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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation
• Part 2. Propositional Logic and Computational Complexity
• Part 3. First Order Logic and Decision Problems
• Part 4. Modal logic (shifted to next semester)� �

Part 3. A new schedule (subject to change)� �
• Nov.14, (4) Ehrenfeucht-Fraïssé’s theorem
• Nov.19, (5) Ehrenfeucht-Fraïssé’s theorem II
• Nov.21, (6) Presburger arithmetic
• Nov.26, (7) Peano arithmetic
• Nov.28, (8) Gödel’s first incompleteness theorem
• Dec. 3, (9) Gödel’s second incompleteness theorem
• Dec. 5, (10) Second order logic
• Dec.10, (11) Second order arithmetic� �

2 / 20



Logic and
Computation

K. Tanaka

Recap
Application of EF
game
Presburger arithmetic

Summary
§3.6 Peano
arithmetic:
Introduction

Recap
• We consider a language of finitely many relation symbols and constants.
• The (quantifier) rank of a formula measures the entanglement of quantifiers appearing

in it. For example, the rank of ∀y(∀x∃y(x = y) ∧ ∀z(z > 0)) is 3.
• By A ≡n B, we mean that structures A,B satisfy the same formulas with rank ≤ n.
• Given an A and n, there is the Scott-Hintikka sentence φn

A of rank n such that
B |= φn

A ⇔ B ≡n A.
• By A 'n B, we mean that player II has a winning strategy in EFn(A,B), where n is

the round of the game.
• EF theorem For all n ≥ 0, A ≡n B iff A 'n B.
• Corollary The following are equivalent.

(1) For any n, there exist A ∈ K and B ̸∈ K such that A ≡n B.
(2) K is not an elementary class (K cannot be defined by a first-order formula).

• By the EF theorem, DLO is decidable.
• DLO is PSPACE-complete. TQBF is polynomial-time reducible to DLO.
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We next apply the EF theorem to the problem of length of finite linear orders.

Lemma 3.35 (Gurevich)
Fix any m > 0. If L1, L2 are two finite linear orders with length ≥ 2m, L1 ≡m L2.

Proof.
• By [n] = (n,<), we denote a finite linear order on n, where n is identified with
{0, 1, . . . , n− 1}.

• For each k, we define a threshold function |x|k by |x|k = |x| if |x| < 2k; |x|k = ∞,
otherwise.

• Consider a partial isomorphism a⃗(⊂ [n]) 7→ b⃗(⊂ [n′]) that satisfies the following
conditions: if a⃗ = (a1, a2, . . . , al) and b⃗ = (b1, b2, . . . , bl) are arranged in ascending
order, and a0 = b0 = 0, al+1 = n, bl+1 = n′, then

for any i ≤ l, |ai+1 − ai|k = |bi+1 − bi|k holds.
Then, let Ik be the set of such partial isomorphisms.

• By ∅ ∈ Ik we mean |n|k = |n′|k. Thus, if n, n′ ≥ 2m, then ∅ ∈ Im
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• Take any a⃗ 7→ b⃗ ∈ Ik. We can show that for any a ∈ n, there exists a b ∈ n′ such that
a⃗a 7→ b⃗b ∈ Ik−1 holds. Here, a⃗a and b⃗b are rearranged in order.

• First consider the case |ai+1 − ai|k = |bi+1 − bi|k < ∞ and ai+1 > a > ai. Then,
|ai+1 − a|k−1 < ∞ or |a− ai|k−1 < ∞ hold. For instance, if |a− ai|k−1 = d < ∞,
then a = ai + d and we may take b = bi + d.

• Next consider the case |ai+1 − ai|k = |bi+1 − bi|k = ∞ and ai+1 > a > ai. Then
|ai+1 − a|k−1 = ∞ or |a− ai|k−1 = ∞ holds. If one is < ∞, then b is determined in
the same way as above. If both are ∞, b can be taken so that |bi+1 − b|k−1 = ∞ and
|b− bi|k−1 = ∞.

