura-
tions of state, worktape contents, and worktape head positions (not
read head positions). Consider what happens as the machine scans
across a very long input of the form 0n.)

(b) Conclude from (a) that the function 
log log n� is not space-
constructible.

2. Show that the problem of deciding whether L(M) = Σ∗ for a given non-
deterministic finite automaton (NFA) M is PSPACE -complete. (Hint.
Use computation histories

#α0#α1# · · ·#αN#,

where each αi ∈ ∆∗ is an encoding of a configuration of some TM N
running in PSPACE , and αi+1 follows from αi in one step according to
the transition rules of N .)

3. What is the complexity of Problem 2 when M is deterministic? Give
proof.
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Homework 7
1. Determine the complexity of the first-order theory of the structure

(ω,≤), where ω is the set of natural numbers and ≤ is the usual linear
order on ω.

2. Consider the following Ehrenfeucht–Fraissé game Gn between two play-
ers, Sonja (also known in the literature as the Spoiler) and David (also
known as the Duplicator). Each player has n pebbles, one of each of n
distinct colors. The players alternate placing the pebbles on elements of
two linear orders A and B. In each round, Sonja plays one of her remain-
ing pebbles on some element of either A or B. David must then play his
pebble of the same color on some element of the other structure. At the
end of n rounds, David is declared the winner if the pebbles occur in the
same order in A as in B (pebble colors are significant when determining
this). Otherwise, Sonja is the winner.

(a) Show that if A is the set of rational numbers and B is the set of
integers, then Sonja has a forced win in G3.

(b) Show that if A is the set of rationals and B is the set of reals, then
David has a forced win in Gn for any n.

(c) Show that David has a forced win in Gn if and only if A and B agree
on all first-order sentences of quantifier depth n. (The quantifier
depth of a formula is the maximum number of quantifiers in whose
scope some symbol appears. For example, the formula

∃x ((∀y y ≤ x) ∧ (∃z z ≤ x))

has quantifier depth two.)
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Homework 8
1. Show that the set of finite subsets of ω, represented as a set of strings

in {0, 1}ω, is accepted by a nondeterministic Büchi automaton, but by
no deterministic Büchi automaton. (Recall that in Büchi acceptance,
F ⊆ Q, and a run σ is accepting if IO(σ) ∩ F �= ∅.)

2. (a) Show that integer addition (that is, the predicate “x = y+z”) is not
definable in S1S. (Hint. Use a pumping technique from automata
theory. See [61, Section 4.1] or [76, Lectures 11, 12].)

(b) On the other hand, for a finite set A ⊆ ω, define

n(A) =
∑
x∈A

2x.

Let ϕ(A, B, C) be the predicate

“A, B, C are finite sets, and n(A) = n(B) + n(C)”.

Show how to express this in S1S.

3. (a) For n ≥ 1, let Bn ⊆ ω be the set

Bn = {x | if x = mn + k, 0 ≤ k < n, then �m

2k
 is odd}.

In other words, for any m ≥ 0, the mnth, mn + 1st, . . . , mn + n−
1st bits in the {0, 1}ω representation of Bn represent m mod 2n in
binary, lowest-order bit first. For example,

B7 = 0000000︸ ︷︷ ︸
n

1000000︸ ︷︷ ︸
n

0100000︸ ︷︷ ︸
n

1100000︸ ︷︷ ︸
n

0010000︸ ︷︷ ︸
n

. . . .

Let ϕn(x, y) be the predicate “x ≡ y (mod n)”, and let ψn(B) be
the predicate “B = Bn”. Construct S1S formulas for ϕ1 and ψ1,
and show inductively how to get short S1S formulas for ϕn2n and
ψn2n , given formulas for ϕn and ψn.

(b) Explain informally how you might use (a) to show that S1S is
nonelementary.
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Homework 9
1. Given a sentence ϕ of the first-order language of number theory (addition

and multiplication allowed) and a number n ≥ 2 in binary, what is the
complexity of determining whether ϕ holds in the ring Zn of integers
modulo n? Give proof.

2. Show that for any nondeterministic Muller automaton M with input
alphabet {0, 1}, there is a short formula ϕM (X) of S1S with one free set
variable X such that

L(M) = {A ⊆ ω | ϕM (A)}.

(Recall that in Muller acceptance, F ⊆ 2Q, and a run σ is accepting if
IO(σ) ∈ F.)

3. Let Σ be a finite alphabet with at least two letters. A set A ⊆ Σ∗ is
sparse if there is a constant c > 0 such that

|A ∩ Σn | ≤ nc a.e.

In other words, for all but finitely many n, the number of elements of
A of length n is bounded by a polynomial. Show that P sparse, the class
of sets computable by deterministic polynomial-time oracle machines
with sparse oracles, is exactly the class of sets for which there exist
polynomial-size circuits B0, B1, . . . , not necessarily uniform.



Homework 10 285

Homework 10
1. Using the sm

n functions and the universal function U , construct total
recursive functions pair and const such that

ϕpair(i,j) = <ϕi, ϕj> ϕconst(i) = κi.

The construction should be similar to the construction of comp given in
Lecture 33.

2. In the recursion theorem (Theorem 33.1), we proved that for any total
recursive function σ, there exists an index i such that ϕσ(i) = ϕi. Show
that such an i can be obtained effectively from an index for σ. That is,
show that there is a total recursive function fix such that for all j such
that ϕj is total,

ϕϕj(fix(j)) = ϕfix(j).

3. Show that every total recursive function σ has infinitely many fixpoints;
moreover, an infinite list of such fixpoints can be enumerated effectively.
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Homework 11
1. The jump operation (′) is defined as follows:

A′ = KA = {x | ϕA
x (x)↓}.

This is the halting problem relativized to A. Define

A(0) = A

A(n+1) = (A(n))′.

Show that ∅(n) is ≤m-complete for Σ0
n, n ≥ 1.

2. (a) Show that if A is ≤m-complete for Σ0
n, n ≥ 1, then A′ as defined

in the previous exercise is not in Σ0
n.

(b) Conclude from (a) that Σ0
n and Π0

n are incomparable with respect
to set inclusion for all n ≥ 1.

3. Consider the following three relativized versions of the recursion theo-
rem.

(a) For any total recursive function σ : ω → ω, there is an n such that
ϕA

n = ϕA
σ(n).

(b) For any total function σA : ω → ω recursive in A, there is an n
such that ϕn = ϕσA(n).

(c) For any total function σA : ω → ω recursive in A, there is an n
such that ϕA

n = ϕA
σA(n).

Two are true and one is false. Which is which? Give two proofs and a
counterexample.

4. Recall that a directed graph is strongly connected if for any pair of ver-
tices (u, v) there exists a directed path from u to v. Show that the fol-
lowing problem is ≤m-complete for Π0

2: given a recursive binary relation
E ⊆ ω2, is the infinite graph (ω, E) strongly connected?
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Homework 12
1. (a) Show that for every IND program over the natural numbers, there is

an equivalent IND program with simple assignments y := e(y) but
without existential assignments y := ∃. (Hint. Convert countable
existential branching to finite existential branching first, using the
construct �i ∨ �j ; then get rid of finite existential branching.) Why
can we not eliminate y := ∀ in the same way?

(b) Recall that a binary relation is well-founded if there are no infinite
descending chains. Using (a), show that the following problem is
Π1

1-complete. Given a recursive binary relation R ⊆ ω2, is it well-
founded?

2. Gödel defined the µ-recursive functions to be the primitive recursive
functions (see Miscellaneous Exercise 91) with the addition of an extra
programming construct, namely unbounded minimization: if f : ω2 → ω
is a µ-recursive function, then so is

g(x) def= µy.(f(x, y) = 0),

where the expression on the right-hand side denotes the least y such that
f(x, z)↓ for all z ≤ y and f(x, y) = 0, if such a y exists, and is undefined
otherwise. Prove axiomatically (that is, using the constructs based on
the sm

n and universal function properties as described in Lecture 33) that
if f is a partial recursive function, then so is g, and an index for g can
be obtained from an index for f effectively. You may use the conditional
test ϕcond(i,j) of Miscellaneous Exercise 111 without proof.

3. Show that there exists a function T (n) such that DTIME (T (n)) =
DSPACE(T (n)).
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The annotation H indicates that there is a hint for this exercise in the Hints
section beginning on p. 361, and S indicates that there is a solution in the
Solutions section beginning on p. 367. The number of stars indicates the
approximate level of difficulty.

1. Prove Theorem 3.2.

2. Show that the set {0n1n | n ≥ 0} requires Ω(log n) space.

3. Prove the following simulation results.

(a) For constants k > 1 and ε > 0, any k-tape TM running in time T (n)
can be simulated by a k-tape TM running in time εT (n) + O(n).

(b) For constant ε > 0, any 1-tape TM running in time T (n) can be
simulated by a 1-tape TM running in time εT (n) + O(n2).

(c) For T (n) ≥ n and constant k > 1, any k-tape TM running in time
T (n) can be simulated by a 1-tape TM running in time T (n)2.

∗(d) For T (n) ≥ n and constant k > 1, any k-tape TM running in
time T (n) can be simulated by a 2-tape TM running in time
T (n) log T (n).
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4. Prove that NSPACE(ns) � NSPACE (nt) for any fixed t > s ≥ 1 using
the padding technique of Lecture 3.

∗∗5. Prove the following generalization of Miscellaneous Exercise 4 using the
padding technique of Lecture 3. Let S1, S2 : R → R be real-valued func-
tions of a real variable satisfying appropriate constructibility conditions
such that

(a) S1 and S2 are monotonically increasing; that is, if m < n, then
S1(m) < S1(n) and S2(m) < S2(n); and

(b) there exists ε > 0 such that S1(n)1+ε ≤ O(S2(n)).

Then NSPACE (S1(n)) � NSPACE (S2(n)).

S6. Sometimes it is useful to refine complexity analysis to distinguish the
time or space usage of a TM on different inputs of the same length. For
G : Σ∗ → N, define

DTIME (G(x)) def= {L(M) | M is a deterministic TM that
takes no more than G(x) steps
on input x}

DSPACE (G(x)) def= {L(M) | M is a deterministic TM that
uses no more than G(x) work-
tape cells on input x}.

For S : N → N, DTIME (S(n)) and DSPACE(S(n)) are defined as usual
(see Lecture 2). Prove that if T : N → N is monotone and

DSPACE (n) ⊆ DTIME(T (n)),

then for any G : Σ∗ → N such that G(x) ≥ |x |, constructible or not,

DSPACE (G(x)) ⊆ DTIME (G(x)T (G(x))).

7. Show that any TM that writes at most o(log n) symbols on inputs of
length n accepts a regular set.

8. (a) Show that if M writes no more than t(n) symbols and runs for no
more than T (n) steps, then T (n) is O(t(n)2).

H(b) Show that this bound for T (n) in terms of t(n) is the best possible
for one-tape TMs.
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9. A k-headed finite automaton (k-FA) is a one-tape TM with k read-only
input heads that can move left or right but cannot move off the input
string.

(a) Give a formal definition of these machines, including a definition
of acceptance.

(b) Show that a set is in LOGSPACE (NLOGSPACE) iff it is accepted
by a deterministic (nondeterministic) k-FA for some k.

10. A Boolean formula is in 3-conjunctive normal form (3CNF) if it is a
conjunction of clauses of the form �1 ∨ �2 ∨ �3, where the �i are lit-
erals (Boolean variables or negations of variables). Show that 3CNF-
satisfiability is NP-complete under ≤log

m .

11. Give a set that is complete for NSPACE(n) with respect to linear-
time many–one reductions. Conclude that your set is in DSPACE (n)
iff NSPACE(n) = DSPACE(n).

12. Show that if NSPACE (n) = DSPACE(n), then NSPACE (S(n)) =
DSPACE(S(n)) for all S(n) ≥ n.

13. Show that NSPACE(log n) ∩ {a}∗ = DSPACE (log n) ∩ {a}∗ iff
NSPACE(n) = DSPACE (n).

H14. Prove that DSPACE(n) �= P and DSPACE (n) �= NP .

H15. Show that the following two problems are≤log
m -complete for NLOGSPACE .

(a) Given a nondeterministic finite automaton, does it accept any
string?

(b) Given a nondeterministic finite automaton, does it accept infinitely
many strings?

16. Let ≤p
T denote the polynomial-time-bounded Turing reducibility rela-

tion. Show that

(a) ≤p
T is transitive, and that

(b) ≤p
m refines ≤p

T.
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∗∗S17. An auxiliary pushdown automaton (APDA) is a TM equipped with a
single stack in addition to its worktape. In each step it can check for an
empty stack, and if it is nonempty, read the top element. It also reads the
symbols currently being scanned on its input and worktape. Based on
this information and its current state, it can push or pop a symbol from
a finite stack alphabet, write a symbol on its worktape, move its input
and worktape heads one cell in either direction, and enter a new state.
It may not read an element of the stack without popping the elements
above it off. Show that deterministic or nondeterministic APDAs with
S(n) workspace accept exactly the sets in DTIME (2O(S(n))).

18. A map h : Σ∗ → Γ∗ is a homomorphism if h(xy) = h(x)h(y) for all
strings x, y ∈ Σ∗. It follows that h(ε) = ε. A homomorphism is non-
erasing if h(a) �= ε for any a ∈ Σ. A family of sets C is closed un-
der nonerasing homomorphisms if for any nonerasing homomorphism
h, {h(x) | x ∈ A} ∈ C whenever A ∈ C.

(a) Show that NP is closed under nonerasing homomorphisms.
(b) Show that P is closed under nonerasing homomorphisms iff P =

NP .

19. Recall from Supplementary Lecture A that a complete partial order is
a set U with a partial order ≤ defined on it such that every subset
A ⊆ U has a supremum (least upper bound) supA. Show that every
subset A ⊆ U also has a unique infimum (greatest lower bound) inf A
satisfying the following properties.

(a) For all y ∈ A, inf A ≤ y (inf A is a lower bound for A).
(b) If for all y ∈ A, x ≤ y, then x ≤ inf A (inf A is the greatest lower

bound).

∗∗S20. Prove that a set operator is finitary iff it is chain-continuous.

21. (a) Prove that every chain-continuous operator on any complete partial
order is monotone.

S(b) Give an example of a monotone set operator that is not chain-
continuous.

22. Give an example of a complete partial order U , a monotone operator
τ on U , and a set A ⊆ U of prefixpoints such that supA is not a
prefixpoint; thus supA < inf PF τ (sup A).
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S23. Prove that if τ is chain-continuous, then its closure ordinal is at most
ω, but not for monotone operators in general.

24. Induction and well-foundedness go hand in hand. A binary relation < on
a set X is well-founded if there is no infinite descending chain x0, x1, . . .
in X such that xi+1 < xi for all i ∈ ω. For example, the natural order
< on ω is well-founded, as is the strict subset order ⊂ on any finite set.
The strict subset order on 2ω is not well-founded, because ω ⊃ ω−{0} ⊃
ω − {0, 1} ⊃ · · · .

The induction principle for a binary relation < states that for any set
A ⊆ X ,

(∀x ((∀y y < x → y ∈ A) → x ∈ A)) → ∀x x ∈ A.

Show that this induction principle is valid iff < is well-founded. Feel free
to use the axiom of choice (see Lecture A).

25. (a) Show that for an alternating machine M running in S(n) space,
the root of the computation tree is labeled 0 or 1 within time cS(n)

for some c (depending only on M and not on n), or not at all.

(b) Using (a), prove that ASPACE (S(n)) =
⋃

c DTIME (cS(n)).

26. Show that an alternating Turing machine M without negations accepts
x iff there is a finite accepting subtree of the computation tree on input
x; that is, a finite subtree T of the computation tree containing the start
configuration such that every ∨-configuration has at least one successor
in T and every ∧-configuration has all its successors in T .

H27. Show that if A is ≤log
m -hard for linear space (DSPACE (n)), then A is

also ≤log
m -hard for PSPACE .

S28. Let S(n) ≥ log n and T (n) ≥ n. Show that any set accepted by a non-
deterministic S(n)-space and T (n)-time bounded TM can be accepted
by a deterministic TM in space S(n) log T (n). In other words,

STA(S(n), T (n), Σ1) ⊆ STA(S(n) log T (n), ∗, 0).

Do not forget to worry about constructibility.
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S29. Show that the problem of deciding whether
⋂n

i=1 L(Mi) = ∅ for a given
set of deterministic finite automata Mi, 1 ≤ i ≤ n is PSPACE -complete.

S30. The security of cryptosystems is based on the existence of one-way
functions. For the purposes of this problem, let us define a one-
way function to be a deterministic-polynomial-time-computable length-
preserving map f : Σ∗ → Σ∗ that is not invertible in deterministic
polynomial time. Here invertible means: given y, either produce some
x such that f(x) = y, or say that no such x exists. Show that one-way
functions exist if and only if P �= NP .

H31. Of the following three problems, one is≤log
m -complete for co-NLOGSPACE

and the other two are ≤log
m -complete for PSPACE . Which is which? Give

proofs.

(a) Given a regular expression α, is L(α) = ∅?

(b) Given a regular expression α, is L(α) = Σ∗?
(c) Given two regular expressions α and β, is L(α) = L(β)?

32. S(a) Prove that a set A is in NP iff there is a deterministic polynomial-
time computable binary predicate R and constant c such that

A = {x | ∃y |y | ≤ |x |c ∧R(x, y)}.

(b) More generally, prove Theorem 10.2: a set A is in Σp
k iff there is a

deterministic polynomial-time computable (k + 1)-ary predicate R
and constant c such that

A = {x | ∃|x |cy1 ∀|x |cy2 ∃|x |cy3 · · · Q|x |cyk R(x, y1, . . . , yk)}.
The bounded quantifiers ∃t and ∀t are defined at the end of Lecture
10.

33. Let S(n) ≥ log n. Prove that

⋃
k

STA(S(n), ∗, Σk) ∪ STA(S(n), ∗, Πk) = NSPACE(S(n)).

34. Define ∆p
k+1 = PΣp

k , the family of all sets accepted by deterministic
polynomial-time-bounded oracle machines with an oracle in Σp

k.
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(a) Show that

Σp
k ∪Πp

k ⊆ ∆p
k+1 ⊆ Σp

k+1 ∩Πp
k+1.

(b) Show that the set of Boolean formulas with exactly one satisfying
assignment is in ∆p

2 .

(c) Give a ≤log
m -complete problem for ∆p

k, and prove that it is complete.

35. Prove that PH has a ≤log
m -complete set if and only if it collapses.

H36. Prove that the circuit value problem for constant-depth circuits is ≤log
m -

complete for NLOGSPACE .

37. A Boolean decision diagram (BDD) is a directed acyclic graph with a
single source and two sinks, one labeled 0 and the other labeled 1, such
that all non-sink nodes have exactly two exiting edges, one labeled x
and the other labeled x for some Boolean variable x. The value of a
BDD on a truth assignment σ is the label of the sink node of the unique
σ-enabled path from the source to a sink, where an edge with literal �
is σ-enabled if σ(�) = 1. For BDDs, what is the complexity of

(a) determining the value for a given σ?
(b) satisfiability?

38. Every decision problem has a family of Boolean circuits of size at most
O(n2n) by writing the nth circuit in disjunctive normal form. Prove that
every decision problem has a family of Boolean circuits of size at most

H(a) O(2n),

∗(b) O(2n/n).

∗∗39. ([18]) A rectilinear maze is a connected subset of the infinite checker-
board. That is, it is a connected undirected graph whose vertices
are ordered pairs of integers and whose edges are all of the form
((x, y), (x, y + 1)) or ((x, y), (x + 1, y)). Show that the MAZE problem
for rectilinear mazes is solvable in deterministic logspace.

H40. Give an NC algorithm for finding a topological sort in a given directed
acyclic graph (V, E). That is, find a total ordering < of V that extends
E in the sense that if uEv, then u < v.
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S41. (a) Show that any deterministic logspace transducer can be simulated
by a family of NC circuits with multiple output wires.

(b) We showed in Theorem 6.1 that the circuit value problem (CVP) is
≤log

m -complete for P . Conclude from this and part (a) that CVP ∈
NC if and only if P = NC .

H42. Consider the following Standard ML program to compute the greatest
common divisor (gcd) of two numbers m, n, not both of which are 0.

fun Euclid(m:int, n:int) : int * int * int =
if n = 0 then (1,0,m)
else let
val q = m div n
val r = m mod n
val (s,t,g) = Euclid(n,r)

in
(t,s-t*q,g)

end

Here div computes the quotient and mod the remainder when dividing
m by n using ordinary integer division. Prove that the output of the
program is a triple (s, t, g), where g is the gcd of m and n and s, t are
integers such that sm + tn = g.

H43. Let a and n be positive integers. Prove that the following are equivalent.

(i) a has an order modulo n; that is, there exists m such that am ≡
1 (mod n).

(ii) a is relatively prime to n; that is, gcd(a, n) = 1.

(iii) a is invertible modulo n; that is, there exists b, 1 ≤ b ≤ n− 1, such
that ab ≡ 1 (mod n).

44. Prove the following amplification lemma for IP and PCP analogous
to Lemma 14.1 for BPP and RP . If L has an IP (respectively, PCP)
protocol that uses r(n) random bits and makes q(n) queries, then for
any ε > 0, L has an IP (respectively, PCP) protocol (P, V ) that uses
kr(n) random bits and makes kq(n) queries and has error probability
bounded by ε, where k is O(− log ε). In the case of PCP , this means

(i) if x ∈ L then Pr((P, V ) accepts x) = 1,
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(ii) if x �∈ L then for any P ′, Pr((P ′, V ) accepts x) ≤ ε,

and in the case of IP ,

(i) if x ∈ L then Pr((P, V ) accepts x) ≥ 1− ε,

(ii) if x �∈ L then for any P ′, Pr((P ′, V ) accepts x) ≤ ε.

