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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation
• Part 2. Propositional Logic and Computational Complexity
• Part 3. First Order Logic and Decision Problems
• Part 4. Modal logic� �

Part 3. Schedule� �
• Nov. 5, (1) What is first-order logic?
• Nov. 7, (2) Skolem’s theorem
• Nov.12, (3) Gödel’s completeness theorem
• Nov.14, (4) Ehrenfeucht-Fraïssé’s theorem
• Nov.19, (5) Presburger arithmetic
• Nov.21, (6) Peano arithmetic and Gödel’s first incompleteness theorem
• Nov.26, (7) Gödel’s second incompleteness theorem� �2 / 20
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Recap
• Any formula φ can be transformed into an equivalent PNF Q1x1 . . . Qnxnθ.

Removing all ∃x and replace x in θ with a new function f, we obtain a SNF.
For instance, a PNF formula φ ≡ ∀w∃x∀y∃zθ(w, x, y, z) is transformed into
a SNF φS ≡ ∀w∀yθ(w, f(w), y, g(w, y)).

• For a formula φ in L (i.e., with no Skolem functions), T |= φ⇔ TS |= φ.
Namely, TS = {σS : σ ∈ T} is a conservative extension of T (Theorem 3.9).

• Löwenheim-Skolem’s downward theorem. For a structure A in a countable
language L, there exists a countable A′ ⊂ A s.t. A′ |= φ⇔ A |= φ for any
LA′-sentence φ. A′ is called an elementary substructure of A, A′ ≺ A.

• (Proof) Let A′ be the smallest subset of A that includes an element a and is
closed under the functions of L and all Skolem functions. A′ is countable.
Let A′S be a substructure of AS obtained by restricting the domain A to A′.
Then, A′S ≡ AS . Since each element of A′ can be expressed as a term in L
with Skolem functions, A′ |= φ⇔ A |= φ for any LA′ sentence φ. So A′ ≺ A.
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• Herbrand’s theorem (Skolem version). In first-order logic (without equality),
∃-sentence ∃x⃗φ(x⃗) is valid if and only if there exist n-tuples of terms,
t⃗1, . . . , t⃗k, from L(φ) such that φ(⃗t1) ∨ · · · ∨ φ(⃗tk) is a tautology.

• What happens if equality “=” is considered? Let Eq(σ) be the finite set of the
following axioms of equation for L(σ): the reflexivity, symmetricity, and
transitivity of “=”, and for each symbol f,R ∈ L(σ),

∀x⃗ ∀y⃗ (x⃗ = y⃗ → f(x⃗) = f(y⃗)), ∀x⃗ ∀y⃗ (x⃗ = y⃗ → R(x⃗) ↔ R(y⃗)).

• Since each sentence of Eq(σ) is a ∀ sentence, their conjunction can also be
regarded as a ∀-sentence, also denoted as Eq(σ).

• Therefore, an ∃-sentence σ is valid in first-order logic with “=” iff

Eq(σ) → σ

is valid without the equality axioms. Since the above formula is an ∃-sentence,
applying the Herbrand’s theorem to this, we obtain the equivalent condition as
a tautology.
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Decision problem solved by F.Ramsey et al.
• For a quantifier-free formula θ(x⃗, y⃗), a formula in the form ∀x⃗∃y⃗θ(x⃗, y⃗) is

called a ∀∃ formula; ∃x⃗∀y⃗θ(x⃗, y⃗) is called a ∃∀ formula.
Now, we assume a formula contains no function symbols except constants.

• Then, we can check in finite steps the ∀∃ sentence σ (with =) is valid or not.
Let a⃗ be Skolem functions (constants) for ¬σ ≡ ∃x⃗∀y⃗¬θ(x⃗, y⃗). Then,
σ is valid ⇔ ∃y⃗ θ(⃗a, y⃗) is valid

⇔ Eq(θ(⃗a, y⃗)) → ∃y⃗θ(a, y⃗) is valid without =.
• Let ∃z⃗ φ(z⃗) denote Eq(θ(⃗a, y⃗)) → ∃y⃗θ(a, y⃗). The Herbrand domain of

L(φ(z⃗)) consists of a finite number of constants.
• We substitute all combinations of these constants for z⃗ in φ(z⃗), combine them

with disjunction ∨. We check whether the proposition is a tautology or not.
• The decision problem of ∀∃ sentences is known to be NEXPTIME complete.
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§3.3 Gödel’s completeness theorem
• Before discussing Gödel’s completeness theorem, we introduce a formal

deductive system of first-order logic.

• Among the various formal systems, we consider an formal system by extending
that of propositional logic in part 2 of this course.

Axioms� �
P1. φ→ (ψ → φ)

P2. (φ→ (ψ → θ)) → ((φ→ ψ) → (φ→ θ))

P3. (¬ψ → ¬φ) → (φ→ ψ)

P4. ∀xφ(x) → φ(t) (the quantification axiom)� �

Inference rules� �
(1) If φ and φ→ ψ are

theorems, so is ψ
(2) If ψ → φ(x) (where ψ

does not include x) is a
theorem, then so is
ψ → ∀xφ(x)
(the generalization rule)� �
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• The existential quantifier ∃ is defined as ∃xφ(x) ≡ ¬∀x¬φ(x).

