K. Tanaka

Arithmetic Subsystems of First proof Diagonalizatio lemma Bew

Alternative proo

Summary

Logic and Computation I Part 3a. Formal Arithmetic

Kazuyuki Tanaka

BIMSA

November 28, 2024

ъ

19

K. Tanaka

Recap: Peano Arithmetic Subsystems of Pr First proof Diagonalization Iemma Bew

Alternative proof

Summary

Logic and Computation I

- Part 1. Introduction to Theory of Computation
- Part 2. Propositional Logic and Computational Complexity
- Part 3. First Order Logic and Decision Problems
- Part 3a. Formal Arithmetic

- Part 3a. Schedule (subject to change)

- Nov.21, (6) Presburger arithmetic
- Nov.26, (7) Peano arithmetic
- Nov.28, (8) Gödel's first incompleteness theorem
- Dec. 3, (9) Gödel's second incompleteness theorem
- Dec. 5, (10) Second order logic
- Dec.10, (11) Second order arithmetic

K. Tanaka

Recap: Peano Arithmetic

- Subsystems of F First proof Diagonalization lemma
- Bew
- Alternative pro

Summary

Recap: Peano Arithmetic

Definition 3.38 (Peano arithmetic PA)

PA is a first-order theory in the language $\mathcal{L}_{\mathrm{OR}} = \{+, \boldsymbol{\cdot}, 0, 1, <\}$ consisting of:

Successor:	$\neg(x+1=0)$,	$x + 1 = y + 1 \to x = y.$
Addition:	x + 0 = x,	x + (y + 1) = (x + y) + 1.
Multiplication:	$x \cdot 0 = 0$,	$x \cdot (y+1) = x \cdot y + x.$
Inequality:	eg(x < 0),	$x < y + 1 \leftrightarrow x < y \lor x = y.$
Induction:	$\varphi(0) \wedge \forall x(\varphi(x))$) ightarrow arphi(x+1)) ightarrow orall x arphi(x), for all formula $arphi(x)$

Definition 3.39 (Arithmetical Hierarchy)

- A formula is **bounded** (Σ_0 , Π_0) if its quantifiers are bounded $\forall x < t, \exists x < t.$
- If φ is a Σ_i formula, then $\forall x_1 \cdots \forall x_k \varphi$ is a \prod_{i+1} formula,
- If φ is a Π_i formula, then $\exists x_1 \cdots \exists x_k \varphi$ is a Σ_{i+1} formula.
- A Σ_i formula equivalent to some Π_i formula is called a Δ_i formula. 3/19

K. Tanaka

Recap: Peano Arithmetic

Subsystems of PA

First proof Diagonalization lemma

Bew

Alternative proc

Summary

Definition 3.40 (I Γ)

 $\mathrm{I}\Gamma$ is a subsystem of PA obtained by restricting induction to a class Γ of formulas .

Definition 3.41 (Robinson's system Q)

Q is obtained from PA by removing inequality and induction, and instead adding: Predecessor: $\forall x (x \neq 0 \rightarrow \exists y (y + 1 = x))$. It is in language $\mathcal{L}_{\mathrm{R}} = \{+, \cdot, 0, 1\}$. Let Q_{\leq} be Q plus the explicit definition of \leq .

Lemma 3.42 (theory of discrete ordered semirings PA⁻)

In $\mathrm{IOpen},$ the following axioms of PA^- can be proved.

- (1) Ordered semirings (commutative ordered rings with no additive inverses).
- (2) Difference: $x < y \rightarrow \exists z(z + (x + 1) = y)$.
- (3) Discreteness: $0 < x \leftrightarrow 1 \leq x$.

Corollary 3.43

$$\mathsf{Q}_{<} \subset \mathsf{PA}^{-} \subset \mathrm{IOpen} \subset \mathrm{I}\Sigma_{0} \subset \mathrm{I}\Sigma_{1} \subset \mathsf{PA}.$$

K. Tanaka

Recap: Pean Arithmetic

Subsystems of PA

First proof

Diagonalizatio: emma

Bew

Alternative proof

Summary

Gödel's first incompleteness theorem

Theorem 3.44 (Σ_1 -completeness of $Q_<$)

 $\mathsf{Q}_{<}$ proves all true Σ_{1} sentences.