45. In this exercise we complete the proof of Lemma 18.2. Let B be a
Boolean formula in 3CNF with m clauses over n variables x1, . . . , xn

such that each clause contains exactly three literals with distinct vari-
ables. Let Si and S be as in the proof of Lemma 18.2. As argued in that
proof, E(S) = 7m/8. Let a1, . . . , an ∈ {0, 1} be the truth assignment
to x1, . . . , xn obtained from the greedy algorithm. For a random truth
assignment r1, . . . , rn, let Ek be the event

Ek
def=

k∧
i=1

ri = ai.

Then E(S | Ek−1 ∧ rk = ak) ≥ E(S | Ek−1 ∧ rk = ak), because that was
how we chose ak in the greedy algorithm.

(a) Show how to calculate E(S | Ek) efficiently.

H(b) Prove that

E(S | Ek−1) = E(S | Ek−1 ∧ rk = ak) · Pr(rk = ak | Ek−1)
+ E(S | Ek−1 ∧ rk = ak) · Pr(rk = ak | Ek−1).

(c) From (b), conclude that E(S | Ek−1) ≤ E(S | Ek).

(d) Using (c), show that the greedy assignment a1, . . . , an satisfies at
least 7m/8 clauses.

H46. Show that if P = NP , then

(a) MAX-3SAT

(b) MAX-CLIQUE

can be solved exactly in polynomial time (see Lecture 18).

47. Complete the proof of Theorem 18.3 by proving the following claims
about the construction in that proof.
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(a) Show that if a �= b, then (y, a) and (y, b) are not consistent, thus
((y, a), (y, b)) cannot be an edge of the graph.

H(b) Show that if x ∈ L, then the maximum clique of G is of size nc,
whereas if x �∈ L, the maximum clique of G is of size strictly less
than αnc.

48. Let F = Zp for some prime p. Give a PCP(n3, 1) protocol for determining
for given oracles f : Fn → F and f : Fn3 → F whether f is close to a
function of the form r �→ r • a and h is close to a function of the form
t �→ t • (a⊗ a⊗ a) for some a ∈ Fn (see Lecture 20).

49. Come up with a definition of trivial for first-order theories in terms of
constraints on the signature. Prove that for your definition of trivial,

HS(a) Every nontrivial theory is PSPACE -hard.

(b) Every trivial theory is decidable in polynomial time.

HS50. An Ehrenfeucht–Fraissé game is said to be finite if from each board
position, there are only finitely many legal next moves. Show that every
first-order theory is characterized by a finite Ehrenfeucht–Fraissé game.
Why does this not show that every first-order theory is decidable?

51. Prove that the set of sets of infinite strings accepted by deterministic
Büchi automata is closed under union and intersection.

52. What is the complexity of the emptiness problem for nondeterministic
Büchi automata? Give proof.

53. How hard is it to determine whether a given

(a) deterministic

∗H(b) nondeterministic

Büchi automaton accepts all strings? Give proof.

54. Show that every set accepted by a Büchi automaton is a finite union of
sets of the form ABω, where A and B are regular sets. Here Bω denotes
the set of infinite words of the form w0w1w2 · · · , where wi ∈ B−{ε} for
all i ≥ 0.
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55. Prove that equicardinality of sets, that is, the predicate

ϕ(A, B) def⇐⇒ A and B have the same number of elements,

cannot be expressed in S1S.

56. Consider the following two acceptance conditions for automata on infi-
nite words.

(a) Streett condition: As with the Rabin acceptance condition, there
is a finite set of pairs (Gi, Ri), 1 ≤ i ≤ k, where Gi and Ri are
subsets of Q. A run σ is accepting if for all i, IO(σ) ∩ Gi �= ∅
implies IO(σ) ∩ Ri �= ∅.

(b) Parity condition: Assume that the states of the automaton are
numbered {0, 1, . . . , n − 1}. A run σ is accepting if the least-
numbered state that occurs infinitely often is even.

Show that for nondeterministic automata, these two acceptance con-
ditions are equivalent to the other acceptance conditions discussed in
Lectures 25 and 26.

57. S(a) Prove that (1 − 1/z)z ≤ e−1 for all z > 0 and that (1 − 1/z)z

approaches e−1 in the limit as z → ∞, where e = 2.718 . . . is the
base of natural logarithms.

(b) Prove that (1 + 1/z)z ≤ e for all z > 0 and that (1 + 1/z)z ap-
proaches e in the limit as z →∞.

58. Construct a recursive oracle A such that NPA �= co-NPA.

59. (Cai and Ogihara [25]) In this exercise, we give an alternative proof of
Mahaney’s theorem (Theorem 29.2). Suppose that S is a sparse NP-hard
set. For a Boolean formula ϕ of length n and truth assignment t ∈ {0, 1}n

to the variables of ϕ, let ϕ(t) denote the truth value obtained by evalu-
ating ϕ at t. Let ≤lex denote lexicographic order on truth assignments
of the same length. Define the set

E
def= {(ϕ, s) | ∃t s ≤lex t ∧ ϕ(t) = 1}.

Observe that if (ϕ, t) ∈ E and s ≤lex t, then (ϕ, s) ∈ E. We give a
polynomial-time decision procedure for E.
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(a) Show that E is NP -complete. Thus the existence of a polynomial-
time decision procedure for E implies P = NP .

(b) Let σ be a polynomial-time many–one reduction from E to S with
time bound nc. Show that there exists a polynomial nd such that
|S ∩ Σ≤nc | ≤ nd.

Let ϕ be a Boolean formula of length n. Let A0 = {0, 1}n, the set of all
truth assignments to the variables of ϕ. We construct a sequence of sub-
sets A0 ⊇ A1 ⊇ A2 ⊇ · · · of decreasing size, maintaining the following
invariant: if ϕ is satisfiable, then Ai contains a satisfying assignment.

Here is how we get Ai+1 from Ai. Suppose Ai = {t0, . . . , tm−1} ⊆
{0, 1}n, where t0 ≤lex t1 ≤lex · · · ≤lex tm−1, and m ≥ nd + 1 (the d is
the same d as in part (b)). Let

J
def= {�km/(nd + 1) | 0 ≤ k ≤ nd} ⊆ {0, 1, 2, . . . , m− 1}.

This is a set of nd + 1 evenly spaced indices of elements of Ai.

(c) Show that �km/(nd + 1) < �(k + 1)m/(nd + 1) for all k, thus J
contains nd + 1 distinct elements.

Compute σ(ϕ, tj) for each j ∈ J . If there exist i, j ∈ J with i < j and
σ(ϕ, ti) = σ(ϕ, tj), remove the interval {tk | i ≤ k < j} from Ai. If on
the other hand all σ(ϕ, tj) are distinct for j ∈ J , remove the last interval
{tk | k ≥ ndm/(nd + 1)} from Ai.

(d) Argue that in either case, the invariant is maintained.

(e) In either case, we remove at least |Ai |/(nd + 1) elements from
Ai. Using Miscellaneous Exercise 57(a), show that after at most
(nd + 1)(n ln 2 − ln(nd + 1)) = O(nd+1) steps, we get down to a
small enough set that we can evaluate ϕ on all the remaining truth
assignments directly.

(f) The sets Ai produced in this construction are of exponential size
in general. However, they can be represented efficiently so that the
above procedure can be carried out in polynomial time. Describe a
representation for the sets Ai that allows |Ai | and the maps j �→ tj
to be calculated efficiently.

60. (a) Recall that a square matrix is nonsingular if all its columns are
linearly independent. Show there are exactly

∏n−1
i=0 (qn − qi) non-

singular n× n matrices over GFq.
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∗H(b) Show how to generate a random n×n nonsingular matrix over GFq

efficiently, all nonsingular matrices equally likely.

61. If E is a subspace of an n-dimensional vector space V , let dimE and
codimE denote the dimension and codimension (n minus the dimension)
of E, respectively. Show that codim E ∩ F ≤ codimE + codimF .

62. Prove that the lower bound 3/4 established in Lemma F.1 is tight for
all n.

63. (Papadimitriou and Zachos [93]) The class⊕P (“parity P”) is defined to
be the class of sets A for which there exists a polynomial-time nondeter-
ministic TM M such that x ∈ A iff the number of accepting computation
paths of M on input x is odd. Equivalently, we can think of the machine
M as a kind of alternating machine that at branching nodes computes
the mod-2 sum of the labels of its children. Another characterization of
⊕P is given in Lecture G. Prove that ⊕P⊕P = ⊕P .

64. Show that the following two characterizations of #P are equivalent.

(a) A function f : {0, 1}∗ → N is in #P iff there exist A ∈ P and
k ≥ 0 such that for all x, f(x) = |W (nk, A, x) |.

(b) A function f : {0, 1}∗ → N is in #P iff there is a polynomial-
time nondeterministic TM M such that the number of accepting
computation paths of M on input x is f(x).

65. In the proof of Toda’s theorem (Theorem G.1), we need to know that
the polynomial hm(z) satisfies the property

z is odd ⇒ hm(z) ≡ −1 (mod 22m

)
z is even ⇒ hm(z) ≡ 0 (mod 22m

),

where

h(z) def= 4z3 + 3z4

h0(z) def= z

hm+1(z) def= h(hm(z)).

Show that this is so.
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66. Prove the following clauses of Lemma G.2. If C is closed downward under
≤p

T, then

S(ii) Πlog · ⊕ · C ⊆ ⊕ · C;

∗HS(iii) ⊕ · BP · C ⊆ BP · ⊕ · C;

H(iv) BP · BP · C ⊆ BP · C;

H(v) ⊕ · ⊕ · C ⊆ ⊕ · C;

H(vi) BP · C and ⊕ · C are closed downward under ≤p
T.

67. Let #P denote the class of all polynomial-time counting functions. A
formal definition of this class is given in Lecture G. Show that #P is
closed under the following pointwise operations.

(a) Addition: if f, g ∈ #P , then so is f + g = λx.f(x) + g(x).

(b) Multiplication: if f, g ∈ #P , then so is f · g = λx.f(x)g(x).

∗(c) If f is in #P , then so is λx.f(x)|x |d for any constant d.

∗S(d) Let g : {0, 1}∗ → N[z] be a function that on input x ∈ {0, 1}∗
gives a polynomial with indeterminate z and positive integer co-
efficients representing a polynomial function N → N. Suppose g is
polynomial-time computable in the sense that g(x) is of degree at
most polynomial in |x |, the coefficients of g(x) can be represented
in binary with at most polynomially many bits, and the coefficient
of zi can be produced from x and i in polynomial time. Show that
if f is in #P , then so is λx.g(x)(f(x)).

68. (Papadimitriou [92]) Some computations produce an output f(x) on
input x that is in the worst case much larger than |x |. For such problems,
we would like to have algorithms that are polynomial in |x |+ |f(x) | to
decide for a given x, y whether f(x) = y. The class of all such problems
is called output polynomial time.

H(a) Consider the function that for a given regular expression pro-
duces the minimum-state equivalent deterministic finite automa-
ton. Prove that this function is in output polynomial time iff
P = PSPACE .
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(b) Prove that it is impossible to produce in output polynomial time
an equivalent deterministic automaton that has at most poly-
nomially more states than the minimum-state automaton unless
P = PSPACE .

69. (a) Prove that

(z ∧ u) ∨ (z ∧ v) ≡ (z → u) ∧ (z → v).

(b) Let ψ(x) be any Boolean formula with a single positive occurrence
of the Boolean variable x along with possibly other variables. Here
positive means in the scope of an even number of negations. Show
that

ψ(x0 ∨ x1) = ψ(x0) ∨ ψ(x1)
ψ(x0 ∧ x1) = ψ(x0) ∧ ψ(x1),

where x0 and x1 do not occur in ψ(x).

HS(c) Show that any Σk oracle machine can be efficiently simulated by
another Σk oracle machine that makes all its oracle queries at the
end of the computation.

H70. Let excl(z, u, v) denote the Boolean formula on the left-hand side of the
equation in Exercise 69(a) (or the equivalent formula on the right-hand
side). Let ϕ(x) be any Boolean formula with Boolean variable x and
possibly other variables. Prove that

ϕ(excl(z, u, v)) ≡ excl(z, ϕ(u), ϕ(v)).

71. A minterm of a Boolean formula ϕ is a ≤-maximal term M such that
M ≤ ϕ. If ϕ is a CNF formula, show that M is a minterm of ϕ iff M
contains at least one literal from each clause of ϕ and no proper subterm
of M has this property.

72. Let ϕ be a Boolean formula. Show that the disjunction of all minterms
of ϕ is a DNF formula equivalent to ϕ.

73. Prove that if the Gi are mutually exclusive events that cover F , then

Pr(E | F ) =
∑

i

Pr(E | Gi ∧ F ) · Pr(Gi | F )

≤ max
i

Pr(E | Gi ∧ F ).
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74. Prove that Pr(E ∧ F | G) = Pr(E | F ∧G) · Pr(F | G).

75. Prove that if E0 ∧ F0 and E1 ∧ F1 are independent and F0 and F1 are
independent, then

Pr(E0 ∧E1 | F0 ∧ F1) = Pr(E0 | F0) · Pr(E1 | F1).

76. (a) Prove that if G is independent of both E and E ∧ F , then

Pr(E | F ∧G) = Pr(E | F ).

(b) Give a counterexample showing that the following statement is
false. If G is independent of both E and F , then

Pr(E | F ∧G) = Pr(E | F ).

77. (a) Prove that

Pr(E | F ) ≤ Pr(E) ⇔ Pr(F | E) ≤ Pr(F ).

(b) More generally, prove that

Pr(E | F ∧G) ≤ Pr(E | G) ⇔ Pr(F | E ∧G) ≤ Pr(F | G).

78. Prove that if M ≤ ψ ≤ ϕ and M is a minterm of ϕ, then M is also a
minterm of ψ.

79. Prove Lemma H.2(iii) and (iv): if ρ is a partial valuation and W a set
of variables such that ρ(W ) = W , then

(a) ρ(ϕ)−W = ρ(ϕ−W ),

(b) ρ(ϕ) = 1 iff ρ(ϕ−W ) = 1.

S80. For definitions and notation, see Supplementary Lecture H. Let ϕ be
a CNF formula over variables X and ρ : X → X ∪ {0, 1} a partial
valuation. Let Y be the set of variables that are not assigned by ρ, and
let N be a term over Y . If N is a minterm of ρ(ϕ), then there exists a
minterm M of ϕ such that N = ρ(M).
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S81. For definitions and notation, see Supplementary Lecture H. Consider
random partial valuations ρ that assign 0 or 1 to each variable inde-
pendently with probability 1

2 (1 − p) each or leave it unassigned with
probability p. Give CNF formulas ϕ and ψ and s ≥ 0 such that

Pr(∃M ∈ m(ρ(ϕ)) |M | ≥ s)
< Pr(∃M ∈ m(ρ(ϕ)) |M | ≥ s | ρ(ψ) = 1).

Thus conditioning on a formula becoming equivalent to 1 does not always
make it less likely that there exists a large minterm.

82. (a) Let Xi be independent real-valued random variables, 1 ≤ i ≤ n.
Show that the expected value of their product is the product of
their expected values.

(b) Show that (a) is false without the independence assumption.

83. Prove the Markov bound (I.1): for a nonnegative random variable X
with mean µ = EX ,

Pr(X ≥ k) ≤ µ/k.

84. Prove the Chebyshev bound (I.2): for a random variable X with mean
µ = EX and standard deviation σ =

√
E((X − µ)2), for any δ ≥ 1,

Pr(|X − µ | ≥ δσ) ≤ δ−2.

85. Prove that the standard deviation of n Bernoulli trials with success
probability p is

√
np(1− p).

86. Using (a) the Chebyshev bound (I.2), and (b) the Chernoff bound (I.7),
estimate the probability that the number of successes in n Bernoulli
trials with success probability p is less than half the mean.

87. Show that the three alternative forms of the Chernoff bound (I.3), (I.4)
and (I.6) are equivalent.

88. Prove the Chernoff bounds (I.7)–(I.9) for the lower tail.
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H89. Prove the Chernoff bound (I.10): for the sum of Poisson trials with mean
µ, for 0 ≤ δ ≤ 1,

Pr (X < (1 − δ)µ) < e−δ2µ/2.

S90. Consider a simple programming language with variables x, y, . . . ranging
over N containing the following constructs.

(i) Simple assignment: x := 0 x := y + 1 x := y

(ii) Sequential composition: p ; q

(iii) Conditional test: if x < y then p else q

(iv) For loop: for y do p

(v) While loop: while x < y do p

In (iii) and (v), the relation < can be replaced by any one of >, ≥, ≤,
=, or �=.

Programs built inductively from these constructs are called while pro-
grams . Programs built without the while construct (v) are called for
programs.

The semantics of the for loop is as follows. Upon entry to the loop, the
variable y is evaluated, and the body of the loop p is executed that many
times. No assignment to y in the loop changes the number of times the
loop is executed, nor does execution of the loop change the value of y
in any way, except by explicit assignment.

Show that every while program over N is equivalent to one containing
at most one while loop. The program may contain as many for loops as
you like, and you are allowed to declare extra local variables, which are
not counted in the definition of equivalence.

S91. Gödel defined the primitive recursive functions to be the smallest class
P of number-theoretic functions Nk → N containing the constant zero
function zero( ) = 0, the successor function s(x) = x + 1, and the
projections πn

k : Nn → N given by πn
k (x1, . . . , xn) = xk, 1 ≤ k ≤ n, and

closed under the following operations.

(a) Composition:

If f : Nk → N and g1, . . . , gk : Nn → N are in P, then
so is the function f ◦ (g1, . . . , gk) : Nn → N that on input
x = x1, . . . , xn gives

(f ◦ (g1, . . . , gk))(x) def= f(g1(x), . . . , gk(x)).
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(b) Primitive recursion:

If hi : Nn−1 → N and gi : Nn+k → N are in P, 1 ≤ i ≤ k,
then so are the functions fi : Nn → N, 1 ≤ i ≤ k, defined
by mutual induction as follows:

fi(0, x) def= hi(x),

fi(x + 1, x) def= gi(x, x, f1(x, x), . . . , fk(x, x)),
where x = x2, . . . , xn.

Define the class C to be the smallest class of number-theoretic functions
containing the constant zero function, the successor function, and the
projection functions, and closed under the following operations.

(a) Composition:

If f : Nm → Nn and g : Nn → Nk are in C, then so is the
function g ◦ f : Nm → Nk defined by

(g ◦ f)(x) def= g(f(x)).

Note the difference from the composition rule in Gödel’s definition
above.

(b) Tupling:

If f1, . . . , fn : Nm → N are in C, then so is the function
(f1, . . . , fn) : Nm → Nn defined by

(f1, . . . , fn)(x) def= (f1(x), . . . , fn(x)).

(c) Iterated composition:

If g : Nn → Nn ∈ C, then the function f : Nn+1 → Nn

defined by

f(x, y) def= gx(y)
is in C, where gn is g composed with itself n times:

g0(y) def= y

gn+1(y) def= g(gn(y)).

Show that for functions with a single output, P and C coincide.

92. (Meyer and Ritchie [85]) Show that for programs over N as defined in
Miscellaneous Exercise 90 compute exactly the primitive recursive func-
tions. Use either of the equivalent definitions of Miscellaneous Exercise
91.

HS93. (Meyer and Ritchie [85]) Show that a function is primitive recursive iff it
is computed by a while program with a primitive recursive time bound.
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∗∗H94. Ackermann’s function is defined inductively as

A(0, n) def= n + 1

A(m + 1, 0) def= A(m, 1)

A(m + 1, n + 1) def= A(m, A(m + 1, n)).

Thus

A(0, n) = n + 1
A(1, n) = n + 2
A(2, n) = 2n + 3
A(3, n) = 2n+3 − 3

A(4, n) = 222..
.2︸ ︷︷ ︸

n+3

− 3.

Prove that λx.A(x, 2) grows asymptotically faster than any primitive
recursive function. Use any of the three equivalent characterizations of
primitive recursive functions given in Miscellaneous Exercises 91 and 92.

95. Write a program in any programming language except C or UNIX shell
that prints itself out. Your program must be nonnull, may not do any
file I/O, and must be syntactically correct. Programs in C and UNIX
shell were given in Lecture 34.

H96. Prove that the Post correspondence problem (PCP) is undecidable (see
Lecture 25).

97. Construct a recursive set A for which any Turing machine uses more
than polynomial time almost everywhere. In other words, for any M
such that L(M) = A and any constant k, M runs for at least |x |k steps
for all but finitely many inputs x. Can you make A ∈ EXPTIME?

HS98. Show that the set of all minimal indices

{x | ∀y < x ϕy �= ϕx}

is immune.

H99. Show that every infinite r.e. set has an infinite recursive subset.



Miscellaneous Exercises 309

100. (a) Show that there does not exist an r.e. set A of Turing machine
indices such that

• if i ∈ A then Mi is total; and
• every recursive set has an index in A.

∗H(b) Show that there exists an r.e. set A of Turing machine indices such
that

• if i ∈ A then L(Mi) is recursive; and
• every recursive set has an index in A.

101. (a) Using the recursion theorem, one can easily find a program that
computes its own index: construct σ total such that ϕσ(n)(x) = n,
then take a fixpoint. Show that there exist two different programs
that compute each other’s indices. That is, show that there exist
m, n ∈ ω, m �= n, such that ϕn(x) = m and ϕm(x) = n.

(b) Write two different programs in your favorite programming lan-
guage that print each other out.

102. (a) Let ϕ and ψ be Gödel numberings. Show that there exist indices
m, n ∈ ω such that ϕn(x) = m and ψm(x) = n.

(b) Write a program in each of your two favorite programming lan-
guages that print each other out.

