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(1) What is first-order logic?
Skolem’s theorem
Godel's completeness theorem

Ehrenfeucht-Fraissé’s theorem

Peano arithmetic and Godel's first incompleteness theorem

(2)
(3)
(4)
, (5) Presburger arithmetic
(6)
(7)

Godel's second incompleteness theorem
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Recap

Recap
Formal system of first-order logic: formal system of propositional logic +
Vzo(x) — ¢(t) (the quantification axiom) -+ the generalization inference rule

If a sentence o can be proved from the set of sentences T', then o is called a
theorem of T', and written as '+ o.

A sentence ¢ is true in A, written as A = ¢ is defined by Tarski's clauses. A
is a model of T, denoted by A =T, if Vo € T (A = ¢).

@ holds in T, written as T =, f VAAET — A E ¢).

Compactness theorem. If a set T of sentences of first order logic is not
satisfiable, then there exists some finite subset of T" which is not satisfiable.

Godel’'s completeness theorem. In first order logic, T+ ¢ < T = ¢.

Application of the compactness theorem
> Existence of non-standard models of arithmetic
> Existence of arbitrarily large models
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Recap

Connectivity of graphs

A graph G = (V, E) consists of a set V' of vertices and the relation
E C V x V representing the edges.
We consider an undirected graph (a directed graph can be treated similarly).

Let c; and cy be constants. For each n € N, define ¢,, as follows:
n = —3x13we ... Jzp (E(c1, x1) A E(x1,22) A+ A B2y, c2)),

meaning there is no path of length n + 1 from c; to cg, and g is = F(cqy, c2).

Suppose there is a first order sentence o expressing the connectivity of ¢; and
co. Consider the following T, which has a model by compactness theorem.

T ={o}U{p,:neN}U{c| #ca}
But in that model there is no finite-length path from c; to co, which
contradicts with the connectivity that o represents.

Therefore, there is no sentence of first-order logic expressing connectivity.
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Recap

® In this way, for all graphs including infinite graphs, connectivity cannot be
expressed by a first-order formula.

® But what if we restrict ourselves to finite graphs?

® Even in this case, connectivity cannot be formulated. For that purpose, the
Ehrenfeucht-Fraissé game introduced in the next lecture is effective.
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® Model-theoretical research on first-order logic developed rapidly with the new
proof of the completeness theorem by Henkin in 1949.

® One of the most important concepts in model theory is elementary
equivalence. Two structures are elementary equivalent if they satisfy the
same formulas. Obviously, isomorphic structures are elementary equivalent.

® In the early 1950s, R. Fraisse studied conditions for the converse, using the
back-forth argument. In the late 1950s, A. Ehrenfeucht, a student of A.
Mostowski's, further reformulated it in terms of games.

® \We refer the Ehrenfeucht-Fraisse game and related theorems as EF games
and EF theorems. Their results have been attracting a great deal of attention
since the 1980s in relation to theory of computation.
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® |n this section, we only consider a relational language, i.e., one with
no function symbols (other than constants).

® \When we make a substructure from a given structure with functions, we must
check if its domain is closed under the functions.

e e ® However, the lack of functions is not a strong restriction. For example,
addition + of (N,+) can replaced by the following relation R.

R(n,m,k) n+m==%k

Then, for any set A C N, (4, RN A3) is always a substructure of (N, R).
Note that for the set A of odd numbers, (A, +) is no longer a (sub)structure.
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Relational languages
and quantifier ranks

We will consider a language of finitely many relation symbols and constants.
Let £ be {Ryo,...,Ru—1}, and also consider its extensions by adding constants.

A structure A in £ can be expressed as
A= (ARG, ...,R).
Then, for any B C A, we define a substructure
AIB = (B,Rg'nB* ... R}, nBk-1),

By naming @ = (ay,--- ,ay) of AF by constants ¢ we obtain a structure
(A, @) in language £ U {c}.
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Definition 3.17 (Quantifier Rank)

For a formula ¢, the (quantifier) rank of ¢, denoted as qr(y), is defined
recursively as follows,

S ® qr(atomic formulas) = 0,

o™ * ar(-p) = ar(w),  ar(p A¢) = max{qr(e), qr(¥)},
* qr(Voyp) = qr(Jwe) = ar(e) + 1.

Example
[The rank of the formula Vy(Vx3y(z = y) AVz(z > 0)) is 3. ]
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Ehrenfeucht-Fraissé
m ntroduction
Relational languages
and quantifier ranks

Lemma 3.18

Consider a finite relational language £ = {Ry,...,R;_1}. For a fixed number n,
there are essentially finitely many formulas with rank < n in fixed free variables
L1y eeey Lo

Proof.

® \We prove by induction on quantifier rank n. Note k is arbitrary for each n.
® Suppose n=0. Then a formula with rank 0 has no quantifiers.

® There are only finitely many atomic formulas R(ws, ..., w;), since L is finite
and wq,...,w; are chosen from zq, ..., zk.

® There are only essentially finitely many clauses (disjunctions V of atomic
formulas and their negations).

