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~ Logic and Computation | ~
e Part 1. Introduction to Theory of Computation
® Part 2. Propositional Logic and Computational Complexity
® Part 3. First Order Logic and Decision Problems
® Part 4. Modal logic (shifted to next semester) )
-~ Part 3. A new schedule (subject to change) ~

Nov.14, (4) Ehrenfeucht-Fraissé’'s theorem

Nov.19, (5) Ehrenfeucht-Fraissé’s theorem ||

Nov.21, (

Nov.26, (7) Peano arithmetic
(

Nov.28, (8) Godel's first incompleteness theorem

6) Presburger arithmetic

Dec. 3, (9) Godel's second incompleteness theorem
Dec. 5, (10) Second order logic
Dec.10, (11) Second order arithmetic
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Recap

We will consider a language of finitely many relation symbols and constants.
Let £ be {Ro,...,Rn—1}, and also consider its expansion by adding constants.

Let A be a structure in a language £ = £ U {¢}. Then, A can be written as
(A',a) or A, where A’ is a reduct of A to the language £L'. Also, A can be
expanded to (A, b) = A:;g in a language £’ U {, d}.

The (quantifier) rank of a formula ¢ expresses the maximum number of
nesting quantifiers, e.g., the rank of Vy(Vz3y(x = y) AVz(z > 0)) is 3.

Lemma 3.18 For an n, k, there are essentially finitely many formulas with
rank < n in fixed free variables z1, ..., z.
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EF games

The theory Th(A) of a structure A is the set of sentences true in A.

Two structures A, B are said to be elementarily equivalent, denote A = B,
iff Th(.,A) = Th(B), equivalently B |= Th(A).

A is an elementary substructure of B, A < B, iff Th(A4) = Th(B4).

Let Th,(A) be the subset of Th(.A) consisting of sentences with rank < n.
A relation =,, is defined as follows.

A=, B Thy(A) = Thy(B).

Let A, B be L-structures with /without constants. Then, a function
f:d(C A) — b(C B) is a partial isomorphism such that

(A,a@) =0 (B,b).

Note that if A =¢ B, the empty function is a partial isomorphism. Moreover,
notice that Tho(.A) and Tho(B) may be empty without constants.
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EF gam

s Let Ay, A; be L-structures with/without constants and n be a natural number. In
et an n-round EF game EF,, (A, A;), player | (Spoiler) and player Il (Duplicator)
alternately choose a number from Ay or A; obeying the rules described below, and
the winner is determined according to the winning condition.

e Rules: At each round & < n, if | chooses
an element, say xy, from A; (i =0, 1), then Il
chooses an element, say yi, from A;_;.

e Winning conditions: If the correspondence
x; <> y; chosen by the players up to n rounds
determines a partial isomorphism between A
and A;p, then Il wins.
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Definition 3.23
(With/without constants) A ~" B iff player Il has a winning strategy in EF,, (A, B).

Lemma 3.24

Let A and B be L-structures. For each n > 0, we define a relation ~" as follows:

(A, @) ~° (B,b) < (A,@) = (B,b) < @+ b is partial isomorphism.
(A, @)~ (B,b) < Vae Adbe B (A da) ~" (B,bb) and
Vb e B Ja € A (A, da) ~" (B, bb)

For n =0, (A,@) ~° (B,b) iff Il wins EFo((A, @), (B,b)) iff (A, @) =0 (B,b).
For the induction step, note that Il wins EF,,11(A, B) iff

Va € A 3b € B Il wins EF,,((A,a), (B,b)) and

Vb € B Jda € A ll wins EF,,((A,a), (B,b)).
Here, “Il wins G" means “ll has a winning strategy in G".
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EF game

Scott-Hintkka
formula

Applications of EF

Our goal is to show that A ~™ B and A =,, B are equivalent. To this end, we
introduce the Scott-Hintikka formulas.

Definition 3.25 (Scott-Hintikka Formula)

For a structure A and a sequence of elements @, the Scott-Hintikka formula with
rank n, ¢ a(a‘c’) is defined inductively as follows.

Cha@ = N\ {6(D) : (A,@) = 6(2), ar(6(@)) = 0}.

QOZ+1 /\HzcgoAaa(x:U /\Va:\/gpAaaxaz)
a€A a€A

e When we write (A, @) |= 6(¢), € are new constants interpreted as a.