∗103. Let A be a recursive set that cannot be computed in polynomial time.
Show that there exists an infinite recursive subset B ⊆ A on which any
TM computing A takes more than polynomial time a.e. on B.

104. (a) Show that if P = NP , then given nondeterministic polynomial-time
machine with explicit time bound nk, one can find an equivalent
deterministic polynomial time machine effectively (that is, by a
total recursive function).

∗∗(b) Show that this is still true even if the time bound nk is not known.

105. The following problems refer to the proof of the speedup theorem (The-
orem 32.2).

(a) Show that it is undecidable for a given machine Mi whether Mi

falls in case A or case B.
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(b) Show that the values m(i) cannot be obtained effectively.

∗∗(c) Show that it is impossible to obtain a machine for A running in
time fn−k(2) effectively from k.

106. Let P be a nontrivial property of the linear-time sets that is true for all
regular sets. Show that P is undecidable.

∗HS107. This is a general isomorphism theorem that has both the Rogers isomor-
phism theorem (Theorem 34.3, Miscellaneous Exercise 108) and the My-
hill isomorphism theorem (Miscellaneous Exercise 109) as special cases.
Let ◦ denote relational composition and −1 the reverse operator on bi-
nary relations on ω. That is, for R, S ⊆ ω × ω, define

R ◦ S
def= {(u, w) | ∃v (u, v) ∈ R, (v, w) ∈ S}

R−1 def= {(u, v) | (v, u) ∈ R}.
For a function f : ω → ω, define

graph f
def= {(x, f(x)) | x ∈ ω}.

Let R be a binary relation on ω such that R ◦R−1 ◦ R ⊆ R. Let f, g :
ω → ω be one-to-one total recursive functions such that graph f ⊆ R
and graph g ⊆ R−1. Show that there exists a one-to-one and onto total
recursive function h : ω → ω such that graphh ⊆ R.

H108. Here we use Miscellaneous Exercise 107 to give an alternative proof of
the Rogers isomorphism theorem (Theorem 34.3). Assuming there exist
σ, τ : ω → ω such that for all i, ϕi = ψσ(i) and ψi = ϕτ(i), show that
there exists a one-to-one and onto total recursive function ρ : ω → ω
such that for all i, ϕi = ψρ(i).

H109. The Cantor–Schröder–Bernstein theorem of set theory says that if there
is a one-to-one function A → B and a one-to-one function B → A, then
A and B are of the same cardinality. Here is an effective version due
to Myhill [90] (see [104]) known as the Myhill isomorphism theorem.
Show that any two sets that are reducible to each other via one-to-one
reductions are recursively isomorphic. In other words, let A, B ⊆ ω and
let f, g : ω → ω be one-to-one total recursive functions such that for all
x ∈ ω, x ∈ A ⇔ f(x) ∈ B and x ∈ B ⇔ g(x) ∈ A. Show that there
exists a one-to-one and onto total recursive function h : ω → ω such
that for all x ∈ ω, x ∈ A ⇔ h(x) ∈ B.



Miscellaneous Exercises 311

110.∗S(a) Give a recursive set A such that both A and ∼A are infinite, but
neither A nor ∼A contains an infinite polynomial-time computable
subset.

∗(b) Let L be a family of recursive sets such that there exists an r.e. list
of TMs that always halt and accept all and only sets in L. Give
a recursive set A such that both A and ∼A are infinite, but no
infinite subset of A or ∼A is in L.

111. Use the constructs based on the sm
n and universal function properties as

described in Lecture 33 to construct a lazy conditional test

ϕcond(i,j)(x, y) =
{

ϕi(y), if x = 0,
ϕj(y), if x �= 0.

The conditional test should be lazy in the sense that it should not at-
tempt to evaluate ϕi(y) if x �= 0 nor ϕj(y) if x = 0.

112. Prove the following generalization of Lemma 37.8. If A ≤m B and A is
productive, then so is B.

H113. Give a set A such that both A and ∼A are productive.

114. Two disjoint sets A and B are recursively separable if there exists a
recursive set C such that A ⊆ C and B ⊆ ∼C. They are recursively
inseparable if no such C exists.

(a) Show that any pair of disjoint co-r.e. sets are recursively separable.

∗H(b) Construct a pair of recursively inseparable r.e. sets.

H115. Define x ≡ y if ϕx = ϕy. Show that any pair of distinct ≡-equivalence
classes are recursively inseparable. (See Miscellaneous Exercise 114.)

H116. Let Φ be an abstract complexity measure (see Lecture J). Prove that Φi

is a partial recursive function, and that it is possible to obtain an index
for Φi effectively from i. That is, there exists a total recursive function
σ such that ϕσ(i) = Φi.
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117. Let Φ be an abstract complexity measure. Prove that for any total re-
cursive function g, there exists a 0, 1-valued total recursive function f
such that for all indices i for f , Φi(n) > g(n) a.e.

118. H(a) Let Φ be an abstract complexity measure. Prove that there does
not exist a total recursive function f such that for all i, Φi(n) ≤
f(n, ϕi(n)) a.e.; that is, the complexities of recursive functions are
not uniformly recursively bounded by their values.

(b) On the other hand, show that the values of recursive functions
are uniformly recursively bounded by their complexities; that is,
there exists a total recursive function g such that for all i, ϕi(n) ≤
g(n, Φi(n)) a.e.

119. (a) Show that the domain of ϕi is recursive iff there exists a total
recursive function f such that Φi(n) ≤ f(n) whenever ϕi(n)↓.

(b) Conclude from (a) that any TM accepting a nonrecursive r.e. set
must use more space than any total TM on infinitely many accepted
inputs.

120. Prove the gap theorem for abstract complexity measures (Theorem J.1).

H121. (Blum [17]) Prove the following slowdown theorem. For all total recursive
functions f, g, there exists an index i for f such that Φi(n) > g(n) for
all n.

122. Show that any two abstract complexity measures are uniformly recur-
sively bounded by each other. Formally, let Φ and Ψ be abstract com-
plexity measures. Give a total recursive function f such that for all i,
Ψi(n) ≤ f(n, Φi(n)) a.e. and Φi(n) ≤ f(n, Ψi(n)) a.e.

123. (a) (Combining Lemma) Let Φ be an abstract complexity measure. Let
c be a total recursive operator of two variables such that for all i, j,
if ϕi(n) ↓ and ϕj(n) ↓, then ϕc(i,j)(n) ↓. Show that there exists a
total recursive function h such that for all i, j,

Φc(i,j)(n) ≤ h(n, Φi(n), Φj(n)) a.e.
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(b) In particular, let c be a total recursive operator such that for all i,
if ϕi(n)↓, then ϕc(i)(n)↓. Show that there exists a total recursive
function h such that for all i,

Φc(i)(n) ≤ h(n, Φi(n)) a.e.

H124. Let Φ be an abstract complexity measure. Show that given some com-
plexity class CΦ

f in terms of an index for f , one can uniformly and
effectively find a strictly larger complexity class. That is, there exists a
total recursive function σ such that CΦ

ϕσ(i)
strictly contains CΦ

ϕi
.

125. An abstract complexity measure Φ is completely honest if there ex-
ists a total recursive function σ such that for all i, ϕσ(i) = Φi and
Φσ(i)(n) ≤ Φi(n) a.e. In other words, we can effectively find an index
for the complexity of a given partial recursive function ϕi, and it is no
more difficult to compute the complexity than to compute the function
itself.

(a) Argue that space complexity of Turing machines is completely hon-
est.

H(b) Show that not all abstract complexity measures are completely
honest.

∗S126. The functions fk in the statement of the union theorem (Theorem J.3)
are postulated to satisfy a monotonicity condition, which states that for
all i and n, fi(n) ≤ fi+1(n). Show that the theorem can fail without
this condition.

127. A set of total recursive functions is recursively enumerable (r.e.) if there
exists an r.e. set of indices representing all and only functions in the set.
For example, the complexity class P is r.e., because we can represent it
by an r.e. list of TMs with polynomial-time clocks.

(a) Let Φ be an abstract complexity measure. Show that any Φ-
complexity class containing all functions that are almost every-
where constant is r.e.

(b) Suppose the complexity measure Φ is invariant under finite modi-
fications ; that is, if f(n) = g(n) a.e., then f ∈ CΦ

t iff g ∈ CΦ
t . Show

that all Φ-complexity classes are r.e.
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∗H(c) Show that there exists a measure Φ and a total recursive function
f such that CΦ

f is not r.e.

128. Prove Theorem 35.1.

129. Prove that Σ0
n ∪Π0

n �= ∆0
n+1 (see Lecture 35).

130. Prove the following completeness results (see Lecture 35 for definitions).

(a) HP is ≤m-complete for Σ0
1.

(b) EMPTY is ≤m-complete for Π0
1.

(c) TOTAL is ≤m-complete for Π0
2.

131. Let Mi and ϕi denote Turing machines and partial recursive functions,
respectively. Show that the sets

(a) ALL def= {i | L(Mi) = Σ∗}
S(b) EQUAL def= {(i, j) | ϕi = ϕj}
are ≤m-complete for Π0

2.

∗∗H132. Let L be any family of recursive sets containing all the regular sets such
that there exists an r.e. list of TMs that always halt and accept all and
only sets in L. Show that {i | L(Mi) ∈ L} is ≤m-complete for Σ0

3.

H133. Prove that the following decision problems are ≤m-complete for Σ0
3.

(a) Given a Turing machine M , is L(M) a regular set?

(b) Given a Turing machine M , is L(M) a context-free language?

(c) Given a Turing machine M , is L(M) a recursive set?

134. S(a) Let PA denote Peano arithmetic (or your favorite proof system for
number theory). Does there exist a polynomial-time machine that
cannot be proved in PA to run in polynomial time?
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∗S(b) Is it always possible, given a machine that runs in polynomial time,
to effectively compute a bound of the form nk?

∗H135. Prove that there exists a total computable function f : N → N that is
not provably total in Peano arithmetic.

∗S136. Formalize and prove the following statement. “In any formal deductive
system for number theory, there is a decidable problem for which no
algorithm can be proved totally correct.”

H137. Write A ≤1 B if A ≤m B via a reduction σ that is one-to-one. Show
that K = {x | Mx(x)↓} is Σ0

1-complete with respect to ≤1.

H138. (a) In Miscellaneous Exercise 130, we showed that

TOTAL def= {M | ∀x ∃k M(x)↓k}
is ≤m-complete for Π0

2. How about the set

WAYTOTAL def= {M | ∃k ∀x M(x)↓k}?

∗(b) Is it always possible, given M ∈ WAYTOTAL, to effectively com-
pute a bound k?

∗∗HS139. One of the following problems is Σ0
2-complete and the other is Π1

1-
complete. Which is which? Provide conclusive evidence that your choice
is correct.

(a) Given a nondeterministic Turing machine M and state q of M ,
does there exist a computation path of M on input ε along which
M enters state q only finitely often?

(b) Given a nondeterministic Turing machine M and state q of M ,
does M on input ε enter state q only finitely often along every
computation path?

140. (a) Prove that the following problem is in LOGSPACE . Given a finite
binary relation, is it transitive?
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S(b) Prove that the following problem is ≤m-complete for Π0
1. Given a

recursive binary relation R ⊆ ω2, say by a total Turing machine
accepting the set of pairs in R, is R transitive?

141. Argue that any Π1
1 formula over N can be put into the form (39.1) using

pairing and the skolemization rule

∀x : N ∃f : N → N ϕ(f, x) �→ ∃g : N → (N → N) ∀x : N ϕ(g(x), x).

142. Show that first-order number theory is hyperelementary over N but not
elementary (see Lecture 39). Here first-order number theory refers to the
set

Th(N) def= {ϕ | ϕ is a sentence of the language of first-order
number theory and N � ϕ}.

143. Prove Corollary 41.2.

∗∗144. ([77]) As argued in Lectures 39 and 40, IND programs accept exactly the
Π1

1 sets over N. Show that IND programs with dictionaries accept exactly
the Π1

1 sets over any countable structure. A dictionary is an abstract
data structure that allows data items to be associated with keys and
retrieved by key lookup.
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Homework 1 Solutions
1. (a) One possible nonregular set accepted in time O(n log n) is

{a2n | n ≥ 0}.
Repeatedly scan the input, checking that the number of a’s remain-
ing is even and erasing every second one, until one a remains.

(b) For this proof, crossing sequences are sequences of states only. As-
sume M moves all the way to the right before accepting. Let q be
the number of states of M . By an argument similar to the proof
of Lemma 1.4, if L(M) is nonregular, then there can be no fixed
finite bound on the length of crossing sequences generated by M
on accepted inputs. Then for each k > 0, there is a string in L(M)
for which a crossing sequence of length ≥ k is generated. Let xk

be the shortest such string and let n = |xk |. As in the proof of
Theorem 1.3, M must generate at least n/2 distinct crossing se-
quences on input xk, otherwise we could remove a substring of xk

and get a smaller string generating the longest crossing sequence,
contradicting the minimality of xk.
Let S0 be the set of the n/2 shortest possible crossing sequences in
lexicographic order. The set S0 must contain all crossing sequences
of length up to m− 1, where m is the least number such that

m∑
i=1

qi ≥ n

2
.

The running time on xk is bounded below by the sum of the lengths
of the crossing sequences in S, because it takes one step to generate
each element of each crossing sequence; so

T (n) ≥
∑
c∈S

|c | ≥
∑
c∈S0

|c | ≥
m−1∑
i=1

iqi.

The bound

T (n) ≥ Ω(n log n)

follows from these inequalities and some arithmetic.

2. (a) A (nondeterministic) k-headed finite automaton (k-FA) is a 7-tuple

M = (Q, Σ, �,  , δ, s, f),

where

• Q is a finite set (the states),
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• Σ is a finite set (the input alphabet),
• �,  are symbols not in Σ (the left and right endmarkers, re-

spectively),
• δ ⊆ (Q × (Σ ∪ {�, })k) × (Q × {−1, 0, +1}k) (the transition

relation),
• s ∈ Q (the start state), and
• f ∈ Q (the accept state),

such that if

((p, a1, . . . , ak), (q, d1, . . . , dk)) ∈ δ, (1)

then if ai = � then di �= −1 and if ai =  then di �= +1. The
machine M is deterministic if δ is single-valued.
Informally, (1) means that if the machine is in state p scanning
symbol ai under its ith head, 1 ≤ i ≤ k, then it can move its ith
head in direction di, 1 ≤ i ≤ k, and enter state q. The purpose of
the condition involving � and  is to keep the heads from moving
off the input.
Let x ∈ Σ∗, say x = x1x2 · · ·xn where xi ∈ Σ, 1 ≤ i ≤ n. Let x0 =�
and xn+1 =  . A configuration of M on input x is an element of

Q× {0, . . . , n + 1}k.

Informally, a configuration specifies a current state and the posi-
tions of the k heads. If α and β are configurations, we write

α
1→ β

and say β follows from α in one step if

α = (p, i1, i2, . . . , ik)
β = (q, i1 + d1, i2 + d2, . . . , ik + dk)

and

((p, xi1 , xi2 , . . . , xik
), (q, d1, d2, . . . , dk)) ∈ δ.

The reflexive transitive closure of the relation 1→ is denoted ∗→. The
start configuration and accept configuration of M on input x are
the configurations

(s, 0, 0, . . . , 0) (f, n + 1, n + 1, . . . , n + 1),

respectively. The machine is said to accept input x if

(s, 0, 0, . . . , 0) ∗→ (f, n + 1, n + 1, . . . , n + 1).
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(b) (⇐) Given a k-FA M , we construct an O(log n) space-bounded
Turing machine N that simulates M as follows. The worktape of
N is partitioned into k tracks, each of which holds an O(log n)-
bit binary number between −(n + 1) and n + 1, inclusive. These
numbers are used to record the positions of the k simulated heads
of M relative to the position of N ’s read head. The state of M
will be kept in N ’s finite control. To simulate a move of M , N
needs to know what symbol each head of M is currently scanning.
Starting with its read head all the way to the left, N repeatedly
moves its read head one cell to the right and decrements each of the
k counters. Whenever any counter contains 0, that indicates that
the simulated head of M corresponding to that counter is scanning
the same input tape cell that N is currently scanning. N reads
the symbol on its input tape and remembers it in its finite control.
When N ’s head reaches the right side of the tape, it has seen all the
symbols under the k simulated heads of M . It adjusts the counters
and changes the simulated state of M according to the transition
relation of M , which it has stored in its finite control. It then moves
its head all the way back to the left, incrementing the k counters
as it goes, and simulates another step.
(⇒) Let N be an O(log n) space-bounded TM with worktape al-
phabet {0, 1}. We show how to simulate N with a machine M with
a two-way read-only input head and finitely many counters, each of
which can hold a nonnegative integer. In each step, M can add one
or subtract one from any counter and test for 0. Such a machine
can easily be simulated by a k-FA for some k using the positions of
the heads for the counters, provided the counter values never get
bigger than n.
We first show how to implement the following counter operations.
• Duplicate the value of a counter.
• Double the value of a counter.
• Halve the value of a counter.
• Check whether the value of a counter is even.
• Add or subtract the value of one counter from another.

To duplicate the value of counter c, zero out two scratch counters d
and e and then repeatedly decrement c while incrementing d and e.
To double c, zero out a scratch counter d and repeatedly decrement
c and increment d twice. Halving is similar. To test for evenness,
halve the counter and see if there is one left over. To add, increment
one counter while decrementing the other. To subtract, decrement
both.
For any configuration of N , the contents of N ’s worktape can be
viewed as a c log n-bit binary number. We break this number up
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into c blocks of log n bits each, and record these log n-bit numbers
in c counters of M . Another counter of M is used to store the
position of N ’s worktape head: the block on the worktape being
scanned by N is stored in M ’s finite control, and the position i
within the block is represented by 2i in the counter. The position
of N ’s input head is represented directly by the position of M ’s
input head. A finite number of other counters of M are used for
temporary storage. The state of N is represented in the state of
M .
In order to simulate a move of N , M must know the symbols cur-
rently being scanned by N on its two tapes. It can read the symbol
on the input tape directly. For the worktape, it must be able to
determine and change the ith bit of a number contained in some
counter c, where 2i is the number contained in some other counter
d. To do this, first duplicate c and d so we do not lose their contents.
Repeatedly halve c and d until d contains 1, then check whether
c is even. This determines the ith bit of c. We can modify the bit
by adding or subtracting the original value of d from the original
value of c.

3. Assume that P = NP . Let L ∈ NEXPTIME , say accepted by some
2nc

-time-bounded nondeterministic Turing machine M . Let

L̂ = {x#k | x ∈ L and k = 2|x |c}.

Then L̂ ∈ NP , because on input x#k we can just count the #’s to make
sure there are 2|x |c , then erase them and run M . By the assumption
P = NP , we have L̂ ∈ P , say accepted by deterministic polynomial-
time machine N . Then L ∈ EXPTIME , because on input x we can
append 2|x |c #’s and run N .
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Homework 2 Solutions
1. If the function f is computable by a logspace transducer, then |f(x) | is

polynomial in |x |, because the transducer can run for at most polyno-
mial time before repeating a configuration. Suppose f and g are com-
putable by logspace transducers M and N , respectively. To compute
g(f(x)), we simulate the computation of N on input f(x). The string
f(x) is not computed in advance, but provided to N symbol by symbol
on a demand basis. Whenever N wishes to read the ith symbol of its
input, the number i is provided to a subroutine that simulates M on
input x from scratch, counting and throwing away all output symbols
until the ith, which it returns to the calling procedure. We need only
enough worktape space to hold the worktapes of M and N and a counter
that can count up to |f(x) |. For more details, see [63, Lemmas 13.1 and
13.2].

2. We first show that 2SAT is co-NLOGSPACE -hard by reducing the
MAZE problem, known to be NLOGSPACE -hard, to the complemen-
tary problem, 2CNF unsatisfiability. Given an instance G = (V, E, s, t)
of MAZE, take V as a set of Boolean variables and consider the 2CNF
formula

ϕG = s ∧ (
∧

(u,v)∈E

(u → v)) ∧ ¬t.

If there is a path from s to t in G, then the clauses in ϕG corresponding
to the edges in this path imply s → t, thus ϕG implies s ∧ (s → t) ∧ ¬t,
which is unsatisfiable. Conversely, if there is no path from s to t, assign
all vertices reachable from s the value 1 and assign all other variables
0. This assignment satisfies ϕG, because s is assigned 1, t is assigned 0,
and there is no clause u → v with u assigned 1 and v assigned 0. Hence
2SAT is hard for co-NLOGSPACE.

We now show that 2SAT is in co-NLOGSPACE, or equivalently, that
2CNF unsatisfiability is in NLOGSPACE . Given a 2CNF formula B,
the clauses in B contain at most two literals, and we can assume exactly
two without loss of generality by replacing any clause of the form (u)
with (u ∨ u). Now we think of every two-literal clause (u ∨ v) as a pair
of implications

(¬u → v) and (¬v → u). (2)

Construct a directed graph G = (V, E) with a vertex for every literal and
directed edges corresponding to the implications (2). It is not difficult to
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show (see, for example, [75, p. 119]) that B is unsatisfiable if and only
if there exists a cycle of G containing two complementary literals u, ¬u.
The latter condition can be tested in NLOGSPACE by guessing u, then
guessing and tracing a cycle to verify that it is a cycle and contains u
and ¬u. This requires only logspace to remember u, where we are in the
cycle, and the starting point of the cycle (finite fingers!).

3. Evaluate the formula recursively as follows. Start at the root. To evaluate
a subformula ϕ ∧ ψ, first evaluate ϕ; if the value is 1 then the value of
the entire expression is the value of ψ, otherwise it is 0 and ψ need not
be evaluated. Dually, to evaluate ϕ ∨ ψ, first evaluate ϕ; if the value is
0 then the value of the entire expression is the value of ψ, otherwise it
is 1 and ψ need not be evaluated. To evaluate ¬ϕ, we evaluate ϕ and
then negate the result. We need only finitely many fingers to walk the
tree, so this can be implemented in logspace.

