K. Tanaka

Reca

§3.4 Ehrenfeucht-Fraïss game: Introductio

Relational languages and quantifier ranks

Elementary equivalence and ranks

Partial isomorphism:

EF games

Scott-Hintkka formula

EF theorem

Summary

Logic and Computation I Part 3. First order logic and decision problems

Kazuyuki Tanaka

BIMSA

November 14, 2024

э

K. Tanaka

Recap

- §3.4 Ehrenfeucht-Fraïssé game: Introduction
- Relational languages and quantifier ranks
- Elementary equivalence and ranks
- Partial isomorphisms
- EF games
- Scott-Hintkka formula
- EF theorem
- Summary

- Logic and Computation I -

- Part 1. Introduction to Theory of Computation
- Part 2. Propositional Logic and Computational Complexity
- Part 3. First Order Logic and Decision Problems
- Part 4. Modal logic

- Part 3. Schedule

- Nov. 5, (1) What is first-order logic?
- Nov. 7, (2) Skolem's theorem
- Nov.12, (3) Gödel's completeness theorem
- Nov.14, (4) Ehrenfeucht-Fraïssé's theorem
- Nov.19, (5) Presburger arithmetic
- Nov.21, (6) Peano arithmetic and Gödel's first incompleteness theorem
- Nov.26, (7) Gödel's second incompleteness theorem

K. Tanaka

Recap

- §3.4 Ehrenfeucht-Fraïssé game: Introduction
- Relational languages and quantifier ranks
- Elementary equivalence and ranks
- Partial isomorphisms
- EF games
- Scott-Hintkka formula
- EF theorem
- Summary

- Formal system of first-order logic: formal system of propositional logic + $\forall x \varphi(x) \rightarrow \varphi(t)$ (the quantification axiom) + the generalization inference rule
- If a sentence σ can be proved from the set of sentences T, then σ is called a theorem of T, and written as T ⊢ σ.
- A sentence φ is true in A, written as A ⊨ φ is defined by Tarski's clauses. A is a model of T, denoted by A ⊨ T, if ∀φ ∈ T (A ⊨ φ).
- φ holds in T, written as $T \models \varphi$, if $\forall \mathcal{A}(\mathcal{A} \models T \rightarrow \mathcal{A} \models \varphi)$.
- **Compactness theorem.** If a set T of sentences of first order logic is not satisfiable, then there exists some finite subset of T which is not satisfiable.
- Gödel's completeness theorem. In first order logic, $T \vdash \varphi \Leftrightarrow T \models \varphi$.
- Application of the compactness theorem
 Existence of non-standard models of arithmetic
 Existence of arbitrarily large models

Recap

K. Tanaka

Recap

- §3.4 Ehrenfeucht-Fraïsse game: Introduction
- Relational languages and quantifier ranks
- Elementary equivalence and ranks
- Partial isomorphisms
- EF games
- Scott-Hintkka formula
- EF theorem
- Summary

A graph G = (V, E) consists of a set V of vertices and the relation E ⊂ V × V representing the edges. We consider an undirected graph (a directed graph can be treated similarly).

• Let c_1 and c_2 be constants. For each $n \in \mathbb{N}$, define φ_n as follows:

$$\varphi_n \equiv \neg \exists x_1 \exists x_2 \dots \exists x_n (E(\mathbf{c}_1, x_1) \land E(x_1, x_2) \land \dots \land E(x_n, \mathbf{c}_2)),$$

Connectivity of graphs

meaning there is no path of length n+1 from c_1 to c_2 , and φ_0 is $\neg E(c_1, c_2)$.

• Suppose there is a first order sentence σ expressing the connectivity of c_1 and c_2 . Consider the following T, which has a model by compactness theorem.

$$T = \{\sigma\} \cup \{\varphi_n : n \in \mathbb{N}\} \cup \{c_1 \neq c_2\}$$

- But in that model there is no finite-length path from c_1 to c_2 , which contradicts with the connectivity that σ represents.
- Therefore, there is no sentence of first-order logic expressing connectivity.

