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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation
• Part 2. Propositional Logic and Computational Complexity
• Part 3. First Order Logic and Decision Problems
• Part 3a. Formal Arithmetic� �

Part 3a. Schedule (subject to change)� �
• Nov.21, (6) Presburger arithmetic
• Nov.26, (7) Peano arithmetic
• Nov.28, (8) Gödel’s first incompleteness theorem
• Dec. 3, (9) Gödel’s second incompleteness theorem
• Dec. 5, (10) Second order logic
• Dec.10, (11) Second order arithmetic� �

2 / 20



Logic and
Computation

K. Tanaka

Recap

Introducing
second-order
arithmetic

Summary

Recap
• In first-order logic (FO), quantifiers ∀ and ∃ range over the elements of a

structure.
• Second-order logic (SO) allows quantifiers over relations and functions on the

elements. Thus, a general structure of SO is a pair of a first-order structure
and a second-order domain which satisfies given conditions (comprehension,
choice, etc.). The standard structure of SO equips with any interpretations of
relations and functions (in the naïve sense).

• Theorem: The validity of SO in the standard structures is not axiomatizable.
• Monadic second-order logic (MSO) uses quantification over the sets of

elements. Some MSO theories with standard structures are computable, e.g.,
S1S = MSO(N, S(x)), S2S = MSO(2<ω, x∩0, x∩1).

• Lindström theorem: FO is the strongest logic that satisfies both the
compactness theorem and the downward LS theorem.
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Second-order arithmetic
• Second-order arithmetic Z2 is a monadic second-order theory, or a

two-sorted first-order theory dealing with natural numbers and sets of natural
numbers under the condition of full comprehension.

• An original version of Z2 was formulated by Hilbert around 1920 as a
comprehensive deductive system encompassing real numbers, sequences of real
numbers, continuous functions and etc. Then, he proposed so-called Hilbert’s
program aiming at establishing the consistency of Z2 finitistically. Regretfully,
Gödel’s second incompleteness theorem blocked its progress.

• However, a considerable breadth of mathematics can be developed within
weak subsystems of Z2, whose consistency can be shown finitistically.

• From the mid-1970’s, H. Friedman, S. Simpson, and others started research to
investigate which subsystem is needed to prove a popular theorem of
mathematics in the framework of second order arithmetic. This research
program has evolved into a significant field known as reverse mathematics.
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Formulas of second-order arithmetic
• The language L2

OR of second-order arithmetic is the language of first-order
arithmetic LOR = {+, ·, 0, 1, <} plus a symbol ∈ for the membership relation.

• The formulas of second-order arithmetic are constructed from atomic
formulas (t1 = t2, t1 < t2, t ∈ X) by propositional connectives such as ¬, ∨,
etc., and quantifiers over arithmetic ∀x, ∃x, as well as over sets ∀X, ∃X.

• A formula can be rewritten in the prenex normal form by shifting quantifiers to
the head of formula. Moreover, all second-order quantifiers can be placed
outside of the scopes of any first-order quantifier. The following
transformation is possible even in a very weak theory,

∀x∃Y φ(x, Y ) ⇔ ∀X∃Y (∃!x(x ∈ X) → ∀x(x ∈ X → φ(x, Y ))).

If the axiom of choice is available, the places of quantifiers are exchanged as:
∀x∃Y φ(x, Y ) ⇔ ∃Y ′∀xφ(x, Y ′

x),

where Y ′ is a set-valued choice function, i.e., Y ′(x) = Y ′
x = {y : (x, y) ∈ Y ′}.
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Hierarchy of formulas
We inductively define the hierarchy of L2

OR-formulas, Σij and Πij (i = 0, 1, j ∈ N).

Definition 4.5
• The bounded formulas are constructed from atomic formulas
t1 = t2, t1 < t2, t ∈ X by propositional connectives and bounded quantifiers
∀x < t, ∃x < t.
The class of such formulas is written as Π0

0 or Σ0
0.

• For each j ≥ 0, if φ ∈ Σ0
j , then ∀x1 · · · ∀xkφ ∈ Π0

j+1;
if φ ∈ Π0

j , then ∃x1 · · · ∃xkφ ∈ Σ0
j+1.

All formulas in Σ0
j and Π0

j are called arithmetical.
The class of arithmetical formulas is also denoted as Π1

0 or Σ1
0.

