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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation
• Part 2. Propositional Logic and Computational Complexity
• Part 3. First Order Logic and Decision Problems
• Part 4. Modal logic� �

Part 3. Schedule� �
• Nov. 5, (1) What is first-order logic?
• Nov. 7, (2) Skolem’s theorem
• Nov.12, (3) Gödel’s completeness theorem
• Nov.14, (4) Ehrenfeucht-Fraïssé’s theorem
• Nov.19, (5) Presburger arithmetic
• Nov.21, (6) Peano arithmetic and Gödel’s first incompleteness theorem
• Nov.26, (7) Gödel’s second incompleteness theorem� �2 / 24
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Recap
• Formal system of first-order logic: formal system of propositional logic +
∀xφ(x) → φ(t) (the quantification axiom) + the generalization inference rule

• If a sentence σ can be proved from the set of sentences T , then σ is called a
theorem of T , and written as T ` σ.

• A sentence φ is true in A, written as A |= φ is defined by Tarski’s clauses. A
is a model of T , denoted by A |= T , if ∀φ ∈ T (A |= φ).

• φ holds in T , written as T |= φ, if ∀A(A |= T → A |= φ).
• Compactness theorem. If a set T of sentences of first order logic is not

satisfiable, then there exists some finite subset of T which is not satisfiable.
• Gödel’s completeness theorem. In first order logic, T ` φ⇔ T |= φ.
• Application of the compactness theorem
▷ Existence of non-standard models of arithmetic
▷ Existence of arbitrarily large models 3 / 24
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Connectivity of graphs
• A graph G = (V,E) consists of a set V of vertices and the relation
E ⊂ V × V representing the edges.
We consider an undirected graph (a directed graph can be treated similarly).

• Let c1 and c2 be constants. For each n ∈ N, define φn as follows:

φn ≡ ¬∃x1∃x2 . . . ∃xn(E(c1, x1) ∧ E(x1, x2) ∧ · · · ∧ E(xn, c2)),

meaning there is no path of length n+ 1 from c1 to c2, and φ0 is ¬E(c1, c2).
• Suppose there is a first order sentence σ expressing the connectivity of c1 and
c2. Consider the following T , which has a model by compactness theorem.

T = {σ} ∪ {φn : n ∈ N} ∪ {c1 6= c2}

• But in that model there is no finite-length path from c1 to c2, which
contradicts with the connectivity that σ represents.

• Therefore, there is no sentence of first-order logic expressing connectivity.
4 / 24
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• In this way, for all graphs including infinite graphs, connectivity cannot be
expressed by a first-order formula.

• But what if we restrict ourselves to finite graphs?

• Even in this case, connectivity cannot be formulated. For that purpose, the
Ehrenfeucht-Fraïssé game introduced in the next lecture is effective.

5 / 24
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§3.4 Ehrenfeucht-Fraïssé game: Introduction
• Model-theoretical research on first-order logic developed rapidly with the new

proof of the completeness theorem by Henkin in 1949.

• One of the most important concepts in model theory is elementary
equivalence. Two structures are elementary equivalent if they satisfy the
same formulas. Obviously, isomorphic structures are elementary equivalent.

• In the early 1950s, R. Fraïsse studied conditions for the converse, using the
back-forth argument. In the late 1950s, A. Ehrenfeucht, a student of A.
Mostowski’s, further reformulated it in terms of games.

• We refer the Ehrenfeucht-Fraïsse game and related theorems as EF games
and EF theorems. Their results have been attracting a great deal of attention
since the 1980s in relation to theory of computation.

6 / 24
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Relational languages

• In this section, we only consider a relational language, i.e., one with
no function symbols (other than constants).

• When we make a substructure from a given structure with functions, we must
check if its domain is closed under the functions.

• However, the lack of functions is not a strong restriction. For example,
addition + of (N,+) can replaced by the following relation R.

R(n,m, k) ⇔ n+m = k

Then, for any set A ⊂ N, (A,R ∩A3) is always a substructure of (N, R).
Note that for the set A of odd numbers, (A,+) is no longer a (sub)structure.

7 / 24
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• We will consider a language of finitely many relation symbols and constants.
Let L be {R0, . . . ,Rn−1}, and also consider its extensions by adding constants.

• A structure A in L can be expressed as

A = (A,RA
0 , ...,R

A
n−1).

• Then, for any B ⊂ A, we define a substructure

A↾B = (B,RA
0 ∩Bk0 , . . . ,RA

n−1 ∩Bkn−1).

