K. Tanaka

Reca

Introducing second-orde arithmetic

Summar

Logic and Computation I Part 3a. Formal Arithmetic

Kazuyuki Tanaka

BIMSA

December 10, 2024

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

ъ

20

K. Tanaka

Reca

Introducing second-order arithmetic

Summary

Logic and Computation I

- Part 1. Introduction to Theory of Computation
- Part 2. Propositional Logic and Computational Complexity
- Part 3. First Order Logic and Decision Problems
- Part 3a. Formal Arithmetic

Part 3a. Schedule (subject to change)

- Nov.21, (6) Presburger arithmetic
- Nov.26, (7) Peano arithmetic
- Nov.28, (8) Gödel's first incompleteness theorem
- Dec. 3, (9) Gödel's second incompleteness theorem
- Dec. 5, (10) Second order logic
- Dec.10, (11) Second order arithmetic

K. Tanaka

Recap

- Introducing second-order arithmetic
- Summary

- In first-order logic (FO), quantifiers ∀ and ∃ range over the <u>elements</u> of a structure.
- Second-order logic (SO) allows quantifiers over <u>relations</u> and <u>functions</u> on the elements. Thus, a **general structure** of SO is a pair of a first-order structure and a second-order domain which satisfies given conditions (comprehension, choice, etc.). The **standard** structure of SO equips with any interpretations of relations and functions (in the naïve sense).
- Theorem: The validity of SO in the standard structures is not axiomatizable.
- Monadic second-order logic (MSO) uses quantification over the <u>sets</u> of elements. Some MSO theories with standard structures are computable, e.g., S1S = MSO(ℕ, S(x)), S2S = MSO(2^{<ω}, x[∩]0, x[∩]1).
- Lindström theorem: FO is the strongest logic that satisfies both the compactness theorem and the downward LS theorem.

Recap

K. Tanaka

Reca

Introducing second-order arithmetic

Summary

Second-order arithmetic

- Second-order arithmetic Z₂ is a monadic second-order theory, or a two-sorted first-order theory dealing with natural numbers and sets of natural numbers under the condition of full comprehension.
- An original version of Z₂ was formulated by Hilbert around 1920 as a comprehensive deductive system encompassing real numbers, sequences of real numbers, continuous functions and etc. Then, he proposed so-called Hilbert's program aiming at establishing the consistency of Z₂ finitistically. Regretfully, Gödel's second incompleteness theorem blocked its progress.
- However, a considerable breadth of mathematics can be developed within weak subsystems of Z_2 , whose consistency can be shown finitistically.
- From the mid-1970's, H. Friedman, S. Simpson, and others started research to investigate which subsystem is needed to prove a popular theorem of mathematics in the framework of second order arithmetic. This research program has evolved into a significant field known as **reverse mathematics**.

K. Tanaka

Reca

Introducing second-order arithmetic

Summary

Formulas of second-order arithmetic

- The language \mathcal{L}_{OR}^2 of second-order arithmetic is the language of first-order arithmetic $\mathcal{L}_{OR} = \{+, \cdot, 0, 1, <\}$ plus a symbol \in for the membership relation.
- The formulas of second-order arithmetic are constructed from atomic formulas (t₁ = t₂, t₁ < t₂, t ∈ X) by propositional connectives such as ¬, ∨, etc., and quantifiers over arithmetic ∀x, ∃x, as well as over sets ∀X, ∃X.
- A formula can be rewritten in the prenex normal form by shifting quantifiers to the head of formula. Moreover, all second-order quantifiers can be placed outside of the scopes of any first-order quantifier. The following transformation is possible even in a very weak theory,

 $\forall x \exists Y \varphi(x,Y) \Leftrightarrow \forall X \exists Y (\exists ! x (x \in X) \rightarrow \forall x (x \in X \rightarrow \varphi(x,Y))).$

If the axiom of choice is available, the places of quantifiers are exchanged as: $\forall x \exists Y \varphi(x,Y) \Leftrightarrow \exists Y' \forall x \varphi(x,Y'_x),$

where Y' is a set-valued choice function, i.e., $Y'(x) = Y'_{a} = \{y_{a}: (x, y_{a}) \in Y'\}_{0 \leq \infty}$ $5 \neq 20$

K. Tanaka

Reca

Introducing second-order arithmetic

Summary

Hierarchy of formulas

We inductively define the hierarchy of \mathcal{L}_{OR}^2 -formulas, Σ_j^i and Π_j^i $(i = 0, 1, j \in \mathbb{N})$.