4. Let

B = {#bk(0)#bk(1)#bk(2)# · · ·#bk(2k − 1)# | k ≥ 0}
Bj = {#u0#u1# · · ·#um2j−1# | m ≥ 0, bj(i) ≡ ui (mod 2j),

0 ≤ i ≤ m2j − 1}
Fk = #0k(#((0 + 1)k − 0k − 1k))∗#1k#,

where bj(i) denotes the j-bit binary representation of i mod 2j. Strings
in Bj consist of sequences of strings u ∈ (0 + 1)∗ of length at least j
separated by # such that the low-order j bits of the successive strings
u represent successive integers mod 2j from 0 to m2j − 1 for some m.
Strings in Fk consist of successive strings of length k separated by #
such that the first string is 0k, the last is 1k, and none of the intermediate
strings are either 0k or 1k.

Note that

B0 ⊇ B1 ⊇ B2 ⊇ · · · ⊇ Bk,

so

B = Bk ∩ Fk =
k⋂

j=0

Bj ∩ Fk.

To check whether a given string x is in the set B, we check that x is in
B0, B1 , . . . , Bk, Fk in that order. We do it this way so that we do not
use too much space even if the input is not in B.
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The set Bj can be recognized in space log j. We just check for successive
substrings u and v whether the low-order j bits represent successive
integers mod 2j by comparing the corresponding low-order j bits of u
and v. We need log j space to count the distance of a bit from the closest
# to its right. We also need to check that the first substring u is 0 mod 2j

and the last is −1 mod 2j .

For j = 0, 1, 2, . . . , we lay off log j tape cells and test membership in
Bj . All strings in Bj are of length at least j2j , so if the test succeeds,
then we have used only log j ≤ log log n space. If we ever encounter a
j for which the test fails, we reject immediately; but even in this case,
because x ∈ Bj−1, we have used only

log j ≤ 1 + log(j − 1) ≤ 1 + log log n

space. If all tests x ∈ Bj are successful, then we have laid off log k space,
which is sufficient to check membership in Fk.
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Homework 3 Solutions
1. (a) Let #L(x) (respectively, #R(x)) be the number of left (respec-

tively, right) parentheses in the string x. One can show by induction
that a string x is balanced iff

(i) #L(x) = #R(x), and
(ii) for every prefix y of x, #L(y) ≥ #R(y),

hence we can just scan left to right, counting #L(y)−#R(y).

(b) A string x of two types of parentheses is balanced iff it satisfies the
conditions (i) and (ii) of part (a) irrespective of parenthesis type,
and each matching pair has the same type. One can find matching
pairs by counting. In the string x[y]z, the brackets shown match
iff y satisfies (i) and (ii) irrespective of parenthesis type.

2. This version of the game is complete for ALOGSPACE = P . Because
vertices can be reused, a board position consists only of the vertex cur-
rently being visited and a bit to tell whose move it is. We do not have to
remember which vertices have already been played as with the previous
version. It requires only logspace to maintain the current board, so an
alternating logspace machine can determine whether the first player has
a forced win, thus the problem is in ALOGSPACE = P .

To show that the problem is hard for P , we reduce the circuit value
problem to it. Given an instance of CVP, first transform it into an
instance in which there are no negations and the alternation is strict.
To get rid of negations, produce the dual of the circuit:

Original Dual
ci := cj ∧ ck c′i := c′j ∨ c′k
ci := cj ∨ ck c′i := c′j ∧ c′k
ci := 0 c′i := 1
ci := 1 c′i := 0
ci := ¬cj c′i := ¬c′j

Then replace all ci := ¬cj with ci := c′j and c′i := ¬c′j with c′i := cj .
To make the alternation strict, simultaneously replace each statement
ci := cj ∧ ck with the two statements ci := d∨ d and d := cj ∧ ck, where
d is a new variable, and each statement ci := cj ∨ ck with the three
statements ci := d ∨ e, d := cj ∧ cj , e := ck ∧ ck where d and e are new
variables. This at most triples the number of variables.

Now we make this into a geography game. Note that a player wins by
trapping the opponent in a cul-de-sac (a vertex with outdegree 0). We
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produce a graph with vertices {ci | 0 ≤ i ≤ n} ∪ {⊥}, directed edges
(ci, cj) and (ci, ck) for each statement ci := cj ∧ ck or ci := cj ∨ ck,
and edges (ci,⊥) for each statement ci := 1. Thus the cul-de-sacs are ⊥
and the ci such that the statement ci := 0 appears in the circuit. The
starting position is cn, the variable with the highest index. The first
player has a forced win iff the value of the circuit is 1.

3. See [63] or [76] for background on finite automata. In deterministic as
well as alternating finite automata, it is technically convenient to con-
sider F to be the characteristic function of the set of final states rather
than the set of final states itself. That is, F : Q → {0, 1} such that

F (q) =
{

1, if q is a final state
0, otherwise.

To construct a DFA from an AFA, let

A = (QA, Σ, δA, FA, αA)

be the given AFA, |QA | = k. Let QD be the set of all functions QA →
{0, 1}. Define the DFA

D = (QD, Σ, δD, FD, sD),

where

δD(u, a)(q) = δA(q, a)(u) (3)
FD = αA (4)
sD = FA. (5)

To construct an AFA from a DFA, let

D = (QD, Σ, δD, FD, sD)

be the given DFA, |QD | = k. Let QA be any set of size 
log k� and
identify each element of QD with a distinct function QA → {0, 1}. Define
the AFA

A = (QA, Σ, δA, FA, αA),

where δA, FA, and αA are defined such that (3)–(5) hold. For u �∈ QD,
define δA(q, a)(u) arbitrarily.
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In both reductions, one can show by induction on |x | that for any q ∈
QA, u ∈ QD, and x ∈ Σ∗,

δ̂D(u, x)(q) = δ̂A(q, rev x)(u),

where δ̂D : QD × Σ∗ → QD is the multistep version of δD derived by
induction on the length of the input string:

δ̂D(u, ε) def= u

δ̂D(u, xa) def= δD(δ̂D(u, x), a).

Thus

x ∈ L(D) ⇔ FD(δ̂D(sD, x)) = 1

⇔ αA(δ̂D(FA, x)) = 1

⇔ αA(λq.(δ̂D(FA, x)(q))) = 1

⇔ αA(λq.(δ̂A(q, rev x)(FA))) = 1
⇔ rev x ∈ L(A).
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Homework 4 Solutions
1. First assume A(n) and S(n) are space constructible. Let M be an A(n)-

alternation-bounded, S(n)-space-bounded machine. Let Cn be the set
of configurations of M on inputs of length n. There is a fixed constant
c depending only on M such that |Cn | ≤ cS(n).

Let type : Cn → {∧,∨} tell whether a configuration is universal or
existential. Accept configurations are universal configurations without
successors and reject configurations are existential configurations with-
out successors. For α, β ∈ Cn, write

R(α, β, k)

if there is a computation path from α to β of length at most k such that
all configurations γ along the path except β satisfy type(γ) = type(α),
and type(β) �= type(α). For α, β ∈ Cn, the predicate

R(α, β, cS(n))

is decidable in nondeterministic space S(n), therefore it is decidable in
deterministic space S(n)2 by Savitch’s theorem.

Then, for input x of length n with initial existential configuration α0,
M accepts iff

∃α1 R(α0, α1, c
S(n)) ∧

∀α2 R(α1, α2, c
S(n)) →

∃α3 R(α2, α3, c
S(n)) ∧

∀α4 R(α3, α4, c
S(n)) →

. . .

QαA(n) R(αA(n)−1, αA(n), c
S(n)).

This can be checked by a Boolean-valued recursive procedure S(α) that
works as follows. If α is existential, it cycles through all β lexicographi-
cally, checking for the existence of a β such that R(α, β, cS(n)) and S(β).
It checks the former using the Savitch algorithm, and if that succeeds, it
checks the latter by a recursive call. Similarly, if α is universal, it cycles
through all β, checking that if R(α, β, cS(n)) then S(β).

Each recursive instantiation of the procedure needs S(n) space to save
the current configuration α across recursive calls, and the depth of the
recursion is A(n), so A(n)S(n) space is needed in all for this purpose.
In addition, the Savitch procedure to compute R requires S(n)2 space,
which can be reused. This gives a total space bound of A(n)S(n)+S(n)2.
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When A(n) and S(n) are not space constructible, we try iteratively all
values of A and S such that AS + S2 = 1, 2, . . . .

2. Define a hierarchy over PSPACE by setting

ΣPSPACE
k = STA(nO(1), ∗, Σk)

ΠPSPACE
k = STA(nO(1), ∗, Πk).

Then by the previous exercise,

ΣPSPACE
k = STA(nO(1), ∗, Σk)

=
⋃
c>0

STA(nc, ∗, Σk)

⊆
⋃
c>0

DSPACE(knc + n2c)

⊆ ΣPSPACE
0 .

3. The set Hω = {y$z | z ∈ G#(y)} is in PSPACE , because a universal
alternating machine on input y$M$x$d can simulate M on x, checking
off one $ for every step simulated and decrementing the binary number y
for every alternation. Each step of M requires at most polynomial time
in d and the length of M to simulate, and there are at most d steps.
If either the time bound or the bound on the number of alternations is
exceeded, that process of the simulating machine rejects.

To show that Hω is hard for PSPACE , it suffices to reduce an arbitrary
set in APTIME to Hω . Let M be any alternating machine running in
time nc. Then the map

x �→ y$M$x$|x |c,

where #(y) = |x |c, constitutes a ≤log
m reduction from L(M) to Hω.

4. The set

Gk = {M$x$d | M accepts x in at most d space and k
alternations, beginning with ∨}

is in STA(n2, ∗, Σk). On input M$x$d, simulate M on input x. Because
each tape symbol requires at most |M | space to represent on the tape
of the simulating machine (assuming the tape symbols are represented
explicitly in the description of the machine), the simulation requires no
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more than d · |M | space to represent the tape of M . The set Gk is also
hard for ΣPSPACE

k : let M be any Σk machine running in space nc. Then
the map

x �→ M$x$|x |c

constitutes a ≤log
m reduction from L(M) to Gk.

Now let

Gω = {y$z | z ∈ G#(y)}
= {y$M$x$d | M accepts x in at most d space and #(y)

alternations, beginning with ∨}.

The set Gω is in APSPACE = EXPTIME via a simulation similar to
the one in the previous problem. To show that it is hard for APSPACE ,
let M be an nc space bounded ATM and let e be a constant depending
only on M such that the number of distinct configurations of M on
inputs of length n is bounded by enc

. Then the map

x �→ y$M$x$|x |c,

where #(y) = e|x |c , constitutes a ≤log
m reduction from L(M) to Gω.
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Homework 5 Solutions
1. Assume that Πp

k ⊆ Σp
k. By Theorem 10.2, any set A ∈ Σp

k+1 can be
written

A = {x | ∃y |y | ≤ |x |c ∧R(x, y)}

for some constant c, where R is a Πp
k-predicate. By the assumption, R

is also a Σp
k-predicate, hence so is ∃y |y | ≤ |x |c ∧ R(x, y), and A ∈ Σp

k.
Thus Σp

k+1 ⊆ Σp
k. The collapse follows by induction on k.

2. (a) We show that under the given assumptions, SAT ∈ P . On input x
of length n, generate the circuit Bn and evaluate Bn(x). Generating
the circuit can be done in P by the assumption of polynomial-time
uniformity, and evaluation is in P because it is just an instance
of CVP, the circuit value problem, which by Theorem 6.1 is P -
complete.

(b) Using Exercise 1, it suffices to show that Πp
3 ⊆ Σp

3 . Let A ∈ Πp
3 ,

and let M be an nk-time bounded Πp
2 oracle machine such that

L(MSAT) = A. We construct a Σp
3 machine accepting A as follows.

Let m = nk. On input x of length n, we can construct Bm by a
Σp

3 computation: guess the circuit, and then verify that the circuit
is correct by verifying that for all encodings y of Boolean formulas
such that |y | = m,

Bm(y) = 1 ⇔ y ∈ SAT. (6)

The circuit is guessed using ∨-branching, then the set of all formu-
las y of length m are generated using ∧-branching, and finally the
condition (6) can be checked in ∆p

2 (recall ∆p
2 = PNP ⊆ Σp

2 ∩Πp
2).

Thus the whole computation is in Σp
3 .

Now to verify x ∈ A in Σp
3 , we first guess the circuit Bm (any

correct circuit will do) as described above using ∨-branching, then
check that both

(i) Bm is correct, and

(ii) M accepts x, using Bm to answer the oracle queries.

These two facts can be checked simultaneously in Πp
2 .

3. First we reduce the MAZE problem to the membership problem for
nondeterministic one-counter automata. This shows that the member-
ship problem is hard for NLOGSPACE . Given an instance of the MAZE
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problem consisting of a graph with two distinguished vertices s and t,
transform it into an instance in which the names of the vertices are in-
tegers written in unary notation (that is, n is represented as 0n). This
can be done in logspace. Given such an encoding, a nondeterministic
one-counter automaton can guess a path from s to t, using its counter
to hold the name of the vertex it is current visiting.

Now we show that the membership problem is in NLOGSPACE . This
is the harder part of the problem; it is made hard by the fact that the
counter is unbounded. However, we show that if there is an accepting
computation path, then there is one of length at most O(n3), where n
is the size of the input. This will allow us to simulate the one-counter
automaton with a logspace TM, maintaining the counter in binary on
the worktape and counting the number of simulated steps, and halting
if the simulation has not finished within the allotted time.

Let M be a nondeterministic one-counter automaton. Assume without
loss of generality that if M wants to accept, it empties its counter before
doing so. Let q be the number of states of the finite control of M . There
are m = q(n+2) possible configurations of state and input head position
on inputs of length n.

Suppose there is an accepting computation path α of M on input x,
|x | = n. Let c(t) be the value of the counter at time t and let q(t) be
the pair (state, input head position) at time t on α. A matched interval
is a pair of times (s, t) such that s < t, c(s) = c(t), and c(u) > c(t)
for all u in the range s < u < t. Let N be the maximum value ever
contained in the counter, and let tN be a time such that c(tN ) = N . For
1 ≤ i < N , let si be the latest time before tN that c(si) = i, and let ti
be the earliest time after tN that c(ti) = i. Then

s1 < s2 < · · · < sN−1 < tN < tN−1 < · · · < t2 < t1

and (si, ti) is a matched interval, 1 ≤ i < N . If N > m2 + 1, there
must exist 1 ≤ i < j < N such that q(si) = q(sj) and q(ti) = q(tj).
Then there is a shorter accepting computation obtained by deleting the
portion of α between si and sj and between tj and ti.

We have shown that a minimal accepting computation on x has no
counter value in excess of m2 +1. There are at most m(m2 +2) configu-
rations of state, input head position, and counter value for computations
that do not exceed this bound. If the length of such a computation ex-
ceeds m(m2 + 2), then there must be a repeated configuration, and a
portion of the computation can be deleted to give a shorter accepting
computation. Thus a computation of minimal length is of length at most
m(m2 + 2) = O(n3).
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Homework 6 Solutions
1. (a) If S(n) is space-constructible, there is a machine M that on any

input of length n lays off exactly S(n) space on its worktape with-
out using more than S(n) space and halts. If M has q states and
d worktape symbols, and if S(n) ≤ o(log n), then the number of
configurations of state, worktape contents, and worktape head po-
sitions is at most qS(n)dS(n), which is less than n/2 for sufficiently
large n. If M ever scans all the way to the midpoint of a very
long input string 0n, it must be in a loop by the time it hits the
midpoint. That is, after the last time it sees the left endmarker
and before it gets to the midpoint, it must be in the same configu-
ration c while scanning two different input tape locations i and j,
i < j < n/2, without seeing the left endmarker in between. Because
it sees nothing but 0’s on the input tape after i, it will go through
the same sequence of configurations starting from j as it did from
i, continuing all the way across until it sees the right endmarker,
which may cause it to change behavior. If we insert a string of 0’s of
length a multiple of p1 = j − i ≤ n/2, the machine will not be able
to tell the difference; it will hit the right endmarker in the same
configuration. The same is true if it scans back again from right
to left; by the time it hits the midpoint, it is in a loop of period
p2 ≤ n/2, and so on. We can thus insert a string of 0’s of length
m! for any m ≥ n, which is a multiple of all the possible periods pi

of these loops, and the machine will not behave any differently; in
particular, it will not lay off any more or less space on its worktape.
This says that S(n + m!) = S(n) for all m ≥ n.

(b) lim inf 
log log n� = ∞.

2. To show that the problem is in PSPACE , we guess a string that is
not accepted by M and verify that it is not accepted. We start with a
pebble on the start state of M , then guess an input string symbol by
symbol, moving pebbles on the states of M to mark all states reachable
from the start state under the string guessed so far. We do not have
to remember the guessed string, just the states that M could currently
be in. We accept if we ever get to a situation with no pebble on an
accept state. Because the pebble configuration can be represented in
polynomial space, this is a nondeterministic PSPACE computation. It
can be made deterministic by Savitch’s theorem.

(Note. It is not true that if an NFA accepts all strings of length less than
or equal to the number of states, then it accepts all strings, even over a
single letter alphabet. For example, consider an automaton with a start
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state going to n disjoint loops with pairwise relatively prime lengths
p1, p2, . . . , pn. Make all states accept states except for the one in each
loop farthest from the start state. Then there are 1 + p1 + p2 + · · ·+ pn

states, but the shortest string not accepted is of length p1p2 · · · pn.)

To show that the problem is hard for PSPACE , let N be an arbitrary
deterministic nk-space bounded TM. Assume without loss of generality
that N has a unique accept configuration. Given an input x, we build
a nondeterministic finite automaton M with O(nk) states accepting all
strings that are not accepting computation histories of N on input x.
Then L(F ) = Σ∗ iff N does not accept x. (Thus we are really reducing
L(N) to {M | L(M) �= Σ∗}.)
An accepting computation history of N on input x of length n is a string
of the form

#α0#α1#α2# · · · #αm−1#αm#, (7)

where each αi is a string of length nk over some finite alphabet ∆ en-
coding a configuration of N on input x, such that

(i) α0 is the start configuration of N on x,

(ii) αm is the accept configuration of N on x, and

(iii) each αi+1 follows from αi according to the transition rules of N .

If a string is not an accepting computation history, then either it is not of
the form (7), or one of the three conditions (i), (ii), (iii) is violated. The
NFA M guesses nondeterministically which of these to check. Checking
that the input string is not of the form (7) requires checking that the
input string is not in the regular set (#∆nk

)∗#, plus some other simple
format checks (exactly one state of N per configuration, each configura-
tion begins and ends with endmarkers, etc.). This requires O(nk) states
of M . Checking (i) or (ii) involves just checking whether the input be-
gins or ends with a certain fixed string of length nk. These strings are
encoded in the finite control of M . Finally, to check (iii), recall from
the proof of the Cook–Levin theorem that there is a finite set of local
conditions involving the j−1st, jth, and j +1st symbols αi and the jth
symbol of αi+1 such that (iii) holds iff these local conditions are satisfied
for all j, 1 ≤ j ≤ nk. The local conditions depend only on the descrip-
tion of N . To check that (iii) is violated, M scans across the input, and
at some point guesses nondeterministically where the violation occurs.
It remembers the next three symbols in its finite control, skips over the
next nk symbols, and accepts if the next symbol is not correct.
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3. The problem is complete for NLOGSPACE . To show that the problem
is in NLOGSPACE , by exchanging accept and reject states it suffices to
ask whether the set accepted is nonempty. This is true iff there exists a
path from the start state to some final state. If there are k final states,
this is essentially k instances of MAZE.

To show that the problem is hard for NLOGSPACE , we reduce MAZE to
it. Given an instance G = (V, E, s, t) of MAZE, we can assume without
loss of generality that every vertex v has at least one outgoing edge.
If not, add an edge from v to s; this does not affect the reachability
of t from s. Let m be the maximum outdegree of any vertex and let
Σ = {0, 1, . . . , m−1}. Build a DFA M with states V , input alphabet Σ,
start state s, unique final state t, and transitions obtained by labeling
the edges with elements of Σ in such a way that for each a ∈ Σ and
v ∈ V , there is exactly one edge out of v with label a. (Edges may have
more than one label.) Then M is deterministic, and L(M) is nonempty
iff there is a path in G from s to t.
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Homework 7 Solutions
1. The problem is PSPACE -complete. Because every nontrivial first-order

theory is PSPACE -hard (Miscellaneous Exercise 49), the interesting
part is showing that it is in PSPACE .

For k-tuples a1, . . . , ak and b1, . . . , bk of natural numbers, let a0 = b0 =
0 and define

a1, . . . , ak ≡m
k b1, . . . , bk

if there is a permutation π : {0, 1, . . . , k} → {0, 1, . . . , k} such that

aπ(0) ≤ aπ(1) ≤ · · · ≤ aπ(k)

bπ(0) ≤ bπ(1) ≤ · · · ≤ bπ(k)

(that is, if the a’s and b’s occur in the same order) and for all 0 ≤ i ≤
k − 1,

min{2m, aπ(i+1) − aπ(i)} = min{2m, bπ(i+1) − bπ(i)}.

In other words, for any adjacent pair of a’s and the corresponding ad-
jacent pair of b’s, either their respective distances are less than 2m and
are equal, or both are at least 2m.

Lemma If

a1, . . . , ak ≡m
k b1, . . . , bk

then for all ak+1 there exists bk+1 such that

a1, . . . , ak, ak+1 ≡m−1
k+1 b1, . . . , bk, bk+1.