Proof

- If a Σ_1 sentence $\exists x_1 \exists x_2 \dots \exists x_k \varphi(x_1, x_2, \dots, x_k)$ is true, there exist concrete numbers n_1, n_2, \dots, n_k such that $\varphi(\overline{n_1}, \overline{n_2}, \dots, \overline{n_k})$ is true. Since $\varphi(\overline{n_1}, \overline{n_2}, \dots, \overline{n_k})$ is a bounded sentence, it is provable if it is true. From the rule of first-order logic, $\exists x_1 \exists x_2 \dots \exists x_k \varphi(x_1, x_2, \dots, x_k)$ is also provable.
- All the arithmetic systems we will discuss are extensions of $\mathsf{Q}_{<},$ and thus $\Sigma_1\text{-complete}.$
- Another condition for the first incompleteness theorem is 1-consistency, also known as Σ_1 -soundness. A theory is said to be Σ_n -sound if all provable Σ_n sentences are true.

K. Tanaka

Recap: Pean Arithmetic

- Subsystems of PA
- First proof
- lemma
- Bew
- -

Summary

- We first look at the first incompleteness theorem from the viewpoint of computability theory. Then, we will reexamine the proof more syntactically.
- Recall that X ⊆ Nⁿ is called CE (computably enumerable) if it is the domain (or range) of some partial recursive function. By Lemma 1.49, any CE relation R(x) can be expressed by ∃yS(x, y) for some primitive recursive relation S.

Definition 3.45

Let $\mathfrak{N}=(\mathbb{N},+,\boldsymbol{\cdot},0,1,<)$ be a standard model of PA.

• A set $A \subseteq \mathbb{N}^l$ is said to be Σ_i if there exists a Σ_i formula $\varphi(x_1, \ldots, x_l)$ s.t.

 $(m_1,\ldots,m_l) \in A \Leftrightarrow \mathfrak{N} \models \varphi(\overline{m_1},\ldots,\overline{m_l}).$

/ 19

- Similarly, Π_i sets can be defined by Π_i formulas.
- A set that is both Σ_i and Π_i is called Δ_i .

K. Tanaka

Recap: Peano Arithmetic

Subsystems of PA

- First proof Diagonalizatio
- lemma
- Bew

The graph $\{(\vec{x},y):f(\vec{x})=y\}$ of a primitive recursive function f is a Δ_1 set.

Proof

Lemma 3.46

• By induction on the construction of primitive recursive functions. For example, consider the following definition of a function f(x):

$$f(0) = c, \quad f(y+1) = h(y, f(y)).$$

- Let $\gamma(x, m, n)$ be a Σ_0 formula " $m(x + 1) + 1! \mid n$ ". Then, for any finite set A (with max A < u), there exist m, n s.t. $\forall x < u(x \in A \Leftrightarrow \gamma(x, m, n))$.
- Fix such m, n. Define a Σ_0 formula $\delta(\langle u_1, u_2 \rangle) \Leftrightarrow \forall y < u_1 \exists z < u_2 \ f(y) = z$ (with m, n as hidden parameters) as follows: for any $u = \langle u_1, u_2 \rangle$,

$$\begin{split} \delta(u) &\equiv \forall y < u_1 \exists z < u_2 \ \gamma(\langle y, z \rangle) \land \forall z < u_2(\gamma(\langle 0, z \rangle) \leftrightarrow z = c) \\ \land \forall y < u_1 - 1 \forall z < u_2(\gamma(\langle y + 1, z \rangle) \leftrightarrow \exists z' < u_2(z = h(y, z') \land \gamma(\langle y, z' \rangle))). \end{split}$$