• For each j ≥ 0, if φ ∈ Σ1
j , then ∀X1 · · · ∀Xkφ ∈ Π1

j+1;
if φ ∈ Π1

j then ∃X1 · · · ∃Xkφ ∈ Σ1
j+1.

All formulas in Σ1
j and Π1

j are called analytical.
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• Formulas belonging to Σij or Πij are referred to as Σij or Πij formulas, resp.
• Σ0

i (or Π0
i ) formulas without set variables are nothing but Σi (or Πi) formulas

of first-order arithmetic.
• A formula that is equivalent to a Σij (or Πij) formula on a given base system is

also called Σij (or Πij).
• If a Σij formula is equivalent to a Πij formula, each of them is called a ∆i

j

formula. More formally, if the formulas are equivalent over a base theory T ,
∆i
j is denoted as (∆i

j)
T .

Examples:
• “X is an infinite set” is represented by a Π0

2 formula ∀x∃y(x < y ∧ y ∈ X).
• “A linear order ⪯ is a well-ordering”, that is, “every non-empty set has the

least element”, can be represented by the following Π1
1 formula

∀X(∃z(z ∈ X) → ∃x(x ∈ X ∧ ∀y ∈ X(x ⪯ y))),
or rewritten as ∀X∀z∃x(z ̸∈ X ∨ (x ∈ X ∧ ∀y ∈ X(x ⪯ y))).

7 / 20



Logic and
Computation

K. Tanaka

Recap

Introducing
second-order
arithmetic

Summary

The system of recursive comprehension axioms (RCA0) is a weak base system of
second-order arithmetic, which serves as foundation for our subsequent observation.

Definition 4.6 (recursive comprehension axioms)
The system of recursive comprehension axioms RCA0 consists of the following:
(0) Axioms and inference rules of first-order logic with axioms of equality for

numbers. Equality between sets X = Y is defined as ∀n(n ∈ X ↔ n ∈ Y ).
(1) Basic arithmetic axioms: Same as Q< .
(2) ∆0

1 comprehension axiom (∆0
1-CA):

∀n(φ(n) ↔ ψ(n)) → ∃X∀n(n ∈ X ↔ φ(n)),

where φ(n) is a Σ0
1 formula, ψ(n) is a Π0

1 formula, and neither includes X as
a free variable. This axiom ensures the existence of set X = {n : φ(n)}.

(3) Σ0
1 induction: φ(0) ∧ ∀n(φ(n) → φ(n+ 1)) → ∀nφ(n) for any φ(n) ∈ Σ0

1.
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• Since the ∆0
1 comprehension axiom asserts the existence of recursive sets

(=computable sets) in the standard model N, it is also called the recursive
comprehension axiom.

• More precisely, since ψ(x) and φ(x) in the axiom may include set variables
(other than X) as parameters, this axiom indeed asserts that there exists a set
that can be computed with the parameters as oracle. But notice that it does
not assert the non-existence of a non-recursive set.

• RCA0 is a conservative extension of first-order arithmetic IΣ1.

Definition 4.7 (arithmetical comprehension axioms)
The system of arithmetical comprehension axioms ACA0 is obtained from RCA0 by
replacing the ∆0

1 comprehension with the Σ0
1 comprehension 1.

• ACA0 is a conservative extension of first-order arithmetic PA.
1 Σ1

0 comprehension can be achieved by repeatedly applying the Σ0
1 comprehension axiom to

the parameters.
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Lemma 4.8
RCA0 is a conservative extension of first-order arithmetic IΣ1, that is, any theorem
of IΣ1 is provable in RCA0, and any sentence in LOR provable in RCA0 is already
provable in IΣ1.

Proof: It is obvious that any theorem of IΣ1 can be proved in RCA0, since all
axioms of IΣ1 are included in RCA0.
To prove the converse, consider a sentence σ in LOR such that IΣ1 ̸⊢ σ. By the
completeness theorem, there exists a model M = (M,+, ·, 0, 1, <) of IΣ1 where
M |= ¬σ. For a Σ1 formula φ(x, y1, . . . , yk), a Π1 formula ψ(x, y1, . . . , yk) and
b1, . . . , bk ∈M , if M |= ∀x(φ(x, b1, . . . , bk) ↔ ψ(x, b1, . . . , bk)) holds, then we put

Aφ,ψ,b1,...,bk = {a ∈M : M |= φ(a, b1, . . . , bk)}.