• By naming a⃗ = (a1, · · · , ak) of Ak by constants c⃗, we obtain a structure
(A, a⃗) in language L ∪ {c⃗}.

8 / 24
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The following definition applies to any language L possibly with function symbols.

Definition 3.17 (Quantifier Rank)
For a formula φ, the (quantifier) rank of φ, denoted as qr(φ), is defined
recursively as follows,

• qr(atomic formulas) = 0,
• qr(¬φ) = qr(φ), qr(φ ∧ ψ) = max{qr(φ), qr(ψ)},
• qr(∀xφ) = qr(∃xφ) = qr(φ) + 1.

Example� �
The rank of the formula ∀y(∀x∃y(x = y) ∧ ∀z(z > 0)) is 3.� �

9 / 24
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Lemma 3.18
Consider a finite relational language L = {R0, . . . ,Rl−1}. For a fixed number n,
there are essentially finitely many formulas with rank ≤ n in fixed free variables
x1, ..., xk.

Proof.
• We prove by induction on quantifier rank n. Note k is arbitrary for each n.
• Suppose n=0. Then a formula with rank 0 has no quantifiers.
• There are only finitely many atomic formulas R(w1, . . . , wi), since L is finite

and w1, . . . , wi are chosen from x1, ..., xk.
• There are only essentially finitely many clauses (disjunctions ∨ of atomic

formulas and their negations).
• There are only essentially finitely many CNF’s (conjunctions ∧ of clauses).
• Since any formula without quantifiers can be transformed into an equivalent

CNF, there are essentially only finitely many formulas with rank 0 in x1, ..., xk.
10 / 24
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• Induction Step. Assume that there are only finitely many formulas with rank
≤ n in the variables x1, ..., xk.

• A formula φ(x1, ..., xk) with rank n+ 1 in free variables x1, ..., xk is
constructed from special formulas with rank n+ 1 of the form
Qxk+1θ(x1, ..., xk, xk+1) by propositional connectives, where
θ(x1, ..., xk, xk+1) is a formula of rank n in free variables x1, ..., xk, xk+1 and
xk+1 is a variable other than x1, ..., xk.

• Then, by induction hypothesis, there are only finitely many such
θ(x1, ..., xk, xk+1). Thus, there are only finitely many formulas with rank
n+ 1 in free variables x1, ..., xk, which can be shown in the same way as a
CNF in the case of n = 0.

• Therefore, for any n, k, there are essentially finitely many formulas with rank
≤ n in fixed free variables x1, ..., xk. □

11 / 24
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The following definition also applies to a general language L.

Definition 3.19
The theory of a structure A in L, denoted Th(A), is the set of sentences in L that
hold in A. Two structures with the same theory are said to be elementary
equivalent, denoted by A ≡ B. That is,

A ≡ B ⇔ Th(A) = Th(B) ⇔ B |= Th(A).

• A is an elementary substructure of B, denoted as A ≺ B, iff
Th(AA) = Th(BA), which implies A ≡ B

Definition 3.20
Let Thn(A) denote the subset of Th(A) consisting of sentences with qr ≤ n. For
structures A,B in the same language L, a relation ≡n between them is defined as
follows.

A ≡n B ⇔ Thn(A) = Thn(B).

12 / 24
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Definition 3.21
Let A,B be structures in L. A partial function f : A→ B is a partial
isomorphism if A↾dom(f) and B ↾range(f) are isomorphic via f .

If dom(f) = a⃗, then the above definition is equivalent to

(A, a⃗) ≡0 (B, f (⃗a)).

It is obvious that “if A ∼= B, then A ≡ B”. Fraïssé showed a weak version of its
reversal by using quantifier ranks. Ehrenfeucht reformulated Fraïssé’s argument in
terms of games. Now such a technique is referred to as the Ehrenfeucht-Fraïssé
game (EF game).

13 / 24
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Definition 3.22
Let A0, A1 be L-structures and n be a natural number. In an n-round EF game
EFn(A0,A1), player I (Spoiler) and player II (Duplicator) alternately choose a
number from A0 or A1 obeying the rules described below, and the winner is
determined according to the winning condition.
• Rules: At an even round k ≤ n, if I chooses
xk ∈ Ai (i = 0, 1), II chooses yk ∈ A1−i.
At an odd round, II chooses first.
• Winning conditions: If the correspondence
xi ↔ yi chosen by the players up to n rounds
determines a partial isomorphism between A0

and A1, then II wins.

