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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation
• Part 2. Propositional Logic and Computational Complexity
• Part 3. First Order Logic and Decision Problems
• Part 3a. Formal Arithmetic� �

Part 3a. Schedule (subject to change)� �
• Nov.21, (6) Presburger arithmetic
• Nov.26, (7) Peano arithmetic
• Nov.28, (8) Gödel’s first incompleteness theorem
• Dec. 3, (9) Gödel’s second incompleteness theorem
• Dec. 5, (10) Second order logic
• Dec.10, (11) Second order arithmetic� �
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Second order logic: Introduction

• In first-order logic (FO), quantifiers ∀ and ∃ range over the elements of a
structure.

• To describe “first-order logic”, the Tarski School often uses the term
“elementary” (e.g., elementary equivalence), in which elementary also means
“by means of the elements”.

• Second-order logic (SO) enables us to use quantifiers over relations and
functions on the elements.

• Especially, monadic second-order logic (MSO) uses quantification over the
sets of elements. There are many MSO theories which are expressive and yet
decidable.
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• In the following, we only consider the quantifiers over relations.
• Consider a first-order language L and an n-ary relation symbol R (/∈ L). For a

formula φ(R) ∈ L ∪ {R}, by considering R as variable R, we can introduce
formulas with second order quantifiers such as ∀Rφ(R) and ∃Rφ(R).

• Then, for a structure A in L, the satisfiability of ∀Rφ(R) and ∃Rφ(R) is
determined as follows.

Definition 4.1
Consider a first-order language L and an n-ary relation symbol R (/∈ L). For a
formula φ(R) ∈ L ∪ {R}, the satisfiability of ∀Rφ(R) and ∃Rφ(R) in a structure
A of L is defined as follows.

A |= ∀Rφ(R) ⇔ for any Ṙ ⊆ An, (A, Ṙ) |= φ(R) holds.
A |= ∃Rφ(R) ⇔ there exists Ṙ ⊆ An such that (A, Ṙ) |= φ(R).
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• In the following, we do not strictly distinguish among the relation variable R,
relation Ṙ, and relation constant (symbol) R.

• The concepts of free and bound variables can be introduced for second-order
formulas as those in first-order formulas.

• The problem is how to define the domain of second-order variables.
• In the above interpretation, we use “any Ṙ ⊆ An” to mean that all the subsets

of An. A structure with such an interpretation is called a standard structure
of second-order logic.

• However, this interpretation is not rigorous, since it leaves to the
meta-standpoint what are all the subsets of An are.

• In fact, it is impossible to formalize this interpretation as we will explain soon.
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Theorem 4.2 (Gödel)
The validity of (M)SO in terms of standard structures is not axiomatizable (CE),
hence not decidable.

Proof.
• Assume MSO were axiomatized. We can define second-order Peano

Arithmetic PA2 by adding arithmetic axioms to MSO. In a model (M,S) of
PA2, any subset of the first-order domain M belongs to the second-order
domain S = P(M).

• Then, let N be the minimum subset of M containing 0 and closed under +1.
This is isomorphic to N, and exists in the second-order domain S.

• Since induction for φ(x) ≡ x ∈ N holds in (M,S), N must agree with the
whole M . Thus, M is isomorphic to N.

• Therefore, the unique model for PA2 is N ∪ P(N), which implies that there is
no sentence independent from PA2. This condradicts with Gödel’s first
incompleteness theorem. □
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• L. Henkin introduced a general structure of second-order logic, whose
second-order part varies similarly to the first-order logic domain. In other
words, such a logic can be regarded as two-sorted first-order logic.

• Such a logic captures the same theorems as first-order logic, e.g., the
completeness theorem.

• For simplicity, we only consider monadic second-order logic (MSO), which
restricts second-order variables to unary relations, namely subsets of the
first-order domain.

• The monadic second-order variables (also called set variables) are denoted by
X,Y, Z, . . . , and the atomic formula X(t) is also written as t ∈ X.