• Then $\forall u_1 \exists u_2 \exists m \exists n \delta(\langle u_1, u_2 \rangle, m, n)$ holds. Thus, we obtain a Δ_1 relation: $f(y) = z \Leftrightarrow \exists u \exists m \exists n (u_1 = y + 1 \land \delta(u) \land \gamma(\langle y, z \rangle)), \quad \exists z \land z \Rightarrow \forall u \forall m \forall n (u_1 = y + 1 \land \delta(u) \rightarrow \gamma(\langle y, z \rangle)), \quad \Box \quad 7 / 19$

K. Tanaka

ecap: Peano rithmetic

Subsystems of PA

rst proof agonalization mma

lew

Iternative proc

ummary

Lemma 3.47

The CE sets are exactly the same as the Σ_1 sets. Hence, the computable (recursive) sets are exactly the same as the Δ_1 sets.

Proof By Lemma 1.49, any CE relation $R(\vec{x})$ can be expressed by $\exists y S(\vec{x}, y)$ for some primitive recursive relation S. By the above lemma, S can be expressed by a Σ_1 formula, and so $\exists y S(\vec{x}, y)$ is still Σ_1 .

Theorem 3.48 ((Weak) Representation Theorem for CE sets)

Suppose that a theory T is Σ_1 -complete and 1-consistent. Then, for any CE set C, there exists a Σ_1 formula $\varphi(x)$ s.t. for any n, $n \in C \Leftrightarrow T \vdash \varphi(\overline{n})$.

Proof.

- By the above Lemma, for any CE set C, there exists a Σ_1 formula $\varphi(x)$ such that $n \in C \Leftrightarrow \mathfrak{N} \models \varphi(\overline{n})$.
- Since T is Σ_1 -complete, $\mathfrak{N} \models \varphi(\overline{n}) \Rightarrow T \vdash \varphi(\overline{n})$.
- Also since T is 1-consistent, $T \vdash \varphi(\overline{n}) \Rightarrow \mathfrak{N} \models \varphi(\overline{n})$.

K. Tanaka

Recap: Peano Arithmetic

Subsystems of PA

First proof

Diagonalization emma

Bew

Alternative p

Summary

Theorem 3.49 ((Strong) Representation Theorem for Computable Sets)

Assume a theory T is Σ_1 -complete. For any computable set C, there exists a Σ_1 formula $\varphi(x)$ s.t. for any $n, \quad n \in C \Rightarrow T \vdash \varphi(\overline{n}), \quad n \notin C \Rightarrow T \vdash \neg \varphi(\overline{n}).$

Proof.

- For computable C, by Lemma 3.47 there exist Σ_0 formulas $\theta_1(x, y), \theta_2(x, y)$ such that $n \in C \Leftrightarrow \mathfrak{N} \models \exists y \theta_1(\overline{n}, y), \quad n \notin C \Leftrightarrow \mathfrak{N} \models \exists y \theta_2(\overline{n}, y).$
- Let $\varphi(x)$ be a Σ_1 formula $\exists y(\theta_1(\overline{n}, y) \land \forall z \leq y \neg \theta_2(\overline{n}, z))$. By the Σ_1 -completeness of T, $n \in C \Rightarrow T \vdash \varphi(\overline{n})$.
- To show $n \notin C \Rightarrow T \vdash \neg \varphi(\overline{n})$, take any $n \notin C$. Since $\mathfrak{N} \models \exists y \theta_2(\overline{n}, y)$, there exists an m s.t. $\mathfrak{N} \models \theta_2(\overline{n}, \overline{m})$. Again by Σ_1 completeness of $T, T \vdash \theta_2(\overline{n}, \overline{m})$. Also, since $\mathfrak{N} \not\models \exists y \theta_1(\overline{n}, y)$, for all $l, \mathfrak{N} \models \neg \theta_1(\overline{n}, \overline{l})$, i.e., $T \vdash \neg \theta_1(\overline{n}, \overline{l})$. Therefore, if $\theta_1(\overline{n}, a)$ holds in some model of T, then a is not a standard natural number l. Thus, $T \vdash \forall y(\theta_1(\overline{n}, y) \rightarrow \exists z \leq y \ \theta_2(\overline{n}, z))$, that is, $T \vdash \neg \varphi(\overline{n})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

19

K. Tanaka

Recap: Peand Arithmetic

Subsystems of PA

- First proof Diagonalizatior
- Row
- Alternative pro

Summary

- To derive the incompleteness theorem, we need one more condition on a formal system of arithmetic, that is, the set of axioms is CE.
- From the following theorem, a CE set of axioms can be also expressed as a primitive recursive set.