K. Tanaka

Recap

- §3.4 Ehrenfeucht-Fraïssé game: Introduction
- Relational languages and quantifier ranks
- Elementary equivalence and ranks
- Partial isomorphism
- EF games
- Scott-Hintkka formula
- EF theorem
- Summary

- In this way, for all graphs including infinite graphs, connectivity cannot be expressed by a first-order formula.
- But what if we restrict ourselves to finite graphs?
- Even in this case, connectivity cannot be formulated. For that purpose, the Ehrenfeucht-Fraïssé game introduced in the next lecture is effective.

人口区 人間区 人居区 人居区

K. Tanaka

Reca

§3.4 Ehrenfeucht-Fraïssé game: Introduction

Relational languages and quantifier ranks

Elementary equivalence and ranks

Partial isomorphis

EF games

Scott-Hintkka formula

EF theorem

Summary

§3.4 Ehrenfeucht-Fraïssé game: Introduction

- Model-theoretical research on first-order logic developed rapidly with the new proof of the completeness theorem by Henkin in 1949.
- One of the most important concepts in model theory is **elementary equivalence**. Two structures are elementary equivalent if they satisfy the same formulas. Obviously, isomorphic structures are elementary equivalent.
- In the early 1950s, R. Fraïsse studied conditions for the converse, using the back-forth argument. In the late 1950s, A. Ehrenfeucht, a student of A. Mostowski's, further reformulated it in terms of games.
- We refer the Ehrenfeucht-Fraïsse game and related theorems as **EF games** and **EF theorems**. Their results have been attracting a great deal of attention since the 1980s in relation to theory of computation.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

K. Tanaka

Reca

§3.4 Ehrenfeucht-Fraïssé game: Introduction

Relational languages and quantifier ranks

Elementary equivalence and ranks

Partial isomorphism

EF games

Scott-Hintkka formula

EF theorem

Summary

Relational languages

- In this section, we only consider a relational language, i.e., one with no function symbols (other than constants).
- When we make a substructure from a given structure with functions, we must check if its domain is closed under the functions.
- However, the lack of functions is not a strong restriction. For example, addition + of (ℕ,+) can replaced by the following relation R.

 $R(n,m,k) \Leftrightarrow n+m=k$

Then, for any set $A \subset \mathbb{N}$, $(A, R \cap A^3)$ is always a substructure of (\mathbb{N}, R) . Note that for the set A of odd numbers, (A, +) is no longer a (sub)structure.

K. Tanaka

Reca

§3.4 Ehrenfeucht-Fraïssé game: Introduction

Relational languages and quantifier ranks

Elementary equivalence and ranks

Partial isomorphism

EF games

Scott-Hintkka formula

EF theorem

Summary

- We will consider a language of finitely many relation symbols and constants. Let L be {R₀,..., R_{n-1}}, and also consider its extensions by adding constants.
- A structure \mathcal{A} in \mathcal{L} can be expressed as

$$\mathcal{A} = (A, \mathbf{R}_0^{\mathcal{A}}, ..., \mathbf{R}_{n-1}^{\mathcal{A}}).$$

• Then, for any $B \subset A$, we define a substructure

$$\mathcal{A}\restriction B = (B, \mathbf{R}_0^{\mathcal{A}} \cap B^{k_0}, \dots, \mathbf{R}_{n-1}^{\mathcal{A}} \cap B^{k_{n-1}}).$$

• By naming $\vec{a} = (a_1, \cdots, a_k)$ of A^k by constants \vec{c} , we obtain a structure (\mathcal{A}, \vec{a}) in language $\mathcal{L} \cup \{\vec{c}\}$.

人口 医水理 医水管 医水管 医小管

K. Tanaka

Reca

§3.4 Ehrenfeucht-Fraïssé game: Introduction

Relational languages and quantifier ranks

Elementary equivalence and ranks

Partial isomorphis

EF games

Scott-Hintkka formula

EF theorem

Summary

The following definition applies to any language $\mathcal L$ possibly with function symbols.