• We define the general structure of monadic second-order logic as follows.
Definition 4.3
A general structure of monadic second-order logic B = (A,S) consists of
first-order logic structure A and set S ⊂ P(A). The set quantifiers range over B as
follows.

B |= ∀Xφ(X) ⇔ for any S ∈ S,B |= φ(S) holds,
B |= ∃Xφ(X) ⇔ there exists S ∈ S such that B |= φ(S). 7 / 21
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• A general structure can also be viewed as a first-order structure with two
domains (A and S) (or split into two domains).

• The formalization is almost the same as first-order logic, just by preparing two
kinds of variables. Therefore, fundamental theorems such as the completeness
theorem can be proved in a similar way.

• Henkin assumed that the general structure should satisfy certain amounts of
comprehension axiom and axiom of choice. Comprehension axiom asserts
that for a formula φ(x) with no free occurrence of X, ∃X∀x(x ∈ X ↔ φ(x)),
i.e., the set {x : φ(x)} exists in the second-order domain.
Note that if φ(x) contains a second-order quantifier ∀Y (or ∃Y ), the range of
the variable Y already includes the set {x : φ(x)} to be defined.
Although such comprehension axiom does not lead to contradiction, we often
restrict the use of second-order quantifiers in the principal formula φ(x) of the
comprehension axiom.

• Similarly, there are various versions of the axiom of choice, and it is desirable
to assume only what is necessary for the discussion (- Remove unnecessary
hypotheses by Occam’s razor).

8 / 21



Logic and
Computation

K. Tanaka

Second order
logic
Standard structures
General structures

Examples

Theorem 4.4 (Completeness theorem of MSO)
An MSO formula is provable from appropriate comprehension and other axioms in
two-sorted first-order system if and only if it is true in any general structure that
satisfies those axioms.

This theorem can be proved in the same way as in first-order logic.
It can also be generalized to higher-order logics.
In fact, Henkin’s proof for the completeness theorem of first-order logic was made
with such a generalization scheme.

9 / 21



Logic and
Computation

K. Tanaka

Second order
logic
Standard structures
General structures

Examples

MSO examples and Lecture 03-04
• We consider a first-order language of finitely many relation symbols and

constants.
• The (quantifier) rank of a formula measures the entanglement of quantifiers

appearing in it. For example, the rank of ∀y(∀x∃y(x = y) ∧ ∀z(z > 0)) is 3.
• By A ≡n B, we mean structures A,B satisfy the same formulas with rank ≤ n.
• Given an A and n, there is the Scott-Hintikka sentence φn

A of rank n such
that B |= φn

A ⇔ B ≡n A.
• By A ≃n B, we mean that player II has a winning strategy in EFn(A,B),

where n is the round of the game.
• EF theorem For all n ≥ 0, A ≡n B iff A ≃n B.
• Corollary A ≡ B iff A ≃n B for all n ≥ 0.
Example� �
• First-order logic FO cannot distinguish (Q, <) and (R, <).� �10 / 21



Logic and
Computation

K. Tanaka

Second order
logic
Standard structures
General structures

Examples

Example 1: MSO is more expressive than FO� �
In MSO, let π be the following formula (rank 4) which expresses “a bounded
set X( ̸= ∅) has a least upper bound”.

∀X(∃x ∈ X ∧ ∃y∀x ∈ X(x ≤ y) →

∃z(∀x ∈ X(x ≤ z) ∧ ∀y(∀x ∈ X(x ≤ y) → z ≤ y))).

π holds not only for the standard structure of (R, <), but also for any general
structure of (R, <).
• As for (Q, <), π holds meaninglessly in special general structures with second-
order domains consisting of unbounded sets and finite sets.
π does not hold in structures with second-order domain containing a set with
an irrational supremum.
• (Q, <) and (R, <) are distinguishable by MSO (in the standard structures).� �
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Example 2: MSO is more expressive than FO� �
• FO can not express the parity (even or odd) of the length of a finite linear
order. In fact, a sentence with rank m can not distinguish linear orders with
length ≥ 2m (Lecture 03-05).
• MSO can express the parity (even or odd) of the length of a finite linear order.
First we put

succ(x, y) ≡ (x < y) ∧ ∀z(z ≤ x ∨ y ≤ z)
succ2(x, y) ≡ ∃z(succ(x, z) ∧ succ(z, y)).