® |n the above definition, even if A is infinite, by Lemma 3.18, there are finitely
many formulas in the scopes of A,\/. So, the Scott-Hintikka formula can be
defined as a first-order formula.
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EF games

Scott-Hintkka
formula

Applications of EF

Lemma 3.26
(A, @) | ¢7 5(0).
Proof

When n = 0, it is clear from the definition.

Then, we want to show (A,ad) = gpj*(il(é) by the induction hypothesis.

We first consider A ,c 4 320" 2. (¢, x), which is the left component of the

definition formula of (PZ‘J%I(@) For every a € A, ¢} 5,(¢,c) holds in (A, da) by

the induction hypothesis. So, Jz¢", (¢, ) also holds in (A, da), hence also
in (A, a@). Finally, the left formula holds for (A, @).

To show the right formula Vz \/ ¢ 4 ¢ 7,(C, z) holds in (A, a), take any

z =0b€ A. Then, letting a = b, we may show ¢ -, (¢, c) holds in (A, ab)
(where ¢ = b), which holds by the induction hypothesis. So, the right formula
also holds for (A, a@).

Therefore, the conjunction of both formulas holds in (A, ). 8/)2_‘1



Logic and
Computation

K. Tanaka

EF games

Theorem 3.27 (Ehrenfeucht-Fraiss theorem, EF theorem)

For all n > 0, the following are equivalent.

(1) (A0 = (BB, () BHE@ () (Aad) =" (B

Proof. (1) =(2). It is obvious from Lemma 3.26, since qr(¢’ ;(Z)) = n.

We show (2) =-(3) by induction on n. For n =0, (2)= (A, d)
For induction step, assume (2) =(3) for n as well as (B,b) = ¢} = (C).
From the definition of the Scott-Hintikka formula,

Vae A3be B (B,b) = a6 c) AVbeBIacA(Bbb) ¢ (Ec)
By the induction hypothesis, we have
Va € A3be B (A, da) ~" (B,bb) A VYbe B Jac A (A, da) ~" (B,bb).

By Lemma 3.24, we obtain
(A, @) ~"T1 (B, b).
Thus, (3) also holds for n + 1.
9/21
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We finally show (3) =(1) by induction on n.
Case n = 0 follows from Lemma 3.24. ~
For induction step, assume (3) = (1) for n as well as (A,a) ~"*1 (B,b).

—.

® To show (A,d) =,+1 (B,b), the essential case to check is a formula
p(T) = Fz (T, x) with qr(Y(Z, z)) = n.

® Suppose (A, d@) = ¢(€). Then, there exists a € A such that (A, da) = ¥(C, c).
e Since (A,a@) ~"1 (B,b), by Lemma 3.24, there exists a b € B such that

(A, d@a) ~" (B,bb), and so (B,bb) = ¥(,c). Thus (B,b) = (¢
® This proves Thy,1(A, @) C Thy41(B, b). Similarly, we have
Thy+1(A, @) D Thy41(B,b), and so (1) holds.
Corollary 3.28
A= B« forany n, A~" B.
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EF gam

ott-Hintkka

EF theorem

It is natural to extend the play of the EF game to infinity (w-round). If player Il
has a winning strategy in such a game EF (A, B), we write A ~* B.

Corollary 3.29
Suppose A, B are countable. Then, A >~* B & A~ B.

Proof. <« is obvious because the isomorphism is a winning strategy for player II.
= is shown by the back-and-forth argument. Let A = {ag,aq,...},

B = {bo,b1,...}. Player Il follows the winning strategy, and Player | alternately
chooses the smallest element that have not been selected from A and B, thus a
bijection between A and B is produced, which is a desired isomorphism. O

Corollary 3.30

For each n, there are finitely many equivalence classes of L-structure by =,,.

Proof By Lemma 3.18, there are essentially finitely many Scott-Hintikka
sentences "  with rank n. By the EF theorem, each =,, equivalence class is
characterized by such a sentence, and so there are only a finite number of them. [J
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Corollary 3.31

Let K be a set of L-structures. The following are equivalent.
(1) For any n, there exist A € K and B € K such that A =,, B.

(2) K is not an elementary class (K cannot be defined by a first-order formula).

Proof.

¢ (1) =(2). By way of contradiction, assume K is defined by a first-order
sentence ¢. Let n be the rank of ¢. If A € K and B ¢ K then A #, B.