Theorem 3.50 (Craig's lemma)

For any CE theory T, there exists an equivalent (proving the same theorems) primitive recursive theory $T^\prime.$

Proof. Let T be a CE theory, defined by Σ_1 formula $\varphi(x) \equiv \exists y \theta(x, y) \ (\theta \text{ is } \Sigma_0)$. That is, $\sigma \in T \Leftrightarrow \mathfrak{N} \models \varphi(\overline{\lceil \sigma \rceil})$. $\lceil \sigma \rceil$ is the Gödel number of a sentence σ . Then, we define a primitive recursive theory T' as follows:

$$T' = \{ \overbrace{\sigma \land \sigma \land \cdots \land \sigma}^{n+1 \text{ copies}} : \theta(\overline{\ulcorner \sigma \urcorner}, \overline{n}) \}.$$

Then, T and T' are equivalent, since $\vdash \sigma \leftrightarrow \sigma \land \sigma \land \cdots \land \sigma$.

• T' may not be Σ_0 since it includes the Gödel numbers, etc.

K. Tanaka

Recap: Peano Arithmetic

Subsystems of PA

- First proof
- lemma
- Bew
- Alternative proc

Summary

Theorem 3.51

For any CE theory T, the set of its theorems $\{ \ulcorner \sigma \urcorner : T \vdash \sigma \}$ is also CE.

Proof.

- Recall that a proof in a formal system of first-order logic is a finite sequence of formulas, each formula being either a logical axiom, an equality axiom, or a mathematical axiom of a theory *T*, or obtained from previous formulas by applying MP or a quantification rule.
- From the Craig's Lemma, a CE theory T can be transformed into a primitive recursive theory. Thus, it is also a primitive recursive relation whether (the Gödel number of) a finite sequence of formulas is a proof of T.
- A sentence σ is a theorem of T iff there exists a proof (i.e., a sequence that satisfies the primitive recursive relation) such that σ is the last formula of the proof. Thus, the set of theorems of T is CE.

11 / 19

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

K. Tanaka

Recap: Peano Arithmetic

ubsystems of PA

First proof Diagonalizati

lemma

Bew

Summary

Gödel's first incompleteness theorem easily follows from The halting problem ${\rm K}.$

Theorem 3.52 (Gödel's first incompleteness theorem)

Let T be a Σ_1 -complete and 1-consistent CE theory. Then T is incomplete, that is, there is a sentence that cannot be proved or disproved.

Proof.

- Suppose K is CE but not co-CE. By the weak representation theorem for CE sets, there exists a formula $\varphi(x)$ such that $n \in K \Leftrightarrow T \vdash \varphi(\overline{n})$.
- On the other hand, since $\mathbb{N}-\mathrm{K}$ is not a CE, there exists some d such that

$$d\in \mathbb{N}-\mathcal{K}\not\Leftrightarrow T\vdash \neg\varphi(\overline{d}).$$

Thus, $(d \in K \text{ and } T \vdash \neg \varphi(\overline{d}))$ or $(d \notin K \text{ and } T \nvDash \neg \varphi(\overline{d}))$.

• In the former case, since $d \in K$ implies $T \vdash \varphi(\overline{d})$, T is inconsistent, which contradicts with the 1-consistency assumption.

- In the latter case, T is incomplete because $\varphi(\overline{d})$ cannot be proved or disproved.