• Therefore, we have I0 6= ∅. More strictly, we obtain [n] 'm [n′].
• Thus, by the EF theorem, for n, n′ ≥ 2m, [n] ≡m [n′]. □

Theorem 3.36
There is no first-order formula expressing the parity of length of a finite linear order.

Proof Assume we have such a formula φ. Let qr(φ)= m. Then by the above lemma,
linear orders longer than 2m cannot be separated by φ, a contradiction. □
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The connectivity of graphs cannot be defined by a first-order formula.� �
• We show this by reducing the parity problem of linear orders to it.

We first make a special graph from a linear order.
• Given a linear order <, let succ(x, y) ≡ (x < y) ∧ ∀z(z ≤ x ∨ y ≤ z) and
succ2(x, y) ≡ ∃z(succ(x, z) ∧ succ(z, y)).
Also let first(x) ≡ ¬∃y succ(y, x) and last(x) ≡ ¬∃y succ(x, y)

• Finally, we make a graph on V = n by defining edge(x, y) as follows.
edge(x, y) ≡ succ2(x, y)∨

((∃z(succ(x, z) ∧ last(z)) ∧ first(y))) ∨ (last(x) ∧ (∃z(first(z) ∧ succ(z, y))))
In this graph, every other points in a line are connected by an edge, and the first
point is connected from the second last point, and also the second point is from
the last point.

• If a linear order has even number of points, the graph becomes two cycles
(disconnected), and if odd number, it results in a single cycle.

• In other words, if the connectivity of a graph can be defined, then the parity of
the length of a linear order can be defined, a contradiction.� �
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Homework 3.5.1� �
Given a finitely connected graph, the existence of an Eulerian cycle in it cannot be
described in first-order logic.� �
• To expand the scope of application of the EF theorem, we would like to consider

structures with functions.

• Rewriting functions as relations requires the use of extra quantifiers for function
composition, and the need to use more complicated formulas for atomic formulas
involving functions.

• However, there are no big problems when dealing with arbitrary ranks. For example,
the following argument is possible for groups.

• G1 ≡ G2 ⇒ G1 ×H ≡ G2 ×H for three groups G1, G2,H. For this proof, we
observe that II’s winning play g⃗1 ↔ g⃗2 in EFn(G1, G2) can be modified as II’s winning
play (g⃗1, h⃗) ↔ (g⃗2, h⃗) in EFn(G1 ×H,G2 ×H).
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§3.5 Presburger arithmetic

• Presburger arithmetic is a first order theory for structure N = (N, 0, 1,+) in the
language LP = {0, 1,+}.

• We want to find a method to determine whether or not N |= σ holds for a sentence σ
in the language LP.

• The method we adopt here is an application of computational models such as
automata. This technique will be extended to second-order logic in the next semester.

• Note that in Presburger arithmetic, < is defined as x < y ↔ ∃z(x+ z + 1 = y). The
congruence relation ≡k is also defined. Then Presburger arithmetic with < and ≡k

admits the elimination of quantifiers, which is another method of solving the decision
problem.
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• First, let us consider how to express the sequence of natural numbers (n1, n2, . . . , ns)
(where s > 0) in terms of a word that recognized by the automaton.

• We first consider a vertical vectors of length s with elements 0, 1 as a symbol handled
by an automaton. So, the alphabet Ωs consists of 2s symbols defined by

b⃗ =


b1
b2
...
bs

 where b1, b2, . . . , bs = 0 or 1.

We may also write b⃗ = t[b1, b2, . . . , bs].

• A word b⃗1⃗b2 . . . b⃗t over Ωs can be expressed as
b11
b12
...
b1s




b21
b22
...
b2s

 . . .


bt1
bt2
...
bts

 =


b11b21 . . . bt1
b12b22 . . . bt2

...
b1sb2s . . . bts


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• An s-tuple (n1, n2, . . . , ns) of natural numbers is represented by b⃗1⃗b2 . . . b⃗t as follows.

n1 = b11 + b21 · 2 + · · ·+ bt1 · 2t−1

n2 = b12 + b22 · 2 + · · ·+ bt2 · 2t−1

...
ns = b1s + b2s · 2 + · · ·+ bts · 2t−1

• In other words, the binary representation of natural number ni is btib(t−1)i . . . b1i.

