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The aim of this course is to gain a broader view on logic and computation,
and explore the dynamic interaction between them.

• Topics presented in this semester include: Computable functions,
undecidability, propositional logic, NP-completeness, first-order logic, Gödel’s
completeness theorem, Gödel’s incompleteness theorems, modal logic and its
decidability.

• Topics in the second semester: Second-order logic, modal µ-calculus, infinite
automata, determinacy of infinite games, admissible recursion, etc.
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Historical Introduction
• At the beginning of the 20th century, D. Hilbert emphasized

the importance of first-order logic as a general framework of
mathematics. He then advocates “the decision problem (for
validity or satisfiability of first-order formulas) must be
considered the main problem of mathematical logic”.

• Hilbert’s aim was soon upset by K. Gödel, A. Church and A.
Turing by developing mathematics of symbolic manipulation.

• In particular, Turing’s mathematical model of symbolic
computation, now known as Turing machine, had a great
influence on the birth of computers, and is still used as a
theoretical platform for algorithm analysis.

• There is no boundary between logic and computation. Let us
explore their dynamic interaction.

D. Hilbert

K. Gödel

A. Church

A. Turing3 / 29
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Outline of the Course
1 This is a two-semester course in mathematical logic and theory of

computation. In this semester, it covers the basic topics of the two fields and
their important interactions so that advanced undergraduates can participate
without any particular knowledge. Then in the next semester, we discuss more
advanced topics emphasizing on decidability and definability.

2 We meet at 15:20-16:55, every Tuesday and Thursday in room A3-2-301,
BIMSA, though the lectures are also offered online.

3 TA’s are Dr. W.Li (chief) and Mr. K.Duo. They will handle homeworks,
questions and comments from students via WeChat. We will not assign
homeworks regularly in this semester, but motivated students are encouraged
to solve many problems given in the lectures and submit your solutions to us.

4 Lecture slides will be uploaded on the course announcement page at BIMSA.
More information will be given at our WeChat group page.
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Introducing myself

Kazuyuki Tanaka� �
My specialty is logic, especially
theory of definabilty and com-
putability. I have mainly con-
tributed to second-order arith-
metic and reverse mathematics,
and supervised fifteen doctoral
students in this area. See
https://sendailogic.com/tanaka/.� �

Education
⋆ Tokyo Institute of Technology

Information Science, Bachelor, Master
⋆ University of California, Berkeley

Mathematics,
Ph.D. (Advisor: Leo Harrington)

Teaching Jobs
⋆ 1986 ∼ 1991, Tokyo Inst. Tech.

Assistant Professor, Dept. of Info. Sci.;
Visiting PennState.

⋆ 1991 ∼ 1997, Tohoku University
Associate Professor, Dept. of Math.;
Visiting Oxford.

⋆ 1997 ∼ 2022, Tohoku University
Professor, Math Institute.

⋆ 2022 ∼ now, BIMSA, Professor.
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Logic and Computation I (Syllabus)� �
• Part 1. Introduction to Theory of Computation

Fundamentals on theory of computation and computability theory
(recursion theory) of mathematical logic, as well as the connection
between them. This part is the basis for the following lectures.

• Part 2. Propositional Logic and Computational Complexity
The basics of propostional logic (Boolean algebra) and complexity theory
including some classical results, such as the Cook-Levin theorem.

• Part 3. First Order Logic and Decision Problems
The basics of first-order logic, Gödel’s completeness theorem, Gödel’s
incompleteness theorems and the Ehrenfeucht-Fraïssé theorem and
Lindström’s theorem.

• Part 4. Modal logic
Kripke models, canonical modal logics, standard translation, bisimulation,
decidability results, and epistemic logic.
In ”Logic and Computation II”, second-order logic and modal µ-calculus.� �6 / 29
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Part 1. Schedule
• Sep.10, (1) Automata and monoids

• Sep.12, (2) Turing machines

• Sep.17, a holiday

• Sep.19, (3) Computable functions and primitive recursive functions

• Sep.24, (4) Decidability and undecidability

• Sep.26, (5) Partial recursive functions and computable enumerable sets

• Oct. 1 and 3, holidays

• Oct. 8, (6) Rice’s theorem and many-one reducibility
7 / 29
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§1.1 Automata and Monoids
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Words and languages
• A (finite) automaton is a simplest computing machine with finitely many

states. Other computing machine such as a Turing machine can be regarded
as a functionally-expanded automaton.