In addition, first(x) ≡ ¬∃y succ(y, x), and last(x) ≡ ¬∃y succ(x, y).
Finally, we define σ as the following formula

∃X(∃x ∈ X(first(x))∧∃z ̸∈ X(last(z))∧∀u, v(u ∈ X∧succ2(u, v) → v ∈ X))

which means “there is a set X that does not reach the last by skipping every
other points from the start”. So it expresses that the length is even (in the
standard structure).� �
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Example 3: SO is more expressive than MSO� �
• The MSO theory of (N, x + 1, 0) is decidable due to Büchi. (We will study
this result in the next semester.)
• The SO theory of (N, x+ 1, 0) is not, since addition m+ n = k is defined by

∀R([R(0,m) ∧ ∀x, y(R(x, y) → R(x+ 1, y + 1))] → R(n, k),

and multiplication can be defined in a similar way, which means that first-order
arithmetic is embedded into the theory.� �
Exercise� �

Show that multiplication is definable in a second-order theory of (N, x + 1, 0),
and prove that this theory is undecidable.� �
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The relations between arithmetic theories are summarized as follows.

FO(N, S(x)) ⊂ FO(N, S(x),+) ⊂ FO(N, S(x),+, ·)
⋒∗ ⋒

MSO(N, S(x)) ⊂ MSO(N, S(x),+)
⋒

SO(N, S(x))

Here, S(x) denotes x+ 1, and FO(N, S(x)) is the FO theory of (N, S(x)).
Similarly for MSO(N, S(x)), etc. A ⊂ B is the usual set inclusion, A ⋐ B a
relation via a formula translation, A ⋐∗ B a formula translation with coding.

S1S = MSO(N, S(x)) is decidable.
Büchi (1960)’s proof relied on ω-automata with a Büchi condition, which accept an
infinite word if a final state appears infinitely many times during reading the input.
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Definition 3.32 for Lindström’s theorem
• The essence of logic is the relation between sentences and models, “A |=S φ”.
• By a logic, we mean a set S of sentences together with a function ModS such

that for each sentence φ ∈ S, ModS(φ) intends to represent {A : A |=S φ}.
• Logic S is said to be weaker than logic S′ (S ≤ S′) iff for any φ ∈ S, there

exists some φ′ ∈ S′ such that ModS(φ) = ModS′(φ′). Obviously,
FO ≤ MSO ≤ SO.

• We say the (countable) compactness theorem holds for logic S iff for any
countable U ⊂ S, if

∩
{ModS(φ) : φ ∈ U} = ∅, then there exists a finite

V ⊂ U such that
∩
{ModS(φ) : φ ∈ V } = ∅.

• We say the (countable) downward Löwenheim-Skolem theorem holds for
logic S iff for any countable U ⊂ S, if

∩
{ModS(φ) : φ ∈ U} contains an

infinite structure A, then it has a countably infinite structure B.
• The compactness theorem and the downward LS theorem hold for FO, but

they fail for MSO and SO.
• Surprisingly, Lindström has shown that FO is the strongest logic that satisfies

both the compactness theorem and the downward LS theorem. 15 / 21
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We consider a language of finitely many relational symbols and constants, without
functional symbols.
Definition 3.21
Let A,B be structures in L. A partial function f : A → B is a partial
isomorphism if A↾dom(f) and B ↾range(f) are isomorphic via f .

Definition 3.22 (Ehrenfeucht-Fraïssé games)
Let A0, A1 be structures in L and n be a natural number. In an n-round EF
game, EFn(A0,A1), player I (Spoiler) and player II (Duplicator) alternately
choose from Ai (i = 0, 1) following the rules described below, and the winner is
determined according to the winning condition.
• Rules: if I chooses xi ∈ Aj (j = 0, 1), II
chooses yi ∈ A1−j .
• Winning conditions: If the correspondence
xi ↔ yi chosen by the players up to n rounds
determines a partial isomorphism of A0 and
A1, then II wins.