• In languages with equality, we assume the axioms Eq (reflexive, symmetrical,
transitive, and for each symbol f or R, its value is preserved with equality).

• If a sentence σ can be proved from a theory T , then σ is called a theorem of
T , and written as T ⊢ σ.

• The quantification axiom and the axioms Eq hold trivially in any structure,
and the generalization rule also clearly preserves truth (because the free
variable x of a formula is interpreted by universal closure).

• So, if T ⊢ σ then T |= σ. This is called the soundness theorem, since it
means that the deductive system does not derive any strange theorems.

• The completeness theorem asserts the opposite, which means that the
formal system derives all true propositions.
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Exercise 3.3.1� �
(1) For any formula φ(x1, . . . , xn), prove the following formula, which means

that the truth value must be preserved with equality:

(x1 = y1 ∧ · · · ∧ xn = yn) → (φ(x1, . . . , xn) ↔ φ(y1, . . . , yn)).

(2) Let ψ(φ) be the formula obtained by replacing a relation symbol R(x⃗) (all
occurrences) in formula ψ with a formula φ(x⃗). Prove the following:

∀x⃗(φ1(x⃗) ↔ φ2(x⃗)) → (ψ(φ1) ↔ ψ(φ2)).� �
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Completeness theorem (a weak version)� �
For any sentence σ, if |= σ then ⊢ σ.� �

Proof.
• Assuming |= ¬σ, we will show ⊢ ¬σ.

• Let ∀x⃗φ(x⃗) be the SNFσS of σ. By Skolem’s fundamental theorem, for a valid
¬σ, there are n tuples of terms t⃗i s.t. ¬φ(⃗t1) ∨ · · · ∨ ¬φ(⃗tk) is a tautology.

• By the completeness theorem of propositional logic, the tautology is a theorem
of propositional logic. So, it is also a theorem of first-order logic.

• Since ¬φ(⃗ti) → ∃x⃗¬φ(x⃗) can be proved in first-order logic, we can deduce
∃x⃗¬φ(x⃗) from the theorem ¬φ(⃗t1) ∨ · · · ∨ ¬φ(⃗tk). Thus, ¬σ is provable.
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Other proofs

• To prove the completeness theorem, Gödel introduced new relation symbols
instead of Skolem functions, and transformed any sentence into a ∀∃ sentence.

• Subsequently, L. Henkin introduced a constant c∃xφ(x) (Henkin constant) for
each sentence ∃xφ(x), and assume the following formula as an axiom.

∃xφ(x) → φ(c∃xφ(x)) Henkin axiom.

By the Henkin axioms, any sentence can be rewritten without quantifiers.

• To obtain the general completeness theorem (T ⊢ φ⇔ T |= φ), we need the
compactness theorem of first order logic, which is also deduced from the
compactness of propositional logic.
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Theorem 3.15 (Compactness theorem)
If a set T of sentences of first order logic is not satisfiable, then there exists some
finite subset of T which is not satisfiable.

Proof
• Let TS be the collection of SNF σS for each sentence σ in T . (Notice that all

the Skolem functions should be distinct. Regarding the equality, you can add
the equality axiom Eq to T if necessary.)

• By Theorem 3.9, TS is a conservative extension of T . In particular, the
satisfiability of T is equivalent to the satisfiability of TS .

• Let Σ be the set of quantifier-free sentences φ(⃗t) for all SNF ∀x⃗φ(x⃗) in TS

and all terms t⃗ (in the Herbrand domain U) which are constructed by function
symbols used in TS .

• Now, if Σ is satisfiable (in the sense of propositional logic or first-order logic),
then from Lemma 3.12, Σ has a Herbrand structure U as its model.
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• If U |= Σ, then for any SNF ∀x⃗φ(x⃗) in TS , all the substitution instances of
φ(x⃗) hold in U , hence also ∀x⃗φ(x⃗) holds in U , which means that U is a model
of TS , hence also a model of T .

• Now, assume that T is not satisfiable. Then, Σ is not satisfiable. Here again,
from Lemma 3.12, Σ is not satisfiable in the sense of propositional logic.

• By the compactness of propositional logic, some finite subset Σ′ of Σ is not
satisfiable, and it is also not satisfiable in the sense of first-order logic.

• Now, let T ′S be the finite set of SNF’s ∀x⃗φ(x⃗) in TS which correspond to
φ(⃗t) in Σ′. Moreover, let T ′ be the finite sets of σ for σS in T ′S .

• In general, if T ′S has a model, then it is also a model of Σ′. Thus, T ′S is not
satisfiable.

• Therefore, the finite subset T ′ of T is also not satisfiable. □
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From the compactness theorem, we can derive the general completeness theorem.