Proof. Let π be the permutation giving the order of the a’s and the b’s.
Let ak+1 be arbitrary, and suppose i is the largest number such that
aπ(i) ≤ ak+1. Thus either i < k and ak+1 lies between aπ(i) and aπ(i+1),
or i = k and ak+1 is the maximum of a0, . . . , ak+1. Define

bk+1 =

⎧⎨⎩
bπ(i+1) − aπ(i+1) + ak+1, if i < k and ak+1 is closer

to aπ(i+1) than to aπ(i),
bπ(i) + ak+1 − aπ(i), otherwise.
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Define a new permutation ρ : {0, 1, . . . , k + 1} → {0, 1, . . . , k + 1} by

ρ(j) =

⎧⎨⎩
π(j), j < i,
k + 1, j = i,
π(j − 1), j > i.

Then

aρ(0) ≤ aρ(1) ≤ · · · ≤ aρ(k+1)

bρ(0) ≤ bρ(1) ≤ · · · ≤ bρ(k+1)

and for all 0 ≤ i ≤ k,

min{2m−1, aρ(i+1) − aρ(i)} = min{2m−1, bρ(i+1) − bρ(i)},

therefore

a1, . . . , ak, ak+1 ≡m−1
k+1 b1, . . . , bk, bk+1.

�

Now a1, . . . , ak ≡0
k b1, . . . , bk implies that ai ≤ aj iff bi ≤ bj for all 0 ≤

i < j ≤ k. This says that a1, . . . , ak and b1, . . . , bk agree on all atomic
formulas and hence on all quantifier-free formulas. Using this as basis,
an inductive argument using the lemma shows that if a1, . . . , ak ≡m

k

b1, . . . , bk then

Qk+1xk+1 . . . Qk+mxk+m ϕ(a1, . . . , ak, xk+1, . . . , xk+m)
iff

Qk+1xk+1 . . . Qk+mxk+m ϕ(b1, . . . , bk, xk+1, . . . , xk+m).

This argument is similar to the one given in Lecture 21 for the theory
of dense linear order.

The ≡m
k -equivalence class of a k-tuple a1, . . . , ak can be represented

by a permutation giving the order of the a’s and the distance between
each adjacent pair of a’s up to a maximum of 2m. This information can
be represented in polynomial space. Given such a representation, repre-
sentations of all possible ≡m−1

k+1 equivalence classes obtained by adding
a new ak+1 can be generated by a branching computation in polyno-
mial time. This gives rise to an alternating polynomial-time algorithm
to eliminate quantifiers similar to the one given in Lecture 21 for the
theory of dense linear order.
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2. These games are examples of so-called Ehrenfeucht–Fraissé games .

(a) Round 1: Sonja plays 0 ∈ B; David plays some p ∈ A.
Round 2: Sonja plays 1 ∈ B; David plays some q ∈ A, q > p (if
David plays some q ≤ p, then it is an immediate loss).
Round 3: Sonja plays (p + q)/2 ∈ A. David cannot play between 0
and 1 in B, so Sonja wins.
Note that Sonja wins by taking advantage of the fact that one order
is dense and the other is not.

(b) Both structures are dense linear orders without endpoints, so no
matter where Sonja plays, it is always possible for David to play
on the other structure so as to preserve the order of the pebbles.

(c) For simplicity, we transform formulas so that negations are applied
to atomic formulas only. Every first-order formula can be trans-
formed to an equivalent formula in this form using the following
rules.

¬(ϕ ∨ ψ) ⇒ (¬ϕ) ∧ (¬ψ)
¬(ϕ ∧ ψ) ⇒ (¬ϕ) ∨ (¬ψ)
¬(∃x ϕ) ⇒ ∀x ¬ϕ

¬(∀x ϕ) ⇒ ∃x ¬ϕ

¬¬ϕ ⇒ ϕ.

Let ϕ′ be the result of performing this transformation to ¬ϕ.
In one direction, assume that

A |= ϕ and B |= ϕ′,

where ϕ is a sentence of quantifier depth at most n. We want to give
a winning strategy for Sonja. We show that Sonja can play so as to
maintain the invariant that after k rounds, there is a formula ψ(x)
of quantifier depth at most n− k and free variables x = x1, . . . , xk

such that

A |= ψ(a) and B |= ψ′(b),

where a = a1, . . . , ak and b = b1, . . . , bk are the pebbles played so
far on A and B, respectively. This is true by assumption for k = 0.
Now suppose it is true for k.

(i) If
ψ(x) = ψ1(x) ∨ ψ2(x),

then
ψ′(x) = ψ′

1(x) ∧ ψ′
2(x),
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hence either
A |= ψ1(a) and B |= ψ′

1(b)
or

A |= ψ2(a) and B |= ψ′
2(b),

say the former without loss of generality. Continue the argu-
ment with the smaller formula ψ1 in place of ψ.

(ii) If
ψ(x) = ψ1(x) ∧ ψ2(x),

the argument is similar to case (i).

(iii) If ψ(x) is an atomic formula xi ≤ xj , then
ai ≤ aj and bi �≤ bj ,

which is a win for Sonja.

(iv) If
ψ(x) = ¬ρ(x),

then ρ(x) is an atomic formula of the form xi ≤ xj , thus
ai �≤ aj and bi ≤ bj ,

which is again a win for Sonja.

(v) If
ψ(x) = ∃xk+1 ρ(x, xk+1),

then
ψ′(x) = ∀xk+1 ρ′(x, xk+1)

and
A |= ∃xk+1 ρ(a, xk+1).

Let Sonja play a pebble on a witness ak+1 ∈ A for the existen-
tial quantifier, so that

A |= ρ(a, ak+1).
Because

B |= ∀xk+1 ρ′(b, xk+1),
no matter where David plays, we have

B |= ρ′(b, bk+1)
and the quantifier depth is one less, so the invariant is main-
tained.

(vi) If
ψ(x) = ∀xk+1 ρ(x, xk+1),

the argument is similar to (v), except Sonja plays on B instead
of A.
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Conversely, assume that A and B agree on all sentences of quantifier
depth n. Define

A, a1, . . . , an ≡0
n B, b1, . . . , bn

if A, a1, . . . , ak and B, b1, . . . , bk agree on all atomic formulas,
hence on all quantifier-free formulas; that is, for all quantifier-free
formulas ϕ(x1, . . . , xn),

A |= ϕ(a1, . . . , ak) ⇔ B |= ϕ(b1, . . . , bk).

For m > 0, define

A, a1, . . . , ak ≡m
k B, b1, . . . , bk

if for all ak+1 ∈ A there exists bk+1 ∈ B such that

A, a1, . . . , ak, ak+1 ≡m−1
k+1 B, b1, . . . , bk, bk+1

and for all bk+1 ∈ B there exists ak+1 ∈ A such that

A, a1, . . . , ak, ak+1 ≡m−1
k+1 B, b1, . . . , bk, bk+1.

One can show by an inductive argument that if

A ≡n
0 B

then David has a winning strategy in the n-pebble game: just place
pebbles so as to maintain the invariant

A, a1, . . . , ak ≡n−k
k B, b1, . . . , bk

after k rounds.
We now show that each equivalence class of ≡m

k is definable by
a formula with k free variables and quantifier depth m. In other
words, for each equivalence class E of ≡m

k , there is a formula
ϕE(x1, . . . , xk) with free variables x1, . . . , xk and quantifier depth
m such that

A, a1, . . . , ak ∈ E iff A |= ϕE(a1, . . . , ak).

Thus if A and B agree on all sentences quantifier depth n, then
they agree on the sentences defining the equivalence classes of ≡n

0 ,
so they must be ≡n

0 -equivalent. Therefore David has a winning
strategy.
The formulas ϕE are defined inductively. Each equivalence class
of ≡0

n is defined by a conjunction of atomic formulas or nega-
tions of atomic formulas over the variables x1, . . . , xn. For m > 0,
the ≡m

k -equivalence class of A, a, where a = a1, . . . , ak, is defined
as follows. Let E be the set of all ≡m−1

k+1 -equivalence classes of
A, a, ak+1 for all possible choices of ak+1 ∈ A. Although there
may be infinitely many such ak+1, there are only finitely many
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≡m−1
k+1 -equivalence classes (this fact follows inductively from this

construction as well). By the induction hypothesis, we have for-
mulas ϕE(x, xk+1) of quantifier depth m − 1 defining E for each
E ∈ E. The formula defining the ≡m

k -equivalence class of A, a is
then∧

E∈E

∃xk+1 ϕE(x, xk+1) ∧ ∀xk+1

∨
E∈E

ϕE(x, xk+1)

which is of quantifier depth m. This formula describes the set
of possible ≡m−1

k+1 equivalence classes obtainable by eliminating a
quantifier.
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Homework 8 Solutions
1. The following nondeterministic Büchi automaton accepts all and only

(characteristic functions of) finite subsets of ω. It guesses when it has
seen the last 1 in the input string, and then enters a final state, from
which it must see only 0 thereafter; otherwise it goes to a dead state.

There is no deterministic Büchi automaton accepting this set. We prove
this by contradiction. Assume that there were such an automaton M
with n states. Consider the action of M on the infinite string (10n+1)ω.
When scanning the kth substring of n+1 consecutive 0’s, M must repeat
a state, and one of the states in the loop between the two occurrences
of the repeated state must be an accept state, because M accepts the
string (10n+1)k0ω. Therefore M is in some accept state infinitely often
on input (10n+1)ω, so it erroneously accepts.

2. (a) If addition were definable in S1S, there would be a nondeterminstic
Büchi automaton accepting the set of strings over the alphabet
{0, 1}3 representing a, b, c such that a+b = c. For example, 7+4 =
11 would be represented by the string

00000001000000
00001000000000 · · · .
00000000000100

We now use a pumping argument to get a contradiction. Suppose
M has n states. Consider the input string corresponding to the
addition problem (n + 1) + (n + 1) = 2n + 2, which M accepts.
The machine must repeat a state q while scanning the substring
(0, 0, 0)n in the input string between positions n+1 and 2n+2. The
nonnull substring between the two occurrences of q can be deleted
and M erroneously accepts.

(b) We showed in Lecture 25 how to say y ≤ x and A is finite. To add
the bit vectors represented by A and B, we simulate binary addi-
tion. The low-order bit is leftmost. The carry is given by another
finite set U . For example,

U = 0000000011101000010100000000000 · · ·
A = 0010100111010100101000000000000 · · ·
B = 0101000101010001101000000000000 · · ·
C = 0111100001101101010100000000000 · · · .

To assert that U is the carry string, we assert that the low-order
bit of U is 0, and for all i, the i + 1st bit of U is 1 if at least two
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of the ith bits of A, B, and U are 1:

κ(A, B, U) = 0 �∈ U ∧ ∀x sx ∈ U ↔ ((x ∈ A ∧ x ∈ B) ∨
(x ∈ A ∧ x ∈ U) ∨
(x ∈ B ∧ x ∈ U)).

The sum C is given by the exclusive-or (mod 2 sum) of the bit
strings A, B, and the carry:

ϕ(A, B, C) = ∃U κ(A, B, U) ∧
∀x (x ∈ C ↔ x ∈ A ↔ x ∈ B ↔ x ∈ U).

3. (a) Because B1 = 0101010101 . . . , we can take

ϕ1(x, y) = 1

ψ1(B) = 0 �∈ B ∧ ∀x x ∈ B ↔ sx �∈ B

ϕ2(x, y) = ∃B ψ1(B) ∧ (x ∈ B ↔ y ∈ B).

Suppose now that we have constructed ϕn(x, y) and ψn(B). Con-
sider Bn as an infinite binary string partitioned into substrings of
n bits as suggested by the definition in the problem description.
Call these n-bit substrings n-blocks. The position of the first bit of
each n-block is a multiple of n. First we construct some auxiliary
formulas.

ρn(x, y) = ϕn(y, 0) ∧ y ≤ x ∧ ∀w (ϕn(w, 0) ∧ w ≤ x)

→ w ≤ y

= “y is the largest multiple of n less than or equal
to x”

ξn(x, y) = ϕn(x, y) ∧ ∃z y = sz ∧ ρn(z, x)

= “x and y are successive multiples of n”

A = {0} = ∀x x ∈ A ↔ x = 0

A = {n} = ∀x x ∈ A ↔ ξn(0, x)

χn(A) = ∀z z ∈ A → ρn(z, 0)

= A ⊆ {0, 1, . . . , n− 1}
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ωn(A, B) = χn(A) ∧ χn(B)
∧ (ϕ(A, {0}, B) ∨ ϕ(A, {0}, B ∪ {n}))

= “A, B represent binary numbers 0 ≤ n(A),
n(B) ≤ 2n − 1 such that n(B) = n(A) +
1 (mod 2n)” (here ϕ(A, B, C) is the for-
mula defined in Exercise 2(b))

σn(A, z, B, w) = ∀x ∀y (ρ(x, z) ∧ ρ(y, w) ∧ ϕn(x, y))
→ (x ∈ A ↔ y ∈ B)

= “the n-blocks of A and B starting at y and
z are the same”

υn(A, B, y) = σn(A, 0, B, y) ∧ χn(A)
= “A ⊆ {0, 1, . . . , n− 1} and the n-blocks of

A starting at 0 and B starting at y are the
same”

τn(x, y, B) = ∀z ∀w (ρn(x, z) ∧ ρn(y, w)) → σn(B, z, B, w)
= “the n-blocks containing x and y in B are

the same.”
Note that these formulas depend on ϕn(B) but not on ψn(B). We
can now define

ϕn2n(x, y) = ϕn(x, y) ∧ ∃B ψn(B) ∧ τn(x, y, B)
= “the n-blocks of x and y in Bn are the same,

and x and y are in the same position in the
block; that is, x ≡ y (mod n)”

= x ≡ y (mod n2n).

Once we have ϕn2n(x, y), we can construct the auxiliary formulas
ρn2n(x, y), ξn2n(x, y), and so on, as above. Then

ψn2n(B) = ∀y ∀z ∀C ∀D (ξn2n(y, z) ∧ υn2n(C, B, y)
∧ υn2n(D, B, z) → ωn2n(C, D))

∧ ∀y ρn2n(y, 0) → y �∈ B

= “for all pairs of successive multiples of n2n, the
n2n-blocks starting in those two positions repre-
sent numbers in the range {0, . . . , 2n2n − 1} that
differ by 1 mod 2n2n

, and the first block consists
only of 0’s”

= B = Bn2n .

(b) Using the construction of part (a), one can build formulas of length

n describing strings of length at least 222..
.n

. As in the lower bound
proof for the theory of real addition given in Lecture 23, these can
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be used as “yardsticks” to describe the set of accepting computation

histories of a Turing machine whose running time is 222
...n

.
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Homework 9 Solutions
1. The problem is PSPACE -complete. Here is an alternating polynomial-

time algorithm. To test Zn |= ∃x ϕ(x), we branch existentially, guessing
a ∈ Zn. Each such a can be represented by a number {0, 1, . . . , n − 1}
in binary, so the depth of the computation tree is linear in the binary
representation of n. Each process at a leaf then tests Zn |= ϕ(a) for its
guessed value of a. To test Zn |= ∀x ϕ(x), the procedure is the same,
except universal branching is used. The Boolean connectives ∨ and ∧
can be handled with binary existential branches and binary universal
branches, respectively. We assume negations ¬ have already been pushed
down to the atomic formulas by the De Morgan laws and the rules
¬∃x ϕ(x) �→ ∀x ¬ϕ(x) and ¬∀x ϕ(x) �→ ∃x ¬ϕ(x). We are left with
atomic formulas of the form s = t or s �= t, where s and t are ground
terms over constants in Zn and arithmetic operators · and +. These can
be checked in polynomial time using ordinary arithmetic modulo n.

We show that the problem is hard for PSPACE by a reduction from
QBF. Given a quantified Boolean formula

Q1x1 Q2x2 · · · Qnxn B(x1, . . . , xn)

of QBF, replace each Boolean variable xi with the atomic formula xi =
0. This gives a sentence of the language of number theory that is true in
Z2, or in any Zn for n ≥ 2, iff the original quantified Boolean formula
was true in the two-element Boolean algebra {0, 1}.
A similar reduction works for all nontrivial first-order theories T . All
we need is the existence of a relation R such that T |= ∃x R(x) and
T |= ∃x ¬R(x) (this is what is meant by nontrivial). In the application
at hand, we can take R(x) to be x = 0, which is nontrivial provided the
structure has at least two elements.

2. Let

M = (Q, {0, 1}, δ, s, F)

be the given Muller automaton. Let Yq be a set variable corresponding
to state q and let X be a set variable corresponding to the input. We
first write down an S1S formula run(X, Y ) describing the runs of M on
input X . The variable Yq gives the times at which the machine is in
state q.
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run(X, Y ) = 0 ∈ Ys (8)

∧ ∀n
∧
q

(n ∈ Yq ∧ n �∈ X →
∨

p∈δ(q,0)

s(n) ∈ Yp) (9)

∧ ∀n
∧
q

(n ∈ Yq ∧ n ∈ X →
∨

p∈δ(q,1)

s(n) ∈ Yp) (10)

∧ ∀n
∧
p�=q

¬(n ∈ Yp ∧ n ∈ Yq) (11)

The subformula (8) says that the machine starts at time 0 in its start
state. The subformula (9) says that transitions on input symbol 0 are
correct. Similarly, (10) says that transitions on input symbol 1 are cor-
rect. Finally, the subformula (11) says that the machine is in at most
one state at any time. For any sets A and Bq, q ∈ Q, the S1S formula
run(A, B) is true if the Bq describe a run of M on input A in the sense
that for all n, n ∈ Bq iff the machine is in state q at time n.

We now describe acceptance. Define

finite(Y ) = ∃x ∀y y ∈ Y → y ≤ x.

Then ¬finite(Yq) says that M is infinitely often in state q. For F ⊆ Q,
define

ioF (Y ) =
∧
q∈F

¬finite(Yq) ∧
∧
q �∈F

finite(Yq).

This says that F is the IO set of the run described by Y . Finally, define

accept(Y ) =
∨

F∈F

ioF (Y ).

This says that M accepts according to the Muller acceptance condition.
Now take

ϕM (X) = ∃Y run(X, Y ) ∧ accept(Y ).

3. We first show how to simulate polynomial-size circuits B0, B1, . . . by a
polynomial-time oracle machine MC with a sparse oracle C. We encode
the circuits Bn in the oracle C.

Suppose A ∈ {0, 1}∗ is the set accepted by the circuits. Thus for x ∈
{0, 1}n, x ∈ A iff Bn(x) = 1. Because the circuits are of polynomial
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size, there is a constant d and an encoding of circuits Bn as strings
bn ∈ {0, 1}nd

such that a Turing machine, given bn and x ∈ {0, 1}n, can
compute Bn(x) in polynomial time.

Now we save the string bn in the oracle as the characteristic function
of strings of length n. That is, for n so large that nd ≤ 2n, we put
the ith string of length n in C iff the ith bit of bn is 1. Thus Bn can
be determined by querying C on at most nd strings of length n. For
the finitely many values of n for which nd > 2n, the circuit Bn is just
encoded in the finite control of M .

Because |bn | ≤ nd, the oracle is sparse. The machine MC on input
x ∈ {0, 1}n first queries C on the first nd strings of length n to determine
Bn, then computes Bn(x) and accepts if the value is 1.

For the other direction, suppose we are given a polynomial-time oracle
machine MC with sparse oracle C, |C ∩ {0, 1}n | ≤ nd, accepting a set A.
We wish to construct (nonuniform) polynomial-size circuits B0, B1, . . .
equivalent to MC . We must somehow encode the oracle information
in the circuits. We do this in two steps. First we show that for each
n there exists a string yn of length polynomial in n encoding all the
oracle information needed by M on inputs of length n. The string yn

is essentially a list of all elements in C up to the maximum length that
could be queried by M on inputs of length n. Because these strings are
of polynomial length in n and C is sparse, the string yn is of polynomial
length. More accurately, let nk be the time bound of M . On inputs of
length n, M can only query the oracle on strings of length at most nk,
because it must write them down. As C is nd-sparse, there are at most

|C ∩ {0, 1}≤nk | =
nk∑

m=0

|C ∩ {0, 1}m | ≤
nk∑

m=0

md ≤ nk(d+1)

nonzero elements of C in the range that could possibly be queried by
M on an input of length n, and all of them are of length at most nk,
so they can be written down end-to-end separated by 2’s in a string
zn ∈ {0, 1, 2}∗ of length at most O(nk(d+2)). Now convert the ternary
string zn to binary to get yn. Then

|yn | ≤ log2 3 · |zn | = O(nk(d+2)).

The binary string yn contains all the oracle information necessary to
process input strings of length n. That is, there is a deterministic
polynomial-time TM N such that for any string x of length n, MC

accepts x iff N accepts x#yn. The machine N first converts yn to zn,
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then simulates M on x; whenever M would consult its oracle C, N
searches the list zn.

Let C0, C1, . . . be the circuits obtained from Ladner’s construction for
the machine N (Theorem 6.1). Then for any n, Cn+|yn | has n + |yn |
Boolean inputs and is of size polynomial in n+ |yn |, which is polynomial
in n, and for any x of length n, Cn+|yn |(x, yn) = 1 iff N accepts x#yn

iff MC accepts x. The circuit Bn is obtained by specializing the inputs
of Cn+|yn | corresponding to yn to the Boolean values in yn.
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Homework 10 Solutions
1. To construct const, let k be an index for the projection π2

1 and let � be
an index for s1

1. Then

i = π2
1(i, x)

= ϕk(i, x)
= ϕs1

1(k,i)(x)
= ϕϕ�(k,i)(x)

= ϕϕ
s1
1(�,k)(i)

(x),

so we can take const = ϕs1
1(�,k).