Definition 3.17 (Quantifier Rank)

For a formula φ , the **(quantifier) rank** of φ , denoted as $qr(\varphi)$, is defined recursively as follows,

- qr(atomic formulas) = 0,
- $\operatorname{qr}(\neg \varphi) = \operatorname{qr}(\varphi), \qquad \operatorname{qr}(\varphi \wedge \psi) = \max{\operatorname{qr}(\varphi), \operatorname{qr}(\psi)},$
- $qr(\forall x\varphi) = qr(\exists x\varphi) = qr(\varphi) + 1.$

– Example

The rank of the formula $\forall y(\forall x \exists y(x = y) \land \forall z(z > 0))$ is 3.

K. Tanaka

Recap

§3.4 Ehrenfeucht-Fraïssé game: Introduction

Relational languages and quantifier ranks

Elementary equivalence and ranks

Partial isomorphisms

- EF games
- Scott-Hintkka formula

Summany

Consider a finite relational language $\mathcal{L} = \{R_0, \dots, R_{l-1}\}$. For a fixed number n, there are essentially finitely many formulas with rank $\leq n$ in fixed free variables x_1, \dots, x_k .

Proof.

Lemma 3.18

- We prove by induction on quantifier rank n. Note k is arbitrary for each n.
- Suppose n=0. Then a formula with rank 0 has no quantifiers.
- There are only finitely many atomic formulas $R(w_1, \ldots, w_i)$, since \mathcal{L} is finite and w_1, \ldots, w_i are chosen from x_1, \ldots, x_k .
- There are only essentially finitely many clauses (disjunctions \lor of atomic formulas and their negations).
- There are only essentially finitely many CNF's (conjunctions \wedge of clauses).
- Since any formula without quantifiers can be transformed into an equivalent CNF, there are essentially only finitely many formulas with rank 0 in $x_1, ..., x_{k_{10}}$

K. Tanaka

Recap

§3.4 Ehrenfeucht-Fraïssé game: Introduction

Relational languages and quantifier ranks

Elementary equivalence and ranks

Partial isomorphis

EF games

Scott-Hintkka formula

EF theorem

Summary

- Induction Step. Assume that there are only finitely many formulas with rank $\leq n$ in the variables $x_1, ..., x_k$.
- A formula $\varphi(x_1, ..., x_k)$ with rank n + 1 in free variables $x_1, ..., x_k$ is constructed from special formulas with rank n + 1 of the form $Qx_{k+1}\theta(x_1, ..., x_k, x_{k+1})$ by propositional connectives, where $\theta(x_1, ..., x_k, x_{k+1})$ is a formula of rank n in free variables $x_1, ..., x_k, x_{k+1}$ and x_{k+1} is a variable other than $x_1, ..., x_k$.
- Then, by induction hypothesis, there are only finitely many such $\theta(x_1, ..., x_k, x_{k+1})$. Thus, there are only finitely many formulas with rank n+1 in free variables $x_1, ..., x_k$, which can be shown in the same way as a CNF in the case of n = 0.
- Therefore, for any n, k, there are essentially finitely many formulas with rank $\leq n$ in fixed free variables $x_1, ..., x_k$.

11/24

K. Tanaka

Recap

§3.4 Ehrenfeucht-Fraïssé game: Introduction

Relational languages and quantifier ranks

Elementary equivalence and ranks

Partial isomorphisms

EF games

Scott-Hintkka formula

EF theorem

Summary

The following definition also applies to a general language \mathcal{L} .