® (2) =(1). By way of contradiction, assume that for some n, if A =,, B then
A€ K & Be K. Since there is a first-order (Scott-Hintikka) sentence " of
rank n such that A=, C & C |= ¢, K is defined by ¢'}. O

NOTE: Definition 3.32 and Theorem 3.33 are skipped and will be explained later.
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Applications of EF
games

Applications of EF games: DLO
(Q, <) and (R, <) are models of DLO (dense linear order without end points).

Let A, B be two models of DLO. Player Il has a winning strategy in

EF,, (A, B) for all n. Suppose a partial isomorphism between

a1 <as <---<apin Aand by <by <---<b,in B are constructed by the
players up to the round n. If Player | chooses 1 between a; < a;;1 (or

b; < biy1), then Player Il can extend the partial isomorphism by choosing y,,+1
between b; < bj+1 (or a; < a;y1).

Then, for all n > 0, A ~™ B. By the EF theorem, for all n, A =,, B, and
hence A = B. In particular, (Q, <) = (R, <).

Then, DLO is a complete theory. Therefore, it is decidable.
» If it is not complete, then there is a sentece ¢ which is neither provable nor
disprovable.
» Hence, both DLOU{—c} and DLOU{c} are consistent. So, each has its own
model, but they are no longer elementary equivalent, which'is a contradic’iion
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Theorem 3.34
DLO is a PSPACE-complete problem.

Proof. First, we show that DLO is PSPACE-hard, by reducing TQBF to DLO in
polynomial time. It was shown in Part 2 of this course, TQBF (true quantified
Boolean formula) is PSPACE-complete.

Let A be a QBF and transform it to a PNF Qqz;...Qnx,B(21, ..., ), where
B(x1,...,x,) is a Boolean formula.
Then, define a DLO formula A, as follows.

QlJ:lQlylanannynB(xl L YLy ooy Ty < yn)
For example, for a QBF A = Vz13xoVaes((21 A x2) V —x3), A< in DLO is

Va1Vy1 3z 3y2VasVys (((z1 < y1) A (22 < y2)) V ~(23 < y3)).
An atomic formula z; < y; in A< simply plays the role of variable x; in A.
So, A holds in the Boolean algebra {0, 1} iff A holds in any model of DLO.
Since the lengths of A and A differ only by constant multiples, TQBF is

reduced to DLO in polynomial time.
14 /21



Logic and
Computation

K. Tanaka

Applications of EF
games

Next, we show that DLO is PSPACE, following the proof that TQBF is PSPACE.

First, assume a DLO formula is given in PNF Qqz1...Qnx, C(z1, ..., x,)
(with no quantifiers in C(z1,...,2y)).

To determine the truth value of C(zy,...,x,), only the relation < among the
elements are necessary. We first fix x; is arbitrarily. Next, the necessary
information on xo is whether it is larger, smaller, or equal to x1.

If Q2 isV (3), all the three cases (one of the three cases) must hold. Without
loss of generality, we may assume 21 < 3.

Next, there are five cases for x3 as illustrated by the red arrows:

X3 ! ! ! ! !

v v v v v

X1 Xy

So, if Q3 is V (3), all the five cases (one of the five cases) should hold.

In order to execute this computation, we need log((2n — 1)!) = O(nlogn)
space to keep records. Thus, it is DSPACE(nlogn), hence also PSPACE. [
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EF theorem

Applications of EF
games

We next apply the EF theorem to the problem of length of finite linear orders.

Lemma 3.35 (Gurevich)

Fix any m > 0. If Ly, Lo are two finite linear orders with length > 2™, L, =, L.

Proof.
® By [n] = (n, <), we denote a finite linear order on n, where n is identified
with {0,1,...,n —1}.
® For each k, we define a threshold function |z|;. by |z = |z| if |z| < 2;
|| = oo, otherwise.

e Consider a partial isomorphism @(C [n]) — b(C [n/]) that satisfies the
following conditions: if @ = (a1, as,...,q;) and b= (b1,ba,...,b;) are
arranged in ascending order, and ag = by =0, a;41 = n, by = n/, then

for any ) < l, \aiﬂ — ailk = ‘bi—i-l — bz’k holds.
Then, let I be the set of such partial isomorphisms.

