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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation
• Part 2. Propositional Logic and Computational Complexity
• Part 3. First Order Logic and Decision Problems
• Part 3a. Formal Arithmetic� �

Part 3a. Schedule (subject to change)� �
• Nov.21, (6) Presburger arithmetic
• Nov.26, (7) Peano arithmetic
• Nov.28, (8) Gödel’s first incompleteness theorem
• Dec. 3, (9) Gödel’s second incompleteness theorem
• Dec. 5, (10) Second order logic
• Dec.10, (11) Second order arithmetic� �
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Lemma 3.53 (Formal representation for primitive recursive functions)
For any primitive recursive function f , there is a ∆1 formula χ(x, y) such that

f(m) = n⇒ IΣ1 ⊢ χ(m,n) and IΣ1 ⊢ ∀x∃!yχ(x, y).

Then, IΣ1 + ∀xχ(x, f(x)) is conservative over IΣ1.

Lemma 3.54 (Diagonalization lemma)
For any formula ψ(x) with a unique free variable x, there exists a sentence σ such
that IΣ1 ⊢ σ ↔ ψ(⌜σ⌝) .

Definition 3.55 (Provability predicate Bew)
For a CE theory T , we define a prim. rec. relation ProofT (⌜P⌝, ⌜σ⌝) to express
“P is a proof of formula σ in T”. By ProofT , we also denote a ∆1 formula
expressing ProofT in IΣ1. A Σ1 formula BewT is defined as ∃y ProofT (y, x).

BewT (x) expresses that “x is the Gödel number of a theorem of T”. 3 / 19
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Gödel’s first incompleteness theorem� �
Any 1-consistent CE theory T including IΣ1 is incomplete.� �

Proof.
• By the diagonalization lemma, ¬BewT (x) has a fixed point, that is, there

exists σ such that T ⊢ σ ↔ ¬BewT (⌜σ⌝).
• We will show this σ is neither provable nor disprovable in T as follows.
• Let T ⊢ σ. Then BewT (⌜σ⌝) is true. Hence T ⊢ BewT (⌜σ⌝) from Σ1

completeness. Since σ is a fixed point of ¬BewT (x), we have T ⊢ ¬σ, which
means that T is inconsistent.

• On the other hand, if T ⊢ ¬σ, T ⊢ BewT (⌜σ⌝) because σ is a fixed point.
Here, using the 1-consistency of T , BewT (⌜σ⌝) is true, and so T ⊢ σ, which is
a contradiction. □

The sentence σ thus constructed “asserts its own unprovability” because
“σ ⇔ T ̸⊢ σ” holds. This σ is called the Gödel sentence of T .
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Using the exercise problem in the previous lecture, the assumption of Gödel’s
theorem can be weakened from 1-consistency to consistency.

Gödel-Rosser’s incompleteness theorem� �
Any consistent CE theory T including IΣ1 is incomplete.� �

Proof.
• Let A = {⌜σ⌝ : T ⊢ σ}, B = {⌜σ⌝ : T ⊢ ¬σ}. If T is consitent CE theory,

then A,B are disjoint CE sets.
• Similarly to the proof of the strong representation theorem (3.49) for

computable sets, costruct a formula ψ(x) such that A ⊂ {n : T ⊢ ψ(n)} and
B ⊂ {n : T ⊢ ¬ψ(n)}.

• By the diagonalization lemma (3.54), we have a sentence σ such that
T ⊢ (σ ↔ ¬ψ(⌜σ⌝)), and can prove that ⌜σ⌝ ̸∈ A ∪B.
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Two applications of the first incomp. theorem

The next theorem is also a very important corollary of the argument of the first
incompleteness theorem. Note that T in the diagonalization lemma does not need
be a CE theory. So, letting T be Th(N) ( the set of sentences true in N), we have

Theorem 3.56 (Tarski’s Truth Indefinability)
For any sentence σ, there is no formula ψ(x) such that

N |= σ ↔ ψ(⌜σ⌝).

In other words, {⌜σ⌝ : N |= σ} is not arithmetically definable.

Proof. Consider a fixed point σ for ¬ψ(x).
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The following theorem was due to Church. Turing also obtained a similar result by
expressing the halting problem as a satisfaction problem of first-order logic.
Theorem 3.57 (Undecidability of first-order logic)
{⌜σ⌝ : σ is a valid sentence in the language LOR} is not computable. Therefore,
the satisfiability of first order logic is not decidable.

Proof.
• First note that IΣ1 is finitely axiomatizable, because the Σ1-induction schema

can be expressed as a single induction axiom for a universal Σ1-formula (a
universal CE set). Or, instead of IΣ1, you may take Q< or any other finitely
axiomatized theory for which the first incompleteness theorem can be shown.

