K. Tanaka

Recap

Two applications

Introducing the second theorem

Commentari

Logic and Computation I Part 3a. Formal Arithmetic

Kazuyuki Tanaka

BIMSA

December 3, 2024

・ロト ・四ト ・ヨト ・ヨト

ъ

K. Tanaka

- Recap
- Alternative proof Two applications o
- ntroducing the second theorem
- Appendix

Logic and Computation I

- Part 1. Introduction to Theory of Computation
- Part 2. Propositional Logic and Computational Complexity
- Part 3. First Order Logic and Decision Problems
- Part 3a. Formal Arithmetic

Part 3a. Schedule (subject to change)

- Nov.21, (6) Presburger arithmetic
- Nov.26, (7) Peano arithmetic
- Nov.28, (8) Gödel's first incompleteness theorem
- Dec. 3, (9) Gödel's second incompleteness theorem
- Dec. 5, (10) Second order logic
- Dec.10, (11) Second order arithmetic

K. Tanaka

Recap

Alternative proof Two applications of the first theorem Introducing the second theorem Commentaries Appendix

Lemma 3.53 (Formal representation for primitive recursive functions)

For any primitive recursive function f, there is a Δ_1 formula $\chi(x,y)$ such that

$$f(m) = n \Rightarrow \mathsf{I}\Sigma_1 \vdash \chi(\overline{m}, \overline{n}) \quad \text{and} \quad \mathsf{I}\Sigma_1 \vdash \forall x \exists ! y \chi(x, y).$$

Then, $I\Sigma_1 + \forall x \chi(x, f(x))$ is conservative over $I\Sigma_1$.

Lemma 3.54 (Diagonalization lemma)

For any formula $\psi(x)$ with a unique free variable x, there exists a sentence σ such that $I\Sigma_1 \vdash \sigma \leftrightarrow \psi(\ulcorner \sigma \urcorner)$.

Definition 3.55 (Provability predicate Bew)

For a CE theory T, we define a prim. rec. relation $\operatorname{Proof}_T(\ulcorner P \urcorner, \ulcorner \sigma \urcorner)$ to express "P is a proof of formula σ in T". By Proof_T , we also denote a Δ_1 formula expressing Proof_T in $I \Sigma_1$. A Σ_1 formula Bew_T is defined as $\exists y \operatorname{Proof}_T(y, x)$.

 $\operatorname{Bew}_T(x)$ expresses that "x is the Gödel number of a theorem of T".

K. Tanaka

Alternative proof

Two applications of the first theorem Introducing the second theorem Commentaries

Appendix

Gödel's first incompleteness theorem

Any 1-consistent CE theory T including I Σ_1 is incomplete.

Proof.

- By the diagonalization lemma, $\neg \text{Bew}_T(x)$ has a fixed point, that is, there exists σ such that $T \vdash \sigma \leftrightarrow \neg \text{Bew}_T(\ulcorner \sigma \urcorner)$.
- We will show this σ is neither provable nor disprovable in T as follows.
- Let $T \vdash \sigma$. Then $\operatorname{Bew}_T(\overline{\lceil \sigma \rceil})$ is true. Hence $T \vdash \operatorname{Bew}_T(\overline{\lceil \sigma \rceil})$ from Σ_1 completeness. Since σ is a fixed point of $\neg \operatorname{Bew}_T(x)$, we have $T \vdash \neg \sigma$, which means that T is inconsistent.
- On the other hand, if $T \vdash \neg \sigma$, $T \vdash \text{Bew}_T(\overline{\lceil \sigma \rceil})$ because σ is a fixed point. Here, using the 1-consistency of T, $\text{Bew}_T(\overline{\lceil \sigma \rceil})$ is true, and so $T \vdash \sigma$, which is a contradiction.

The sentence σ thus constructed "asserts its own unprovability" because " $\sigma \Leftrightarrow T \not\vdash \sigma$ " holds. This σ is called the **Gödel sentence** of $T, \sigma \mapsto c \in F$.

