
Logic and
Computation

K. Tanaka

Recap: Peano
Arithmetic
Subsystems of PA
First proof
Diagonalization
lemma
Bew
Alternative proof

Summary

Logic and Computation I
Part 3a. Formal Arithmetic

Kazuyuki Tanaka

BIMSA

November 28, 2024

1 / 19



Logic and
Computation

K. Tanaka

Recap: Peano
Arithmetic
Subsystems of PA
First proof
Diagonalization
lemma
Bew
Alternative proof

Summary

Logic and Computation I� �
• Part 1. Introduction to Theory of Computation
• Part 2. Propositional Logic and Computational Complexity
• Part 3. First Order Logic and Decision Problems
• Part 3a. Formal Arithmetic� �

Part 3a. Schedule (subject to change)� �
• Nov.21, (6) Presburger arithmetic
• Nov.26, (7) Peano arithmetic
• Nov.28, (8) Gödel’s first incompleteness theorem
• Dec. 3, (9) Gödel’s second incompleteness theorem
• Dec. 5, (10) Second order logic
• Dec.10, (11) Second order arithmetic� �
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Recap: Peano Arithmetic
Definition 3.38 (Peano arithmetic PA)
PA is a first-order theory in the language LOR = {+, ·, 0, 1, <} consisting of:

Successor: ¬(x+ 1 = 0), x+ 1 = y + 1 → x = y.
Addition: x+ 0 = x, x+ (y + 1) = (x+ y) + 1.
Multiplication: x · 0 = 0, x · (y + 1) = x · y + x.
Inequality: ¬(x < 0), x < y + 1 ↔ x < y ∨ x = y.

Induction: φ(0) ∧ ∀x(φ(x) → φ(x+ 1)) → ∀xφ(x), for all formula φ(x).

Definition 3.39 (Arithmetical Hierarchy)
• A formula is bounded (Σ0, Π0) if its quantifiers are bounded ∀x < t, ∃x < t.
• If φ is a Σi formula, then ∀x1 · · · ∀xkφ is a Πi+1 formula,
• If φ is a Πi formula, then ∃x1 · · · ∃xkφ is a Σi+1 formula.
• A Σi formula equivalent to some Πi formula is called a ∆i formula. 3 / 19
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Definition 3.40 (IΓ)
IΓ is a subsystem of PA obtained by restricting induction to a class Γ of formulas .

Definition 3.41 (Robinson’s system Q)
Q is obtained from PA by removing inequality and induction, and instead adding:

Predecessor: ∀x(x ̸= 0 → ∃y(y + 1 = x)).
It is in language LR = {+, ·, 0, 1}. Let Q< be Q plus the explicit definition of <.

Lemma 3.42 (theory of discrete ordered semirings PA−)
In IOpen, the following axioms of PA− can be proved.

(1) Ordered semirings (commutative ordered rings with no additive inverses).
(2) Difference: x < y → ∃z(z + (x+ 1) = y).
(3) Discreteness: 0 < x↔ 1 ≤ x.

Corollary 3.43
Q< ⊂ PA− ⊂ IOpen ⊂ IΣ0 ⊂ IΣ1 ⊂ PA. 4 / 19
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Gödel’s first incompleteness theorem
Theorem 3.44 (Σ1-completeness of Q<)
Q< proves all true Σ1 sentences.

Proof
• If a Σ1 sentence ∃x1∃x2 . . . ∃xkφ(x1, x2, . . . , xk) is true, there exist concrete

numbers n1, n2, . . . , nk such that φ(n1, n2, . . . , nk) is true. Since
φ(n1, n2, . . . , nk) is a bounded sentence, it is provable if it is true. From the
rule of first-order logic, ∃x1∃x2 . . . ∃xkφ(x1, x2, . . . , xk) is also provable. □

• All the arithmetic systems we will discuss are extensions of Q<, and thus
Σ1-complete.

• Another condition for the first incompleteness theorem is 1-consistency, also
known as Σ1-soundness. A theory is said to be Σn-sound if all provable Σn

sentences are true.
5 / 19
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• We first look at the first incompleteness theorem from the viewpoint of
computability theory. Then, we will reexamine the proof more syntactically.

• Recall that X ⊆ Nn is called CE (computably enumerable) if it is the domain
(or range) of some partial recursive function. By Lemma 1.49, any CE relation
R(x⃗) can be expressed by ∃yS(x⃗, y) for some primitive recursive relation S.