® By o € I}, we mean |n|, = |n/[x. Thus, if n,n’ > 2™, then & € I,,,
16 /21
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Applications of EF
games

® Take any @ — be Ij,. We can show that for any a € n, there exists a b € n/
such that da — bb € I;_1 holds. Here, da and bb are rearranged in order.

® First consider the case |a;+1 — @il = |bix1 — bilx < oo and a;j11 > a > a;.
Then, |a;y1 — alg—1 < 00 or |a — a;|x—1 < oo hold. For instance, if
la — ai|x—1 = d < oo, then a = a; + d and we may take b = b; + d.

e Next consider the case |aj+1 — a;i|x = |bi+1 — bilx = 00 and a;11 > a > a;.
Then |a;41 — alx—1 = 00 or |a — a;|g—1 = oo holds. If one is < oo, then b is
determined in the same way as above. If both are co, b can be taken so that
|bi+1 — b‘k—l = 00 and ’b — bi|k—1 = Q.

® Therefore, we have Iy # &. More strictly, we obtain [n] ~™ [n/].

® Thus, by the EF theorem, for n,n’ > 2™, [n] =, [n/]. O

Theorem 3.36

There is no first-order formula expressing the parity of length of a finite linear order.

Proof Assume we have such a formula . Let qr(¢)= m. Then by the above
lemma, linear orders longer than 2™ cannot be separated by ¢, a contradictiT?,./Jﬂ



Logic and ~ The connectivity of graphs cannot be defined by a first-order formula. —

Computation
K. Tanaka ® \We show this by reducing the parity problem of linear orders to it.
EF games We first make a special graph from a linear order.

- ® Given a linear order <, let succ(z,y) = (z <y)AVz(z <z Vy<z) and
e succ2(z,y) = Jz(suce(z, 2) A succ(z,y)).
Also let first(xz) = =3y succ(y, x) and last(x) = =3y succ(zx, y)
® Finally, we make a graph on V' = n by defining edge(x,y) as follows.
edge(z,y) = succ2(x,y)V
((3z(succ(z, z) Alast(z)) Afirst(y))) V (last (x) A (3z(first(z) Asucc(z,v))))
In this graph, every other points in a line are connected by an edge, and
the first point is connected from the second last point, and also the
second point is from the last point.

® If a linear order has even number of points, the graph becomes two cycles
(disconnected), and if odd number, it results in a single cycle.

® |n other words, if the connectivity of a graph can be defined, then the
parity of the length of a linear order can be defined, a contradiction.
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Applications of EF
games

Homework 3.5.1

Given a finitely connected graph, the existence of an Eulerian cycle in it cannot
be described in first-order logic.

To expand the scope of application of the EF theorem, we would like to
consider structures with functions.

Rewriting functions as relations requires the use of extra quantifiers for
function composition, and the need to use more complicated formulas for
atomic formulas involving functions.

However, there are no big problems when dealing with arbitrary ranks. For
example, the following argument is possible for groups.

G1 =Gy = Gy x H=_G9 x H for three groups G1, G2, H. For this proof, we
observe that II's winning play ¢i <> g3 in EF,,(G1,G2) can be modified as Il's

-

winning play (g1, h) <> (g‘é,ﬁ) in EF,,(G1 x H,Gy x H).
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Summary

Summary
We consider a language of finitely many relation symbols and constants.
By A =,, B, we mean that A, B satisfy the same formulas with rank < n.
Let " be the Scott-Hintikka sentence of rank n. ThenC =, A & C |= ¢').
By A ~" B, we mean that player Il has a winning strategy in EF,,(A, B).

® EF theorem. For all n >0, A =, Biff A ~" B.
e Corollary The following are equivalent.

(1) For any n, there exist A € K and B ¢ K such that A =,, B.

(2) K is not an elementary class (K cannot be defined by a first-order formula).

By the EF theorem, DLO is decidable.

DLO is PSPACE-complete. TQBF is polynomial-time reducible to DLO.
(Gurevich) For any m > 0, for any two finite linear sequences L, Ly of length
2™ or greater, L1 =, Lo.

For finite linear orders, there is no first-order formula expressing the parity of
its length.

The connectivity of a graph cannot be defined by a first-order formula. 7q /21
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Thank you for your attention!

21/21



	EF games
	Scott-Hintkka formula
	EF theorem
	Applications of EF games
	Summary