Definition 4.5

• The **bounded** formulas are constructed from atomic formulas $t_1 = t_2, t_1 < t_2, t \in X$ by propositional connectives and bounded quantifiers $\forall x < t, \exists x < t.$

The class of such formulas is written as Π_0^0 or Σ_0^0 .

- For each j ≥ 0, if φ ∈ Σ_j⁰, then ∀x₁ · · · ∀x_kφ ∈ Π_{j+1}⁰; if φ ∈ Π_j⁰, then ∃x₁ · · · ∃x_kφ ∈ Σ_{j+1}⁰.

 All formulas in Σ_j⁰ and Π_j⁰ are called arithmetical.
 The class of arithmetical formulas is also denoted as Π₁⁰ or Σ₁¹.
- For each $j \ge 0$, if $\varphi \in \Sigma_j^1$, then $\forall X_1 \cdots \forall X_k \varphi \in \Pi_{j+1}^1$; if $\varphi \in \Pi_j^1$ then $\exists X_1 \cdots \exists X_k \varphi \in \Sigma_{j+1}^1$. All formulas in Σ_j^1 and Π_j^1 are called **analytical**.

K. Tanaka

Reca

Introducing second-order arithmetic

Summary

- Formulas belonging to Σ_j^i or Π_j^i are referred to as Σ_j^i or Π_j^i formulas, resp.
- Σ_i^0 (or Π_i^0) formulas without set variables are nothing but Σ_i (or Π_i) formulas of first-order arithmetic.
- A formula that is equivalent to a Σ_j^i (or Π_j^i) formula on a given base system is also called Σ_j^i (or Π_j^i).
- If a Σ_j^i formula is equivalent to a Π_j^i formula, each of them is called a Δ_j^i formula. More formally, if the formulas are equivalent over a base theory T, Δ_j^i is denoted as $(\Delta_j^i)^T$.

Examples:

- "X is an infinite set" is represented by a Π_2^0 formula $\forall x \exists y (x < y \land y \in X)$.
- "A linear order \leq is a well-ordering", that is, "every non-empty set has the least element", can be represented by the following Π_1^1 formula $\forall X (\exists z (z \in X) \rightarrow \exists x (x \in X \land \forall y \in X (x \leq y))),$ or rewritten as $\forall X \forall z \exists x (z \notin X \lor (x \in X \land \forall y \in X (x \leq y))).$

くしゃ 本理 きょうきょう ほう うみつ

K. Tanaka

Reca

Introducing second-order arithmetic

Summary

The system of recursive comprehension axioms (RCA_0) is a weak base system of second-order arithmetic, which serves as foundation for our subsequent observation.

Definition 4.6 (recursive comprehension axioms)

The system of recursive comprehension axioms RCA_0 consists of the following:

- (0) Axioms and inference rules of first-order logic with axioms of equality for numbers. Equality between sets X = Y is defined as $\forall n (n \in X \leftrightarrow n \in Y)$.
- (1) Basic arithmetic axioms: Same as $\mathsf{Q}_<$.
- (2) Δ_1^0 comprehension axiom (Δ_1^0 -CA):

$$\forall n(\varphi(n) \leftrightarrow \psi(n)) \to \exists X \forall n(n \in X \leftrightarrow \varphi(n)),$$

where $\varphi(n)$ is a Σ_1^0 formula, $\psi(n)$ is a Π_1^0 formula, and neither includes X as a free variable. This axiom ensures the existence of set $X = \{n : \varphi(n)\}$.

 $(3) \ \Sigma^0_1 \ \text{induction:} \ \varphi(0) \wedge \forall n(\varphi(n) \to \varphi(n+1)) \to \forall n\varphi(n) \ \text{for any} \ \varphi(n) \in \Sigma^0_1.$

K. Tanaka

- Recap
- Introducing second-order arithmetic

Summar

- Since the ∆₁⁰ comprehension axiom asserts the existence of recursive sets (=computable sets) in the standard model N, it is also called the recursive comprehension axiom.
- More precisely, since ψ(x) and φ(x) in the axiom may include set variables (other than X) as parameters, this axiom indeed asserts that there exists a set that can be computed with the parameters as oracle. But notice that it does not assert the non-existence of a non-recursive set.
- RCA_0 is a conservative extension of first-order arithmetic I Σ_1 .