To construct pair, let n be an index for s1
2 and let m be an index for the

partial recursive function

<U ◦ <π3
1 , π

3
3>, U ◦ <π3

2 , π
3
3>>.

Then

<ϕi, ϕj>(x) = <ϕi(x), ϕj(x)>

= <U(i, x), U(j, x)>
= <U ◦ <π3

1 , π
3
3>, U ◦ <π3

2 , π
3
3>>(i, j, x)

= ϕm(i, j, x)
= ϕs1

2(m,i,j)(x)

= ϕϕn(m,i,j)(x)
= ϕϕ

s2
1(n,m)(i,j)

(x),

so we can take pair = ϕs2
1(n,m).

2. Let h be a total recursive function that on input <v, j> produces the
index of a function that on input x

(i) computes ϕv(v, j);

(ii) if ϕv(v, j)↓, applies ϕj to ϕv(v, j); and

(iii) if ϕj(ϕv(v, j)) ↓, interprets the result as an index and applies the
function with that index to x.
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Thus

ϕh(v,j)(x) = ϕϕj(ϕv(v,j))(x)

if ϕv(v, j) and ϕj(ϕv(v, j)) are defined, undefined otherwise. Note that h
itself is a total recursive function: it does not do any of the steps (i)–(iii)
above, it only computes the index of a function that does them.

Now let u be an index for h. If ϕj is total, then h(u, j) is a fixpoint of
ϕj :

ϕh(u,j) = ϕϕj(ϕu(u,j)) = ϕϕj(h(u,j)).

Thus we can define τ = λj.h(u, j).

More formally, letting � and m be indices for the functions

U ◦ <U ◦ <π3
2 , U ◦ <π3

1 , π
3
1 , π3

2>>, π
3
3>

and s1
2, respectively, we have

ϕϕj(ϕv(v,j))(x) = U(U(j, U(v, v, j)), x)

= U ◦ <U ◦ <π3
2 , U ◦ <π3

1 , π
3
1 , π3

2>>, π
3
3>(v, j, x)

= ϕ�(v, j, x)
= ϕs1

2(�,v,j)(x),

so we can take h = λ<v, j>.s1
2(�, v, j). The function h is total because s1

2

is. An index for h is then given by

u
def= s2

1(m, �),

and we can take

τ = λj.h(u, j) = λj.ϕu(u, j) = ϕs1
1(u,u).

3. Suppose we have already constructed a finite set A of fixpoints of f . We
show how to obtain another fixpoint not in A effectively. Modify f to
get f ′ such that

f ′(i) =
{

const(0), if i ∈ A
f(i), otherwise,

where const(0) is an index of the constant function λx.0. Using the re-
cursion theorem, find a fixpoint j of f ′. If j �∈ A, we are done. Otherwise,
we know that ϕj = λx.0. In this case redefine f ′(j) := const(1). Now we
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are guaranteed that j cannot be a fixpoint of f ′. Repeat the process with
the new f ′. Whenever we get a fixpoint k in A, redefine f ′(k) := const(1)
and repeat. This can happen at most |A | times before no element of A
can be a fixpoint of f ′. The next application of the recursion theorem
gives a fixpoint of f ′ outside A, which is also a fixpoint of f , because f
and f ′ agree outside A.
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Homework 11 Solutions
1. It was argued in Lecture 37 that K∅ = K is Σ0

1-complete. Proceeding
by induction, it suffices to show that KA is Σ0

n+1-complete whenever A
is Σ0

n-complete. Writing

KA = {x | ϕA
x (x)↓} = {x | ∃t ϕA

x (x)↓t},

because the predicate ϕA
x (x)↓t is recursive in A ∈ Σ0

n, KA is r.e. in A,
thus KA ∈ Σ0

n+1 by the definition given in Lecture 35.

Now we show that KA is Σ0
n+1-hard whenever A is Σ0

n-hard. Let B be
an arbitrary element of Σ0

n+1. By Theorem 35.1, B can be expressed as

B = {x | ∃y x#y ∈ C},

where C ∈ Π0
n. Because A is Σ0

n-hard, its complement ∼A is Π0
n-hard,

therefore there exists a total recursive map σ such that

σ(x#y) ∈ ∼A ⇔ x#y ∈ C.

Now define the total recursive map τ that on input x gives the index of
a machine with oracle A that on any input

• enumerates y = 0, 1, 2, . . . in order,

• calculates σ(x#y) for each one,

• consults its oracle to determine whether σ(x#y) �∈ A, and

• halts if it ever finds one.

Then

x ∈ B ⇔ ∃y x#y ∈ C

⇔ ∃y σ(x#y) �∈ A

⇔ ϕA
τ(x)(τ(x))↓

⇔ τ(x) ∈ KA,

thus τ constitutes a reduction from B to KA. Because B was arbitrary,
KA is Σ0

n+1-hard.

2. (a) Suppose for a contradiction that KA ∈ Σ0
n. Because A is ≤m-

complete for Σ0
n, there is a total recursive map σ such that for all

x,

x ∈ KA ⇔ σ(x) ∈ A.
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Diagonalizing, let m be the index of an oracle machine with oracle
A that halts on input y iff σ(y) �∈ A. Then

σ(m) ∈ A ⇔ m ∈ KA

⇔ ϕA
m(m)↓

⇔ σ(m) �∈ A,

a contradiction. Therefore KA �∈ Σ0
n.

(b) Let n ≥ 1. It suffices to show Π0
n � Σ0

n. By Theorem 35.1, any
Σ0

n+1 set B can be expressed as

B = {x | ∃y x#y ∈ A},
where A ∈ Π0

n. If Π0
n ⊆ Σ0

n, then A ∈ Σ0
n, therefore B ∈ Σ0

n as
well by combining the initial existential quantifiers in the repre-
sentation of Theorem 35.1. Because B was arbitrary, Σ0

n+1 ⊆ Σ0
n.

This contradicts the conclusion of part (a).

3. The true ones are (a) and (c). The proof of the recursion theorem (The-
orem 33.1) goes through verbatim with the decoration A on ϕ and with
or without the decoration A on σ.

To refute (b), we can construct a total σ with an oracle for the halting
problem that has no fixpoint. Let K = {x | ϕx(x)↓}, and let σK be the
map

σK(x) =
{

const(ϕx(x) + 1), if ϕx(x)↓,
const(0), if ϕx(x)↑ .

The function σK is total. On input x, it consults its oracle to determine
which of the two cases applies. If ϕx(x) ↑, it just outputs const(0). If
ϕx(x) ↓, it computes ϕx(x) directly (it knows that it must halt), then
adds 1 and applies const to that value. Thus for all x,

ϕσK(x)(x) =
{

ϕx(x) + 1, if ϕx(x)↓,
0, if ϕx(x)↑

�= ϕx(x),

so σK has no fixpoint.

4. Say a recursive graph (ω, E) is represented by a Turing machine ac-
cepting the set of strings x#y such that x, y are binary strings and



356 Hints and Solutions

(x, y) ∈ E. Denote the graph represented by Turing machine M by GM .
We wish to show that the set

SC = {M | GM is strongly connected}

is Π0
2-complete. The set SC is in Π0

2, because it can be defined by a Π0
2

predicate:

SC = {M | ∀x ∀y ∃σ ∃τ path(M, x, y, σ, τ)},

where path(M, x, y, σ, τ) says that σ and τ are natural numbers encoding
sequences x0, x1, . . . , xn and t0, t1, . . . , tn−1 respectively, such that x =
x0, xn = y, and M accepts xi#xi+1 within ti steps, 0 ≤ i ≤ n− 1.

To show that SC is hard for Π0
2, we reduce an arbitrary Π0

2 set

{x | ∀y ∃z R(x, y, z)}

to SC. Given x, consider the graph

{(2y, 2z + 1) | R(x, y, z)} ∪ {(2z + 1, w) | w, z ∈ ω}.

This graph is strongly connected iff ∀y ∃z R(x, y, z). We can easily build
a machine accepting this set of edges from a given x and a machine for
the recursive relation R.
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Homework 12 Solutions
1. (a) Get rid of each occurrence of y := ∃ by replacing it with the fol-

lowing code.

y := 0
�1: �2 ∨ �3

�2: y := y + 1
goto �1

�3: . . . .

This changes each countable existential branch
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������
����
�

�
�

�
				

������

��������� � � � � � � � �
s

. . .

to � � � � � �

� � � � � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
� ···

s′

but node s is labeled 1 iff node s′ is labeled 1. This would not work
for ∀-branching because of the infinite path below s′. Call this new
program p.
Now get rid of the �i ∨ �j construct in p the same way you would
simulate a nondeterministic Turing machine with a deterministic
one, the only difference being that there are some y := ∀ steps
thrown in from time to time. The simulating program p′ keeps
a finite list of configurations (�1, β1), . . . , (�n, βn) of p that it is
currently simulating, where the �i are statement labels of p and
the βi : {y1, . . . , yk} → ω are valuations of the variables of p.
The program p′ goes through the list in a round-robin fashion,
simulating one step of p from each configuration (�, β) on the list,
and updating (�, β) accordingly. The program p′ makes a ∀-branch
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whenever p would. Whenever p′ is simulating p on (�, β) and � is a
statement of the form � : �i ∨ �j, p′ just deletes (�, β) from the list
and replaces it with (�i, β) and (�j , β). The equivalence of these two
computations might be called iterated distributivity. The program
p′ has only simple assignments y := e(y) and universal assignments
y := ∀. Finally, p′ halts and accepts if any one of the configurations
it is simulating is an accept statement.

(b) To show that the problem of deciding whether a given recursive
relation is well-founded is Π1

1-hard, observe that the computation
tree of p′ on any input is a recursive tree, and is well-founded iff
p′ accepts. But p′ accepts iff the original program p accepts, and
acceptance of IND programs is Π1

1-hard, because by Kleene’s theo-
rem (Theorem 40.1) IND programs accept exactly the Π1

1 relations
over N.
The problem is also in Π1

1, because it is accepted by an IND pro-
gram, as shown in Lecture 39.

2. Our plan is to use the lazy conditional test

ϕcond(i,j)(x, y) =
{

ϕi(y), if x = 0,
ϕj(y), if x �= 0

of Miscellaneous Exercise 111 and the recursion theorem (Theorem 33.1)
to construct a function h such that

h(x, y) =
{

y, if f(x, y) = 0,
h(x, y + 1), if f(x, y) �= 0,

(12)

then take

g(x) def= h(x, 0).

Let j, a, b, s, and i be indices for f , π2
1 , π2

2 , the successor function, and
the identity function, respectively, and let

σ(x) = pair(cond(b, comp(j, pair(a, comp(s, b)))), pair(x, i)). (13)

The function σ is total, therefore has a fixpoint h = ϕx = ϕσ(x) by the
recursion theorem, thus

h = ϕx = ϕpair(cond(b,comp(j,pair(a,comp(s,b)))),pair(x,i)).

To make a long story short, unwinding the definitions gives exactly (12).
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An index for σ can be obtained effectively from j, because by (13), σ
is just a combination of j and some constants using composition and
pairing, and an index for h can be obtained effectively from an index
for σ by the effective version of the recursion theorem (Homework 10,
Exercise 2).

Although you may think otherwise, this exercise was not meant as an
endurance test. Its purpose was to gain an appreciation of the program-
ming difficulties that Gödel and his colleagues faced in the 1930s, before
the invention of modern programming languages. Cumbersome as these
constructs were, one can see in them the seeds of the more versatile
programming constructs we use today.

3. By Theorem 2.5,

DTIME (T (n)) ⊆ DSPACE (T (n)) ⊆ DTIME (T (n)T (n))

for any T (n) ≥ log n. By the gap theorem (Theorem 32.1), there exists
a T such that

DTIME (T (n)) = DSPACE(T (n)) = DTIME (T (n)T (n)).
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8. (b) Consider {x#x | x ∈ Σ∗}.

14. Use Miscellaneous Exercise 11.

15. Finite fingers.

27. Pad the input.

31. Convert to finite automata and use Homework 6, Exercise 2 and Mis-
cellaneous Exercise 15. For information on regular expressions, see [76,
Lectures 7–9].

36. Use Miscellaneous Exercise 33.

38. (a) Induction.

40. Reduce to integer sorting.
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42. Show that if n �= 0 and q, r are the quotient and remainder, respectively,
obtained when dividing m by n using ordinary integer division, that is,
if m = nq + r where 0 ≤ r < n, then gcd(m, n) = gcd(n, r).

43. Use Miscellaneous Exercise 42, along with the fact that all integer com-
binations of a and n are multiples of gcd(a, n).

45. (b) Show using the definition of conditional expectation that if the Fi

are disjoint events such that Pr (Fi) �= 0 and F =
⋃

i Fi, and if X
is any random variable, then

E(X | F ) =
∑

i

E(X | Fi) · Pr(Fi | F ).

46. This hint applies to both (a) and (b). Let s, t be truth assignments to
the variables of a given 3CNF formula. Consider the statement, “There
exists a truth assignment u such that s ≤ u ≤ t in lexicographic order
and for all truth assignments v, the number of clauses of ϕ satisfied by
v is no more than the number of clauses satisfied by u.” Use the fact
that if P = NP , then Σp

2 = P . Do binary search.

47. (b) Use (a) to show that the size of the maximum clique is strongly
related to the probability of acceptance.

49. (a) Encode QBF.

50. Take the board positions to be the equivalence classes of the equivalence
relations ≡m

n,k defined inductively as follows.

• A, a1, . . . , ak ≡m
0,k B, b1, . . . , bk iff A, a1, . . . , ak and B, b1, . . . , bk

agree on all quantifier-free formulas of length at most m with free
variables among x1, . . . , xk; that is, if for all such formulas ϕ,

A, a1, . . . , ak |= ϕ iff B, b1, . . . , bk |= ϕ.

• A, a1, . . . , ak ≡m
n+1,k B, b1, . . . , bk iff both of the following condi-

tions hold.

(a) For all ak+1 ∈ A, there exists bk+1 ∈ B such that
A, a1, . . . , ak, ak+1 ≡m

n,k+1 B, b1, . . . , bk, bk+1.

(b) For all bk+1 ∈ B, there exists ak+1 ∈ A such that
A, a1, . . . , ak, ak+1 ≡m

n,k+1 B, b1, . . . , bk, bk+1.
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53. (b) Show that if there is a string not accepted, then there is one of the
form xyω for |x | and |y | at most 2O(n log n), where n is the number
of states.

60. (b) Generate a random n × n matrix A such that for all j there ex-
ists i ≥ j such that Aij �= 0. There are exactly

∏n−1
i=0 (qn − qi)

such matrices, the same as the number of nonsingular matrices.
Construct a linearly independent sequence of vectors x1, . . . , xn

starting with the standard basis (columns of the identity matrix),
using the columns of A as coefficients of linear combinations of
previously generated xi and standard basis elements.

66. (iii) Use amplification (Lemma 14.1) and the law of sum (Lecture 13).

(iv) Use amplification (Lemma 14.1).

(v) Use Miscellaneous Exercise 63.

(vi) For BP , use amplification (Lemma 14.1).

68. (a) Use Miscellaneous Exercise 6.

69. (c) Simulate M with another Σk oracle machine N that does not make
the oracle queries when M would, but just records the query strings
and guesses the response of the oracle, then verifies the guesses at
the end of the computation. Use (a) and (b) to show that the
guessing can be done either universally or existentially so as not to
increase the number of alternations along any computation path.

70. Induction on the structure of ϕ. Use the stronger induction hypoth-
esis: for any Boolean formula ϕ(x1, . . . , xn) with Boolean variables
x1, . . . , xn and possibly other variables,

ϕ(excl(z, σ1, τ1), . . . , excl(z, σn, τn))
≡ excl(z, ϕ(σ1, . . . , σn), ϕ(τ1, . . . , τn)).

89. Approximate ln(1− δ) with the first few terms of its Taylor expansion.
Recall that

ln(1 + x) =
∞∑

n=1

(−1)n+1

n
xn
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for |x | < 1.

93. Use Miscellaneous Exercise 92.

94. Writing A(m, n) as Am(n), show that Am+1(n) = An+1
m (1), where fn

denotes the n-fold composition of f with itself:

f0(x) def= x

fn+1(x) def= f(fn(x)).

Use the second characterization of Miscellaneous Exercise 91.

96. Build an instance of PCP such that any nonnull solution is an accepting
computation history of a given TM M on a given input x. Let Σ =
{0, 1, . . . , k − 1} for some k and Γ = {0, 1, #}. Let f(0) = #α0# and
g(0) = #, where α0 is the start configuration of M on x.

98. Use the recursion theorem.

99. Enumerate some subset in increasing order.

100. (b) Let Mσ(i) be a machine that on input x simulates Mi on inputs
0, 1, . . . , x and accepts iff Mi halts on all 0, 1, . . . , x and accepts x.

107. Show that (R ◦ S)−1 = S−1 ◦R−1 and (R−1)−1 = R. Using these facts,
show that R ◦R−1 ◦R ⊆ R implies R−1 ◦R ◦R−1 ⊆ R−1. Now use a
back-and-forth argument as in Lecture 34 to produce a chain h0, h1, . . .
of approximations to h : ω → ω, each with finite domain, maintaining
the invariant that each hn is one-to-one on its domain and graphhn ⊆ R.

108. Use effective padding (Lemma 34.2) to assume without loss of generality
that σ and τ are one-to-one, then apply Miscellaneous Exercise 107.

109. Apply Miscellaneous Exercise 107.

113. Use Miscellaneous Exercise 112.
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114. (b) Consider the sets {x | ϕx(x) is even} and {x | ϕx(x) is odd}.

115. Use the recursion theorem.

116. Use Homework 12, Exercise 2.

118. (a) Show that there exist arbitrarily complex 0,1-valued functions.

121. This has a two-line proof using the recursion theorem.

124. Diagonalize, then use Miscellaneous Exercise 123(b).

125. (b) Let Φ be arbitrary, and define Ψi
def= Φi + ϕi + 1.

127. (c) An enumeration of the constant functions is given by ϕconst(k), k ≥
0. Let Φ be an arbitrary abstract complexity measure. Define a new
complexity measure Ψ by

Ψi(n) def=
{

0, if ∃k i = const(k) and Mk(k)↑n

Φi(n) + 1, otherwise.

132. Encode COF. Use the set A from Miscellaneous Exercise 110(b), except
include complements of sets in L before constructing A. Let L(Mσ(i)) =
{f(x) | x ∈ L(Mi)} ∪ A, where f(x) is the xth element of ∼A.

133. Kill three birds with one stone.

135. Enumerate proofs. Build a total recursive function that grows asymp-
totically faster than any provably total recursive function.

137. Use effective padding.

138. The answers may not be what you think.
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139. This is quite tricky. Check your solution to make sure the following is
not a counterexample.
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Solutions to Selected Miscellaneous Exercises

6. Let A ⊆ DSPACE(G(x)), say by a machine M running in space G(x)
on input x. Let

A′ def= {x#k | M halts on input x in space k + |x |}
A′′ def= {x#k | M halts and accepts x in space k + |x |}.

Then both A′, A′′ ∈ DSPACE (n). By assumption, both A′, A′′ ∈
DTIME(T (n)), say by machines M ′ and M ′′, respectively, running in
time T (n) on inputs of length n. Now build a machine N that, given x,
runs M ′ on input x#i for i = 0, 1, 2, . . . until it accepts, which it must
by the time i = G(x) − |x | at the latest. For the maximum value of i
attained, N runs M ′′ on x#i to determine whether x ∈ A, and accepts
or rejects accordingly. Thus L(N) = A. For each xai, the simulation
takes time T (i + |x |), which by monotonicity of T is at most T (G(x)).
Thus the total time is at most (G(x) − |x |+ 2)T (G(x)).

17. See [63, pp. 377ff.]. Here is a simpler proof using alternating TMs. By the
relationship between deterministic time and alternating space (Corol-
lary 7.5), it suffices to show that nondeterministic and deterministic
S(n)-space-bounded APDAs are equivalent to S(n)-space-bounded al-
ternating TMs.
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Let M be a nondeterministic S(n)-space-bounded APDA. Assume with-
out loss of generality that M empties its stack before accepting. A con-
figuration consists of worktape contents, state of the finite control, work-
tape head position, and the symbol on the top of the stack or a special
flag indicating that the stack is empty. It does not include the stack con-
tents below the top symbol. Configurations can be represented in S(n)
space.

For configurations α, β and stack σ, write α → β if there is a computa-
tion starting in configuration α with stack σ and ending in configuration
β with stack σ that does not pop the top element of σ at any time. The
computation may push items on the stack above σ and pop them off
as much as it wants, but it may not touch σ. Note that the question of
whether α → β is independent of σ, because the contents of σ are invis-
ible to the computation except for the top symbol, which is represented
in α and β.

Now we describe a recursive procedure to determine whether α → β.
This can be used to determine whether M accepts x by checking whether
start→ accept, where start and accept are the start and accept con-
figurations of M , respectively, which we can assume without loss of gen-
erality are unique. The procedure can be implemented on an alternating
TM in S(n) space.

The procedure works as follows. Given α and β, it first checks whether
α = β or whether α derives β in one step without pushing or popping
the stack, and accepts immediately if so. If not, it nondeterministically
guesses whether there exists an intermediate configuration γ such that
α → γ and γ → β. If so, it guesses γ using ∨-branching, then checks in
parallel using ∧-branching that α → γ and γ → β. Otherwise, in order
for α → β, there must exist α′ and β′ such that α derives α′ in one
step while pushing a symbol on the stack, β′ derives β in one step while
popping a symbol off the stack, and α′ → β′ by a shorter computation.
The procedure guesses α′ and β′, checks that α derives α′ in one step
and β′ derives β in one step, then calls itself tail recursively to check
whether α′ → β′. There is no need to remember α and β, so at most
S(n) space is needed.