K. Tanaka

Recap

Alternative proof Two applications o the first theorem Introducing the second theorem Commentaries

Appendix

Using the exercise problem in the previous lecture, the assumption of Gödel's theorem can be weakened from 1-consistency to consistency.

- Gödel-Rosser's incompleteness theorem

Any **consistent** CE theory T including I Σ_1 is incomplete.

Proof.

- Let $A = \{ \ulcorner \sigma \urcorner : T \vdash \sigma \}$, $B = \{ \ulcorner \sigma \urcorner : T \vdash \neg \sigma \}$. If T is consitent CE theory, then A, B are disjoint CE sets.
- Similarly to the proof of the strong representation theorem (3.49) for computable sets, costruct a formula $\psi(x)$ such that $A \subset \{n : T \vdash \psi(n)\}$ and $B \subset \{n : T \vdash \neg \psi(n)\}.$
- By the diagonalization lemma (3.54), we have a sentence σ such that $T \vdash (\sigma \leftrightarrow \neg \psi(\ulcorner \sigma \urcorner))$, and can prove that $\ulcorner \sigma \urcorner \notin A \cup B$.

イロト 不得 トイヨト イヨト 二日

K. Tanaka

Recap

Two applications of the first theorem

Introducing the second theorem Commentaries

Two applications of the first incomp. theorem

The next theorem is also a very important corollary of the argument of the first incompleteness theorem. Note that T in the diagonalization lemma does not need be a CE theory. So, letting T be $\mathsf{Th}(\mathfrak{N})$ (the set of sentences true in \mathfrak{N}), we have

Theorem 3.56 (Tarski's Truth Indefinability)

For any sentence σ , there is no formula $\psi(x)$ such that

$$\mathfrak{N}\models\sigma\leftrightarrow\psi(\overline{\ulcorner\sigma\urcorner}).$$

In other words, $\{ \ulcorner \sigma \urcorner : \mathfrak{N} \models \sigma \}$ is not arithmetically definable.

Proof. Consider a fixed point σ for $\neg \psi(x)$.

K. Tanaka

Recap

Two applications of the first theorem

Second theorem

The following theorem was due to Church. Turing also obtained a similar result by expressing the halting problem as a satisfaction problem of first-order logic.

Theorem 3.57 (Undecidability of first-order logic)

 $\{ \ulcorner \sigma \urcorner : \sigma \text{ is a valid sentence in the language } \mathcal{L}_{OR} \}$ is not computable. Therefore, the satisfiability of first order logic is not decidable.

Proof.

- First note that I Σ₁ is finitely axiomatizable, because the Σ₁-induction schema can be expressed as a single induction axiom for a universal Σ₁-formula (a universal CE set). Or, instead of I Σ₁, you may take Q_< or any other finitely axiomatized theory for which the first incompleteness theorem can be shown.
- Let ξ be a sentence obtained by connecting all the axioms of $|\Sigma_1 \text{ by } \wedge$. From the deduction theorem, $|\Sigma_1 \vdash \sigma \Leftrightarrow \vdash \xi \to \sigma$. If $\{ \ulcorner \sigma \urcorner : \vdash \sigma \}$ were computable, $\{ \ulcorner \sigma \urcorner : \vdash \xi \to \sigma \} = \{ \ulcorner \sigma \urcorner : I \Sigma_1 \vdash \sigma \}$ would also be computable, which leads to contradiction by diagonalization (as in the argument on p.5). So, by the completeness theorem, the validity of a sentence is not decidable.
- Since the satisfiability of a sentence σ can be expressed as ⊭ ¬σ, it is also not computable.
 7 / 19

K. Tanaka

Recap

wo applications o he first theorem

Introducing the second theorem

Commentar Annendix

Intoducing the second incompleteness theorem

- A version of the first incompleteness theorem says that a consitent CE theory T including $I \Sigma_1$ (indeed $Q_{<}$ is enough) neither prove (nor disprove) the Gödel sentence.
- A main part of the second incompleteness theorem says that a CE theory T including I Σ₁ proves that the consistency of T implies the Gödel sentence (equivalently, its unprovability).
- Then, we obtain the second incompleteness theorem that a consistent T does not prove its consistency, since if it did then it would also prove the Gödel sentence, which contradicts with the first theorem.
- Thus, the main part of the proof of the second theorem is to formalize the proof of the first theorem in the system *T*.
- Although this requires extremely elaborate arguments, the main points are summarized as the three properties of the derivability predicate $\text{Bew}_T(x)$ as shown in the next slide.