• Let ξ be a sentence obtained by connecting all the axioms of IΣ1 by ∧. From
the deduction theorem, IΣ1 ⊢ σ ⇔⊢ ξ → σ. If {⌜σ⌝ : ⊢ σ} were computable,
{⌜σ⌝ : ⊢ ξ → σ} = {⌜σ⌝ : IΣ1 ⊢ σ} would also be computable, which leads to
contradiction by diagonalization (as in the argument on p.5). So, by the
completeness theorem, the validity of a sentence is not decidable.

• Since the satisfiability of a sentence σ can be expressed as ̸|= ¬σ, it is also not
computable.

□
7 / 19
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Intoducing the second incompleteness theorem
• A version of the first incompleteness theorem says that a consitent CE theory
T including IΣ1 (indeed Q< is enough) neither prove (nor disprove) the Gödel
sentence.

• A main part of the second incompleteness theorem says that a CE theory T
including IΣ1 proves that the consistency of T implies the Gödel sentence
(equivalently, its unprovability).

• Then, we obtain the second incompleteness theorem that a consistent T does
not prove its consistency, since if it did then it would also prove the Gödel
sentence, which contradicts with the first theorem.

• Thus, the main part of the proof of the second theorem is to formalize the
proof of the first theorem in the system T .

• Although this requires extremely elaborate arguments, the main points are
summarized as the three properties of the derivability predicate BewT (x) as
shown in the next slide.
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Lemma 3.58 (Hilbert-Bernays-Löb’s derivability condition)
Let T be a consistent CE theory containing IΣ1. For any φ,ψ,
D1. T ⊢ φ⇒ T ⊢ BewT (⌜φ⌝).
D2. T ⊢ BewT (⌜φ⌝) ∧ BewT (⌜φ→ ψ⌝) → BewT (⌜ψ⌝).
D3. T ⊢ BewT (⌜φ⌝) → BewT (⌜BewT ( ⌜φ⌝)⌝).

Proof
• D1 is obtained from the Σ1 completeness of T , since BewT (⌜φ⌝) is a Σ1

formula.
• For D2, it is clear that the proof of ψ is obtained by applying MP to the proof

of φ and the proof of φ→ ψ.
• D3 formalizes D1 in T . This is the most difficult, since we can not find a

simple machinery to transform a proof of φ in T to a proof of BewT (⌜φ⌝).
We will explain an idea of this machinery in the next slide.
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• First, we prove that, for any primitive recursive function f ,

T ⊢ f(x1, . . . , xk) = y → BewT (⌜f(ẋ1, . . . , ẋk) = ẏ)⌝).

Here, the function ẋ is a primitive recursive function from a number n to the
Gödel number of its numeral ⌜n̄⌝.

• The above formula can be proved by meta-induction on the construction of
the primitive recursive function f .

• Now, assume BewT (⌜φ⌝). Then, there is a numeral c that satisfies
ProofT (c, ⌜φ⌝). So, substituing (the numeral of the Gödel number of) this
formula into BewT (x), we finally obtain BewT (⌜BewT (⌜φ⌝)⌝) by a simple
computation.

• For more details, please refer to my book1 or other.
• Another proof will be given later.

□
1https://www.shokabo.co.jp/mybooks/ISBN978-4-7853-1575-7.htm.
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In the following, let πG denote a Gödel sentence such that

T ⊢ πG ↔ ¬BewT (⌜πG⌝).

By Con(T ), we denote the sentence meaning “T is consistent”, formally defined as

Con(T ) ≡ ¬BewT (⌜0 = 1⌝).

Then we have the following.

Lemma 3.59
T ⊢ Con(T ) ↔ πG.

Proof. • To show πG → Con(T ). T ⊢ 0 = 1 → πG, so by D1 and D2,

T ⊢ BewT (⌜0 = 1⌝) → BewT (⌜πG⌝).

Taking the contraposition, we get T ⊢ πG → Con(T ).

11 / 19
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Proof. • To show Con(T ) → πG.
First, from T ⊢ πG ↔ ¬BewT (⌜πG⌝) and D1,

T ⊢ BewT (⌜BewT (⌜πG⌝) → ¬πG⌝).

Using D2,
T ⊢ BewT (⌜BewT (⌜πG⌝)⌝) → BewT (⌜¬πG⌝).

By D3, T ⊢ BewT (⌜πG⌝) → BewT (⌜BewT (⌜πG⌝)⌝), so

T ⊢ BewT (⌜πG⌝) → BewT (⌜¬πG⌝).