Definition 4.7 (arithmetical comprehension axioms)

The system of arithmetical comprehension axioms ACA₀ is obtained from RCA₀ by replacing the Δ_1^0 comprehension with the Σ_1^0 comprehension ¹.

• ACA₀ is a conservative extension of first-order arithmetic PA.

 $^{^{1}}$ Σ_{0}^{1} comprehension can be achieved by repeatedly applying the Σ_{1}^{0} comprehension axiom to the parameters.

K. Tanaka

Recap

Introducing second-order arithmetic

Summary

Lemma 4.8

 RCA_0 is a conservative extension of first-order arithmetic I Σ_1 , that is, any theorem of I Σ_1 is provable in RCA_0 , and any sentence in \mathcal{L}_{OR} provable in RCA_0 is already provable in I Σ_1 .

Proof: It is obvious that any theorem of $I \Sigma_1$ can be proved in RCA₀, since all axioms of $I \Sigma_1$ are included in RCA₀.

To prove the converse, consider a sentence σ in \mathcal{L}_{OR} such that $|\Sigma_1 \not\vdash \sigma$. By the completeness theorem, there exists a model $\mathfrak{M} = (M, +, \cdot, 0, 1, <)$ of $|\Sigma_1$ where $\mathfrak{M} \models \neg \sigma$. For a Σ_1 formula $\varphi(x, y_1, \ldots, y_k)$, a Π_1 formula $\psi(x, y_1, \ldots, y_k)$ and $b_1, \ldots, b_k \in M$, if $\mathfrak{M} \models \forall x(\varphi(x, b_1, \ldots, b_k) \leftrightarrow \psi(x, b_1, \ldots, b_k))$ holds, then we put

$$A_{\varphi,\psi,b_1,\ldots,b_k} = \{a \in M : \mathfrak{M} \models \varphi(a,b_1,\ldots,b_k)\}.$$

Otherwise, we let $A_{\varphi,\psi,b_1,...,b_k} = \emptyset$. Finally, let S be the set of such Δ_1 definable subsets of M, namely

$$S = \{A_{\varphi,\psi,b_1,\dots,b_k} : \varphi \in \Sigma_1, \psi \in \Pi_1, \text{ and } b_1,\dots,b_k \in M\}.$$

K. Tanaka

Reca

Introducing second-order arithmetic

Summary

To show that $(\mathfrak{M}, S) = (M \cup S, +, \cdot, 0, 1, <, \in)$ forms a model of RCA₀, it suffices to prove that any Σ_1^0 formula with set parameters from S can be rewritten as an equivalent Σ_1^0 formula without set parameters. If so, Σ_1^0 induction of (\mathfrak{M}, S) can be derived from Σ_1 induction of \mathfrak{M} . Also, (\mathfrak{M}, S) satisfies Δ_1^0 comprehension, since any set Δ_1^0 (i.e., Σ_1^0 and Π_1^0) definable with set parameters can be Δ_1^0 definable without set parameters, and so already belongs to S.

Now, consider a Σ_1^0 formula $\theta(x, b_1, \ldots, b_k, A_{\varphi_1, \psi_1, \bar{c}}, \ldots, A_{\varphi_l, \psi_l, \bar{c}})$ with $b_i \in M$ and $A_{\varphi_j, \psi_j, \bar{c}} \in S$. In the formula, replace $t \in A_{\varphi_j, \psi_j, \bar{c}}$ with either $\varphi_i(t, \bar{c})$ or $\psi_i(t, \bar{c})$ so that the whole formula keeps in Σ_1^0 . Thus, we obtain a Σ_1^0 formula $\theta'(x, b_1, \ldots, b_k, \bar{c})$, which is equivalent to $\theta(x, b_1, \ldots, b_k, A_{\varphi_1, \psi_1, \bar{c}}, \ldots, A_{\varphi_l, \psi_l, \bar{c}})$. The same for Π_1^0 formulas. Thus, (\mathfrak{M}, S) is a model of RCA₀.

Finally, since σ does not contain set variables, its truth value is independent of S, and hence $(\mathfrak{M}, S) \models \neg \sigma$. Therefore, $\mathsf{RCA}_0 + \neg \sigma$ is consistent, which implies $\mathsf{RCA}_0 \not\vdash \sigma$. This completes the proof.