𝐴𝐴0 𝐴𝐴1

𝑥𝑥𝑘𝑘 𝑦𝑦𝑘𝑘

𝑥𝑥𝑘𝑘+1𝑦𝑦𝑘𝑘+1

⋮ ⋮

⋮ ⋮
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Example 5: EF3((Z, <), (R, <))� �
• Consider EF3(A,B) where A = (Z, <),B = (R, <).
• In the following, e ∈ R → 2 ∈ Z represents that player I selects e ∈ R and

then player II chooses 2 ∈ Z.
• For example, if e ∈ R → 2 ∈ Z; 0 ∈ Z → 0 ∈ R; π ∈ R → 5 ∈ Z are

produced in the game, player II wins because {(0, 0), (2, e), (5, π)} is a
partial isomorphism (order preserving).

計算理論と数理論理学
xft0267-03.ps : 0022 : 2022/5/13(12:23:36)

116 第 3章 1階論理と決定問題

が，以下に述べる規則に従って，交互に Aもしくは B の元を選び，nラウン
ドで下記の条件によって勝敗を決めるものである．

（規則） Iが Aまたは Bの元 xi を選ぶときに，IIは逆に Bまたは Aの元
yiを選ぶ．

（勝敗条件） nラウンドまでのプレーによって定まる関数 xi ↔ yi がAと
Bの部分同型であれば，IIが勝つ．

例 5 A = (Z, <), B = (R, <)として，EF3(A,B)を考える．例えば，図 3.1

のように，3ラウンドで e ∈ R → 2 ∈ Z；0 ∈ Z → 0 ∈ R；π ∈ R → 5 ∈ Z
が選ばれた場合，{(0, 0), (2, e), (5, π)}は部分同型（順序を保存する）なので，
プレーヤー IIが勝つ．

図 3.1 EF3((Z, <), (R, <))

定義 3.23 プレーヤー IIが EFn(A,B)において必勝戦略をもつことを，A
�n Bと書く．

まず，A �n Bならば B �n Aであることに注意したい．次の補題も容易に
示せる．

補題 3.24 Aと Bを同じ言語の構造とする．
(1) (A,	a) �0 (B,	b) ⇔ 	a �→ 	bは部分同型⇔ (A,	a) ≡0 (B,	b)．

計算理論と数理論理学
xft0267-03.ps : 0023 : 2022/5/13(12:23:36)
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(2) (A,	a) �n+1 (B,	b) ⇔ ∀a ∈ A∃b ∈ B(A,	aa) �n (B,	bb)
かつ ∀b ∈ B∃a ∈ A(A,	aa) �n (B,	bb)．

この補題からも予想されるように，A �n BとA ≡n Bは同値になり，これ
が EF定理の核心である．それを示すために，次の定義が有用である．

定義 3.25（スコット・ヒンティッカ論理式）構造Aとその要素の列 	aに対
して，ランク nのスコット・ヒンティッカ論理式 (Scott-Hintikka formula)

ϕnA,�a(	x)を以下のように帰納的に定義する．

ϕ0
A,�a(	x) =

∧
{θ(	x) : (A,	a) |= θ(	c), qr(θ(	x)) = 0}.

ϕn+1
A,�a (	x) =

∧
a∈A

∃xϕnA,�aa(	x, x) ∧ ∀x
∨
a∈A

ϕnA,�aa(	x, x).

上の定義において，Aが無限であっても，補題 3.18により，
∧
,
∨
の中の論理

式は有限個にとれるので，スコット・ヒンティッカ論理式は通常の 1階論理
式として定義できる．また，(A,	a) |= θ(	c)と書くときには，	cは新しい定数
の列で，その解釈が 	aになることは暗黙の了解とする．

補題 3.26 (A,	a) |= ϕnA,�a(	c).

証明 n = 0のときは，定義より明らか．(A,	a) |= ϕn+1
A,�a (	c)をいうため，

ϕn+1
A,�a (	c)の定義における ∧の左の式∧

a∈A ∃xϕnA,�aa(	c, x)をまず調べる．すべ
ての a ∈ Aに対して，x = aとおけば ϕnA,�aa(	c, c)が (A,	aa)で成り立つこと
が帰納法の仮定からいえるので，左の式も (A,	aa)で成り立つ．右の式
∀x∨

a∈A ϕ
n
A,�aa(	c, x)については，まず xを任意の a ∈ Aにして，その aに対

して，ϕnA,�aa(	c, c)が成り立つことが帰納法の仮定からいえるので，右の式も
(A,	aa)で成り立つ．よって，両式の連言 ∧も (A,	aa)で成り立つ． □

定理 3.27 （EF定理）次の 3条件は同値である．
(1) (A,	a) ≡n (B,	b), (2) (B,	b) |= ϕnA,�a(	c), (3) (A,	a) �n (B,	b).