Definition 3.45
Let N = (N,+, ·, 0, 1, <) be a standard model of PA.
• A set A ⊆ Nl is said to be Σi if there exists a Σi formula φ(x1, . . . , xl) s.t.

(m1, . . . ,ml) ∈ A⇔ N |= φ(m1, . . . ,ml).

• Similarly, Πi sets can be defined by Πi formulas.
• A set that is both Σi and Πi is called ∆i.

6 / 19



Logic and
Computation

K. Tanaka

Recap: Peano
Arithmetic
Subsystems of PA
First proof
Diagonalization
lemma
Bew
Alternative proof

Summary

Lemma 3.46
The graph {(x⃗, y) : f(x⃗) = y} of a primitive recursive function f is a ∆1 set.

Proof
• By induction on the construction of primitive recursive functions. For example,

consider the following definition of a function f(x):
f(0) = c, f(y + 1) = h(y, f(y)).

• Let γ(x,m, n) be a Σ0 formula “m(x+ 1) + 1! | n”. Then, for any finite set A
(with maxA < u), there exist m,n s.t. ∀x < u(x ∈ A⇔ γ(x,m, n)).

• Fix such m,n. Define a Σ0 formula δ(⟨u1, u2⟩) ⇔ ∀y < u1∃z < u2 f(y) = z
(with m,n as hidden parameters) as follows: for any u = ⟨u1, u2⟩,
δ(u) ≡ ∀y < u1∃z < u2 γ(⟨y, z⟩) ∧ ∀z < u2(γ(⟨0, z⟩) ↔ z = c)

∧ ∀y < u1−1∀z < u2(γ(⟨y + 1, z⟩) ↔ ∃z′ < u2(z = h(y, z′) ∧ γ(⟨y, z′⟩))).
• Then ∀u1∃u2∃m∃nδ(⟨u1, u2⟩,m, n) holds. Thus, we obtain a ∆1 relation:

f(y) = z ⇔ ∃u∃m∃n(u1 = y + 1 ∧ δ(u) ∧ γ(⟨y, z⟩))
⇔ ∀u∀m∀n(u1 = y + 1 ∧ δ(u) → γ(⟨y, z⟩)). □ 7 / 19
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Lemma 3.47
The CE sets are exactly the same as the Σ1 sets. Hence, the computable
(recursive) sets are exactly the same as the ∆1 sets.

Proof By Lemma 1.49, any CE relation R(x⃗) can be expressed by ∃yS(x⃗, y) for
some primitive recursive relation S. By the above lemma, S can be expressed by a
Σ1 formula, and so ∃yS(x⃗, y) is still Σ1. □

Theorem 3.48 ((Weak) Representation Theorem for CE sets)
Suppose that a theory T is Σ1-complete and 1-consistent. Then, for any CE set C,
there exists a Σ1 formula φ(x) s.t. for any n, n ∈ C ⇔ T ⊢ φ(n).

Proof.
• By the above Lemma, for any CE set C, there exists a Σ1 formula φ(x) such

that n ∈ C ⇔ N |= φ(n).
• Since T is Σ1-complete, N |= φ(n) ⇒ T ⊢ φ(n).

• Also since T is 1-consistent, T ⊢ φ(n) ⇒ N |= φ(n). □
8 / 19
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Theorem 3.49 ((Strong) Representation Theorem for Computable Sets)
Assume a theory T is Σ1-complete. For any computable set C, there exists a Σ1

formula φ(x) s.t. for any n, n ∈ C ⇒ T ⊢ φ(n), n ̸∈ C ⇒ T ⊢ ¬φ(n).

Proof.
• For computable C, by Lemma 3.47 there exist Σ0 formulas θ1(x, y), θ2(x, y)

such that n ∈ C ⇔ N |= ∃yθ1(n, y), n ̸∈ C ⇔ N |= ∃yθ2(n, y).
• Let φ(x) be a Σ1 formula ∃y(θ1(n, y) ∧ ∀z ≤ y¬θ2(n, z)). By the
Σ1-completeness of T , n ∈ C ⇒ T ⊢ φ(n).

• To show n ̸∈ C ⇒ T ⊢ ¬φ(n), take any n ̸∈ C. Since N |= ∃yθ2(n, y), there
exists an m s.t. N |= θ2(n,m). Again by Σ1 completeness of T , T ⊢ θ2(n,m).
Also, since N ̸|= ∃yθ1(n, y), for all l, N |= ¬θ1(n, l), i.e., T ⊢ ¬θ1(n, l).
Therefore, if θ1(n, a) holds in some model of T , then a is not a standard
natural number l. Thus, T ⊢ ∀y(θ1(n, y) → ∃z≤y θ2(n, z)), that is,
T ⊢ ¬φ(n). □
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• To derive the incompleteness theorem, we need one more condition on a
formal system of arithmetic, that is, the set of axioms is CE.

