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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation
• Part 2. Propositional Logic and Computational Complexity
• Part 3. First Order Logic and Decision Problems
• Part 4. Modal logic (shifted to next semester)� �

Part 3. A new schedule (subject to change)� �
• Nov.14, (4) Ehrenfeucht-Fraïssé’s theorem
• Nov.19, (5) Ehrenfeucht-Fraïssé’s theorem II
• Nov.21, (6) Presburger arithmetic
• Nov.26, (7) Peano arithmetic
• Nov.28, (8) Gödel’s first incompleteness theorem
• Dec. 3, (9) Gödel’s second incompleteness theorem
• Dec. 5, (10) Second order logic
• Dec.10, (11) Second order arithmetic� �2 / 21
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Recap

• We will consider a language of finitely many relation symbols and constants.
Let L be {R0, . . . ,Rn−1}, and also consider its expansion by adding constants.

• Let A be a structure in a language L = L′ ∪ {c⃗}. Then, A can be written as
(A′, a⃗) or A′

a⃗, where A′ is a reduct of A to the language L′. Also, A can be
expanded to (A, b⃗) = A′

a⃗,⃗b
in a language L′ ∪ {c⃗, d⃗}.

• The (quantifier) rank of a formula φ expresses the maximum number of
nesting quantifiers, e.g., the rank of ∀y(∀x∃y(x = y) ∧ ∀z(z > 0)) is 3.

• Lemma 3.18 For an n, k, there are essentially finitely many formulas with
rank ≤ n in fixed free variables x1, ..., xk.
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• The theory Th(A) of a structure A is the set of sentences true in A.
• Two structures A,B are said to be elementarily equivalent, denote A ≡ B,

iff Th(A) = Th(B), equivalently B |= Th(A).

• A is an elementary substructure of B, A ≺ B, iff Th(AA) = Th(BA).
• Let Thn(A) be the subset of Th(A) consisting of sentences with rank ≤ n.

A relation ≡n is defined as follows.

A ≡n B ⇔ Thn(A) = Thn(B).

• Let A,B be L-structures with/without constants. Then, a function
f : a⃗(⊂ A) → b⃗(⊂ B) is a partial isomorphism such that

(A, a⃗) ≡0 (B, b⃗).

Note that if A ≡0 B, the empty function is a partial isomorphism. Moreover,
notice that Th0(A) and Th0(B) may be empty without constants.
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Definition 3.22
Let A0, A1 be L-structures with/without constants and n be a natural number. In
an n-round EF game EFn(A0,A1), player I (Spoiler) and player II (Duplicator)
alternately choose a number from A0 or A1 obeying the rules described below, and
the winner is determined according to the winning condition.

• Rules: At each round k ≤ n, if I chooses
an element, say xk, from Ai (i = 0, 1), then II
chooses an element, say yk, from A1−i.
• Winning conditions: If the correspondence
xi ↔ yi chosen by the players up to n rounds
determines a partial isomorphism between A0

and A1, then II wins.

𝐴𝐴0 𝐴𝐴1

𝑥𝑥𝑘𝑘 𝑦𝑦𝑘𝑘

𝑥𝑥𝑘𝑘+1𝑦𝑦𝑘𝑘+1

⋮ ⋮

⋮ ⋮
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Definition 3.23
(With/without constants) A 'n B iff player II has a winning strategy in EFn(A,B).

Lemma 3.24
Let A and B be L-structures. For each n ≥ 0, we define a relation 'n as follows:

(A, a⃗) '0 (B, b⃗) ⇔ (A, a⃗) ≡0 (B, b⃗) ⇔ a⃗ 7→ b⃗ is partial isomorphism.
(A, a⃗) 'n+1 (B, b⃗) ⇔ ∀a ∈ A ∃b ∈ B (A, a⃗a) 'n (B, b⃗b) and

∀b ∈ B ∃a ∈ A (A, a⃗a) 'n (B, b⃗b)

For n = 0, (A, a⃗) '0 (B, b⃗) iff II wins EF0((A, a⃗), (B, b⃗)) iff (A, a⃗) ≡0 (B, b⃗).
For the induction step, note that II wins EFn+1(A,B) iff

∀a ∈ A ∃b ∈ B II wins EFn((A, a), (B, b)) and
∀b ∈ B ∃a ∈ A II wins EFn((A, a), (B, b)).