Definition 3.19

The **theory** of a structure \mathcal{A} in \mathcal{L} , denoted $\operatorname{Th}(\mathcal{A})$, is the set of sentences in \mathcal{L} that hold in \mathcal{A} . Two structures with the same theory are said to be **elementary** equivalent, denoted by $\mathcal{A} \equiv \mathcal{B}$. That is,

 $\mathcal{A} \equiv \mathcal{B} \quad \Leftrightarrow \quad \mathrm{Th}(\mathcal{A}) = \mathrm{Th}(\mathcal{B}) \quad \Leftrightarrow \quad \mathcal{B} \models \mathrm{Th}(\mathcal{A}).$

• \mathcal{A} is an elementary substructure of \mathcal{B} , denoted as $\mathcal{A} \prec \mathcal{B}$, iff $\operatorname{Th}(\mathcal{A}_A) = \operatorname{Th}(\mathcal{B}_A)$, which implies $\mathcal{A} \equiv \mathcal{B}$

Definition 3.20

Let $\operatorname{Th}_n(\mathcal{A})$ denote the subset of $\operatorname{Th}(\mathcal{A})$ consisting of sentences with $\operatorname{qr} \leq n$. For structures \mathcal{A}, \mathcal{B} in the same language \mathcal{L} , a relation \equiv_n between them is defined as follows.

 $\mathcal{A} \equiv_n \mathcal{B} \Leftrightarrow \mathrm{Th}_n(\mathcal{A}) = \mathrm{Th}_n(\mathcal{B}).$

・ロト ・ 御 ト ・ 王 ト ・ 王 ト - 王 - -

K. Tanaka

Recap

§3.4 Ehrenfeucht-Fraïss game: Introduction

Relational language and quantifier ranks

Elementary equivalence and ranks

Partial isomorphisms

EF games

Scott-Hintkka formula

EF theorem

Summary

Definition 3.21

Let \mathcal{A}, \mathcal{B} be structures in \mathcal{L} . A partial function $f : \mathcal{A} \to B$ is a **partial** isomorphism if $\mathcal{A} \upharpoonright \operatorname{dom}(f)$ and $\mathcal{B} \upharpoonright \operatorname{range}(f)$ are isomorphic via f.

If $dom(f) = \vec{a}$, then the above definition is equivalent to

 $(\mathcal{A}, \vec{a}) \equiv_0 (\mathcal{B}, f(\vec{a})).$

It is obvious that "if $\mathcal{A} \cong \mathcal{B}$, then $\mathcal{A} \equiv \mathcal{B}$ ". Fraïssé showed a weak version of its reversal by using quantifier ranks. Ehrenfeucht reformulated Fraïssé's argument in terms of games. Now such a technique is referred to as the **Ehrenfeucht-Fraïssé** game (EF game).

K. Tanaka

Recap

§3.4

Ehrenfeucht-Fraiss game: Introductio Relational languag

and quantifier ranks

Elementary equivalence and ranks

Partial isomorphisms

EF games

Scott-Hintkka formula

Summary

Definition 3.22

Let \mathcal{A}_0 , \mathcal{A}_1 be \mathcal{L} -structures and n be a natural number. In an n-round **EF game** $\operatorname{EF}_n(\mathcal{A}_0, \mathcal{A}_1)$, player I (Spoiler) and player II (Duplicator) alternately choose a number from \mathcal{A}_0 or \mathcal{A}_1 obeying the rules described below, and the winner is determined according to the winning condition.

- **Rules**: At an even round $k \leq n$, if I chooses $x_k \in A_i$ (i = 0, 1), II chooses $y_k \in A_{1-i}$. At an odd round, II chooses first.
- Winning conditions: If the correspondence $x_i \leftrightarrow y_i$ chosen by the players up to n rounds determines a partial isomorphism between \mathcal{A}_0 and \mathcal{A}_1 , then II wins.

化白豆 化硼医化 医医小子医医白

K. Tanaka

Recap

- §3.4 Ehrenfeucht-Fraïssé game: Introduction
- Relational languages and quantifier ranks

Elementary equivalence and ranks

Partial isomorphisms

EF games

Scott-Hintkka formula

EF theorem

Summary

Example 5: $\mathsf{EF}_3((\mathbb{Z},<),(\mathbb{R},<))$ –

- Consider $\mathsf{EF}_3(\mathcal{A}, \mathcal{B})$ where $\mathcal{A} = (\mathbb{Z}, <), \mathcal{B} = (\mathbb{R}, <).$
- In the following, $e \in \mathbb{R} \to 2 \in \mathbb{Z}$ represents that player I selects $e \in \mathbb{R}$ and then player II chooses $2 \in \mathbb{Z}$.
- For example, if $e \in \mathbb{R} \to 2 \in \mathbb{Z}$; $0 \in \mathbb{Z} \to 0 \in \mathbb{R}$; $\pi \in \mathbb{R} \to 5 \in \mathbb{Z}$ are produced in the game, player II wins because $\{(0,0), (2,e), (5,\pi)\}$ is a partial isomorphism (order preserving).

