K. Tanaka

Formal system o first-order logic

Compactness theorem

Gödel's completeness theorem

Application of the compactness theorem

Summary

Logic and Computation I Part 3. First order logic and decision problems

Kazuyuki Tanaka

BIMSA

November 12, 2024

・ロト ・四ト ・ヨト ・ヨト

э

K. Tanaka

Formal system of first-order logic

Compactness theorem

Gödel's completeness theorem

Application of the compactness theorem

Summary

- Logic and Computation I -

- Part 1. Introduction to Theory of Computation
- Part 2. Propositional Logic and Computational Complexity
- Part 3. First Order Logic and Decision Problems
- Part 4. Modal logic

- Part 3. Schedule

- Nov. 5, (1) What is first-order logic?
- Nov. 7, (2) Skolem's theorem
- Nov.12, (3) Gödel's completeness theorem
- Nov.14, (4) Ehrenfeucht-Fraïssé's theorem
- Nov.19, (5) Presburger arithmetic
- Nov.21, (6) Peano arithmetic and Gödel's first incompleteness theorem
- Nov.26, (7) Gödel's second incompleteness theorem → < → < ≥ > < ≥ ><

K. Tanaka

Formal system o first-order logic

Compactness theorem

Gödel's completeness theorem

Application of the compactness theorem

Summary

 Any formula φ can be transformed into an equivalent PNF Q₁x₁...Q_nx_nθ. Removing all ∃x and replace x in θ with a new function f, we obtain a SNF. For instance, a PNF formula φ ≡ ∀w∃x∀y∃zθ(w, x, y, z) is transformed into a SNF φ^S ≡ ∀w∀yθ(w, f(w), y, g(w, y)).

Recap

- For a formula φ in \mathcal{L} (i.e., with no Skolem functions), $T \models \varphi \Leftrightarrow T^S \models \varphi$. Namely, $T^S = \{\sigma^S : \sigma \in T\}$ is a conservative extension of T (Theorem 3.9).
- Löwenheim-Skolem's downward theorem. For a structure \mathcal{A} in a countable language \mathcal{L} , there exists a countable $\mathcal{A}' \subset \mathcal{A}$ s.t. $\mathcal{A}' \models \varphi \Leftrightarrow \mathcal{A} \models \varphi$ for any $\mathcal{L}_{\mathcal{A}'}$ -sentence φ . \mathcal{A}' is called an elementary substructure of \mathcal{A} , $\mathcal{A}' \prec \mathcal{A}$.
- (Proof) Let A' be the smallest subset of A that includes an element a and is closed under the functions of L and all Skolem functions. A' is countable. Let A'^S be a substructure of A^S obtained by restricting the domain A to A'. Then, A'^S ≡ A^S. Since each element of A' can be expressed as a term in L with Skolem functions, A' ⊨ φ ⇔ A ⊨ φ for any L_{A'} sentence φ. So A' ≥ A^S.

K. Tanaka

Formal system of first-order logic

Compactness theorem

Gödel's completenes theorem

Application of the compactness theorem

Summary

- Herbrand's theorem (Skolem version). In first-order logic (without equality), \exists -sentence $\exists \vec{x} \varphi(\vec{x})$ is valid if and only if there exist *n*-tuples of terms, $\vec{t}_1, \ldots, \vec{t}_k$, from $\mathcal{L}(\varphi)$ such that $\varphi(\vec{t}_1) \lor \cdots \lor \varphi(\vec{t}_k)$ is a tautology.
- What happens if equality "=" is considered? Let $Eq(\sigma)$ be the finite set of the following axioms of equation for $\mathcal{L}(\sigma)$: the reflexivity, symmetricity, and transitivity of "=", and for each symbol $f, R \in \mathcal{L}(\sigma)$,

 $\forall \vec{x} \; \forall \vec{y} \; (\vec{x} = \vec{y} \to f(\vec{x}) = f(\vec{y})), \;\; \forall \vec{x} \; \forall \vec{y} \; (\vec{x} = \vec{y} \to R(\vec{x}) \leftrightarrow R(\vec{y})).$

- Since each sentence of $Eq(\sigma)$ is a \forall sentence, their conjunction can also be regarded as a \forall -sentence, also denoted as $Eq(\sigma)$.
- Therefore, an \exists -sentence σ is valid in first-order logic with "=" iff

$$Eq(\sigma) \to \sigma$$

is valid without the equality axioms. Since the above formula is an \exists -sentence, applying the Herbrand's theorem to this, we obtain the equivalent condition as a tautology.

K. Tanaka

Formal system o first-order logic

Compactness theorem

Gödel's completeness theorem

Application of the compactness theorem

Summary

Decision problem solved by F.Ramsey et al.

- For a quantifier-free formula $\theta(\vec{x}, \vec{y})$, a formula in the form $\forall \vec{x} \exists \vec{y} \theta(\vec{x}, \vec{y})$ is called a $\forall \exists$ formula; $\exists \vec{x} \forall \vec{y} \theta(\vec{x}, \vec{y})$ is called a $\exists \forall$ formula. Now, we assume a formula contains no function symbols except constants.
- Then, we can check in finite steps the ∀∃ sentence σ (with =) is valid or not. Let *ā* be Skolem functions (constants) for ¬σ ≡ ∃*x*∀*y*¬θ(*x*, *y*). Then, σ is valid ⇔ ∃*y* θ(*ā*, *y*) is valid ⇔ Eq(θ(*ā*, *y*)) → ∃*y*θ(*a*, *y*) is valid without =.
- Let $\exists \vec{z} \ \varphi(\vec{z})$ denote $\operatorname{Eq}(\theta(\vec{a}, \vec{y})) \to \exists \vec{y} \theta(a, \vec{y})$. The Herbrand domain of $\mathcal{L}(\varphi(\vec{z}))$ consists of a finite number of constants.
- We substitute all combinations of these constants for \vec{z} in $\varphi(\vec{z})$, combine them with disjunction \lor . We check whether the proposition is a tautology or not.
- The decision problem of $\forall\exists$ sentences is known to be NEXPTIME complete.