• So, if we add the zero vector 0⃗ to the right of the word b⃗1⃗b2 . . . b⃗t, the resulting
sequence b⃗1⃗b2 . . . b⃗t0⃗ represents the same sequence (n1, n2, . . . , nt) of natural
numbers. But if we add 0⃗ to the left of b⃗1⃗b2 . . . b⃗t, the resulting sequence 0⃗ . . . b⃗t
represents (2n1, 2n2, . . . , 2ns).

• Note that the zero vector 0⃗ is different from the empty string

ε =


 .
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• Regarding an s-tuple of natural numbers (n1, n2, . . . , ns) (where s > 0) as a word
over Ωs, we next consider the set of (n1, n2, . . . , ns) that satisfies a given formula
φ(x1, x2, . . . , xs). Then we will construct an automaton that can accept such a
language.

• First, an atomic formula in Presburger arithmetic is expressed as follows.

a1x1 + a2x2 + · · ·+ asxs = b, · · · (⋆)

where aixi is short for ± (xi + xi + · · ·+ xi)︸ ︷︷ ︸
|ai| copies

and b for ± (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
|b| copies

.

Note that ai’s and b may be negative because terms are transposed to express a
formula as (⋆).

• Also, we may assume s > 0, since by setting ai = 0, you can add the variable xi

meaninglessly.
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• Let c⃗ = t[c1, c2, . . . , cs] be the first letter of the word representing the solution
(n1, n2, . . . , ns) of Equation (⋆).

• Then, let (n′
1, n

′
2, . . . , n

′
s) be the sequence of numbers represented by the remaining

strings excluding c⃗. Then for each i,

ni = ci + 2n′
i.

Hence,
a1n

′
1 + a2n

′
2 + · · ·+ asn

′
s =

b− Σiaici
2

.

• Let M = |b|+Σi|ai|. For any t[c1, c2, . . . , cs] ∈ Ω, |
∑

i aici| ≤ Σi|ai| ≤ M . Then for
any b′ ∈ [−M,M ], b′−Σiaici

2 ∈ [−M,M ].
• Now define an automaton M = (Q,Ωs, δ, q0, F ) for Equation (⋆) by:

• the set of states Q are {the integers in [−M,M ]} ∪ {⊥}.
• transition function δ : Q× Ω → Q is defined as follows: for any q (6= ⊥),

δ(q, c⃗) =
q − Σiaici

2
(if it is an integer); = ⊥(otherwise); δ(⊥, c⃗) = ⊥.

• the initial state q0 = b,
• the set of final states F = {0}.
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Example 6� �
The transition of an automaton for x1+2x2−3x3 = 1 is shown as follows. The arrows
entering the deadlock state ⊥ are omitted in the picture.

• At state 1, if the input symbol is
t[0, 0, 0], it enters the deadlock.
For such an input, n1, n2, and n3

are all multiples of 2, and so they
can not be a solution of
x1 + 2x2 − 3x3 = 1.

• On the other hand, it accepts the
word t[1, 1, 0]t[0, 1, 1], which
represents (n1, n2, n3) = (1, 3, 2).

� �
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• An automaton thus defined accepts the language of words representing s-tuples
(n1, n2, . . . , ns) that satisfy the atomic formula φ(x1, x2, . . . , xs).

• It is also easy to extend an automaton expressing an atomic formula to that for a
Boolean combination of them, since the class of regular languages is closed under
Boolean operations.

• It is also easy to add quantifiers. If M = (Q,Ωs, δ, q0, F ) is a deterministic automaton
corresponding to a formula φ(x1, x2, . . . , xs), then a nondeterministic automaton
M′ = (Q,Ωs−1, δ

′, {q0}, F ) corresponding to ∃x1φ(x1, x2, . . . , xs) can be
constructed as follows.