K. Tanaka

Exercise

Recap: Pean Arithmetic

ubsystems of

First proof

)iagonalization emma

Alternative or

Summary

- (1) In a Σ_1 complete theory T, show that Σ_1 -soundness of T is equivalent to the following: for any Σ_0 formula $\varphi(x)$, if $\varphi(\overline{n})$ is provable in T for all n, then $\exists x \neg \varphi(x)$ is not provable in T.
- (2) Let A, B be two disjoint CE sets. Assume a theory T is Σ_1 -complete. Show that there exists a Σ_1 formula $\psi(x)$ such that

$$n \in A \Rightarrow T \vdash \psi(\overline{n}), \quad n \in B \Rightarrow T \vdash \neg \psi(\overline{n}).$$

(日)

From this, deduce that $\{ \ulcorner \sigma \urcorner : T \vdash \sigma \}$ and $\{ \ulcorner \sigma \urcorner : T \vdash \neg \sigma \}$ are computably inseparable. (See Part 1-6, Slide p.21.) In particular, $\{ \ulcorner \sigma \urcorner : T \vdash \sigma \}$ is not computable.

K. Tanaka

Recap: Peano Arithmetic Subsystems of PA First proof Diagonalization lemma Bew Alternative proof

Summary

From now, we will reconsider the proof of the first incompleteness theorem more rigorously in $I\Sigma_1$, which leads us to the second incompleteness theorem.

To begin with, we remark that $I\Sigma_1$ actually enables the use of induction for the boolean combinations of Σ_1 formulas. For instance, to use induction for $\neg \varphi(x)$, one may use induction for $\varphi(a - x)$ with any constant a.

Lemma 3.53 (Formal representation for primitive recursive functions)

For any p.r. function, there is a Δ_1 formula $\varphi(x, y)$ which expresses its graph, and in $I\Sigma_1$, it is provable that $\forall x \exists ! y \varphi(x, y)$, where $\exists !$ means "unique existence".

Proof. By Lemma 3.46, the graph of a primitive recursive (p.r.) function f is expressed as a Δ_1 formula $\varphi(x, y)$. Then, $\forall x \exists ! y \varphi(x, y)$ is rewritten as

 $\forall x \exists y \varphi(x,y) \ \land \ \forall x \forall y \forall z (\varphi(x,y) \land \varphi(x,z) \to y = z),$

which can be shown by $I\Sigma_1$, and by induction on the construction of $\varphi(x,y)$.

K. Tanaka

Recap: Peano Arithmetic Subsystems of

irst_proof

Diagonalization lemma

Bew Altornativo proc

Summary

From the above lemma, we can see that $I\Sigma_1$ is a conservative extension even if we add the symbols of the p.r. function and its definable formulas.

In other words, (in $I\Sigma_1$) a Σ_1 formula containing p.r. functions is rewritten as an equivalent Σ_1 formula without p.r. functions by replacing the functions with the corresponding Δ_1 formulas. Similarly for a Δ_1 formula.

Lemma 3.54 (Diagonalization lemma)

Let T be any extension of $I\Sigma_1$. For any formula $\psi(x)$ in which x is the only free variable, there exists a sentence σ such that $T \vdash "\sigma \leftrightarrow \psi(\overline{\ulcorner \sigma \urcorner})"$.

Proof.

- We first enumerate (primitively recursively) the formulas with only x as a free variable as $\varphi_0(x), \varphi_1(x), \ldots$. Then define $f(n) = \lceil \varphi_n(\overline{n}) \rceil$, which is also a p.r. function.
- By Lemma 3.53, there exists a Δ_1 formula χ such that

$$f(m) = n \Rightarrow T \vdash \chi(\overline{m}, \overline{n}) \land \forall x \exists ! y \chi(x, y).$$

$$15 / 19$$

K. Tanaka

Recap: Peano Arithmetic

Subsystems of PA

Diagonalization

lemma

Alternative proof

Summary

Proof (continued).