K. Tanaka

Recap

Two applications of the first theorem

Introducing the second theorem

Commentari Appendix

Lemma 3.58 (Hilbert-Bernays-Löb's derivability condition)

Let T be a consistent CE theory containing $I \Sigma_1$. For any φ, ψ , D1. $T \vdash \varphi \Rightarrow T \vdash \text{Bew}_T(\ulcorner \varphi \urcorner)$. D2. $T \vdash \text{Bew}_T(\ulcorner \varphi \urcorner) \land \text{Bew}_T(\ulcorner \varphi \to \psi \urcorner) \to \text{Bew}_T(\ulcorner \psi \urcorner)$. D3. $T \vdash \text{Bew}_T(\ulcorner \varphi \urcorner) \to \text{Bew}_T(\ulcorner \varphi \urcorner) \urcorner)$.

Proof

- D1 is obtained from the Σ_1 completeness of T, since $\text{Bew}_T(\lceil \varphi \rceil)$ is a Σ_1 formula.
- For D2, it is clear that the proof of ψ is obtained by applying MP to the proof of φ and the proof of $\varphi \rightarrow \psi$.
- D3 formalizes D1 in T. This is the most difficult, since we can not find a simple machinery to transform a proof of φ in T to a proof of Bew_T(^Γφ[¬]). We will explain an idea of this machinery in the next slide.

K. Tanaka

Recap

Two applications of

Introducing the second theorem

Commentar Appendix • First, we prove that, for any primitive recursive function f,

$$T \vdash f(x_1, \ldots, x_k) = y \to \operatorname{Bew}_T(\overline{f(x_1, \ldots, x_k) = \dot{y})}^{\neg}).$$

Here, the function \dot{x} is a primitive recursive function from a number n to the Gödel number of its numeral $\ulcorner\bar{n}\urcorner.$

- The above formula can be proved by meta-induction on the construction of the primitive recursive function f.
- Now, assume Bew_T(¬φ¬). Then, there is a numeral c that satisfies Proof_T(c,¬φ¬). So, substituing (the numeral of the Gödel number of) this formula into Bew_T(x), we finally obtain Bew_T(¬Bew_T(¬φ¬)¬) by a simple computation.
- For more details, please refer to my book¹ or other.
- Another proof will be given later.

¹https://www.shokabo.co.jp/mybooks/ISBN978-4-7853-1575-7.htm + (= + (= +) = -) ac

K. Tanaka

Recap

Two applications of the first theorem

Introducing the second theorem

Commenta Appendix In the following, let π_G denote a Gödel sentence such that

$$T \vdash \pi_G \leftrightarrow \neg \operatorname{Bew}_T(\overline{\ulcorner \pi_G \urcorner}).$$

By $\mathrm{Con}(T),$ we denote the sentence meaning ``T is consistent", formally defined as

$$\operatorname{Con}(T) \equiv \neg \operatorname{Bew}_T(\overline{\ } 0 = 1 \overline{\ }).$$

Then we have the following.

Lemma 3.59

 $T \vdash \operatorname{Con}(T) \leftrightarrow \pi_G.$

Proof. • To show $\pi_G \to \operatorname{Con}(T)$. $T \vdash 0 = 1 \to \pi_G$, so by D1 and D2,

$$T \vdash \operatorname{Bew}_T(\overline{\ulcorner 0 = 1 \urcorner}) \to \operatorname{Bew}_T(\overline{\ulcorner \pi_G \urcorner}).$$

Taking the contraposition, we get $T \vdash \pi_G \to \operatorname{Con}(T)$.