Theorem 3.16 (Gödel’s completeness theorem)
In first order logic, T ⊢ φ⇔ T |= φ.

Proof.
• ⇒ has been proved as above (page 7).

• To show ⇐, assume T |= φ and φ is a sentence.

• Then T ∪ {¬φ} is not satisfiable.

• By the compactness theorem, there exists a finite set {σ1, . . . , σn} of T such
that {σ1, . . . , σn,¬φ} is not satisfiable.

• Then, (σ1 ∧ · · · ∧ σn) → φ is valid.

• From the completeness theorem (a weak version), (σ1 ∧ · · · ∧ σn) → φ is
provable, and from MP, {σ1, . . . , σn} ⊢ φ, hence T ⊢ φ. □
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Existence of non-standard models of arithmetic
• Let N = (N, 0, 1,+, ·, <) be the standard model of arithmetic (natural

number theory). Let Th(N ) := {σ : N |= σ}. N is naturally a model of
Th(N ), but there also exist models of Th(N ) that are not isomorphic to N ,
which are called nonstandard models of arithmetic.

• Using the compactness theorem, we construct a nonstandard model of
arithmetic as follows. First, with c as a new constant, for each k ∈ N

Tk = Th(N )∪{0 < c, 1 < c, 1+1 < c, 1+1+1 < c, . . . ,

k times︷ ︸︸ ︷
1 + 1 + · · ·+ 1 < c}

• The structure of N plus the interpretation of the constant c as k + 1 is a
model of Tk. Let T =

⋃
k∈N Tk. Any finite subset of T is contained in some

Tk and so satisfiable. Hence, by the compactness theorem, T also has a model
M, where the value of c is larger than any standard natural number.

• By removing the constant c from the structure, M can be regarded as a
non-standard model of arithmetic in the language LOR.

14 / 20
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Existence of arbitrarily large models
• If T has an arbitrarily large finite model, then T has a model of arbitrarily

large infinite cardinality.

• Let {ci : i ∈ κ} be a set of constants with infinite cardinality κ. We consider

T ′ = T ∪ {ci ̸= cj : i ̸= j and i, j ∈ κ}

• For any finite subset of T ′, it is satisfiable if we take a finite model of T with
at least the number of constants ci in it, and interpret each constant as a
distinct element.

• Therefore, from the compactness theorem, T ′ also has a model, which is a
model of T with more than κ elements.

• To construct a model with exactly the same cardinality as T , we use a
generalized version of the Löwenheim-Skolem’s downward theorem.
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Remark� �
• By the above example, there is no first-order theory that has arbitrarily

large finite models and has no infinite models.

• Thus the relation T |=finite φ asserting that a formula φ is true for any
finite model M of theory T cannot be captured by the first order system
(Trakhtenbrot theorem, which will be introduced in next semester).� �
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Connectivity of graphs
• A graph G = (V,E) consists of a set V of vertices and the relation
E ⊂ V × V representing the edges.
We consider an undirected graph (a directed graph can be treated similarly).

• Let c1 and c2 be constants. For each n ∈ N, define φn as follows:

φn ≡ ¬∃x1∃x2 . . . ∃xn(E(c1, x1) ∧ E(x1, x2) ∧ · · · ∧ E(xn, c2)),

meaning there is no path of length n+ 1 from c1 to c2, and φ0 is ¬E(c1, c2).
• Suppose there is a first order sentence σ expressing the connectivity of c1 and
c2. Consider the following T , which has a model by compactness theorem.

T = {σ} ∪ {φn : n ∈ N} ∪ {c1 ̸= c2}

• But in that model there is no finite-length path from c1 to c2, which
contradicts with the connectivity that σ represents.

• Therefore, there is no sentence of first-order logic expressing connectivity.
17 / 20
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• In this way, for all graphs including infinite graphs, connectivity cannot be
expressed by a first-order formula.

• But what if we restrict ourselves to finite graphs?

• Even in this case, connectivity cannot be formulated. For that purpose, the
Ehrenfeucht-Fraïssé game introduced in the next lecture is effective.
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Summary
• Formal system of first-order logic: formal system of propositional logic +
∀xφ(x) → φ(t) (the quantification axiom) + the generalization inference rule

• Henkin axiom ∃xφ(x) → φ(c∃xφ(x)), by which any sentence can be rewritten
as a formula without quantifiers.

• Compactness theorem. If a set T of sentences of first order logic is not
satisfiable, then there exists some finite subset of T which is not satisfiable.

• Gödel’s completeness theorem. In first order logic, T ⊢ φ⇔ T |= φ.
• Application of the compactness theorem
▷ Existence of non-standard models of arithmetic.
▷ Existence of arbitrarily large models.
▷ Connectivity of graphs can not be exressed in a first-order formula.

Further readings� �
H.D.Ebbinghaus, et al., Mathematical Logic 3rd ed., Graduate Texts in Math,
Springer 2021.� �19 / 20
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Thank you for your attention!
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