• From the following theorem, a CE set of axioms can be also expressed as a
primitive recursive set.

Theorem 3.50 (Craig’s lemma)
For any CE theory T , there exists an equivalent (proving the same theorems)
primitive recursive theory T ′.

Proof. Let T be a CE theory, defined by Σ1 formula φ(x) ≡ ∃yθ(x, y) (θ is Σ0).
That is, σ ∈ T ⇔ N |= φ(⌜σ⌝). ⌜σ⌝ is the Gödel number of a sentence σ.
Then, we define a primitive recursive theory T ′ as follows:

T ′ = {
n+ 1 copies︷ ︸︸ ︷

σ ∧ σ ∧ · · · ∧ σ : θ(⌜σ⌝, n)}.

Then, T and T ′ are equivalent, since ⊢ σ ↔ σ ∧ σ ∧ · · · ∧ σ. □
• T ′ may not be Σ0 since it includes the Gödel numbers, etc.

10 / 19
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Theorem 3.51
For any CE theory T , the set of its theorems {⌜σ⌝ : T ⊢ σ} is also CE.

Proof.
• Recall that a proof in a formal system of first-order logic is a finite sequence of

formulas, each formula being either a logical axiom, an equality axiom, or a
mathematical axiom of a theory T , or obtained from previous formulas by
applying MP or a quantification rule.

• From the Craig’s Lemma, a CE theory T can be transformed into a primitive
recursive theory. Thus, it is also a primitive recursive relation whether (the
Gödel number of) a finite sequence of formulas is a proof of T .

• A sentence σ is a theorem of T iff there exists a proof (i.e., a sequence that
satisfies the primitive recursive relation) such that σ is the last formula of the
proof. Thus, the set of theorems of T is CE. □

11 / 19
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Gödel’s first incompleteness theorem easily follows from The halting problem K.
Theorem 3.52 (Gödel’s first incompleteness theorem)
Let T be a Σ1-complete and 1-consistent CE theory. Then T is incomplete, that is,
there is a sentence that cannot be proved or disproved.

Proof.
• Suppose K is CE but not co-CE. By the weak representation theorem for CE

sets, there exists a formula φ(x) such that n ∈ K ⇔ T ⊢ φ(n).
• On the other hand, since N−K is not a CE, there exists some d such that

d ∈ N−K ̸⇔ T ⊢ ¬φ(d).
Thus, (d ∈ K and T ⊢ ¬φ(d)) or (d ̸∈ K and T ̸⊢ ¬φ(d)).

• In the former case, since d ∈ K implies T ⊢ φ(d), T is inconsistent, which
contradicts with the 1-consistency assumption.

• In the latter case, T is incomplete because φ(d) cannot be proved or
disproved.

□
12 / 19
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Exercise� �
(1) In a Σ1 complete theory T , show that Σ1-soundness of T is equivalent to

the following: for any Σ0 formula φ(x), if φ(n) is provable in T for all n,
then ∃x¬φ(x) is not provable in T .

(2) Let A,B be two disjoint CE sets. Assume a theory T is Σ1-complete.
Show that there exists a Σ1 formula ψ(x) such that

n ∈ A⇒ T ⊢ ψ(n), n ∈ B ⇒ T ⊢ ¬ψ(n).

From this, deduce that {⌜σ⌝ : T ⊢ σ} and {⌜σ⌝ : T ⊢ ¬σ} are
computably inseparable. (See Part 1-6, Slide p.21.) In particular,
{⌜σ⌝ : T ⊢ σ} is not computable.� �
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From now, we will reconsider the proof of the first incompleteness theorem more
rigorously in IΣ1, which leads us to the second incompleteness theorem.
To begin with, we remark that IΣ1 actually enables the use of induction for the
boolean combinations of Σ1 formulas. For instance, to use induction for ¬φ(x),
one may use induction for φ(a− x) with any constant a.

Lemma 3.53 (Formal representation for primitive recursive functions)
For any p.r. function, there is a ∆1 formula φ(x, y) which expresses its graph, and
in IΣ1, it is provable that ∀x∃!yφ(x, y), where ∃! means “unique existence”.