イロト イボト イヨト イヨト 三日

K. Tanaka

Recap

§3.4 Ehrenfeucht-Fraïss game: Introduction

Relational languages and quantifier ranks

Elementary equivalence and ranks

Partial isomorphisms

EF games

Scott-Hintkka formula

EF theorem

Summary

Definition 3.23

$\mathcal{A} \simeq^{n} \mathcal{B}$ if player II has a winning strategy in $\mathrm{EF}_{n}(\mathcal{A}, \mathcal{B})$.

For n = 0, $(\mathcal{A}, \vec{a}) \simeq^0 (\mathcal{B}, \vec{b})$ means $(\mathcal{A}, \vec{a}) \equiv_0 (\mathcal{B}, \vec{b})$. In particular, if $\vec{a} = \vec{b} = \emptyset$, $\mathcal{A} \simeq^0 \mathcal{B}$ holds meaninglessly. Also, note that if $\mathcal{A} \simeq^n \mathcal{B}$ then $\mathcal{B} \simeq^n \mathcal{A}$.

Now, we can easily show the following lemma.

Lemma 3.24

Let ${\mathcal A}$ and ${\mathcal B}$ be structures in the same language.

$$\begin{split} (\mathcal{A}, \vec{a}) \simeq^0 (\mathcal{B}, \vec{b}) \Leftrightarrow & \vec{a} \mapsto \vec{b} \text{ is partial isomorphism.} \\ \Leftrightarrow & (\mathcal{A}, \vec{a}) \equiv_0 (\mathcal{B}, \vec{b}). \\ (\mathcal{A}, \vec{a}) \simeq^{n+1} (\mathcal{B}, \vec{b}) \Leftrightarrow & \forall a \in A \ \exists b \in B \ (\mathcal{A}, \vec{a}a) \simeq^n (\mathcal{B}, \vec{b}b) \text{ and} \\ & \forall b \in B \ \exists a \in A \ (\mathcal{A}, \vec{a}a) \simeq^n (\mathcal{B}, \vec{b}b) \end{split}$$

イロト 不得下 イヨト イヨト 二日

K. Tanaka

Recap

§3.4 Ehrenfeucht-Fraïssé game: Introduction

Relational languages and quantifier ranks

Elementary equivalence and ranks

Partial isomorphisms

EF games

Scott-Hintkka formula

EF theorem

Summary

As you might expect from the above lemma, $\mathcal{A} \simeq^n \mathcal{B}$ and $\mathcal{A} \equiv_n \mathcal{B}$ are equivalent, which is the essence of the EF theorem. To this end, we introduce the Scott-Hintikka formulas.

Definition 3.25 (Scott-Hintikka Formula)

For a structure \mathcal{A} and a sequence of elements \vec{a} , the Scott-Hintikka formula with rank n, $\varphi^n_{\mathcal{A} \vec{a}}(\vec{x})$, is defined inductively as follows.

$$\varphi_{\mathcal{A},\vec{a}}^{0}(\vec{x}) := \bigwedge \left\{ \theta(\vec{x}) : (\mathcal{A},\vec{a}) \models \theta(\vec{c}), \ \operatorname{qr}(\theta(\vec{x})) = 0 \right\}.$$
$$\varphi_{\mathcal{A},\vec{a}}^{n+1}(\vec{x}) := \bigwedge_{a \in A} \exists x \ \varphi_{\mathcal{A},\vec{a}a}^{n}(\vec{x},x) \land \forall x \bigvee_{a \in A} \varphi_{\mathcal{A},\vec{a}a}^{n}(\vec{x},x).$$

- When we write $(\mathcal{A}, \vec{a}) \models \theta(\vec{c})$, \vec{c} are new constants interpreted as \vec{a} .
- In the above definition, even if A is infinite, by Lemma 3.18, there are finitely many formulas in the scopes of ∧, ∨. So, the Scott-Hintikka formula can be defined as a first-order formula.