® There are only essentially finitely many CNF's (conjunctions A of clauses).

® Since any formula without quantifiers can be transformed into an equivalent
CNF, there are essentially only finitely many formulas with rank 0 in z1, ..., .
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§3.4
Ehrenfeucht-Fraissé
game: Introduction
Relational languages
and quantifier ranks

Induction Step. Assume that there are only finitely many formulas with rank
< n in the variables z1, ..., z.

A formula ¢(z1, ..., zx) with rank n + 1 in free variables 1, ...,z is
constructed from special formulas with rank n + 1 of the form

Qzg+10(z1, ..., 2k, Tx+1) by propositional connectives, where

O(x1,...,xk, Txy1) is a formula of rank n in free variables 1, ..., z, xx+1 and
Tk41 IS a variable other than xq, ..., xk.

Then, by induction hypothesis, there are only finitely many such
O(x1,...,xk, Txt1). Thus, there are only finitely many formulas with rank
n + 1 in free variables x1, ..., xx, which can be shown in the same way as a
CNF in the case of n = 0.

Therefore, for any n, k, there are essentially finitely many formulas with rank
< n in fixed free variables z1, ..., zj. O
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The theory of a structure A in £, denoted Th(.A), is the set of sentences in £ that
hold in A. Two structures with the same theory are said to be elementary
equivalent, denoted by A = 5. That is,

A=B <« Th(A)=Th(B) < BETh(A).

st it e A is an elementary substructure of B, denoted as A < B, iff
EF there Th(A4) = Th(Ba4), which implies A = B

Definition 3.20

Let Th,(A) denote the subset of Th(.A) consisting of sentences with qr < n. For
structures A, B in the same language £, a relation =,, between them is defined as
follows.

A=, B & Thy(A) = Thy(B).
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Definition 3.21
Let A, B be structures in £. A partial function f : A — B is a partial
isomorphism if A[dom(f) and B |range(f) are isomorphic via f.

If dom(f) = @, then the above definition is equivalent to
(A, @) =o (B, f(@)).

It is obvious that “if A = B, then A = B". Fraissé showed a weak version of its
reversal by using quantifier ranks. Ehrenfeucht reformulated Fraissé's argument in
terms of games. Now such a technique is referred to as the Ehrenfeucht-Fraissé
game (EF game).
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Definition 3.22

Let Ag, A; be L-structures and n be a natural number. In an n-round EF game
EF,,(Ap, A1), player | (Spoiler) and player Il (Duplicator) alternately choose a
number from Ay or A; obeying the rules described below, and the winner is
determined according to the winning condition.
o Rules: At an even round k < n, if | chooses
xp € A; (1 =0,1), Il chooses y, € Aj_;.

At an odd round, Il chooses first.

e Winning conditions: If the correspondence
x; <> y; chosen by the players up to n rounds
determines a partial isomorphism between Ag
and A;j, then Il wins.
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~ Example 5: EF3((Z, <), (R, <)) ~
e Consider EF3(A, B) where A = (Z,<),B = (R, <).
® In the following, e € R — 2 € Z represents that player | selects e € R and
then player |l chooses 2 € Z.
® For example,ifee R—2€Z;, 06Z—-0€R;, n€eR—5€Z are
produced in the game, player Il wins because {(0,0), (2,¢),(5,7)} is a
partial |somorph|sm (order preservmg
J
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Definition 3.23

A ~™ B if player Il has a winning strategy in EF,, (A, B).

Forn =0, (A,a@) ~° (B, l;) means (A, a) = (B, l;) In particular, if @ = b= @,
A ~° B holds meaninglessly. Also, note that if A ~" B then B ~" A.

Now, we can easily show the following lemma.

Lemma 3.24

Let A and B be structures in the same language.
(A,@) ~° (B,b) < @+ b is partial isomorphism.
& (A,a) =0 (B,b).
(A, @) ~"t (B,b) & Va e A3be B (A da) ~" (B,bb) and
Vbe B Jac A (A da) ~" (B,bb)
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EF game

Scott-Hintkka
formula

As you might expect from the above lemma, A ~™ B and A =,, B are equivalent,
which is the essence of the EF theorem. To this end, we introduce the
Scott-Hintikka formulas.

Definition 3.25 (Scott-Hintikka Formula)

For a structure A and a sequence of elements @, the Scott-Hintikka formula with
rank n, ©" 2(%), is defined inductively as follows.

Pua(@) = N\{8(&) : (A,@) = 6(9), ar(6(2)) = 0}

Ol (@) = N 3z Dha(@ 2) AVE \) 045 (E, ).
a€A acA

¢ When we write (A, @) |= 6(¢), € are new constants interpreted as a.

® In the above definition, even if A is infinite, by Lemma 3.18, there are finitely
many formulas in the scopes of A,\/. So, the Scott-Hintikka formula can be
defined as a first-order formula.

17 / 24
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9*,”\“‘ o PrOOf
fome neducten ® When n = 0, it is clear from the definition.