• Let Ω be a finite set of symbols. By a word over Ω, we mean a finite sequence
of symbols from Ω. Then by Ωn, we denote the set of words with length n.
And put

Ω∗ =
⋃
i≥0

Ωi.

For instance, {0, 1}2 = {00, 01, 10, 11}, {0, 1}0 = {ε} with ε an empty word.
By a language in Ω, we mean a subset of Ω∗.

• In automata theory, we study the class of languages (of words) accepted by
automata. In theory of computation, larger classes of languages are also
defined and studied for many kinds of functionally-expanded machines.

9 / 29
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Deterministic finite automaton
We first introduce deterministic finite automata. Later, we also define
non-deterministic ones, and then show that the two types of automata have the
same power of computation.

Definition 1.1
A deterministic finite automaton (DFA) is a 5-tuple M = (Q,Ω, δ, q0, F ),
(1) Q is a non-empty finite set, whose elements are called states.

(2) Ω is a non-empty finite set, whose elements are called symbols.

(3) δ : Q× Ω → Q is a transition function.

(4) q0 ∈ Q is an initial state.

(5) F ⊂ Q is a set of final states.

10 / 29
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Language accepted by DFA
• M reads a symbol on the input tape under the head, and it changes its state

according to δ and moves the head to the right next symbol.
• For convenience, we extend δ to δ̄ : Q× Ω∗ → Q inductively as follows:{

δ̄(q, ε) = q,
δ̄(q, aw) = δ̄(δ(q, a), w) (a ∈ Ω, w ∈ Ω∗).

𝑤𝑤

𝑎 𝑎  ⋯ 𝑎 𝑎 𝑎  ⋯ 𝑎

𝑞 𝛿̅ 𝑞 , 𝑤

n steps

• If δ̄(q0, w) ∈ F , we say that w is accepted by M.
• The language accepted by M: L(M) ≡ {w ∈ Ω∗ : δ̄(q0, w) ∈ F}.
• L(M) with an automaton M is called regular or Chomsky type-3.

11 / 29
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Example 1
Consider a DFA M = (Q,Ω, δ, q0, F ), where Q = {q0, q1, q2}, Ω = {0, 1},
F = {q0} and δ is illustrated in the following diagram:

q0start q1 q2

0
1

1

0

0

1

Then, the language accepted by M is

L(M) = {ε, 0, 00, . . . , 11, 1001, 10101, . . . }
= {x ∈ Ω∗ : x is the binary representation of a multiple of 3 or ε}

12 / 29
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Example 2
Counter-example
L = {anbn : n ≥ 1} is not regular.

• Assume L were regular and accepted by a DFA M = (Q,Ω, . . .).
• Take an n >| Q |. When M reads an = aaa · · · a︸ ︷︷ ︸

n copies of a
, there exists at least

one state being visited more than once (Pigeon-hole principle). In the
following diagram, q1 appears twice, where 0 ≤ i < n and 0 < j < n:

q0start q1 q1 q2
ai aj an−i−jbn

• Thus if M accepts anbn, M also accepts an−jbn, which contradicts with the
assumption that M accepts L.

13 / 29
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Regular languages
Lemma 1.2
Any regular language in Ω is accepted by a DFA on Ω.

Proof.
• Let M = (Q,Ω′, δ, q0, F ) be a DFA that accepts a regular language L ⊂ Ω∗.

• We construct a DFA M′ = (Q′,Ω, δ′, q0, F ) from M by removing symbols in
Ω′ − Ω as follows:

• Q′ = Q ∪ {q′}, where Q ∩ {q′} = ∅.
• δ′ : Q′ × Ω → Q′ such that

if q ∈ Q and a ∈ Ω ∩ Ω′, δ′(q, a) = δ(q, a);
if q = q′ or a ∈ Ω− Ω′, δ′(q, a) = q′

• M does not accept a sting including a symbol in Ω′ − Ω, thus
L(M′) = L(M).

□14 / 29
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Regular languages
Theorem 1.3
The class of regular languages is closed under the set operations ∩, ∪ and c.

Proof.
• Closed under c.

For a DFA M = (Q,Ω, δ, q0, F ), we can define
M = (Q,Ω, δ, q0, Q− F )

such that L(M) = Ω∗ − L(M) = (L(M))c.
• Closed under ∪.