K. Tanaka

Recap

- §3.4 Ehrenfeucht-Fraïs: game: Introductio
- Relational languages and quantifier ranks
- Elementary equivalence and ranks
- Partial isomorphisms
- EF games
- Scott-Hintkka formula
- EF theorem
- Summary

Lemma 3.26

$$\mathcal{A}, \vec{a}) \models \varphi_{\mathcal{A}, \vec{a}}^n(\vec{c}).$$

Proof

(.

- When n = 0, it is clear from the definition.
- Then, we want to show $(\mathcal{A}, \vec{a}) \models \varphi_{\mathcal{A}, \vec{a}}^{n+1}(\vec{c})$ by the induction hypothesis.
- We first consider $\bigwedge_{a \in A} \exists x \varphi_{\mathcal{A}, \vec{a}a}^n(\vec{c}, x)$, which is the left component of the definition formula of $\varphi_{\mathcal{A}, \vec{a}}^{n+1}(\vec{c})$. For every $a \in A$, $\varphi_{\mathcal{A}, \vec{a}a}^n(\vec{c}, c)$ holds in $(\mathcal{A}, \vec{a}a)$ by the induction hypothesis. So, $\exists x \varphi_{\mathcal{A}, \vec{a}a}^n(\vec{c}, x)$ also holds in $(\mathcal{A}, \vec{a}a)$, hence also in (\mathcal{A}, \vec{a}) . Finally, the left formula holds for (\mathcal{A}, \vec{a}) .
- To show the right formula $\forall x \bigvee_{a \in A} \varphi_{\mathcal{A}, \vec{a}a}^n(\vec{c}, x)$ holds in (\mathcal{A}, \vec{a}) , take any $x = b \in A$. Then, letting a = b, we may show $\varphi_{\mathcal{A}, \vec{a}b}^n(\vec{c}, c)$ holds in $(\mathcal{A}, \vec{a}b)$ (where c = b), which holds by the induction hypothesis. So, the right formula also holds for (\mathcal{A}, \vec{a}) .
- Therefore, the conjunction of both formulas holds in (\overline{A}, \vec{a}) .

K. Tanaka

Recap

§3.4 Ehrenfeucht-Fraïssé game: Introduction

Relational languages and quantifier ranks

Elementary equivalence and ranks

Partial isomorphis

EF games

Scott-Hintkka formula

EF theorem

Summary

Theorem 3.27 (Ehrenfeucht-Fraïss theorem, EF theorem)

For all $n \ge 0$, the following are equivalent. (1) $(\mathcal{A}, \vec{a}) \equiv_n (\mathcal{B}, \vec{b})$, (2) $(\mathcal{B}, \vec{b}) \models \varphi^n_{\mathcal{A}, \vec{a}}(\vec{c})$, (3) $(\mathcal{A}, \vec{a}) \simeq^n (\mathcal{B}, \vec{b})$.

Proof. (1) \Rightarrow (2). It is obvious from Lemma 3.26, since $qr(\varphi_{\mathcal{A},\vec{a}}^n(\vec{x})) = n$. We show (2) \Rightarrow (3) by induction on n. For n = 0, (2) \Rightarrow (\mathcal{A}, \vec{a}) $\equiv_0 (\mathcal{B}, \vec{b}) \Rightarrow$ (3). For induction step, assume (2) \Rightarrow (3) for n as well as $(\mathcal{B}, \vec{b}) \models \varphi_{\mathcal{A},\vec{a}}^{n+1}(\vec{c})$. From the definition of the Scott-Hintikka formula,