- Now given a formula ψ(x), consider a formula ∃y(χ(x, y) ∧ ψ(y)). Since it only has a free variable x, it is φ_k(x) for some k.
- Let $\sigma \equiv \varphi_k(\overline{k})$ for this k. Then, $f(k) = \lceil \sigma \rceil$, so $T \vdash \chi(\overline{k}, \overline{\lceil \sigma \rceil})$.
- Thus, in T,

$$\psi(\overline{\lceil \sigma \rceil}) \to \exists y(\chi(\overline{k}, y) \land \psi(y)) \ (\equiv \varphi_k(\overline{k}) \equiv \sigma)$$

• On the other hand, since $T \vdash \forall x \exists ! y \chi(x,y)$, in T,

$$\neg \psi(\overline{\ulcorner \sigma \urcorner}) \to \neg \exists y(\chi(\overline{k}, y) \land \psi(y)) \ (\equiv \neg \sigma).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

16 / 19

• Therefore, σ is the fixed point of ψ $(T \vdash \sigma \leftrightarrow \psi(\overline{\ulcorner \sigma \urcorner}))$.

K. Tanaka

Recap: Peano Arithmetic Subsystems of PA First proof Diagonalization lemma Bew

ummany

In theorem 3.51, we show that the set of theorems of a CE theory is also CE . We here consider a formal version of this statement.

Definition 3.55

Let T be a CE theory. Based on Craig's lemma, let T' be its p.r. counterpart. Then, "a sequence of formulas P is a proof in T'" can be defined in a p.r. way. Thus, we define a p.r. relation Proof_T as follows.

 $\operatorname{Proof}_T(\ulcorner P \urcorner, \ulcorner \sigma \urcorner) \Leftrightarrow P \text{ is a proof of formula } \sigma \text{ in } T'.$

By Proof_T , we also denote a Δ_1 formula expressing the above Proof_T in I Σ_1 .

A Σ_1 formula Bew_T is defined as $\operatorname{Bew}_T(x) \equiv \exists y \operatorname{Proof}_T(y, x)$.

The formula $\text{Bew}_T(x)$ expresses that "x is the Gödel number of a theorem of T". "Bew" stands for the German beweisbar (provable).

K. Tanaka

Recap: Peano Arithmetic Subsystems of P. First proof Diagonalization lemma Bew

Alternative proof

Alternative proof of the first incompleteness

We give another proof for the first incompleteness theorem (with the additional assumption that a theory T includes $|\Sigma_1\rangle$.

Proof.

- By the diagonalization lemma, $\neg \text{Bew}_T(x)$ has a fixed point, that is, there exists σ such that $T \vdash \sigma \leftrightarrow \neg \text{Bew}_T(\ulcorner \sigma \urcorner)$.
- We will show this σ is neither provable nor disprovable in T as follows.
- Let $T \vdash \sigma$. Then $\operatorname{Bew}_T(\overline{\lceil \sigma \rceil})$ is true. Hence $T \vdash \operatorname{Bew}_T(\overline{\lceil \sigma \rceil})$ from Σ_1 completeness. Since σ is the fixed point of $\neg \operatorname{Bew}_T(x)$, we have $T \vdash \neg \sigma$, which means that T is inconsistent.
- On the other hand, if $T \vdash \neg \sigma$, $T \vdash \text{Bew}_T(\ulcorner \sigma \urcorner)$ because σ is a fixed point. Here, using the 1-consistency of T, $\text{Bew}_T(\ulcorner \sigma \urcorner)$ is true, and so $T \vdash \sigma$, which is a contradiction. \Box

The sentence σ thus constructed "asserts its own unprovability" because " $\sigma \Leftrightarrow T \not\vdash \sigma$ " holds. This σ is called the **Gödel sentence** of T.

K. Tanaka

Recap: Peano Arithmetic Subsystems of P. First proof Diagonalization lemma Bew

Summary

Theorem 4.1 (Gödel's first incompleteness theorem)

Any 1-consistent CE extension of I Σ_1 is incomplete.

Further readings

- Theory of Computation, D.C. Kozen, Springer 2006.
- Mathematical Logic. H.-D. Ebbinghaus, J. Flum, W. Thomas, Graduate Texts in Mathematics 291, Springer 2021.

Thank you for your attention!

Summarv