Given Mi = (Qi,Ω, δi, q
i
0, Fi) (i = 1, 2), we can construct

M = (Q1 ×Q2,Ω, δ, (q
1
0, q

2
0), F )

such that δ((q1, q2), a) = (δ1(q
1, a), δ2(q

2, a)) and F = (F1×Q2)∪ (Q1×F2).
Then L(M) = L(M1) ∪ L(M2).

• The closedness under ∩ can be proved similarly. □15 / 29
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Recall: Monoids and Homomorphisms
Let M be a set and ◦ be a binary operation M ×M → M .

• The structure (M, ◦) is called a semigroup if ◦ is associative:
u ◦ (v ◦ w) = (u ◦ v) ◦ w, for all u, v, w ∈ M .

• The structure (M, ◦, e) is called a monoid if (M, ◦) is a semigroup and e ∈ M
satisfies e ◦ w = w ◦ e = w for all w ∈ M .

• Example. Let Q be a set, M = {f : Q → Q} and ◦ the composition of
functions, id be the identity function. Then, (M, ◦, id) is a monoid.

• Example. (Ω∗, ·, ε) is a monoid, where · is the concatenation of two words.
• Let (Mi, ◦i, ei) (i = 1, 2) be two monoids. A function f : M1 → M2 is called

a (monoid) homomorphism if f(u ◦1 v) = f(u) ◦2 f(v) for all u, v ∈ M1 and
f(e1) = e2.

16 / 29
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Monoids and regular languages

Theorem 1.4
The following statements are equivalent.

(1) L ⊂ Ω∗ is regular.

(2) There is a finite monoid M and monoid homomorphism ϕ : Ω∗ → M such
that L = ϕ−1ϕ(L).

We say a monoid M recognizes L if the above theorem holds.

17 / 29
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Proof.
(1) ⇒ (2)

• Let L be a regular language and M = (Q,Ω, δ, q0, F ) be a DFA that accepts
L.

• For each w ∈ Ω∗, a mapping fw : Q → Q is defined by fw(q) = δ(q, w).

• We obtain a finite monoid M = {fw : w ∈ Ω∗} with fu ◦ fv(q) = fv(fu(q))
and id = fε.

• Noticing fu ◦ fv = fuv, we can show that ϕ(w) = fw is a monoid
homomorphism from Ω∗ to M .

• If fw = fw′ and w ∈ L, then w′ ∈ L. So L = ϕ−1ϕ(L).

18 / 29



Logic and
Computation

K. Tanaka

Introduction

§1.1
Automata and
Monoids
Regular language
Formal definition of
NFA
Regular language and
NFA
From NFA to DFA

Summary

Appendix

Proof. (Continued)
(2) ⇒ (1)

• Let M be a finite monoid and a monoid homomorphism ϕ : Ω∗ → M . Assume
L = ϕ−1ϕ(L).

• A DFA M = (Q,Ω, δ, q0, F ) is constructed as follows:
• Q = M ,

• δ(q, a) = q ◦ ϕ(a),

• q0 is the identity element of M

• F = ϕ(L).
Thus δ̄(q0, w) = ϕ(w). We have

δ̄(q0, w) ∈ F = ϕ(L) ⇔ w ∈ ϕ−1ϕ(L) = L.

• M recognizes L.

19 / 29
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Nondeterministic finite automata

Definition 1.5
A nondeterministic finite automaton (NFA) is a 5-tuple M = (Q,Ω, δ,Q0, F ),
(1) Q is a non-empty finite set, whose elements are called states.

(2) Ω is a non-empty finite set, whose elements are called symbols.

(3) δ : Q× Ω → P(Q) is a transition relation.

(4) Q0 ⊂ Q is a set of initial states.

(5) F ⊂ Q is a set of final states.

P(Q) denotes the power set of Q.

20 / 29
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Language accepted by NFA
• Similar to DFA, the transition relation δ of NFA can also be extended as
δ̄ : Q× Ω∗ → P(Q),  δ̄(q, ε) = {q},

δ̄(q, aw) =
⋃

p∈δ(q,a)
δ̄(p, w),

and δ̄(A,w) =
⋃

q∈A δ̄(q, w).

• If δ̄(q0, w) ∩ F ̸= ∅, we say that w is accepted by M.

• The language accepted by M:

L(M) = {w ∈ Ω∗ : δ̄(Q0, w) ∩ F ̸= ∅}.