証明 (1) ⇒ (2)．qr(ϕnA,�a(	x)) = nだから，補題 3.26から明らか．

� �
15 / 24
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Definition 3.23
A 'n B if player II has a winning strategy in EFn(A,B).

For n = 0, (A, a⃗) '0 (B, b⃗) means (A, a⃗) ≡0 (B, b⃗). In particular, if a⃗ = b⃗ = ∅,
A '0 B holds meaninglessly. Also, note that if A 'n B then B 'n A.
Now, we can easily show the following lemma.

Lemma 3.24
Let A and B be structures in the same language.

(A, a⃗) '0 (B, b⃗) ⇔ a⃗ 7→ b⃗ is partial isomorphism.
⇔ (A, a⃗) ≡0 (B, b⃗).

(A, a⃗) 'n+1 (B, b⃗) ⇔ ∀a ∈ A ∃b ∈ B (A, a⃗a) 'n (B, b⃗b) and
∀b ∈ B ∃a ∈ A (A, a⃗a) 'n (B, b⃗b)

16 / 24
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As you might expect from the above lemma, A 'n B and A ≡n B are equivalent,
which is the essence of the EF theorem. To this end, we introduce the
Scott-Hintikka formulas.
Definition 3.25 (Scott-Hintikka Formula)
For a structure A and a sequence of elements a⃗, the Scott-Hintikka formula with
rank n, φn

A,⃗a(x⃗), is defined inductively as follows.

φ0
A,⃗a(x⃗) :=

∧
{θ(x⃗) : (A, a⃗) |= θ(c⃗), qr(θ(x⃗)) = 0} .

φn+1
A,⃗a (x⃗) :=

∧
a∈A

∃x φn
A,⃗aa(x⃗, x) ∧ ∀x

∨
a∈A

φn
A,⃗aa(x⃗, x).

• When we write (A, a⃗) |= θ(c⃗), c⃗ are new constants interpreted as a⃗.
• In the above definition, even if A is infinite, by Lemma 3.18, there are finitely

many formulas in the scopes of
∧
,
∨

. So, the Scott-Hintikka formula can be
defined as a first-order formula.

17 / 24
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Lemma 3.26
(A, a⃗) |= φn

A,⃗a(c⃗).

Proof
• When n = 0, it is clear from the definition.

• Then, we want to show (A, a⃗) |= φn+1
A,⃗a (c⃗) by the induction hypothesis.

• We first consider
∧

a∈A ∃xφn
A,⃗aa(c⃗, x), which is the left component of the

definition formula of φn+1
A,⃗a (c⃗). For every a ∈ A, φn

A,⃗aa(c⃗, c) holds in (A, a⃗a) by
the induction hypothesis. So, ∃xφn

A,⃗aa(c⃗, x) also holds in (A, a⃗a), hence also
in (A, a⃗). Finally, the left formula holds for (A, a⃗).

• To show the right formula ∀x
∨

a∈A φ
n
A,⃗aa(c⃗, x) holds in (A, a⃗), take any

x = b ∈ A. Then, letting a = b, we may show φn
A,⃗ab(c⃗, c) holds in (A, a⃗b)

(where c = b), which holds by the induction hypothesis. So, the right formula
also holds for (A, a⃗).

• Therefore, the conjunction of both formulas holds in (A, a⃗). □18 / 24
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Theorem 3.27 (Ehrenfeucht-Fraïss theorem, EF theorem)
For all n ≥ 0, the following are equivalent.
(1) (A, a⃗) ≡n (B, b⃗), (2) (B, b⃗) |= φn

A,⃗a(c⃗), (3) (A, a⃗) 'n (B, b⃗).

Proof. (1) ⇒(2). It is obvious from Lemma 3.26, since qr(φn
A,⃗a(x⃗)) = n.