Otherwise, we let Aφ,ψ,b1,...,bk = ∅. Finally, let S be the set of such ∆1 definable
subsets of M , namely

S = {Aφ,ψ,b1,...,bk : φ ∈ Σ1, ψ ∈ Π1, and b1, . . . , bk ∈M}.
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To show that (M, S) = (M ∪ S,+, ·, 0, 1, <,∈) forms a model of RCA0, it suffices
to prove that any Σ0

1 formula with set parameters from S can be rewritten as an
equivalent Σ0

1 formula without set parameters. If so, Σ0
1 induction of (M, S) can

be derived from Σ1 induction of M. Also, (M, S) satisfies ∆0
1 comprehension, since

any set ∆0
1 (i.e., Σ0

1 and Π0
1) definable with set parameters can be ∆0

1 definable
without set parameters, and so already belongs to S.

Now, consider a Σ0
1 formula θ(x, b1, . . . , bk, Aφ1,ψ1,c̄, . . . , Aφl,ψl,c̄) with bi ∈M and

Aφj ,ψj ,c̄ ∈ S. In the formula, replace t ∈ Aφj ,ψj ,c̄ with either φi(t, c̄) or ψi(t, c̄) so
that the whole formula keeps in Σ0

1. Thus, we obtain a Σ0
1 formula

θ′(x, b1, . . . , bk, c̄), which is equivalent to θ(x, b1, . . . , bk, Aφ1,ψ1,c̄, . . . , Aφl,ψl,c̄).
The same for Π0

1 formulas. Thus, (M, S) is a model of RCA0.

Finally, since σ does not contain set variables, its truth value is independent of S,
and hence (M, S) |= ¬σ. Therefore, RCA0 + ¬σ is consistent, which implies
RCA0 ̸⊢ σ. This completes the proof. □
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The various properties of IΣ1 also hold true in RCA0. In particular, the following
fact is frequently used.
Lemma 4.9
In RCA0, the following holds:
(1) Π0

1 induction.
(2) The class of Σ0

1 formulas is closed under bounded quantification.

Proof ideas. (1) Let φ(x) be a Π0
1 formula and assume

φ(0) ∧ ∀x(φ(x) → φ(x+ 1)). By way of contradiction, we assume ¬φ(c). Use
induction for a Σ0

1 formula ¬φ(c− x). Then, ¬φ(c− 0) and
¬φ(c− x) → ¬φ(c− (x+ 1)) imply ¬φ(0), a contradiction.
(2) Suppose ∀x < u∃yφ(x, y) with φ(x, y) bounded. Let ψ(w) be a Σ0

1 formula
∃v∀x < w∃y < vφ(x, y) ∨ u < w. By Σ0

1 induction, we have ∀wψ(w), in
particular, ∃v∀x < u∃y < vφ(x, y).

Let X, Y be sets of natural numbers. X ⊆ Y is an abbreviation for
∀n(n ∈ X → n ∈ Y ), and X = Y is defined as X ⊆ Y ∧ Y ⊆ X. The equality of
terms t1 = t2 is a Π0

0 formula, but the equality of sets X = Y is a Π0
1 formula.12 / 20
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• In RCA0, we encode the ordered pair of natural numbers (m,n) by
(m+n)(m+n+1)

2 +m.
• The Cartesian product X × Y is the set of all (codes of) pairs of an element

of X and an element of Y :

n ∈ X × Y ↔ ∃x ≤ n∃y ≤ n(x ∈ X ∧ y ∈ Y ∧ (x, y) = n)︸ ︷︷ ︸
Σ0

0

.

• A function f : X → Y is a unique set F ⊆ X × Y such that

∀x∀y0∀y1((x, y0) ∈ F∧(x, y1) ∈ F → y0 = y1) and ∀x ∈ X∃y ∈ Y (x, y) ∈ F.