21 / 29
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NFA vs. DFA
Theorem 1.6
The language accepted by NFA is regular. That is, for any NFA M, there is a DFA
M′ such that L(M) = L(M′).

Proof. For a NFA M = (Q,Ω, δ,Q0, F ), construct a DFA
M′ = (Q′,Ω, δ′, q0

′, F ′) as follows:

Q′ = P(Q),

δ′(A, a) =
⋃
q∈A

δ(q, a) with A ∈ Q′,

q0
′ = Q0,

F ′ = {A ∈ Q′ : A ∩ F ̸= ∅}.

Then δ′(q′0, w) = δ(Q0, w), and thus L(M′) = L(M). □
22 / 29
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Lemma 1.7
The following holds for regular languages in Ω.

(r1) ∅ is regular.

(r2) For any a ∈ Ω, {a} is regular.

(r3) If A, B ⊂ Ω∗ are regular, so is A ∪B.

(r4) If A, B ⊂ Ω∗ are regular, so is A ·B = {v · w : v ∈ A,w ∈ B}.

(r5) If A is regular, so is A∗ = {w1w2 · · ·wn : wi ∈ A}.

Proof. (r1) and (r2) are obvious. (r3) was shown by Theorem 1.3

23 / 29
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To show (r4): Suppose A, B ⊂ Ω∗ are accepted by M, N , respectively.
We combine these NFA’s sequentially and nondeterministically as in the figure (r4).
In other words, the input is nondeterministically split into two parts such that the
former can be accepted by M while the latter accepted by N .

To show (r5): Similarly, in the figure (r5) below, the input is nondeterministically
split into many parts each of which can be accepted by M.

..... 
..... 

' 

..... 

----

3 

4 

(r4)

(r5)
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Regular expression
• By the previous theorem, the languages in Ω, obtained from {a} (a ∈ Ω) by

way of operations ∪, ·, ∗, are regular.

• For simplicity, we write {a} as a, ∪ as + and omit ·.
E.g., {a} · ({a} ∪ {b})∗ is written as a(a+ b)∗.

• Such expressions for regular languages are called regular expressions.

• S.C. Kleene showed that the the class of regular languages coincides with the
class of languages described by regular expressions.

Theorem 1.8 (Kleene)
The class of regular languages is the smallest class that satisfies the conditions
(r1), (r2), (r3), (r4) and (r5).

25 / 29
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Proof.
• Goal: for any M = (Q,Ω, δ, q0, F ), L(M) can be described by a regular

expression.
• Let Q = {q0, q1, . . . , qn}. The language accepted by Mi,j = (Q,Ω, δ, qi, {qj})

is denoted as Li,j .
• If only the states of {q0, q1, . . . , qk} (except for the initial and final states) are

visited while Mi,j is processing, we denote the language as Lk
i,j . Moreover, for

the sake of convenience, we set (for k = −1) L−1
i,j = {a : δ(qi, a) = qj}.

• We next show that for any i, j, Lk
i,j can be described by a regular expression

by induction on k ≥ −1.
• L−1

i,j ⊆ Ω is finite set of symbols, so it can be described by a regular
expression.

• For k ≥ 0,
Lk
i,j = Lk−1

i,j + Lk−1
i,k (Lk−1

k,k )∗Lk−1
k,j

which can be described by a regular expression.
• Finally L =

⋃
pj∈F Ln

0,j . Thus L can also be described by a regular expression.
26 / 29
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Highlights
• Any nondeterminstic FA can be rebuilt into a determinictic FA.

Question: How about functionally-expanded automata. [Yes for Turing
machines. No for push-down automata.]

• L can be accepted by an automaton iff L has a regular expression.
Question: A regular expression can be viewed as a generative grammar. Can
you rewrite a(a+ b)∗ as transformational rules? Also, can you find
transformational rules which produce a non-regular language.

Reference� �
J.E. Hopcroft, R. Motwani and J.D. Ullman, Introduction to Automata Theory,
Languages and Computation, 2nd edition, Addison-Wesley 2001.� �
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Appendix – Chomsky hierarchy

Grammar Type Grammar Machine

Type 0 Unrestricted Turing machines

Type 1 Context-sensitive linear bounded automata

Type 2 Context-free pushdown automata

Type 3 Regular finite state automata

28 / 29
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Thank you for your attention!
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