Here, “II wins G” means “II has a winning strategy in G”.
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Our goal is to show that A 'n B and A ≡n B are equivalent. To this end, we
introduce the Scott-Hintikka formulas.
Definition 3.25 (Scott-Hintikka Formula)
For a structure A and a sequence of elements a⃗, the Scott-Hintikka formula with
rank n, φn

A,⃗a(x⃗), is defined inductively as follows.

φ0
A,⃗a(x⃗) :=

∧
{θ(x⃗) : (A, a⃗) |= θ(c⃗), qr(θ(x⃗)) = 0} .

φn+1
A,⃗a (x⃗) :=

∧
a∈A

∃x φn
A,⃗aa(x⃗, x) ∧ ∀x

∨
a∈A

φn
A,⃗aa(x⃗, x).

• When we write (A, a⃗) |= θ(c⃗), c⃗ are new constants interpreted as a⃗.
• In the above definition, even if A is infinite, by Lemma 3.18, there are finitely

many formulas in the scopes of
∧
,
∨

. So, the Scott-Hintikka formula can be
defined as a first-order formula.
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Lemma 3.26
(A, a⃗) |= φn

A,⃗a(c⃗).

Proof
• When n = 0, it is clear from the definition.

• Then, we want to show (A, a⃗) |= φn+1
A,⃗a (c⃗) by the induction hypothesis.

• We first consider
∧

a∈A ∃xφn
A,⃗aa(c⃗, x), which is the left component of the

definition formula of φn+1
A,⃗a (c⃗). For every a ∈ A, φn

A,⃗aa(c⃗, c) holds in (A, a⃗a) by
the induction hypothesis. So, ∃xφn

A,⃗aa(c⃗, x) also holds in (A, a⃗a), hence also
in (A, a⃗). Finally, the left formula holds for (A, a⃗).

• To show the right formula ∀x
∨

a∈A φ
n
A,⃗aa(c⃗, x) holds in (A, a⃗), take any

x = b ∈ A. Then, letting a = b, we may show φn
A,⃗ab(c⃗, c) holds in (A, a⃗b)

(where c = b), which holds by the induction hypothesis. So, the right formula
also holds for (A, a⃗).

• Therefore, the conjunction of both formulas holds in (A, a⃗). □8 / 21
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Theorem 3.27 (Ehrenfeucht-Fraïss theorem, EF theorem)
For all n ≥ 0, the following are equivalent.
(1) (A, a⃗) ≡n (B, b⃗), (2) (B, b⃗) |= φn

A,⃗a(c⃗), (3) (A, a⃗) 'n (B, b⃗).

Proof. (1) ⇒(2). It is obvious from Lemma 3.26, since qr(φn
A,⃗a(x⃗)) = n.

We show (2) ⇒(3) by induction on n. For n = 0, (2)⇒ (A, a⃗) ≡0 (B, b⃗) ⇒ (3).
For induction step, assume (2) ⇒(3) for n as well as (B, b⃗) |= φn+1

A,⃗a (c⃗).
From the definition of the Scott-Hintikka formula,

∀a ∈ A ∃b ∈ B (B, b⃗b) |= φn
A,⃗aa(c⃗, c) ∧ ∀b ∈ B ∃a ∈ A (B, b⃗b) |= φn

A,⃗aa(c⃗, c)

By the induction hypothesis, we have

∀a ∈ A ∃b ∈ B (A, a⃗a) 'n (B, b⃗b) ∧ ∀b ∈ B ∃a ∈ A (A, a⃗a) 'n (B, b⃗b).

By Lemma 3.24, we obtain
(A, a⃗) 'n+1 (B, b⃗).