Proof. By Lemma 3.46, the graph of a primitive recursive (p.r.) function f is
expressed as a ∆1 formula φ(x, y). Then, ∀x∃!yφ(x, y) is rewritten as

∀x∃yφ(x, y) ∧ ∀x∀y∀z(φ(x, y) ∧ φ(x, z) → y = z),

which can be shown by IΣ1, and by induction on the construction of φ(x, y). □

14 / 19
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From the above lemma, we can see that IΣ1 is a conservative extension even if we
add the symbols of the p.r. function and its definable formulas.
In other words, (in IΣ1) a Σ1 formula containing p.r. functions is rewritten as an
equivalent Σ1 formula without p.r. functions by replacing the functions with the
corresponding ∆1 formulas. Similarly for a ∆1 formula.

Lemma 3.54 (Diagonalization lemma)
Let T be any extension of IΣ1. For any formula ψ(x) in which x is the only free
variable, there exists a sentence σ such that T ⊢ “σ ↔ ψ(⌜σ⌝)” .

Proof.
• We first enumerate (primitively recursively) the formulas with only x as a free

variable as φ0(x), φ1(x), . . .. Then define f(n) = ⌜φn(n)⌝, which is also a
p.r. function.

• By Lemma 3.53, there exists a ∆1 formula χ such that

f(m) = n⇒ T ⊢ χ(m,n) ∧ ∀x∃!yχ(x, y).

15 / 19
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Proof (continued).
• Now given a formula ψ(x), consider a formula ∃y(χ(x, y) ∧ ψ(y)). Since it

only has a free variable x, it is φk(x) for some k.
• Let σ ≡ φk(k) for this k. Then, f(k) = ⌜σ⌝, so T ⊢ χ(k, ⌜σ⌝).
• Thus, in T ,

ψ(⌜σ⌝) → ∃y(χ(k, y) ∧ ψ(y)) (≡ φk(k) ≡ σ)

• On the other hand, since T ⊢ ∀x∃!yχ(x, y), in T ,

¬ψ(⌜σ⌝) → ¬∃y(χ(k, y) ∧ ψ(y)) (≡ ¬σ).

• Therefore, σ is the fixed point of ψ (T ⊢ σ ↔ ψ(⌜σ⌝)). □

16 / 19
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In theorem 3.51, we show that the set of theorems of a CE theory is also CE .
We here consider a formal version of this statement.
Definition 3.55
Let T be a CE theory. Based on Craig’s lemma, let T ′ be its p.r. counterpart.
Then, “a sequence of formulas P is a proof in T ′” can be defined in a p.r. way.
Thus, we define a p.r. relation ProofT as follows.

ProofT (⌜P⌝, ⌜σ⌝) ⇔ P is a proof of formula σ in T ′.

By ProofT , we also denote a ∆1 formula expressing the above ProofT in IΣ1.
A Σ1 formula BewT is defined as BewT (x) ≡ ∃y ProofT (y, x).

The formula BewT (x) expresses that “x is the Gödel number of a theorem of T”.
“Bew” stands for the German beweisbar (provable).

17 / 19
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Alternative proof of the first incompleteness
We give another proof for the first incompleteness theorem (with the additional
assumption that a theory T includes IΣ1).

Proof.
• By the diagonalization lemma, ¬BewT (x) has a fixed point, that is, there

exists σ such that T ⊢ σ ↔ ¬BewT (⌜σ⌝).
• We will show this σ is neither provable nor disprovable in T as follows.
• Let T ⊢ σ. Then BewT (⌜σ⌝) is true. Hence T ⊢ BewT (⌜σ⌝) from Σ1

completeness. Since σ is the fixed point of ¬BewT (x), we have T ⊢ ¬σ,
which means that T is inconsistent.

• On the other hand, if T ⊢ ¬σ, T ⊢ BewT (⌜σ⌝) because σ is a fixed point.
Here, using the 1-consistency of T , BewT (⌜σ⌝) is true, and so T ⊢ σ, which is
a contradiction. □

The sentence σ thus constructed “asserts its own unprovability” because
“σ ⇔ T ̸⊢ σ” holds. This σ is called the Gödel sentence of T .

18 / 19
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Summary

Theorem 4.1 (Gödel’s first incompleteness theorem)
Any 1-consistent CE extension of IΣ1 is incomplete.

Further readings� �
• Theory of Computation, D.C. Kozen, Springer 2006.

• Mathematical Logic. H.-D. Ebbinghaus, J. Flum, W. Thomas, Graduate
Texts in Mathematics 291, Springer 2021.� �

Thank you for your attention!
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