Using T ⊢ πG → (¬πG → 0 = 1) and D2, from above

T ⊢ BewT (⌜πG⌝) → BewT (⌜0 = 1⌝)

Taking the contraposition,

T ⊢ ¬BewT (⌜0 = 1⌝) → ¬BewT (⌜πG⌝),

That is, T ⊢ Con(T ) → πG. □
12 / 19
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Theorem 3.60 (Gödel’s second incompleteness theorem)
Let T be a consistent CE theory, which contains IΣ1. Then Con(T ) cannot be
proved in T .

Proof
By the proof of the first incompleteness theorem, T ̸⊢ πG.
By the above lemma, T ⊢ Con(T ) ↔ πG, so T ̸⊢ Con(T ). □

Remark� �
In mathematical logic, the second incompleteness theorem is often used to sep-
arate two axiomatic theories by showing the consistency of one over the other.
E.g. IΣ1 is a proper subsystem of PA, since the consistency of the former can
be proved in the latter.� �
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Exercise� �
(1) Show that there is a consistent theory T that proves its own inconsistency

¬Con(T ).
(2) Let Bew#

T (x) ≡ (BewT (x) ∧ x ̸= ⌜0 = 1⌝). For any true proposition σ,

Bew#
T (⌜σ⌝) ↔ BewT (⌜σ⌝)

and
T ⊢ ¬Bew#

T (⌜0 = 1⌝).

Does it contradict with the second incompleteness theorem?� �
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Model-theoretic arguments due to Kikuchi-Tanaka
• In T , we can prove a countable version of the completeness theorem of

first-order logic. A countable model M can be treated as its coded diagram,
i.e., the set of the Gödel numbers of LM -sentences true in M . The
arithmetized completeness theorem says that if T ′ is consistent then there
exists (a formula expressing the diagram of) a model of T ′.

• To show D3, we work in T +BewT (φ). For any model M of T , BewT (φ)
holds in M by Σ1 completeness. Hence, by Gödel completeness, we have
BewT (⌜BewT (⌜πG⌝)⌝).

• We can directly prove Con(T ) → πG in T as follows. By Gödel completeness,
it is sufficient to show that any model M of T +Con(T ) satisfies πG. First,
note that πG is equivalet to ¬BewT (⌜πG⌝), which is also equivalet to
Con(T + ¬πG). Since M satisfies Con(T ), we can make a model M1 of T
over M . So, if M1 satisfies ¬πG, then M shows Con(T + ¬πG). If M1

satisfies πG, M also satisfies πG since πG is Π1 and M is a submodel of M1.
15 / 19
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Some commentaries on Gödel’s theorem
• D. Hilbert and P. Bernays, Grundlagen der Mathematik I-II, Springer-Verlag,

1934-1939, 1968-1970 (2nd ed.). This gives the first complete proof of the
second incompleteness theorem by analyzing the provability predicate.

• P. Lindström, Aspects of Incompleteness, Lecture Notes in Logic 10, Second
edition, Assoc. for Symbolic Logic, A K Peters, 2003.
A technically advanced book, icluding Pour-El and Kripke’s theorem (1967)
about recursive isomorphisms between recursive theories.

• R.M. Solovay (1976) studied modal propositional logic GL with BewT (x) as
modality □, which is described by
(1) ⊢ A⇒⊢ □A,
(2) (□A ∧□(A→ B)) → □B,
(3) □A→ □□A,
(4) □(□A→ A) → □A
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The following are recommended introductory materials.
• T. Franzen, Gödel’s Theorem: An Incomplete Guide to Its Use and Abuse

(2005).
On the use and misuse of the incompleteness theorem as a broader
understanding of Godel’s theorem. A Janpanse translation (with added
explanations) by Tanaka (2011).

• P. Smith, Gödel’s Without (Too Many) Tears, Second Edition 2022.
https://www.logicmatters.net/resources/pdfs/GWT2edn.pdf
Easy to read. The best reference to this lecture.

• K. Tanaka, Math classroom, a graphic guide to the incompleteness theorems
(in Japanese), https://www.asahi.com/ads/math2022/
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Appendix
• Since Gödel, many researchers were looking for a

proposition that has a natural mathematical meaning
and is independent from Peano arithmetic, etc.

• Paris and Harrington found the first example in 1977.
This is a slight modification of Ramsey’s theorem in
finite form.

Jeff Paris

Leo Harrington
• Following their findings, Kirby and Paris (1982) showed that the propositions

on the Goodstein sequence and the Hydra game are independent from PA.
• H. Friedman showed that Kruskal’s theorem (1982) and the Robertson-Seimor

theorem in graph theory (1987) are independent from a stronger subsystem of
second-order arithmetic, and also discovered various independent propositions
for set theory.
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