Thus, (3) also holds for n+ 1.
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We finally show (3) ⇒(1) by induction on n.
Case n = 0 follows from Lemma 3.24.
For induction step, assume (3) ⇒ (1) for n as well as (A, a⃗) 'n+1 (B, b⃗).
• To show (A, a⃗) ≡n+1 (B, b⃗), the essential case to check is a formula
φ(x⃗) = ∃xψ(x⃗, x) with qr(ψ(x⃗, x)) = n.

• Suppose (A, a⃗) |= φ(c⃗). Then, there exists a ∈ A such that (A, a⃗a) |= ψ(c⃗, c).
• Since (A, a⃗) 'n+1 (B, b⃗), by Lemma 3.24, there exists a b ∈ B such that
(A, a⃗a) 'n (B, b⃗b), and so (B, b⃗b) |= ψ(c⃗, c). Thus (B, b⃗) |= φ(c⃗).

• This proves Thn+1(A, a⃗) ⊂ Thn+1(B, b⃗). Similarly, we have
Thn+1(A, a⃗) ⊃ Thn+1(B, b⃗), and so (1) holds. □

Corollary 3.28
A ≡ B ⇔ for any n, A 'n B.
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It is natural to extend the play of the EF game to infinity (ω-round). If player II
has a winning strategy in such a game EFω(A,B), we write A 'ω B.

Corollary 3.29
Suppose A,B are countable. Then, A 'ω B ⇔ A ' B.

Proof. ⇐ is obvious because the isomorphism is a winning strategy for player II.
⇒ is shown by the back-and-forth argument. Let A = {a0, a1, . . . },
B = {b0, b1, . . . }. Player II follows the winning strategy, and Player I alternately
chooses the smallest element that have not been selected from A and B, thus a
bijection between A and B is produced, which is a desired isomorphism. □

Corollary 3.30
For each n, there are finitely many equivalence classes of L-structure by ≡n.

Proof By Lemma 3.18, there are essentially finitely many Scott-Hintikka
sentences φn

A,∅ with rank n. By the EF theorem, each ≡n equivalence class is
characterized by such a sentence, and so there are only a finite number of them. □
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Corollary 3.31
Let K be a set of L-structures. The following are equivalent.
(1) For any n, there exist A ∈ K and B 6∈ K such that A ≡n B.
(2) K is not an elementary class (K cannot be defined by a first-order formula).

Proof.
• (1) ⇒(2). By way of contradiction, assume K is defined by a first-order

sentence φ. Let n be the rank of φ. If A ∈ K and B 6∈ K then A 6≡n B.
• (2) ⇒(1). By way of contradiction, assume that for some n, if A ≡n B then

A ∈ K ⇔ B ∈ K. Since there is a first-order (Scott-Hintikka) sentence φn
A of

rank n such that A ≡n C ⇔ C |= φn
A, K is defined by φn

A. □

NOTE: Definition 3.32 and Theorem 3.33 are skipped and will be explained later.
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Applications of EF games: DLO
• (Q, <) and (R, <) are models of DLO (dense linear order without end points).

• Let A,B be two models of DLO. Player II has a winning strategy in
EFn(A,B) for all n. Suppose a partial isomorphism between
a1 < a2 < · · · < an in A and b1 < b2 < · · · < bn in B are constructed by the
players up to the round n. If Player I chooses xn+1 between ai < ai+1 (or
bi < bi+1), then Player II can extend the partial isomorphism by choosing yn+1

between bi < bi+1 (or ai < ai+1).

• Then, for all n ≥ 0, A 'n B. By the EF theorem, for all n, A ≡n B, and
hence A ≡ B. In particular, (Q, <) ≡ (R, <).

• Then, DLO is a complete theory. Therefore, it is decidable.
▶ If it is not complete, then there is a sentece σ which is neither provable nor

disprovable.
▶ Hence, both DLO∪{¬σ} and DLO∪{σ} are consistent. So, each has its own

model, but they are no longer elementary equivalent, which is a contradiction.