If (x, y) ∈ F , we write f(x) = y.
• In RCA0, we can prove that the total functions are closed by primitive

recursion. This is essentially from the poof of Lemma 3.46.
• A function f whose domain is X = {i : i < n} is called a finite sequence

with length n. In RCA0, a finite sequence can be coded by a natural number,
and this code (Gödel number) is often identified with the sequence itself.
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Computable real numbers
Question 1� �

Any algebraic calculation of computable reals results in a computable real?
E.g., 1.41421356 · · · × 3.14159265 · · · =?� �
• This is not at all obvious. The difficulty comes from a fact that one can not

determine whether a real r is zero or not by looking at the finite digits of r.
Question 2� �
R |= σ ⇔ Computable-R |= σ for any sentence σ in the language of fields?� �
• The above is more formally stated as RCOF ⊢ σ ⇔ RCA0 ⊢ (R |= σ), where

RCOF denotes the theory of real closed ordered fields. Thus, we also have
Question 3� �
RCA0 ⊢ ∀σ(RCOF ⊢ σ ⇔ R |= σ)?� �14 / 20
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Answering Question 3
• Question 3 was proved by Sakamoto and T., using the following theorem.

Strong Fundamental Theorem of Algebra (s-FTA),� �
Any monic complex polynomial has a unique factorization into linear terms,

RCA0 ⊢ ∀p(x) ∈ C[x] ∃−→α ∈ C<N p(x) =
∏
i(x− αi).� �

• Later, s-FTA is reproved by combining two metamathematical methods.

1 Conservation: Simpson-T.-Yamazaki (2002) proved

WKL0 ⊢ σ ⇒ RCA0 ⊢ σ for σ ≡ ∀X∃!Y φ(X,Y ) with φ arithmetical.

2 Non-standard models: s-FTA can be proved by a non-standard model in
WKL0 based on a self-embedding theorem (T. 1997, new proofs by
Enayat 2013 and others).
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Appendix: Reverse Mathematics Program
Reverse Mathematics� �

Which axioms are needed to prove a theorem?� �
Big Five in order of increasing strength: RCA0, WKL0, ACA0, ATR0, Π1

1-CA0

• RCA0 stands for the Recursive Comprehension Axiom, and it only guarantees the
existence of recursive (computable) sets. The subscript 0 indicates a restriction on
induction, which will be discussed later.

• WKL0= RCA0 +

Weak König Lemma︷ ︸︸ ︷
any infinite binary tree has an infinite path

= RCA0 +Σ0
1-SP

Σ0
1-SP (Σ0

1 separation):
¬∃x(φ0(x) ∧ φ1(x)) → ∃X∀x((φ0(x) → x ∈ X) ∧ (φ1(x) → x /∈ X)),

where φ0(x) and φ1(x) are Σ0
1 formulas.
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• ACA0= RCA0 +

Arithmetical Comprehension︷ ︸︸ ︷
∃X∀n

(
n ∈ X ↔ φ(n)

)
for all arithmetical φ(n)

= RCA0 +Σ0
1-CA

• ATR0= RCA0 +

Arithmetical Transfinite Recursion︷ ︸︸ ︷
the existence of a transfinite hierarchy produced

by interating arithemetic comprehension along a given well order

• Π1
1-CA0 = RCA0 +

Π1
1 Comprehension︷ ︸︸ ︷

∃X∀n
(
n ∈ X ↔ φ(n)

)
for all Π1

1 φ(n)

A formula in the form ∀Xψ with ψ arithmetical is called a Π1
1 formula.
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The Reverse Mathematics Phenomenon� �
Many theorems of mathematics are either provable in RCA0, or logically equiv-
alent (over RCA0) to one of the other four systems mentioned above.� �

RCA0 ⇒ the intermediate value theorem
⇒ fundamental theorem of algebra

WKL0 ↔ the maximum principle ↔ the Cauchy-Peano theorem
↔ Brouwer’s fixed point theorem

ACA0 ↔ the Bolzano-Weierstrass theorem ↔ the Ascoli-Arzela lemma
ATR0 ↔ the Luzin separation theorem ↔ Open-determinacy

Π1
1-CA0 ↔ the Cantor-Bendixson theorem ↔ (Open ∧ Closed)-determinacy
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Planets and Reverse Mathematics
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Next semester

Logic and Computation II� �
• Part 4. Modal logic
• Part 5. Automata on infinite objects
• Part 6. Recursion-theoretic hierarchies
• Part 7. Admissible ordinals and advanced second order arithmetic� �

Note. The theorem numbers in the last two lectures of Part 3a were provisional.
Necessary statements will be restated with new numbers in the next semester.

Thank you for your attention!
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