® Then, we want to show (A4,d) = gpj*(il(é) by the induction hypothesis.

i ® We first consider A, 4 320" 4, (C,x), which is the left component of the

Scott-Hintkka

EF e definition formula of cp:f%l(c”) For every a € A, ¢} 5,(¢,c) holds in (A, da) by

the induction hypothesis. So, Jz¢", (¢, ) also holds in (A, da), hence also
in (A,d). Finally, the left formula holds for (A, a@).

® To show the right formula V2 \/ ¢ 4 ¢7) 7,(C @) holds in (A, @), take any
z =0b€ A. Then, letting a = b, we may show ¢ -, (¢, c) holds in (A, ab)
(where ¢ = b), which holds by the induction hypothesis. So, the right formula
also holds for (A, a@).

® Therefore, the conjunction of both formulas holds in (A, @). 18/@1
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Theorem 3.27 (Ehrenfeucht-Fraiss theorem, EF theorem)

For all n > 0, the following are equivalent.

(1) (A0 = (BB, () BHE@ () (Aad) =" (B

Proof. (1) =(2). It is obvious from Lemma 3.26, since qr(¢’ ;(Z)) = n.

We show (2) =-(3) by induction on n. For n =0, (2)= (A, d)
For induction step, assume (2) =(3) for n as well as (B,b) = ¢} = (C).
From the definition of the Scott-Hintikka formula,

Vae A3be B (B,b) = a6 c) AVbeBIacA(Bbb) ¢ (Ec)
By the induction hypothesis, we have
Va € A3be B (A, da) ~" (B,bb) A VYbe B Jac A (A, da) ~" (B,bb).

By Lemma 3.24, we obtain
(A, @) ~"T1 (B, b).
Thus, (3) also holds for n + 1.
19 /24
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Case n = 0 follows from Lemma 3.24.
For induction step, assume (3) = (1) for n as well as (A,a) ~"*1 (B,b).

—.

® To show (A,d) =,+1 (B,b), the essential case to check is a formula
p(T) = Fz (T, x) with qr(Y(Z, z)) = n.
® Suppose (A, d@) = ¢(€). Then, there exists a € A such that (A, da) = ¥(C, c).

e Since (A, a) f:"“_)(B, b), by Lemma 3.24, there exists a b € B such that
(A, da) ~"+1 (B, bb), and so (B,bb) = (¢, c). Thus (B,b) = ¢(&).

® This proves Thy,1(A, @) C Thy41(B, b). Similarly, we have
Thy+1(A, @) D Thy41(B,b), and so (1) holds. O

Corollary 3.28
A= B« forany n, A~" B.
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It is natural to extend the play of the EF game to infinity (w-round). If player Il
has a winning strategy in such a game EF (A, B), we write A ~* B.

Corollary 3.29
Suppose A, B are countable. Then, A >~* B & A~ B.

Proof. <« is obvious because the isomorphism is a winning strategy for player II.
= is shown by the back-and-forth argument. Let A = {ag,aq,...},

B = {bo,b1,...}. Player Il follows the winning strategy, and Player | alternately
chooses the smallest element that have not been selected from A and B, thus a
bijection between A and B is produced, which is a desired isomorphism. O

Corollary 3.30

For each n, there are finitely many equivalence classes of L-structure by =,,.

Proof By Lemma 3.18, there are essentially finitely many Scott-Hintikka
sentences "  with rank n. By the EF theorem, each =,, equivalence class is
characterized by such a sentence, and so there are only a finite number of them. [J
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Corollary 3.31

Let K be a set of L-structures. The following are equivalent.
(1) For any n, there exist A € K and B ¢ K such that A =, B.

(2) K is not an elementary class (K cannot be defined by a first-order formula).

Proof.
® (1) =(2). By way of contradiction, assume K is defined by a first-order
sentence ¢. Let n be the rank of ¢. If A € K and B ¢ K then A #, B.

® (2) =(1). By way of contradiction, assume that for some n, if A =, B then
A€ K < B e K. Since there is a first-order (Scott-Hintikka) sentence ¢ of
rank n such that A =, C < C |= ¢, K is defined by ¢'}. O
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® \We consider a language of finitely many relation symbols and constants.
§ ® The (quantifier) rank of a formula measures the entanglement of quantifiers
. appearing in it. For example, the rank of Vy(Vz3y(z = y) AVz(z > 0)) is 3.
® By A =, B, we mean that A, B satisfy the same formulas with rank < n.
® There are essentially finitely many formulas with rank < n in fixed free

variables z1,...,zx. Thus, given a structure A, we can define the

Scott-Hintikka sentence ¢" of rank n such that C =, A < C = ¢'y.
Summary ® By A ~" 3, we mean that player Il has a winning strategy in EF,,(A, B).

e EF theorem. For all n >0, A =, B iff A ~" B.

e Corollary The following are equivalent.
(1) For any n, there exist A € K and B ¢ K such that A =, B.

(2) K is not an elementary class (K cannot be defined by a first-order formula).

Further readings
[Jouko Vaananen, Models and Games, Cambridge University Press, 2011- /J
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Summary

Thank you

for your attention!
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