δ′(q, t[c2, . . . , cs]) = {δ(q, t[b, c2, . . . , cs]) : b = 0, 1}

Then M′ accepts a word representing (n2, . . . , ns) iff M accepts a word representing
(n1, n2, . . . , ns) for some n1. Note that a nondeterministic automaton can always be
transformed into a deterministic automaton.
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• The universal quantifier ∀x can be rewritten as ¬∃x¬.

• Thus, for every formula φ(x1, x2, . . . , xs) in Pressburger arithmetic, we can construct
an automaton accepting the language of words representing s-tuples (n1, n2, . . . , ns)
that satisfy the formula φ(x1, x2, . . . , xs).

• For a sentence σ, it can be treated by adding a meaningless variable, and the truth of
the sentence can be determined by whether the language accepted by automaton is
empty or Ω∗

1.

• Therefore, we obtain the following theorem.

Theorem 3.37
Presburger arithmetic is decidable.
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Summary

• By the EF theorem, DLO is decidable.

• DLO is PSPACE-complete. TQBF is polynomial-time reducible to DLO.

• (Gurevich) For any m > 0, for any two finite linear sequences L1, L2 of length 2m or
greater, L1 ≡m L2.

• For finite linear orders, there is no first-order formula expressing the parity of its length.

• The connectivity of a graph cannot be defined by a first-order formula.

• For every formula φ(x1, x2, . . . , xs) in Presburger arithmetic, we can construct an
automaton accepting the language of words representing s-tuples (n1, n2, . . . , ns) that
satisfy the formula φ(x1, x2, . . . , xs).

• Presburger arithmetic is decidable.
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§3.6 Peano arithmetic: Introduction
• So-called “Peano’s postulates” (1889) is famous as an

axiomatic treatment of the natural numbers. However, it is
not a formal system in the sense of modern logic, since its
underlying logic is ambiguous. Moreover, we should also
notice previous advanced studies by C.S. Peirce (1881) and
R. Dedekind (1888).

• It was Hilbert who began to consider natural number
theory as a formal theory in first-order logic.

• The decision problem must be considered the main problem
of mathematical logic. (Hilbert-Ackermann, 1928).

• FO(N,+) is decidable. (Presburger, 1929)
• FO(N, ·) is decidable. (Skolem, 1930)
• Ramsey, On a problem of formal logic, 1930.
• Gödel’s undecidable arithmetical propositions, 1931.

G. Peano

C.S. Peirce

R. Dedekind
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Peano arithmetic is a first-order theory in the language of ordered rings
LOR = {+, ·, 0, 1, <}, consists of the following mathematical axioms.

Definition 4.1
Peano arithmetic (PA) has the following formulas in LOR as a mathematical axiom.

Successor: ¬(x+ 1 = 0), x+ 1 = y + 1 → x = y.
Addition: x+ 0 = x, x+ (y + 1) = (x+ y) + 1.
Multiplication: x · 0 = 0, x · (y + 1) = x · y + x.
Inequality ¬(x < 0), x < y + 1 ↔ x < y ∨ x = y.

Induction: φ(0) ∧ ∀x(φ(x) → φ(x+ 1)) → ∀xφ(x).

• Induction is not a single formula, but an axiom schema that collects the formulas for
all the φ(x) in LOR. Note that φ(x) may include free variables other than x.

• In ”Peano’s postulates”, induction is expressed in terms of sets, but Peano arithmetic
does not presuppose set theory.
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• In a modern formal system, to add a new function, it must be defined explicitly so
that the extended system is a conservative extension.

• The primitive recursive definition is not an explicit definition. In fact, if we add the
primitive recursive definition of multiplication to Presburger arithmetic (a system of
only addition), the resulting system loses completeness and decidability, and it is not a
conservative extension.

• In other words, multiplication is not definable from addition.

• On the other hand, the inequality x < y can be defined from addition as abbreviation
for ∃z(y = (x+ z) + 1). However, we prefer to include the inequality as a primitive
symbol, because it allows us to define the hierarchy of formulas simply.

• Similarly, in the following, we assume that ¬, ∧, ∨, →, ∀, ∃, etc. are all pre-set.
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