Conversely, an S(n)-space-bounded alternating TM N can be simulated
by a deterministic S(n)-space-bounded APDA. The APDA simply per-
forms a depth-first search of the computation tree of N , constructing
the tree on the fly and calculating the accept/reject values recursively.
It uses its stack in the depth-first search to remember where it is in the
tree.
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20. Finitary set operators are chain-continuous: if τ is finitary and C is a
chain,

τ(
⋃

C) =
⋃
{τ(B) | B ⊆

⋃
C, B finite}

=
⋃
{τ(B) | ∃C ∈ C B ⊆ C, B finite}

=
⋃ ⋃

C∈C

{τ(B) | B ⊆ C, B finite}

=
⋃

C∈C

⋃
{τ(B) | B ⊆ C, B finite}

=
⋃

C∈C

τ(C).

That chain-continuous operators are finitary can be shown by transfinite
induction as follows. Recall A ≡ B if there exists f : A

1−1−→
onto

B. The
cardinality of A is the least ordinal α such that α ≡ A. The cardinality
of A is either finite or a limit ordinal, because α + 1 ≡ α for infinite α
(map β �→ β for ω ≤ β < α, n �→ n + 1 for n < ω, and α �→ 0).

Now suppose τ is a set operator on X and τ(
⋃

C) =
⋃

C∈C τ(C) for any

chain C. For any A ⊆ X , let α be its cardinality and f : α
1−1−→
onto

A. If A

is finite, there is nothing to prove. Otherwise, α is a limit ordinal. For
any β < α, define Aβ = {f(γ) | γ < β}. Then the Aβ form a chain and⋃

β<α Aβ = A. Moreover, all the Aβ are of smaller cardinality because
Aβ ≡ β < α, so by the induction hypothesis, τ(Aβ) =

⋃{τ(B) | B ⊆
Aβ , B finite}. Then

τ(A) = τ(
⋃

β<α

Aβ)

=
⋃

β<α

τ(Aβ) by continuity

=
⋃

β<α

⋃
B ⊆Aβ

B finite

τ(B)

=
⋃

B ⊆A

B finite

τ(B).

The last equation follows from the fact that for finite B, B ⊆ A iff
B ⊆ Aβ for some β < α.
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21. (b) The set operator on subsets of ω given by

A �→
{

A, if A is finite
ω, otherwise

is monotone but not chain-continuous.

23. If τ is chain-continuous, then

τω+1(∅) = τ(τω(∅))

= τ(
⋃

n<ω

τn(∅))

=
⋃

n<ω

τ(τn(∅))

= ∅ ∪
⋃

n<ω

τn+1(∅)

=
⋃

n<ω

τn(∅)

= τω(∅).

For an example of a τ whose closure ordinal is ω + 1, let X be the set
of nodes of the tree pictured in Lecture 40, p. 264, and let

τ(A) = {x | all successors of x are in A}.

Then τ(∅) are the leaves, τ2(∅) are the leaves and the nodes above the
leaves, and so on; τω(∅) is the set of all nodes except the root; and
τω+1(∅) is the set of all nodes. This is the least fixpoint.

28. This is a refinement of the proof of Savitch’s theorem given in Lecture 2.
Let M be a nondeterministic TM running in space S(n) and time T (n)
on inputs of length n (thus no computation of M on input x uses more
than S(n) space or T (n) time). Let start be the start configuration of M
on input x, and assume that M has a unique accept configuration accept
and a unique reject configuration reject (thus no other configuration
halts). Assume also that M erases its worktape and moves all the way
to the left before accepting or rejecting. Let the configurations of M be
encoded as strings over a finite alphabet ∆.

If S(n) and T (n) are constructible in space S(n) log T (n), we can
first compute T (n) and S(n), then call SAV(start, accept, T (n), S(n)),
where SAV(α, β, t, s) is the recursive procedure described in Lecture 2
that attempts to find a computation path from α to β of length at most t
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through configurations of length at most s. Each recursive instantiation
of SAV requires S(n) space, and the depth of the recursion is log T (n),
giving a space bound of S(n) log T (n).

In case S(n) and T (n) are not constructible, we modify the SAV proce-
dure slightly:

boolean EXACTSAV(α, β, t, s) {
if t = 0 then return α = β;
if t = 1 then return α

1→ β;
for γ ∈ ∆s {
if EXACTSAV(α, γ, 
t/2�, s) ∧ EXACTSAV(γ, β, �t/2, s)
then return 1;

}
return 0;

}

boolean SAV(α, β, t, s) {
for t′ := 1 to t {
if EXACTSAV(α, β, t′, s) then return 1;

}
return 0;

}

The difference here is that EXACTSAV(α, β, t, s) attempts to find a
computation path of length exactly t from α to β through configurations
of length at most s. Neither SAV nor EXACTSAV uses more than s log t
space.

We first determine S(n) and T (n). We start with S = T = 1 and
alternately check whether T or S is too small, and if so increment
it by 1 and check again. To check whether T is too small, we call
EXACTSAV(start, α, T, S) for all nonhalting configurations α ∈ ∆S

in turn. If this procedure ever returns successfully, then T is too small.
To check whether S is too small, we call SAV(start, α, T, S) for all
configurations α ∈ ∆S in which the head is scanning the Sth worktape
cell and wants to move its worktape head right, thereby using S + 1
space. If this procedure ever returns successfully, then S is too small.
Eventually we find values of S and T just large enough that the en-
tire computation remains within these bounds. At that point we call
SAV(start, accept, T, S).

29. To show that the problem is in PSPACE , we guess a string that is ac-
cepted by all the Mi and verify that it is accepted. We start with a
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pebble on the start state of each Mi, then guess an input string symbol
by symbol, moving pebbles on the states of the Mi according to their
transition functions. We do not have to remember the guessed string,
just the states that the Mi are currently in. We accept if we ever get to
a situation in which all pebbles occupy accept states of their respective
automata. Because the pebble configuration can be represented in poly-
nomial space, this is a nondeterministic PSPACE computation. It can
be made deterministic by Savitch’s theorem.

To show that the problem is hard for PSPACE , let N be an arbitrary
deterministic nk-space bounded TM. Assume without loss of generality
that N has a unique accept configuration. Given an input x of length
n, we build a family of nk deterministic finite automata Mi with O(nk)
states each whose intersection is the set of accepting computation his-
tories of N on input x. Then

⋂
i L(Mi) = ∅ iff N does not accept x.

Recall that an accepting computation history of N on input x of length
n is a string of the form

#α0#α1#α2# · · · #αm−1#αm#, (14)

where each αi is a string of length nk over some finite alphabet ∆ en-
coding a configuration of N on input x, such that

(i) α0 is the start configuration of N on x,

(ii) αm is the accept configuration of N on x, and

(iii) each αi+1 follows from αi according to the transition rules of N .

If a string is an accepting computation history, then it must be of the
correct format (14) and must satisfy (i), (ii), and (iii). Checking that
the input string is of the form (14) requires checking that the input
string is in the regular set (#∆nk

)∗#, plus some other simple format
checks (exactly one state of N per configuration, each configuration
begins and ends with endmarkers, etc.). This requires an automaton
with O(nk) states. Checking (i) or (ii) involves just checking whether
the input begins or ends with a certain fixed string of length nk. Again,
each of these conditions can be checked by an automaton with O(nk)
states. Finally, to check (iii), recall from the proof of the Cook–Levin
theorem that there is a finite set of local conditions involving the j−1st,
jth, and j +1st symbols of αi and the jth symbol of αi+1 such that (iii)
holds iff these local conditions are satisfied for all j, 1 ≤ j ≤ nk. The
local conditions depend only on the description of N . To check that (iii)
holds, we use nk automata with O(nk) states. The jth of these automata
scans across and checks for all i that the local condition involving the
j − 1st, jth, and j + 1st symbols of αi and the jth symbol of αi+1 is
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satisfied. This only involves counting the distance from each # out to a
distance of j in each configuration, remembering three symbols in the
finite control, then moving to the next #, counting a distance j from
there, and comparing symbols. Each machine requires only O(nk) states
to do the counting.

30. First we show that if P = NP , then every deterministic polynomial-
time-computable length-preserving map f : Σ∗ → Σ∗ is invertible.

Please note that the following solution is incorrect.

In NP , we can guess x and verify that f(x) = y. Because
P = NP , we can do the same thing deterministically.

This is incorrect because you have not shown how to produce x deter-
ministically when it exists.

Assume the alphabet is binary, say {0, 1}. Let ≤ denote the prefix order
on strings; thus u ≤ x iff there exists v such that x = uv. The set

{(x, y, u) | |x | = |y |, f(x) = y, and u ≤ x}
is in P , because all three conditions can be checked deterministically in
polynomial time; therefore the set

B = {(y, u) | ∃x |x | = |y |, f(x) = y, and u ≤ x}
is in NP . By the assumption P = NP , the set B is in P . Using this fact,
given y of length n we can do a binary search on strings of length n to
find x such that f(x) = y. First ask whether (y, ε) ∈ B. If not, then no
such x exists; halt and report failure. If so, ask whether (y, 0) ∈ B. If
yes, there is an x with f(x) = y whose first bit is 0, and if no, all such
x have first bit 1. Now depending on the previous answer, ask whether
(y, 00) ∈ B or (y, 10) ∈ B as appropriate. The answer determines the
second bit of x. Continue in this fashion until all the bits of some x with
f(x) = y have been determined.

For the other direction, let ϕ denote a Boolean formula, say with m vari-
ables, and let t be a bit string of length m denoting a truth assignment
to the variables of ϕ. Consider the function

f(ϕ#t) =
{

ϕ#1| t |, if ϕ(t) = 1,
ϕ#0| t |, if ϕ(t) = 0.

Let f(y) = y for y not of the form ϕ#t. Then f is length-preserving and
computable in polynomial time: first determine whether the input is of
the form ϕ#t, and if so, evaluate ϕ on t. If f is invertible, then P = NP ,
because ϕ is satisfiable iff there exists x such that f(x) = ϕ#1| t |.
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32. (a) Given A ∈ NP , let M be a nondeterministic nc-time-bounded non-
deterministic TM accepting A. We can express membership of x in
A by

There is a sequence of configurations of M of length at
most nc describing an accepting computation history of
M on input x.

Suitably formalized in first-order logic, this formula is of the re-
quired form.
Conversely, given a condition

∃y |y | ≤ |x |c ∧R(x, y)

for membership in A, where R is a deterministic polynomial-time
predicate, we can build a nondeterministic polynomial-time ma-
chine N for A that on input x guesses a witness y of length at
most |x |c and verifies deterministically that R(x, y).

41. (a) Let σ be a deterministic logspace-computable function. There is
a constant c such that for all n, |σ(x) | ≤ |x |c. We construct a
family of logspace-uniform, polylog-depth, polynomial-size circuits
Bn with nc output ports computing σ. Because σ is computable in
deterministic logspace, the function σ′ defined by

σ′(x, i) def= the ith bit of σ(x)

is also computable in deterministic logspace (say with i presented in
binary), and σ′ is Boolean-valued. As such it is the characteristic
function of a set in LOGSPACE . Because LOGSPACE ⊆ NC ,
there is a family of NC circuits Cm computing σ′; that is, for
|x | = n, Cm(x, i) = σ′(x, i), where m = n + c log n. The first n
input ports of Cm are for x and the last c log n are for i in binary.
Then σ(x) is given by Cm(x, i), 1 ≤ i ≤ nc. We construct Bn from
nc disjoint copies of Cm. We feed x into the first n input ports
of each copy of Cm, then feed the binary constant i into the last
c log n input ports of the ith copy of Cm.
This construction is logspace uniform because the family Cm is,
and to create the multiple copies we only need an outer loop that
counts to nc.

(b) We know that CVP ∈ P , therefore if P = NC then CVP ∈ NC .
Conversely, suppose CVP ∈ NC . Because CVP is ≤log

m -complete for
P , for any A ∈ P , A ≤log

m CVP. By (a), there is a logspace-uniform
family of polylog-depth, polynomial-size circuits Bn such that x ∈
A iff B|x |(x) ∈ CVP. Plugging the outputs of these circuits into the
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inputs of the NC circuits for CVP, we get a family of NC circuits
for A.

49. (a) Call a structure A = (A, R, . . . ) nontrivial if it has at least one
distinguished k-ary relation R, k ≥ 1, such that R(a) is true for
some k-tuple a ∈ Ak and R(b) is false for some k-tuple b ∈ Ak. Note
that the identity relation = need not be a distinguished relation
of the structure, and there need not be constant symbols for a
and b. To show PSPACE -hardness, we encode QBF. Given a QBF
formula

Q1x1 · · · Qnxn B(x),

replace each quantifier Qixi with k quantifiers Qix
1
i · · · Qix

k
i , and

replace each occurrence of xi in B(x) with R(x1
i , . . . , xk

i ).
If in addition A is finite, and the functions and relations of the
structure are given by tables, then sentences in the language of A

can be decided by the following APTIME algorithm. First put ϕ
in prenex form. We then have

Q1x1 · · · Qnxn B(x)

with B(x) quantifier-free. Guess x1 ∈ {0, 1, 2} existentially if Q1 =
∃, universally if Q1 = ∀, and repeat for x2, x3, and so on. When
done with the quantifiers, evaluate B(x) on the guessed values of
x by table lookup.

50. Define ≡m
n,k as in the hint for this exercise on p. 362. Let [A, a]m

n+1,k

denote the ≡m
n+1,k-equivalence class of A, a, where a = a1, . . . , ak. Then

≡m
n,k has only finitely many classes, because there are only finitely many

formulas of length m. Define move so that ([A, a]m
n+1,k, α) ∈ move if

and only if α = [A, a, ak+1] for some ak+1.

This construction does not make all theories decidable because it is not
effective in general.

57. (a) For the inequality, by the strict monotonicity of the natural loga-
rithm on the interval in question, it suffices to show z ln(1− 1

z ) ≤ −1
for all z > 1, or equivalently ln x ≤ x− 1 for all 0 < x < 1. In fact,
this inequality holds for all positive real x. The curves y = lnx
and y = x− 1 are tangent at the point (1, 0), as both have slope 1
there; and y = lnx has strictly decreasing slope everywhere on the
interval x > 0, because its second derivitive is negative, whereas
y = x−1 is flat, so the curve y = lnx lies below the curve y = x−1.



376 Solutions to Selected Miscellaneous Exercises

For the limiting behavior (which we do not need for the rest of this
exercise), by the continuity of the exponential on the interval in
question, it suffices to show limz→∞ z ln(1 − 1

z ) = −1. Expanding
ln(1 − 1

z ) in a Taylor series gives

z ln(1− 1
z
) = z

(
−1

z − 1
+

1
2

( −1
z − 1

)2

+
1
3

( −1
z − 1

)3

+ · · ·
)

=
−z

z − 1
+ z

(
1
2

(
1

z − 1

)2

− 1
3

(
1

z − 1

)3

+ · · ·
)

.

The first term tends to −1 as z →∞. The remaining expression is
bounded in absolute value by

z

((
1

z − 1

)2

+
(

1
z − 1

)3

+ · · ·
)

=
z

(z − 1)(z − 2)
,

which tends to 0 as z →∞.

66. (ii) If L ∈ Πlog · ⊕ · C, then there exist A ∈ ⊕ · C and k ≥ 0 such that
for all x,

x ∈ L ⇔ ∀w |w | = k log |x | ⇒ x#w ∈ A.

Likewise, there exist B ∈ C and m ≥ 0 such that for all x#w,

x#w ∈ A ⇔ |{z | |z | = |x#w |m ∧ x#w#z ∈ B}| is odd
⇔ |W (nm, B, x#w) | is odd.

Assume for simplicity of notation that |x | is a power of 2. Let
{w0, w1, . . . , wN−1} be the set of all binary strings of length
k log |x |, where N = |x |k. Let

B′ def= {x#z0z1 · · · zN−1 | |zi | = |x#wi |m ∧ x#wi#zi ∈ B,
0 ≤ i ≤ N − 1}.

Then B′ ∈ C because C is closed downward under ≤p
T. Let

p(n) def= nk(n + k log n)m.

Then

W (p, B′, x) = {z | |z | = p(|x |) ∧ x#z ∈ B′}

=
N−1∏
i=0

{z | |z | = |x#wi |m ∧ x#wi#z ∈ B}

=
N−1∏
i=0

W (nm, B, x#wi),
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where the product is with respect to the set-theoretic concatenation
operation

UV
def= {uv | u ∈ U, v ∈ V }.

Then

x ∈ L ⇔ ∀i < N x#wi ∈ A

⇔ ∀i < N |W (nm, B, x#wi) | is odd

⇔ |
N−1∏
i=0

W (nm, B, x#wi) | is odd

⇔ |W (p, B′, x) | is odd,

therefore L ∈ ⊕ · C.

(iii) If A ∈ BP · C, then there exist B ∈ C and m ≥ 0 such that for all
y,

y ∈ A ⇒ Prw(y#w ∈ B) ≥ 3
4 ,

y �∈ A ⇒ Prw(y#w ∈ B) ≤ 1
4 ,

where the w are chosen uniformly at random among all binary
strings of length |y |m. By the amplification lemma (Lemma 14.1),
we can make the probability of error vanish exponentially by re-
peated trials. In particular, we can assume that B and m have been
chosen so that

y ∈ A ⇒ Prw(y#w �∈ B) ≤ 2−(|y |+2),

y �∈ A ⇒ Prw(y#w ∈ B) ≤ 2−(|y |+2).
(15)

(Lemma 14.1 was proved for BPP = BP · P , but a quick check of
that proof reveals that the only property needed of P was closure
under polynomial-time Turing reduction, which we have explicitly
assumed of C.) By the law of sum, for any n,

Prw(∃y ∈ {0, 1}n y#w ∈ B ⇔ y �∈ A)

≤ ∑
|y |=n Prw(y#w ∈ B ⇔ y �∈ A)

≤ 2n · 2−(n+2)

= 1
4 .

(16)

Now suppose L ∈ ⊕·BP · C. Then there exist A ∈ BP ·C and k ≥ 0
such that for all x,

x ∈ L ⇔ |{z | |z | = |x |k ∧ x#z ∈ A}| is odd. (17)
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Choosing B ∈ C and m ≥ 0 satisfying (15), we have by (16) that
for all x,

Prw(∃z ∈ {0, 1}|x |k x#z#w ∈ B ⇔ x#z �∈ A) ≤ 1
4 . (18)

Let

B′ def= {x#w#z | x#z#w ∈ B}
B′′ def= {x#w | |{z | |z | = |x |k ∧ x#w#z ∈ B′}| is odd}

= {x#w | |{z | |z | = |x |k ∧ x#z#w ∈ B}| is odd}.
Then B′ ∈ C and B′′ ∈ ⊕ · C. Now combining (17) with (18),

x ∈ L ⇔ |{z | |z | = |x |k ∧ x#z ∈ A}| is odd
⇒ Prw(|{z | |z | = |x |k ∧ x#z#w ∈ B}| is odd) ≥ 3

4

⇔ Prw(x#w ∈ B′′) ≥ 3
4 ,

x �∈ L ⇔ |{z | |z | = |x |k ∧ x#z ∈ A}| is even
⇒ Prw(|{z | |z | = |x |k ∧ x#z#w ∈ B}| is odd) ≤ 1

4

⇔ Prw(x#w ∈ B′′) ≤ 1
4 .

This proves that L ∈ BP · ⊕ · C.

67. (d) Let f ∈ #P . Then there is a polynomial-time nondeterministic TM
M that has exactly f(x) accepting computation paths on input x.
We build a new machine N that has exactly g(x)(f(x)) accepting
computation paths on input x. The machine N first computes all
the coefficients of g(x) ∈ N[z]. The degree of g(x) is at most
|x |d for some constant d, and the coefficients are polynomial-time
computable by assumption. Then N calls a recursive procedure R
with input g(x).
The recursive procedure R on input p ∈ N[z] works as follows.

• If p consists of more than one term, write p as q + r, where q
and r are polynomials each with roughly half the terms of p.
Make a nondeterministic branch, the two branches calling R
recursively with q and r, respectively.

• If p consists of a single term azi with coefficient a ≥ 2, where
a is represented in binary with polynomially many bits, make
a nondeterministic branch, the two branches calling R recur-
sively with 
a/2�zi and �a/2zi, respectively.

• If p consists of a single term zi with i ≥ 1, run M on input x,
branching as M branches. For every computation path of M
leading to rejection, just reject. For every computation path of
M leading to acceptance, call R recursively with zi−1.
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• If p consists of the single term 1, accept.

One can show inductively that the number of accepting computa-
tion paths generated by R on input p is exactly p(f(x)), therefore
the number of accepting computation paths of N on input x is
exactly g(x)(f(x)). The running time of N is still polynomial, be-
cause each of the steps takes polynomial time and the depth of the
recursion is bounded by log d + c + dnk, where d is the degree of
g(x), c is a bound on the number of bits needed to represent any
coefficient of g(x), and nk is the running time of M .

69. (c) Let M be a Σk oracle machine with oracle A. We simulate M
with another Σk oracle machine N as described in the hint for this
exercise on p. 363.
At any point in the simulation, the simulating machine N has
recorded on its tape the current configuration α of M , the ora-
cle queries y1, . . . , ym that M has made up to that point in the
computation, and a Boolean formula ψ(x1, . . . , xm, z) with a sin-
gle positive occurrence of z encoding an acceptance condition

ψ(A(y1), . . . , A(ym), acc(α, A)),

where the A(yi) are the (as yet undetermined) responses of the
oracle to the queries yi, and acc(α, A) represents the assertion that
M accepts when started in configuration α with oracle A. Initially,
the machine N starts with ψ = z, the null list of queries, and the
start configuration of M . If α is a ∨-configuration with successors
α0 and α1, it branches existentially, each branch taking one of the
successors. The list of queries and ψ do not change. This is correct,
because by (b),

ψ(A(y1), . . . , A(ym), acc(α, A))
≡ ψ(A(y1), . . . , A(ym), acc(α0, A) ∨ acc(α1, A))
≡ ψ(A(y1), . . . , A(ym), acc(α0, A))

∨ ψ(A(y1), . . . , A(ym), acc(α1, A)).