• A complete theory is characterized as Th(A) for its arbitrary model A.
DLO is often treated as Th(Q, <).

13 / 21
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Theorem 3.34
DLO is a PSPACE-complete problem.

Proof. First, we show that DLO is PSPACE-hard, by reducing TQBF to DLO in
polynomial time. It was shown in Part 2 of this course, TQBF (true quantified
Boolean formula) is PSPACE-complete.
• Let A be a QBF and transform it to a PNF Q1x1...QnxnB(x1, ..., xn), where
B(x1, ..., xn) is a Boolean formula.

• Then, define a DLO formula A< as follows.
Q1x1Q1y1...QnxnQnynB(x1 < y1, ..., xn < yn).

• For example, for a QBF A ≡ ∀x1∃x2∀x3((x1 ∧ x2) ∨ ¬x3), A< in DLO is
∀x1∀y1∃x2∃y2∀x3∀y3(((x1 < y1) ∧ (x2 < y2)) ∨ ¬(x3 < y3)).

• An atomic formula xi < yi in A< simply plays the role of variable xi in A.
So, A holds in the Boolean algebra {0, 1} iff A< holds in any model of DLO.

• Since the lengths of A and A< differ only by constant multiples, TQBF is
reduced to DLO in polynomial time.

14 / 21
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Next, we show that DLO is PSPACE, following the proof that TQBF is PSPACE.
• First, assume a DLO formula is given in PNF Q1x1...Qnxn C(x1, ..., xn)

(with no quantifiers in C(x1, ..., xn)).
• To determine the truth value of C(x1, ..., xn), only the relation < among the

elements are necessary. We first fix x1 is arbitrarily. Next, the necessary
information on x2 is whether it is larger, smaller, or equal to x1.

• If Q2 is ∀ (∃), all the three cases (one of the three cases) must hold. Without
loss of generality, we may assume x1 < x2.

• Next, there are five cases for x3 as illustrated by the red arrows:

𝑥𝑥1 𝑥𝑥2

𝑥𝑥3

So, if Q3 is ∀ (∃), all the five cases (one of the five cases) should hold.
• In order to execute this computation, we need log((2n− 1)!) = O(n log n)

space to keep records. Thus, it is DSPACE(n log n), hence also PSPACE.
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We next apply the EF theorem to the problem of length of finite linear orders.

Lemma 3.35 (Gurevich)
Fix any m > 0. If L1, L2 are two finite linear orders with length ≥ 2m, L1 ≡m L2.

Proof.
• By [n] = (n,<), we denote a finite linear order on n, where n is identified

with {0, 1, . . . , n− 1}.
• For each k, we define a threshold function |x|k by |x|k = |x| if |x| < 2k;
|x|k = ∞, otherwise.

• Consider a partial isomorphism a⃗(⊂ [n]) 7→ b⃗(⊂ [n′]) that satisfies the
following conditions: if a⃗ = (a1, a2, . . . , al) and b⃗ = (b1, b2, . . . , bl) are
arranged in ascending order, and a0 = b0 = 0, al+1 = n, bl+1 = n′, then

for any i ≤ l, |ai+1 − ai|k = |bi+1 − bi|k holds.
Then, let Ik be the set of such partial isomorphisms.

• By ∅ ∈ Ik we mean |n|k = |n′|k. Thus, if n, n′ ≥ 2m, then ∅ ∈ Im

16 / 21



Logic and
Computation

K. Tanaka

EF games
Scott-Hintkka
formula
EF theorem
Applications of EF
games

Summary

• Take any a⃗ 7→ b⃗ ∈ Ik. We can show that for any a ∈ n, there exists a b ∈ n′

such that a⃗a 7→ b⃗b ∈ Ik−1 holds. Here, a⃗a and b⃗b are rearranged in order.
• First consider the case |ai+1 − ai|k = |bi+1 − bi|k <∞ and ai+1 > a > ai.