11 / 20

K. Tanaka

Reca

Introducing second-order arithmetic

Summary

The various properties of I Σ_1 also hold true in $\mathsf{RCA}_0.$ In particular, the following fact is frequently used.

Lemma 4.9

In RCA₀, the following holds:

(1) Π_1^0 induction.

(2) The class of Σ_1^0 formulas is closed under bounded quantification.

Proof ideas. (1) Let $\varphi(x)$ be a Π^0_1 formula and assume $\varphi(0) \wedge \forall x(\varphi(x) \to \varphi(x+1))$. By way of contradiction, we assume $\neg \varphi(c)$. Use induction for a Σ^0_1 formula $\neg \varphi(c-x)$. Then, $\neg \varphi(c-0)$ and $\neg \varphi(c-x) \to \neg \varphi(c-(x+1))$ imply $\neg \varphi(0)$, a contradiction.

(2) Suppose $\forall x < u \exists y \varphi(x, y)$ with $\varphi(x, y)$ bounded. Let $\psi(w)$ be a Σ_1^0 formula $\exists v \forall x < w \exists y < v \varphi(x, y) \lor u < w$. By Σ_1^0 induction, we have $\forall w \psi(w)$, in particular, $\exists v \forall x < u \exists y < v \varphi(x, y)$.

Let X, Y be sets of natural numbers. $X \subseteq Y$ is an abbreviation for $\forall n (n \in X \rightarrow n \in Y)$, and X = Y is defined as $X \subseteq Y \land Y \subseteq X$. The equality of terms $t_1 = t_2$ is a Π_0^0 formula, but the equality of sets X = Y is a Π_1^0 formula? (20)

K. Tanaka

Reca

Introducing second-order arithmetic

Summary

- In RCA₀, we encode the ordered pair of natural numbers (m, n) by $\frac{(m+n)(m+n+1)}{2} + m$.
- The **Cartesian product** $X \times Y$ is the set of all (codes of) pairs of an element of X and an element of Y:

$$n \in X \times Y \leftrightarrow \underbrace{\exists x \le n \exists y \le n (x \in X \land y \in Y \land (x, y) = n)}_{\Sigma_0^0}.$$

• A function $f: X \to Y$ is a unique set $F \subseteq X \times Y$ such that

 $\forall x \forall y_0 \forall y_1((x,y_0) \in F \land (x,y_1) \in F \rightarrow y_0 = y_1) \text{ and } \forall x \in X \exists y \in Y(x,y) \in F.$

If $(x, y) \in F$, we write f(x) = y.

- In RCA₀, we can prove that the total functions are closed by primitive recursion. This is essentially from the poof of Lemma 3.46.
- A function f whose domain is $X = \{i : i < n\}$ is called a **finite sequence** with **length** n. In RCA₀, a finite sequence can be coded by a natural number, and this code (Gödel number) is often identified with the sequence itself.

K. Tanaka

Reca

Introducing second-order arithmetic

Summary

Computable real numbers

・ コ ト ・ 四 ト ・ 三 ト ・

Any algebraic calculation of computable reals results in a computable real? E.g., $1.41421356 \cdots \times 3.14159265 \cdots = ?$

• This is not at all obvious. The difficulty comes from a fact that one can not determine whether a real r is zero or not by looking at the finite digits of r.

```
✓ Question 2
```

Question 1

 $\mathbb{R} \models \sigma \Leftrightarrow \mathsf{Computable} \cdot \mathbb{R} \models \sigma \text{ for any sentence } \sigma \text{ in the language of fields?}$

• The above is more formally stated as $\mathsf{RCOF} \vdash \sigma \Leftrightarrow \mathsf{RCA}_0 \vdash (\mathbb{R} \models \sigma)$, where RCOF denotes the theory of real closed ordered fields. Thus, we also have

Question 3

$$\mathsf{RCA}_0 \vdash \forall \sigma (\mathsf{RCOF} \vdash \sigma \Leftrightarrow \mathbb{R} \models \sigma)?$$

K. Tanaka

Reca

Introducing second-order arithmetic

Summar

Answering Question 3

• Question 3 was proved by Sakamoto and T., using the following theorem.

- Strong Fundamental Theorem of Algebra (s-FTA),

Any monic complex polynomial has a unique factorization into linear terms, $\operatorname{RCA}_0 \vdash \forall p(x) \in \mathbb{C}[x] \exists \overrightarrow{\alpha} \in \mathbb{C}^{<\mathbb{N}} \ p(x) = \prod_i (x - \alpha_i).$

• Later, s-FTA is reproved by combining two metamathematical methods.