The procedure for simulating ∧-configurations of M is similar.
For an oracle query ym+1 with “yes” successor α1 and “no” succes-
sor α0, N branches existentially if the previous branch was existen-
tial and universally if the previous branch was universal. If there
have been no branches yet and k ≥ 1, N branches existentially.
(If k = 0, so M is deterministic, there is nothing to do.) If the
branch is existential, the successor taking the “yes” guess proceeds
with α1, y1, . . . , ym+1, and ψ(x1, . . . , xm, xm+1 ∧ z), and the suc-
cessor taking the “no” guess proceeds with α0, y1, . . . , ym+1, and
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ψ(x1, . . . , xm, xm+1 ∧ ¬z). This is correct, because by (b),

ψ(A(y1), . . . , A(ym), acc(α, A))
≡ ψ(A(y1), . . . , A(ym), (A(ym+1) ∧ acc(α1, A))

∨ (¬A(ym+1) ∧ acc(α0, A)))
≡ ψ(A(y1), . . . , A(ym), A(ym+1) ∧ acc(α1, A))

∨ ψ(A(y1), . . . , A(ym),¬A(ym+1) ∧ acc(α0, A)).

If the branch is universal, the argument is similar, except that we
use (a) to make the branch in the condition universal:

ψ(A(y1), . . . , A(ym), acc(α, A))
≡ ψ(A(y1), . . . , A(ym), (A(ym+1) → acc(α1, A))

∧ (¬A(ym+1) → acc(α0, A)))
≡ ψ(A(y1), . . . , A(ym), A(ym+1) → acc(α1, A))

∧ ψ(A(y1), . . . , A(ym),¬A(ym+1) → acc(α0, A)).

80. Write ϕ as ϕ0 ∧ ϕ1, where ϕ1 consists of all clauses of ϕ containing a
literal � such that ρ(�) = 1, and ϕ0 consists of the remaining clauses of
ϕ. Then ρ(ϕ1) = 1 and ρ(ϕ0) ≤ ϕ0, where ≤ is the natural order in the
free Boolean algebra on generators X . Thus ρ(ϕ) ≤ ϕ0.

Let K be the conjunction of all literals � such that ρ(�) = 1. Then
K has a literal in common with every clause of ϕ1, so K ≤ ϕ1. Also,
N ≤ ρ(ϕ0) ≤ ϕ0, and N and K are over disjoint sets of variables.
Then NK ≤ ϕ0ϕ1 = ϕ, therefore NK ≤ M for some minterm M of ϕ.
Moreover, M is of the form N ′K ′, where N ≤ N ′ and K ≤ K ′. Then
ρ(M) = ρ(N ′)ρ(K ′) = N ′ ≤ ρ(ϕ); but because N is a minterm of ρ(ϕ),
N = N ′.

81. Take ϕ = x1, . . . , xn, ψ = x2, . . . , xn, and s = 1. Then

Pr(∃M ∈ m(ρ(ϕ)) |M | ≥ 1) = 2−n((1 + p)n − (1− p)n)
Pr(∃M ∈ m(ρ(ϕ)) |M | ≥ 1 | ρ(ψ) = 1) = (1 − p)/2.

90. We show inductively that every program is equivalent to one of the form

p; while b do q

where p and q are while-free. This can be done using the following trans-
formations.

(a) Replace
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while b do q; p

with

c := b;
while c {

q;
c := b;
if ¬c then p

}
where c is a new Boolean variable not occurring in p or q. (In reality
we do not have Boolean variables, but we can simulate them.)

(b) Replace

while b1 do p1;
while b2 do p2;
...
while bk do pk;

with

i := 1;
while i ≤ k {
case i of {

1 : if b1 then p1 else i := i + 1;
2 : if b2 then p2 else i := i + 1;
...
k : if bk then pk else i := i + 1;

}
}

where i is a new integer variable and k is a constant. We can sim-
ulate the case statement with if-then-else’s.

(c) Replace

if b
then p1; while c1 do q1

else p2; while c2 do q2

with

c := b;
if c then p1 else p2;
while (c ∧ c1) ∨ (¬c ∧ c2) {
if c then q1 else q2

}
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where c is a new Boolean variable.

(d) Replace

while b {
p;
while c do q

}
with

if b {
p;
while b ∨ c {
if c then q else p

}
}

and then use (c).

91. We show first that P ⊆ C by induction on the definition of f ∈ P. All
cases are straightforward except when f is defined by primitive recur-
sion. Suppose f : ωm+1 → ωn is defined by primitive recursion from
h : ωm → ωn and g : ωm+n+1 → ωn defined previously:

f(0, x) = h(x)
f(s(y), x) = g(y, x, f(y, x)).

We wish to show that f ∈ C. By the induction hypothesis, h and g are
in C. Define

ĝ(y, x, z) = (s(y), x, g(y, x, z))

f̂(n, y, x, z) = ĝn(y, x, z).

Both f̂ and ĝ are in C. Arguing by induction on n,

ĝ0(0, x, h(x)) = (0, x, h(x))
= (0, x, f(0, x))

ĝs(n)(0, x, h(x)) = ĝ(ĝn(0, x, h(x)))
= ĝ(n, x, f(n, x)) (induction hypothesis)
= (s(n), x, g(n, x, f(n, x)))
= (s(n), x, f(s(n), x)).
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Using projections, tupling, and composition, we can define

e(n, x) = f̂(n, z(n), x, h(x))

= f̂(n, 0, x, h(x))
= ĝn(0, x, h(x))
= (n, x, f(n, x)),

so f can be obtained from e by projecting.

We now show conversely that C ⊆ P by induction on the definition of
f ∈ C. Again, all cases are straightforward except when f is defined
from g using the n-fold composition rule given in the statement of the
problem:

f(n, y) = gn(y).

By the induction hypothesis, g ∈ P. Then so is

ĝ(x, y, z) = g(z),

and f can be defined from ĝ by primitive recursion:

f(0, y) = y

= g0(y)
f(s(n), y) = ĝ(n, y, f(n, y))

= ĝ(n, y, gn(y))
= g(gn(y))
= gs(n)(y).

93. Let p be a for program. Let t be a new variable not occurring in p. Insert
t := t+1 before every statement, and insert t := 0 at the beginning of the
program. The resulting program is a for program p′ such that the final
value of t on an input x is the number of steps taken by the original
program p on input x. This function is certainly primitive recursive,
because it is computed by the for program p′.

Conversely, let p be a while program with a primitive recursive time
bound. Then there is a for program q computing the running time of
p on input x and leaving the value in a variable t. We assume without
loss of generality that q has no variables in common with p except x,
and does not change the value of x. Because the body of any while loop
in p is executed at most t times on input x, the original p is equivalent
to the for program q; p′, where p′ is obtained from p by replacing each
while loop
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while b do r

with the for loop

for t {
if b then r

}

98. It is certainly infinite, because there are infinitely many distinct partial
recursive functions. Suppose it contained an infinite r.e. subset enumer-
ated by enumeration machine M . Define f(i) to be the first element
greater than i enumerated by M . Then f is a total recursive function
without a fixpoint, contradicting the recursion theorem.

107. Construct a sequence of finite approximations to h : ω → ω using a back-
and-forth argument. Start with h completely undefined. Now suppose
that after n stages we have constructed a map h with finite domain such
that h is one-to-one and graphh ⊆ R. If n is even, let x be the least
element not in the domain of h. Execute the following program.

y := f(x);
while (y ∈ range (h)) {

z := h−1(y);
y := f(z);

}
h(x) := y;

After the initial assignment, (x, y) ∈ R. Because graph f ⊆ R, graphh ⊆
R, and R ◦ R−1 ◦ R ⊆ R, the loop maintains the invariant (x, y) ∈ R.
Thus if the loop terminates, then the final value of y is not in the range
of h, so we have increased the domain of definition of h by one element
while maintaining the invariant that h is one-to-one on its domain and
graphh ⊆ R.

To argue that the loop terminates, let Y and Z be the sets of elements
that the variables y and z, respectively, ever take on during the execution
of the loop. Then Y = f({x} ∪ Z) and Z = h−1(Y ∩ rangeh). If the
loop never terminates, then Y ⊆ rangeh, therefore Z = h−1(Y ) and
Y = h(Z). Because f and h are one-to-one and the domain of h is finite,
|Z | = |Y | = |{x} ∪ Z |, therefore x ∈ Z = h−1(Y ). But this contradicts
the fact that x is not in the domain of h.

If n is odd, we take x to be the least element not in the range of h
and work in the other direction, replacing f by g and R by R−1 in
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the argument above. We need the property R−1 ◦ R ◦ R−1 ⊆ R−1. As
indicated in the hint for this exercise on p. 364, this follows from the
assumption R ◦R−1 ◦R ⊆ R by elementary set-theoretic reasoning.

110. (a) Let M0, M1, . . . be an enumeration of total TMs equipped with
polynomial-time clocks that shut the machine down after nk steps.
The enumeration contains a copy of each TM with an nk clock for
each k. Then
• every Mi runs in polynomial time, and
• every set in P is accepted by some Mi.

Here is a procedure for enumerating A and ∼A. Maintain a fi-
nite list of indices, initially empty. Each index on the list is either
marked or unmarked. At stage x, put x unmarked on the list. Then
simulate every machine on the list on input x and pick the smallest
i on the list such that Mi accepts x. If no such Mi exists, just put
x ∈ A and go on to stage x + 1. If i is unmarked, put x ∈ A and
mark i. If i is already marked, put x ∈ ∼A and cross i off the list.
Every Mi gets on the list eventually. If Mi is on the list and accepts
x, then the only way Mi would not be chosen to be marked or
deleted in stage x is if there is a machine with a smaller index on
the list that is marked or deleted in stage x, and this can happen at
most 2i times. Thus if Mi accepts an infinite set, it will eventually
be the highest priority machine on the list and will eventually be
marked and deleted. When Mi is marked, we put the current x ∈
A, ensuring that L(Mi) � ⊆ ∼A. When Mi is deleted, we put the
current x ∈ ∼A, ensuring that L(Mi) � ⊆ A.
Both A and ∼A are r.e., because the construction above enumer-
ates them, so A is recursive. Both A and ∼A are infinite, because
infinitely many machines are marked and deleted.

126. We exhibit total recursive space bounds S0 and S1 such that

DSPACE (S0) ∪ DSPACE (S1) �= DSPACE (S)

for any S. Let M be a total TM such that every TM accepting L(M) uses
at least one tape cell on almost all inputs (see Miscellaneous Exercise
117). Let T (n) be the maximum space usage of M on inputs of length
n, and define

S0(n) def=
{

T (n), if n even,
0, if n odd

S1(n) def=
{

T (n), if n odd,
0, if n even.
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Then

A0
def= L(M) ∩ {x | |x | is even} ∈ DSPACE (S0)

A1
def= L(M) ∩ {x | |x | is odd} ∈ DSPACE(S1).

If DSPACE(S0) ∪ DSPACE(S1) ⊆ DSPACE (S), then both A0 and
A1 are in DSPACE (S), therefore their union L(M) is. But L(M) �∈
DSPACE(S0) and L(M) �∈ DSPACE (S1), because all machines for
L(M) require at least one tape cell a.e.

131. (b) Let ϕi(x)↓t= y denote the recursive predicate, “The machine com-
puting ϕi halts on input x in t or fewer steps and outputs y.” The
set EQUAL is in Π0

2, because it can be expressed as

EQUAL = {(i, j) | ∀x ∀t ∀y ∃s (ϕi(x)↓t= y ⇒ ϕj(x)↓s= y)
∧ (ϕj(x)↓t= y ⇒ ϕi(x)↓s= y)}.

To show EQUAL is Π0
2-hard, we reduce ALL from part (a) to it.

(You did part (a), right?) Let τ(i) be an index of the partial recur-
sive function

ϕτ(i)(x) =
{

0, if Mi accepts x
undefined, otherwise.

The index τ(i) can be obtained from i effectively, and the domain
of ϕτ(i) is exactly L(Mi). Now define

σ(i) = (τ(i), const(0)),

where const(0) is an index for the constant function λx.0. Then

i ∈ ALL ⇔ ϕτ(i) = λx.0 ⇔ σ(i) ∈ EQUAL.

134. (a) Yes. Let

A
def= {M | M runs in polynomial time}

B
def= {M | “M runs in polynomial time” is provable in PA}.

Certainly B ⊆ A, because PA is sound. We show that B ∈ Σ0
1 and

A is Σ0
2-complete, therefore the two sets cannot be equal. Certainly

B ∈ Σ0
1, because we can enumerate proofs in PA. The set A is in

Σ0
2, because M runs in polynomial time iff ∃k ∀x M(x)↓|x |k , which

is a Σ0
2 predicate. Also, A is hard for Σ0

2, because we can reduce
FIN = {M | L(M) is finite} to it, which we know is Σ0

2-complete
(Lecture 35). Given a machine M , we want to construct a machine
M ′ that runs in polynomial time iff L(M) is finite. On input x, let
M ′ take the following actions.
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(i) Simulate M on all inputs y such that |y | < log |x | for |x |
steps.

(ii) If c of these simulations halt and accept, run for |x |c more
steps and halt.

Step (i) takes |x |2 simulation steps. Step (ii) takes |x |c simulation
steps. Now if L(M) is finite, say |L(M) | = c, then M ′ runs in time
nc. If not, then there is no upper bound on c, and M ′ does not run
in polynomial time.

(b) No. Let A be as in part (a). We are asking whether there exists a
partial recursive function f defined on all of A (at least) such that
if M ∈ A, then M runs in time nf(M). Suppose there were such an
f . Let

C
def= {M | ∃t f(M)↓t ∧ ∀x ∀t (f(M)↓t⇒ M(x)↓|x |f(M)

)}.
Then C ⊆ A, and we are asking whether A ⊆ C. As shown in
part (a), A is Σ0

2-complete, but C is the intersection of a Σ0
1 set and

a Π0
1 set, therefore is contained in ∆0

2, so it cannot be Σ0
2-complete.

136. Here is one possible formalization. Let F be any formal deductive system
for number theory (for example, Peano arithmetic). There is a formula
ϕ(x) of number theory such that the set {x | ϕ(x)} is a recursive set,
but is not L(M) for any TM M such that F � ∀x M(x)↓.
To prove this, let N be a TM that enumerates proofs in F of sentences
of the form ∀x M(x)↓ (that is, M is total). Whenever such a theorem
is enumerated, say at stage x, N runs M on x and enumerates x iff M
rejects x. Assuming F is sound, this is decidable, because M really is
total. Now let ϕ(x) be the formula x ∈ L(N). The set {x | ϕ(x)} = L(N)
is recursive, because we only need to run N for finitely many steps to
determine whether x ∈ L(N). But it is not L(M) for any M such that
F � ∀x M(x)↓, because we diagonalized away from all such machines.

139. Problem (a) is Σ0
2-complete and problem (b) is Π1

1-complete.

To show that (a) is in Σ0
2, first assume without loss of generality that M

never halts (modify halt states to enter an infinite loop not containing q;
this does not change whether M satisfies (a)). We claim that (a) holds
iff

(A) there is a finite computation path π from the root such that for
all n > |π |, there is an extension ρn of π of length n such that ρn

contains no occurrences of q outside of the prefix π.
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If you believe this claim, then the problem is in Σ0
2, because (A) can be

expressed in the form ∃π∀n followed by a recursive predicate.
To prove the claim, first note that (a) implies (A) easily: given an infinite
path σ satisfying (a), let π be a finite prefix containing all occurrences
of q. Then for all n > |π |, the prefix of σ of length n is an extension ρn

of π satisfying the condition of (A).

The other direction requires König’s lemma. Suppose (A) holds. Con-
sider the subtree consisting of π and all the extensions ρn for each
n > |π | given by (A). This is an infinite finitely branching tree, so
by König’s lemma contains an infinite path, which must satisfy the con-
dition of (a).

To show that (a) is Σ0
2-hard, we reduce FIN to it. Given a machine M ,

we wish to produce a nondeterministic machine N with a state q such
that N has a computation path with only finitely many occurrences of
q iff M accepts a finite set. Assume without loss of generality that M
never rejects (modify reject states to enter an infinite loop instead). Let
N first guess a number n nondeterministically. It does this by entering
a loop that repeatedly adds one to a counter, then nondeterministically
chooses whether to exit the loop or keep going. Let q be the first state of
this loop. For every branch that exits the loop with a guessed number n,
simulate M on all inputs of length greater than n in a timesharing fash-
ion. The state q is never entered in these simulations. If any one of these
simulations accepts, erase the tape and restart the entire computation
from scratch.
Now if M accepts a finite set, then there will be an n such that M accepts
no string of length greater than n, and for the computation path of N
corresponding to the guessed number n (or any larger number), q will
never occur again, because N will be stuck simulating M forever. On the
other hand, if M accepts an infinite set, then every computation path
of N corresponding to a guessed number n will discover an x ∈ L(M)
of length greater than n and will restart the computation from scratch,
thereby reentering state q. The infinite computation path corresponding
to N remaining in the n-guessing loop forever is not an issue, because
it enters q infinitely often.
To show that (b) is in Π1

1, note that the condition (b) can be expressed

∀π ∃n ∀m ≥ n state(π(m)) �= q

consisting of a universal second-order quantifier ranging over (possibly
infinite) paths π in the computation tree, followed by a first-order pred-
icate expressing that π contains only finitely many occurrences of q.

To show that (b) is Π1
1-hard, we reduce the fair termination problem

to it. Consider the fairness condition (true, last(0)) of Lecture 41 for
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the computation tree of a given binary-branching nondeterministic ma-
chine M . Thus an infinite path is fair iff it contains infinitely many left
branches. Modify M to enter state q momentarily whenever it takes a left
branch. Then the modified machine is fairly terminating iff there are no
infinite fair paths iff every path contains only finitely many occurrences
of q.

140. (b) This is an example of a promise problem. We are promised that
we will only ever be given instances of the problem that satisfy a
certain property—in this case, that the given machine is total—
that may not be decidable. However, we do not have to decide it;
we may assume that it always holds of the inputs we are given.
Formally, a promise problem is a pair (A, P ) ∈ Σ∗ × Σ∗, where A
is the decision problem and P is the promise. A promise problem
(A, P ) is in a complexity class C defined by some resource bound on
machines if there is a machine that on inputs in P operates within
that resource bound and accepts exactly the strings in A ∩ P .
It is not required to accept strings in A or respect the resource
bound on input strings not in P . For example, a promise problem
(A, P ) is decidable if there exists a Turing machine that halts on all
elements of P , and of those inputs, accepts exactly the elements of
A ∩ P . (Note that this is not the same as saying that there exists
a recursive set B such that A ∩ P = B ∩ P .) A promise problem
(A, P ) is said to be ≤m-hard for C if every B in C ≤m-reduces to
A via a total recursive function σ that fulfills the promise; that is,
for all x, σ(x) ∈ P .
In our case the promise problem consists of

A = {M | M accepts a transitive binary relation}
= {M | ∀x∀y ∀z (x, y) ∈ L(M) ∧ (y, z) ∈ L(M)

→ (x, z) ∈ L(M)},
P = {M | M is total}.

This is in Π0
1, because there is an IND program with ∀-branches

only that always halts on inputs in P and accepts exactly A ∩ P .
To show Π0

1-hardness, we can reduce the complement of the halting
problem to A. We need to construct effectively from a given N#x
a total machine M accepting a binary relation that is transitive iff
N does not halt on x. Let M accept input (s, t) iff either (i) s �= t,
or (ii) s = t and N does not halt on x in t steps. Surely M can
be made total. If N does not halt on x, then L(M) contains all
pairs, therefore is a transitive relation. If N halts on x in t steps,
then (t, t + 1), (t + 1, t) ∈ L(M), but (t, t) �∈ L(M), so L(M) is not
transitive.
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[109] M. Schönfinkel, Über die Bausteine der mathematischen Logik,
Math. Annalen, 92 (1924), pp. 305–316.

[110] J.T. Schwartz, Fast probabilistic algorithms for verification of
polynomial identities, J. Assoc. Comput. Mach., 27 (1980), pp. 701–
717.

[111] A. Shamir, IP = PSPACE , in Proc. 31st Symp. Foundations of
Computer Science, Los Alamitos, CA: IEEE, 1990, pp. 11–15.

[112] M. Sipser, A complexity theoretic approach to randomness, in Proc.
15th Symp. Theory of Computing, New York: ACM, 1983, pp. 330–
335.

[113] , Introduction to the Theory of Computation, Pacific Grove,
CA: Brooks Cole, 1996.



398 References

[114] R.I. Soare, Recursively Enumerable Sets and Degrees, Berlin:
Springer-Verlag, 1987.

[115] R. Stearns, J. Hartmanis, and R. Lewis, Hierarchies of mem-
ory limited computations, in Proc. IEEE Conf. Switching Circuit
Theory and Logical Design, 1965, pp. 179–190.

[116] L. Stockmeyer and A. Chandra, Provably difficult combinato-
rial games, SIAM J. Comput., 8 (1979), pp. 151–174.

[117] L.J. Stockmeyer, The polynomial-time hierarchy, Theor. Comput.
Sci., 3 (1976), pp. 1–22.

[118] L.J. Stockmeyer and A.R. Meyer, Word problems requiring ex-
ponential time, in Proc. 5th Symp. Theory of Computing, New York:
ACM, 1973, pp. 1–9.
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