1/19

K. Tanaka

Recap

Alternative proc

Two applications on the first theorem

Introducing the second theorem

Commentar Appendix

Proof. • To show
$$\operatorname{Con}(T) \to \pi_G$$
.
First, from $T \vdash \pi_G \leftrightarrow \neg \operatorname{Bew}_T(\ulcorner \pi_G \urcorner)$ and D1,
 $T \vdash \operatorname{Bew}_T(\ulcorner Bew_T(\ulcorner \pi_G \urcorner) \to \neg \pi_G \urcorner)$.
Using D2,
 $T \vdash \operatorname{Bew}_T(\ulcorner Bew_T(\ulcorner \pi_G \urcorner) \urcorner) \to \operatorname{Bew}_T(\ulcorner \neg \pi_G \urcorner)$.
By D3, $T \vdash \operatorname{Bew}_T(\ulcorner \pi_G \urcorner) \to \operatorname{Bew}_T(\ulcorner \overline{} \pi_G \urcorner) \urcorner)$, so
 $T \vdash \operatorname{Bew}_T(\ulcorner \pi_G \urcorner) \to \operatorname{Bew}_T(\ulcorner \neg \pi_G \urcorner) \urcorner)$, so
 $T \vdash \operatorname{Bew}_T(\ulcorner \pi_G \urcorner) \to \operatorname{Bew}_T(\ulcorner \neg \pi_G \urcorner)$.
Using $T \vdash \pi_G \to (\neg \pi_G \to 0 = 1)$ and D2, from above

$$T \vdash \operatorname{Bew}_T(\overline{\ulcorner}\pi_G \urcorner) \to \operatorname{Bew}_T(\overline{\ulcorner}0 = 1 \urcorner)$$

Taking the contraposition,

$$T \vdash \neg \operatorname{Bew}_T(\overline{\ulcorner 0 = 1 \urcorner}) \to \neg \operatorname{Bew}_T(\overline{\ulcorner \pi_G \urcorner}),$$

<□> < => < => < => < => < => < => <<</p>

12 / 19

That is, $T \vdash \operatorname{Con}(T) \rightarrow \pi_G$.

K. Tanaka

Recap

wo applications o he first theorem

Introducing the second theorem

Commentar

Theorem 3.60 (Gödel's second incompleteness theorem)

Let T be a consistent CE theory, which contains $\mathrm{I}\Sigma_1.$ Then $\mathrm{Con}(T)$ cannot be proved in T.

Proof

By the proof of the first incompleteness theorem, $T \not\vdash \pi_G$. By the above lemma, $T \vdash \operatorname{Con}(T) \leftrightarrow \pi_G$, so $T \not\vdash \operatorname{Con}(T)$.

🔶 Remark [.]

In mathematical logic, the second incompleteness theorem is often used to separate two axiomatic theories by showing the consistency of one over the other. E.g. $I\Sigma_1$ is a proper subsystem of PA, since the consistency of the former can be proved in the latter.

K. Tanaka

Recap

wo applications o

Introducing the second theorem

Commentai Appondix (1) Show that there is a consistent theory T that proves its own inconsistency $\neg Con(T)$.

(2) Let $\operatorname{Bew}_T^{\#}(x) \equiv (\operatorname{Bew}_T(x) \land x \neq \overline{\lceil 0 = 1 \rceil})$. For any true proposition σ ,

$$\operatorname{Bew}_T^{\#}(\overline{\ulcorner\sigma\urcorner}) \leftrightarrow \operatorname{Bew}_T(\overline{\ulcorner\sigma\urcorner})$$

and

Exercise

$$T \vdash \neg \operatorname{Bew}_T^{\#}(\overline{\ } 0 = 1 \overline{\ }).$$

イロト 不得 トイヨト イヨト

Does it contradict with the second incompleteness theorem?