1 Conservation: Simpson-T.-Yamazaki (2002) proved

 $\mathsf{WKL}_0 \vdash \sigma \Rightarrow \mathsf{RCA}_0 \vdash \sigma \ \text{ for } \sigma \equiv \forall X \exists ! Y \varphi(X,Y) \text{ with } \varphi \text{ arithmetical.}$

Non-standard models: s-FTA can be proved by a non-standard model in WKL₀ based on a self-embedding theorem (T. 1997, new proofs by Enayat 2013 and others).

15 / 20

K. Tanaka

Reca

Introducing second-order arithmetic

Summary

Appendix: Reverse Mathematics Program

Reverse Mathematics

Which axioms are needed to prove a theorem?

Big Five in order of increasing strength: RCA₀, WKL₀, ACA₀, ATR₀, Π_1^1 -CA₀

• RCA_0 stands for the Recursive Comprehension Axiom, and it only guarantees the existence of recursive (computable) sets. The subscript 0 indicates a restriction on induction, which will be discussed later.

Weak König Lemma

• WKL₀ = RCA₀ + any infinite binary tree has an infinite path = RCA₀ + Σ_1^0 -SP

$$\begin{split} \Sigma_1^0\text{-}\mathsf{SP} & (\Sigma_1^0 \text{ separation}): \\ \neg \exists x(\varphi_0(x) \land \varphi_1(x)) \to \exists X \forall x((\varphi_0(x) \to x \in X) \land (\varphi_1(x) \to x \notin X)), \end{split}$$

where $\varphi_0(x)$ and $\varphi_1(x)$ are Σ_1^0 formulas.

人口人 人间人 人居人 人居人

K. Tanaka

Reca

Introducing second-orde arithmetic

Summary

• ACA₀ = RCA₀ + $\exists X \forall n (n \in X \leftrightarrow \varphi(n))$ for all arithmetical $\varphi(n)$ = RCA₀ + Σ_1^0 -CA

Arithmetical Transfinite Recursion

• $ATR_0 = RCA_0 + the existence of a transfinite hierarchy produced$ by interating arithemetic comprehension along a given well order

•
$$\Pi_1^1$$
-CA₀ = RCA₀ + $\exists X \forall n \left(n \in X \leftrightarrow \varphi(n) \right)$ for all $\Pi_1^1 \varphi(n)$
A formula in the form $\forall X \psi$ with ψ arithmetical is called a Π_1^1 formula.

化白豆 化硼医化 医医小子医医白

K. Tanaka

Recap

Introducing second-order arithmetic

Summary

- The Reverse Mathematics Phenomenon

Many theorems of mathematics are either provable in RCA_0 , or logically equivalent (over RCA_0) to one of the other four systems mentioned above.

 $\mathsf{RCA}_0 \Rightarrow \mathsf{the}$ intermediate value theorem

 \Rightarrow fundamental theorem of algebra

 $\mathsf{WKL}_0 \leftrightarrow \mathsf{the}\ \mathsf{maximum}\ \mathsf{principle}\ \ \leftrightarrow\ \ \mathsf{the}\ \mathsf{Cauchy-Peano}\ \mathsf{theorem}$

 \leftrightarrow Brouwer's fixed point theorem

 $ACA_0 \leftrightarrow$ the Bolzano-Weierstrass theorem \leftrightarrow the Ascoli-Arzela lemma $ATR_0 \leftrightarrow$ the Luzin separation theorem \leftrightarrow Open-determinacy Π_1^1 -CA₀ \leftrightarrow the Cantor-Bendixson theorem \leftrightarrow (Open \land Closed)-determinacy

イロト イボト イヨト イヨト 三日

K. Tanaka

Reca

Introducing second-orde arithmetic

Summary

Planets and Reverse Mathematics

19 / 20

Next semester

イロト イポト イヨト イヨト

Logic and Computation

K. Tanaka

Reca

Introducing second-order arithmetic

Summary

- Logic and Computation II
 - Part 4. Modal logic
 - Part 5. Automata on infinite objects
 - Part 6. Recursion-theoretic hierarchies
 - Part 7. Admissible ordinals and advanced second order arithmetic

Note. The theorem numbers in the last two lectures of Part 3a were provisional. Necessary statements will be restated with new numbers in the next semester.

Thank you for your attention!