We show (2) ⇒(3) by induction on n. For n = 0, (2)⇒ (A, a⃗) ≡0 (B, b⃗) ⇒ (3).
For induction step, assume (2) ⇒(3) for n as well as (B, b⃗) |= φn+1

A,⃗a (c⃗).
From the definition of the Scott-Hintikka formula,

∀a ∈ A ∃b ∈ B (B, b⃗b) |= φn
A,⃗aa(c⃗, c) ∧ ∀b ∈ B ∃a ∈ A (B, b⃗b) |= φn

A,⃗aa(c⃗, c)

By the induction hypothesis, we have

∀a ∈ A ∃b ∈ B (A, a⃗a) 'n (B, b⃗b) ∧ ∀b ∈ B ∃a ∈ A (A, a⃗a) 'n (B, b⃗b).

By Lemma 3.24, we obtain
(A, a⃗) 'n+1 (B, b⃗).

Thus, (3) also holds for n+ 1.
19 / 24
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We finally show (3) ⇒(1) by induction on n.
Case n = 0 follows from Lemma 3.24.
For induction step, assume (3) ⇒ (1) for n as well as (A, a⃗) 'n+1 (B, b⃗).
• To show (A, a⃗) ≡n+1 (B, b⃗), the essential case to check is a formula
φ(x⃗) = ∃xψ(x⃗, x) with qr(ψ(x⃗, x)) = n.

• Suppose (A, a⃗) |= φ(c⃗). Then, there exists a ∈ A such that (A, a⃗a) |= ψ(c⃗, c).
• Since (A, a⃗) 'n+1 (B, b⃗), by Lemma 3.24, there exists a b ∈ B such that
(A, a⃗a) 'n+1 (B, b⃗b), and so (B, b⃗b) |= ψ(c⃗, c). Thus (B, b⃗) |= φ(c⃗).

• This proves Thn+1(A, a⃗) ⊂ Thn+1(B, b⃗). Similarly, we have
Thn+1(A, a⃗) ⊃ Thn+1(B, b⃗), and so (1) holds. □

Corollary 3.28
A ≡ B ⇔ for any n, A 'n B.

20 / 24
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It is natural to extend the play of the EF game to infinity (ω-round). If player II
has a winning strategy in such a game EFω(A,B), we write A 'ω B.

Corollary 3.29
Suppose A,B are countable. Then, A 'ω B ⇔ A ' B.

Proof. ⇐ is obvious because the isomorphism is a winning strategy for player II.
⇒ is shown by the back-and-forth argument. Let A = {a0, a1, . . . },
B = {b0, b1, . . . }. Player II follows the winning strategy, and Player I alternately
chooses the smallest element that have not been selected from A and B, thus a
bijection between A and B is produced, which is a desired isomorphism. □

Corollary 3.30
For each n, there are finitely many equivalence classes of L-structure by ≡n.

Proof By Lemma 3.18, there are essentially finitely many Scott-Hintikka
sentences φn

A,∅ with rank n. By the EF theorem, each ≡n equivalence class is
characterized by such a sentence, and so there are only a finite number of them. □
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Corollary 3.31
Let K be a set of L-structures. The following are equivalent.
(1) For any n, there exist A ∈ K and B 6∈ K such that A ≡n B.
(2) K is not an elementary class (K cannot be defined by a first-order formula).

Proof.
• (1) ⇒(2). By way of contradiction, assume K is defined by a first-order

sentence φ. Let n be the rank of φ. If A ∈ K and B 6∈ K then A 6≡n B.
• (2) ⇒(1). By way of contradiction, assume that for some n, if A ≡n B then

A ∈ K ⇔ B ∈ K. Since there is a first-order (Scott-Hintikka) sentence φn
A of

rank n such that A ≡n C ⇔ C |= φn
A, K is defined by φn

A. □
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Summary
• We consider a language of finitely many relation symbols and constants.
• The (quantifier) rank of a formula measures the entanglement of quantifiers

appearing in it. For example, the rank of ∀y(∀x∃y(x = y) ∧ ∀z(z > 0)) is 3.
• By A ≡n B, we mean that A,B satisfy the same formulas with rank ≤ n.
• There are essentially finitely many formulas with rank ≤ n in fixed free

variables x1, ..., xk. Thus, given a structure A, we can define the
Scott-Hintikka sentence φn

A of rank n such that C ≡n A ⇔ C |= φn
A.

• By A 'n B, we mean that player II has a winning strategy in EFn(A,B).
• EF theorem. For all n ≥ 0, A ≡n B iff A 'n B.
• Corollary The following are equivalent.

(1) For any n, there exist A ∈ K and B 6∈ K such that A ≡n B.
(2) K is not an elementary class (K cannot be defined by a first-order formula).

Further readings� �
Jouko Väänänen, Models and Games, Cambridge University Press, 2011.� �23 / 24
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Thank you for your attention!
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