 $\forall a \in A \ \exists b \in B \ (\mathcal{B}, \vec{b}b) \models \varphi_{\mathcal{A}, \vec{a}a}^{n}(\vec{c}, c) \ \land \ \forall b \in B \ \exists a \in A \ (\mathcal{B}, \vec{b}b) \models \varphi_{\mathcal{A}, \vec{a}a}^{n}(\vec{c}, c)$

By the induction hypothesis, we have

 $\forall a \in A \ \exists b \in B \ (\mathcal{A}, \vec{a}a) \simeq^n (\mathcal{B}, \vec{b}b) \ \land \ \forall b \in B \ \exists a \in A \ (\mathcal{A}, \vec{a}a) \simeq^n (\mathcal{B}, \vec{b}b).$

By Lemma 3.24, we obtain

$$(\mathcal{A}, \vec{a}) \simeq^{n+1} (\mathcal{B}, \vec{b}).$$

Thus, (3) also holds for n + 1.

19 / 24

▲□▶▲□▶▲□▶▲□▶ □ のQの

K. Tanaka

Recap

- §3.4 Ehrenfeucht-Fraïs game: Introductio
- Relational languages and quantifier ranks

Elementary equivalence and ranks

Partial isomorphisms

EF games

Scott-Hintkka formula

EF theorem

Summary

- We finally show (3) \Rightarrow (1) by induction on n.
- Case n = 0 follows from Lemma 3.24.

For induction step, assume (3) \Rightarrow (1) for n as well as $(\mathcal{A}, \vec{a}) \simeq^{n+1} (\mathcal{B}, \vec{b})$.

- To show $(\mathcal{A}, \vec{a}) \equiv_{n+1} (\mathcal{B}, \vec{b})$, the essential case to check is a formula $\varphi(\vec{x}) = \exists x \psi(\vec{x}, x)$ with $\operatorname{qr}(\psi(\vec{x}, x)) = n$.
- Suppose $(\mathcal{A}, \vec{a}) \models \varphi(\vec{c})$. Then, there exists $a \in A$ such that $(\mathcal{A}, \vec{a}a) \models \psi(\vec{c}, c)$.

- Since $(\mathcal{A}, \vec{a}) \simeq^{n+1} (\mathcal{B}, \vec{b})$, by Lemma 3.24, there exists a $b \in B$ such that $(\mathcal{A}, \vec{a}a) \simeq^{n+1} (\mathcal{B}, \vec{b}b)$, and so $(\mathcal{B}, \vec{b}b) \models \psi(\vec{c}, c)$. Thus $(\mathcal{B}, \vec{b}) \models \varphi(\vec{c})$.
- This proves $\operatorname{Th}_{n+1}(\mathcal{A}, \vec{a}) \subset \operatorname{Th}_{n+1}(\mathcal{B}, \vec{b})$. Similarly, we have $\operatorname{Th}_{n+1}(\mathcal{A}, \vec{a}) \supset \operatorname{Th}_{n+1}(\mathcal{B}, \vec{b})$, and so (1) holds.

Corollary 3.28

 $\mathcal{A} \equiv \mathcal{B} \Leftrightarrow$ for any n, $\mathcal{A} \simeq^n \mathcal{B}$.

K. Tanaka

Reca

§3.4 Ehrenfeucht-Fraïssé game: Introduction

Relational languages and quantifier ranks

Elementary equivalence and ranks

Partial isomorphis

EF games

Scott-Hintkka Sormula

EF theorem

Summary

It is natural to extend the play of the EF game to infinity (ω -round). If player II has a winning strategy in such a game $EF_{\omega}(\mathcal{A}, \mathcal{B})$, we write $\mathcal{A} \simeq^{\omega} \mathcal{B}$.

Corollary 3.29

 $\mathsf{Suppose}\ \mathcal{A}, \mathcal{B} \text{ are countable. Then, } \mathcal{A} \simeq^{\omega} \mathcal{B} \ \Leftrightarrow \ \mathcal{A} \simeq \mathcal{B}.$

Proof. \Leftarrow is obvious because the isomorphism is a winning strategy for player II. \Rightarrow is shown by the **back-and-forth argument**. Let $A = \{a_0, a_1, \dots\}$, $B = \{b_0, b_1, \dots\}$. Player II follows the winning strategy, and Player I alternately chooses the smallest element that have not been selected from A and B, thus a bijection between A and B is produced, which is a desired isomorphism.