𝐴𝐴0 𝐴𝐴1

𝑥𝑥𝑘𝑘 𝑦𝑦𝑘𝑘

𝑥𝑥𝑘𝑘+1𝑦𝑦𝑘𝑘+1

⋮ ⋮

⋮ ⋮ 16 / 21
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Definition 3.23
A ≃n B if player II has a winning strategy in EFn(A,B) .

The (quantifier) rank of a formula measures the entanglement of quantifiers
appearing in it.
Definition 3.24
A ≡n B if A,B satisfy the same formulas with rank ≤ n.

Theorem 3.27 (EF Theorem)
For all n ≥ 0, (A, a⃗) ≃n (B, b⃗) ⇔ (A, a⃗) ≡n (B, b⃗).

• Corollary 3.30 The following are equivalent.
(1) For any n, there exist A ∈ K and B ̸∈ K such that A ≡n B.
(2) K is not an elementary class (K cannot be defined by a first-order formula).

We extend the play of the EF game to infinity (ω-round), denoted as EFω(A,B).
We write A ≃ω B if player II has a winning strategy in EFω(A,B).
• Corollary 3.31 Suppose A,B are countable. Then, A ≃ω B ⇔ A ≃ B. 17 / 21
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Theorem 3.33 (Lindström’s theorem)
For logic S such that FO ≤ S, the following are equivalent.
(1) Compactness theorem and downward LS theorem holds for S.
(2) S ≤ FO.

Proof. (2) ⇒ (1) is obvious since (2) implies S = FO.
To show (1) ⇒ (2), assume S ≤ FO does not hold. There exists some φ ∈ S such
that ModS(φ) is not defined by a first-order sentence. That is, for any n ∈ ω, there
exist A ∈ ModS(φ) and B ∈ ModS(¬φ) such that A ≡n B, or equivalently
A ≃n B by the EF theorem. We express this condition as a logical expression θn of
S for each n (so that θn+1 → θn). Namely, (A,B, σ) |=S θn means that “A |=S φ
and B |=S ¬φ and σ is player II’s winning strategy in EFn(A,B)”.
Since this holds for all n ∈ ω, by the compactness theorem,
(A,B, σ) |=S {θn : n ∈ ω} holds, and thus σ is a winning strategy in EFω(A,B).
Moreover, (A,B, σ) can be selected countable by downward LS theorem.
Therefore, A,B are isomorphic, which contradicts with A ∈ ModS(φ) and
B ∈ ModS(¬φ). Thus S ≤ FO. □
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Examples of logic� �
Infinitary logic Lω1,ω: allowing countable disjunctions and conjunctions, but
including only finitely many free variables.

FO(Q1): adding the quantifier Q1 to the first-order logic. Q1x φ(x) means
“there are uncountably many x that satisfy φ(x)”.

WMSO: Second-order quantifiers range over finite sets only.� �
Table: The compactness and downward LS property for various logic

Logic Compactness Downward LS property
FO ⃝ ⃝

WMSO × ⃝
MSO, SO × ×
FO(Q1) ⃝ ×
Lω1,ω × ⃝
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Summary
• Second-order logic allows quantifiers over relations and functions on a domain.
• A general structure (A,S), where S ⊂ P(A). A standard structure (A,P(A)).
• Theorem (Gödel): The validity of (M)SO in terms of standard structures is

not axiomatizable (CE), hence not decidable.
• MSO has set variables ranging over subsets of the first-order domain.
• Completeness theorem of MSO: An MSO formula is provable from appropriate

comprehension and other axioms in two-sorted first-order system if and only if
it is true in any general structure that satisfies those axioms.

• Lindström theorem: FO is the strongest logic that satisfies both the
compactness theorem and the downward LS theorem.

Further reading� �
Second-order and Higher-order Logic. From Stanford Encyclopedia of Philoso-
phy, https://plato.stanford.edu/entries/logic-higher-order/� �
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Thank you for your attention!
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