Then, |ai+1 − a|k−1 <∞ or |a− ai|k−1 <∞ hold. For instance, if
|a− ai|k−1 = d <∞, then a = ai + d and we may take b = bi + d.

• Next consider the case |ai+1 − ai|k = |bi+1 − bi|k = ∞ and ai+1 > a > ai.
Then |ai+1 − a|k−1 = ∞ or |a− ai|k−1 = ∞ holds. If one is <∞, then b is
determined in the same way as above. If both are ∞, b can be taken so that
|bi+1 − b|k−1 = ∞ and |b− bi|k−1 = ∞.

• Therefore, we have I0 6= ∅. More strictly, we obtain [n] 'm [n′].
• Thus, by the EF theorem, for n, n′ ≥ 2m, [n] ≡m [n′]. □

Theorem 3.36
There is no first-order formula expressing the parity of length of a finite linear order.

Proof Assume we have such a formula φ. Let qr(φ)= m. Then by the above
lemma, linear orders longer than 2m cannot be separated by φ, a contradiction. □17 / 21
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The connectivity of graphs cannot be defined by a first-order formula.� �
• We show this by reducing the parity problem of linear orders to it.

We first make a special graph from a linear order.
• Given a linear order <, let succ(x, y) ≡ (x < y) ∧ ∀z(z ≤ x ∨ y ≤ z) and
succ2(x, y) ≡ ∃z(succ(x, z) ∧ succ(z, y)).
Also let first(x) ≡ ¬∃y succ(y, x) and last(x) ≡ ¬∃y succ(x, y)

• Finally, we make a graph on V = n by defining edge(x, y) as follows.
edge(x, y) ≡ succ2(x, y)∨

((∃z(succ(x, z)∧ last(z))∧first(y)))∨(last(x)∧(∃z(first(z)∧succ(z, y))))
In this graph, every other points in a line are connected by an edge, and
the first point is connected from the second last point, and also the
second point is from the last point.

• If a linear order has even number of points, the graph becomes two cycles
(disconnected), and if odd number, it results in a single cycle.

• In other words, if the connectivity of a graph can be defined, then the
parity of the length of a linear order can be defined, a contradiction.� �18 / 21
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Homework 3.5.1� �
Given a finitely connected graph, the existence of an Eulerian cycle in it cannot
be described in first-order logic.� �
• To expand the scope of application of the EF theorem, we would like to

consider structures with functions.

• Rewriting functions as relations requires the use of extra quantifiers for
function composition, and the need to use more complicated formulas for
atomic formulas involving functions.

• However, there are no big problems when dealing with arbitrary ranks. For
example, the following argument is possible for groups.

• G1 ≡ G2 ⇒ G1 ×H ≡ G2 ×H for three groups G1, G2,H. For this proof, we
observe that II’s winning play g⃗1 ↔ g⃗2 in EFn(G1, G2) can be modified as II’s
winning play (g⃗1, h⃗) ↔ (g⃗2, h⃗) in EFn(G1 ×H,G2 ×H).

19 / 21
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Summary
• We consider a language of finitely many relation symbols and constants.
• By A ≡n B, we mean that A,B satisfy the same formulas with rank ≤ n.
• Let φn

A be the Scott-Hintikka sentence of rank n. Then C ≡n A ⇔ C |= φn
A.

• By A 'n B, we mean that player II has a winning strategy in EFn(A,B).
• EF theorem. For all n ≥ 0, A ≡n B iff A 'n B.
• Corollary The following are equivalent.

(1) For any n, there exist A ∈ K and B 6∈ K such that A ≡n B.
(2) K is not an elementary class (K cannot be defined by a first-order formula).

• By the EF theorem, DLO is decidable.
• DLO is PSPACE-complete. TQBF is polynomial-time reducible to DLO.
• (Gurevich) For any m > 0, for any two finite linear sequences L1, L2 of length
2m or greater, L1 ≡m L2.

• For finite linear orders, there is no first-order formula expressing the parity of
its length.

• The connectivity of a graph cannot be defined by a first-order formula. 20 / 21
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