Corollary 3.30

For each n, there are finitely many equivalence classes of \mathcal{L} -structure by \equiv_n .

Proof By Lemma 3.18, there are essentially finitely many Scott-Hintikka sentences $\varphi_{\mathcal{A},\emptyset}^n$ with rank n. By the EF theorem, each \equiv_n equivalence class is characterized by such a sentence, and so there are only a finite number of them. $\Box_{\alpha,\alpha}$

K. Tanaka

Reca

§3.4 Ehrenfeucht-Fraïsse game: Introduction

Relational languages and quantifier ranks

Elementary equivalence and ranks

Partial isomorphisms

EF games

Scott-Hintkka formula

EF theorem

Summary

Corollary 3.31

Let K be a set of \mathcal{L} -structures. The following are equivalent.

(1) For any n, there exist $\mathcal{A} \in K$ and $\mathcal{B} \notin K$ such that $\mathcal{A} \equiv_n \mathcal{B}$.

(2) K is not an elementary class (K cannot be defined by a first-order formula).

Proof.

- (1) ⇒(2). By way of contradiction, assume K is defined by a first-order sentence φ. Let n be the rank of φ. If A ∈ K and B ∉ K then A ≢_n B.
 - (2) ⇒(1). By way of contradiction, assume that for some n, if A ≡_n B then A ∈ K ⇔ B ∈ K. Since there is a first-order (Scott-Hintikka) sentence φⁿ_A of rank n such that A ≡_n C ⇔ C ⊨ φⁿ_A, K is defined by φⁿ_A.
 □

K. Tanaka

Recap

- §3.4 Ehrenfeucht-Fraïssé game: Introduction
- Relational languages and quantifier ranks
- Elementary equivalence and ranks
- Partial isomorphism
- EF games
- Scott-Hintkka formula
- EF theorem

Summary

- We consider a language of finitely many relation symbols and constants.
- The (quantifier) rank of a formula measures the entanglement of quantifiers appearing in it. For example, the rank of ∀y(∀x∃y(x = y) ∧ ∀z(z > 0)) is 3.

Summarv

- By $\mathcal{A} \equiv_n \mathcal{B}$, we mean that \mathcal{A}, \mathcal{B} satisfy the same formulas with rank $\leq n$.
- There are essentially finitely many formulas with rank $\leq n$ in fixed free variables $x_1, ..., x_k$. Thus, given a structure \mathcal{A} , we can define the Scott-Hintikka sentence $\varphi^n_{\mathcal{A}}$ of rank n such that $\mathcal{C} \equiv_n \mathcal{A} \Leftrightarrow \mathcal{C} \models \varphi^n_{\mathcal{A}}$.
- By $\mathcal{A} \simeq^n \mathcal{B}$, we mean that player II has a winning strategy in $\mathrm{EF}_n(\mathcal{A}, \mathcal{B})$.
- **EF theorem**. For all $n \ge 0$, $\mathcal{A} \equiv_n \mathcal{B}$ iff $\mathcal{A} \simeq^n \mathcal{B}$.
- Corollary The following are equivalent. (1) For any n, there exist $\mathcal{A} \in K$ and $\mathcal{B} \notin K$ such that $\mathcal{A} \equiv_n \mathcal{B}$.

 $(2)\ K$ is not an elementary class (K cannot be defined by a first-order formula). Further readings —

Jouko Väänänen, Models and Games, Cambridge University Press, 2011:

K. Tanaka

Recap

§3.4 Ehrenfeucht-Fraïsse game: Introduction

Relational languages and quantifier ranks

Elementary equivalence and ranks

Partial isomorphisms

EF games

Scott-Hintkka formula

EF theorem

Summary

Thank you for your attention!

####