K. Tanaka

Recap

Two applications of the first theorem

Introducing the second theorem

Appendix

Model-theoretic arguments due to Kikuchi-Tanaka

- In T, we can prove a countable version of the completeness theorem of first-order logic. A countable model M can be treated as its coded diagram, i.e., the set of the Gödel numbers of L_M-sentences true in M. The arithmetized completeness theorem says that if T' is consistent then there exists (a formula expressing the diagram of) a model of T'.
- To show D3, we work in $T + \operatorname{Bew}_T(\overline{\varphi})$. For any model M of T, $\operatorname{Bew}_T(\overline{\varphi})$ holds in M by Σ_1 completeness. Hence, by Gödel completeness, we have $\operatorname{Bew}_T(\overline{\lceil \operatorname{Bew}_T(\lceil \overline{\pi_G} \rceil) \rceil})$.
- We can directly prove $\operatorname{Con}(T) \to \pi_G$ in T as follows. By Gödel completeness, it is sufficient to show that any model M of $T + \operatorname{Con}(T)$ satisfies π_G . First, note that π_G is equivalet to $\neg \operatorname{Bew}_T(\ulcorner \pi_G \urcorner)$, which is also equivalet to $\operatorname{Con}(T + \neg \pi_G)$. Since M satisfies $\operatorname{Con}(T)$, we can make a model M_1 of T over M. So, if M_1 satisfies $\neg \pi_G$, then M shows $\operatorname{Con}(T + \neg \pi_G)$. If M_1 satisfies π_G since π_G is Π_1 and M is a subspace of \mathbb{E} of \mathbb{E} .

K. Tanaka

Recap

wo applications of the first theorem

ntroducing the econd theorem

Commentaries

Appendix

Some commentaries on Gödel's theorem

- D. Hilbert and P. Bernays, Grundlagen der Mathematik I-II, Springer-Verlag, 1934-1939, 1968-1970 (2nd ed.). This gives the first complete proof of the second incompleteness theorem by analyzing the provability predicate.
- P. Lindström, Aspects of Incompleteness, Lecture Notes in Logic 10, Second edition, Assoc. for Symbolic Logic, A K Peters, 2003. A technically advanced book, icluding Pour-El and Kripke's theorem (1967) about recursive isomorphisms between recursive theories.
- R.M. Solovay (1976) studied modal propositional logic GL with $\text{Bew}_T(x)$ as modality \Box , which is described by

$$(1) \vdash A \Rightarrow \vdash \Box A,$$

(2)
$$(\Box A \land \Box (A \to B)) \to \Box B$$

$$(3) \Box A \to \Box \Box A,$$

(4) $\Box(\Box A \to A) \to \Box A$

K. Tanaka

Recap

- Two applications of the first theorem
- ntroducing the second theorem

Commentaries

Appendix

- The following are recommended introductory materials.
 - T. Franzen, Gödel's Theorem: An Incomplete Guide to Its Use and Abuse (2005).

On the use and misuse of the incompleteness theorem as a broader understanding of Godel's theorem. A Janpanse translation (with added explanations) by Tanaka (2011).

- P. Smith, Gödel's Without (Too Many) Tears, Second Edition 2022. https://www.logicmatters.net/resources/pdfs/GWT2edn.pdf Easy to read. The best reference to this lecture.
- K. Tanaka, Math classroom, a graphic guide to the incompleteness theorems (in Japanese), https://www.asahi.com/ads/math2022/

K. Tanaka

- Recap
- Alternative proof Two applications o the first theorem
- ntroducing the second theorem
- Commentari
- Appendix

- Since Gödel, many researchers were looking for a proposition that has a natural mathematical meaning and is independent from Peano arithmetic, etc.
- Paris and Harrington found the first example in 1977. This is a slight modification of Ramsey's theorem in finite form.

Appendix

Leo Harrington

- Following their findings, Kirby and Paris (1982) showed that the propositions on the Goodstein sequence and the Hydra game are independent from PA.
- H. Friedman showed that Kruskal's theorem (1982) and the Robertson-Seimor theorem in graph theory (1987) are independent from a stronger subsystem of second-order arithmetic, and also discovered various independent propositions for set theory.

K. Tanaka

Recap

Alternative proc

Two applications of the first theorem

ntroducing the second theorem

Commentaries

Appendix

Thank you for your attention!

<ロト <日 > < 目 > < 目 > < 目 > < 目 > < 目 > < 目 > < 19 / 19