K. Tanaka

Formal system of first-order logic

Compactness theorem

Gödel's completeness theorem

Application of the compactness theorem

Summary

§3.3 Gödel's completeness theorem

- Before discussing Gödel's completeness theorem, we introduce a formal deductive system of first-order logic.
- Among the various formal systems, we consider an formal system by extending that of propositional logic in part 2 of this course.

 $\begin{array}{c} \mathsf{Axioms} \\ \mathsf{P1.} \ \varphi \to (\psi \to \varphi) \\ \mathsf{P2.} \ (\varphi \to (\psi \to \theta)) \to ((\varphi \to \psi) \to (\varphi \to \theta)) \\ \mathsf{P3.} \ (\neg \psi \to \neg \varphi) \to (\varphi \to \psi) \\ \mathsf{P4.} \ \forall x \varphi(x) \to \varphi(t) \ (\text{the quantification axiom}) \end{array}$

- Inference rules (1) If φ and $\varphi \rightarrow \psi$ are theorems, so is ψ (2) If $\psi \rightarrow \varphi(x)$ (where ψ does not include x) is a theorem, then so is $\psi \rightarrow \forall x \varphi(x)$ (the generalization rule)

K. Tanaka

Formal system of first-order logic

Compactness theorem Gödel's completer

Gödel's completeness theorem

Application of the compactness theorem

Summary

- The existential quantifier \exists is defined as $\exists x \varphi(x) \equiv \neg \forall x \neg \varphi(x)$.
- In languages with equality, we assume the axioms Eq (reflexive, symmetrical, transitive, and for each symbol f or R, its value is preserved with equality).
- If a sentence σ can be proved from a theory T, then σ is called a **theorem** of T, and written as $T \vdash \sigma$.
- The quantification axiom and the axioms Eq hold trivially in any structure, and the generalization rule also clearly preserves truth (because the free variable x of a formula is interpreted by universal closure).
- So, if T ⊢ σ then T ⊨ σ. This is called the soundness theorem, since it means that the deductive system does not derive any strange theorems.
- The **completeness theorem** asserts the opposite, which means that the formal system derives all true propositions.

K. Tanaka

Formal system of first-order logic

Compactness theorem

Gödel's completeness theorem

Application o the compactness theorem

Summary

– Exercise 3.3.1 –

(1) For any formula $\varphi(x_1, \ldots, x_n)$, prove the following formula, which means that the truth value must be preserved with equality:

$$(x_1 = y_1 \land \dots \land x_n = y_n) \rightarrow (\varphi(x_1, \dots, x_n) \leftrightarrow \varphi(y_1, \dots, y_n)).$$

(2) Let $\psi(\varphi)$ be the formula obtained by replacing a relation symbol $R(\vec{x})$ (all occurrences) in formula ψ with a formula $\varphi(\vec{x})$. Prove the following:

 $\forall \vec{x}(\varphi_1(\vec{x}) \leftrightarrow \varphi_2(\vec{x})) \rightarrow (\psi(\varphi_1) \leftrightarrow \psi(\varphi_2)).$

K. Tanaka

Formal system of first-order logic

Compactness theorem

Gödel's completeness theorem

Application or the compactness theorem

Summary

Completeness theorem (a weak version)

For any sentence σ , if $\models \sigma$ then $\vdash \sigma$.

Proof.

- Assuming $\models \neg \sigma$, we will show $\vdash \neg \sigma$.
- Let $\forall \vec{x} \varphi(\vec{x})$ be the SNF σ^S of σ . By Skolem's fundamental theorem, for a valid $\neg \sigma$, there are *n* tuples of terms $\vec{t_i}$ s.t. $\neg \varphi(\vec{t_1}) \lor \cdots \lor \neg \varphi(\vec{t_k})$ is a tautology.
- By the completeness theorem of propositional logic, the tautology is a theorem of propositional logic. So, it is also a theorem of first-order logic.
- Since $\neg \varphi(\vec{t}_i) \rightarrow \exists \vec{x} \neg \varphi(\vec{x})$ can be proved in first-order logic, we can deduce $\exists \vec{x} \neg \varphi(\vec{x})$ from the theorem $\neg \varphi(\vec{t}_1) \lor \cdots \lor \neg \varphi(\vec{t}_k)$. Thus, $\neg \sigma$ is provable.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

K. Tanaka

Formal system o first-order logic

Compactness theorem

Gödel's completeness theorem

Application o the compactness theorem

Summary

• To prove the completeness theorem, Gödel introduced new relation symbols instead of Skolem functions, and transformed any sentence into a ∀∃ sentence.

 Subsequently, L. Henkin introduced a constant c_{∃xφ(x)} (Henkin constant) for each sentence ∃xφ(x), and assume the following formula as an axiom.

 $\exists x \varphi(x) \rightarrow \varphi(c_{\exists x \varphi(x)})$ Henkin axiom.

By the Henkin axioms, any sentence can be rewritten without quantifiers.

• To obtain the general completeness theorem $(T \vdash \varphi \Leftrightarrow T \models \varphi)$, we need the compactness theorem of first order logic, which is also deduced from the compactness of propositional logic.

Other proofs

K. Tanaka

Formal system of first-order logic

Compactness theorem

Gödel's completeness theorem

Application o the compactness theorem

Summary

Theorem 3.15 (Compactness theorem)

If a set T of sentences of first order logic is not satisfiable, then there exists some finite subset of T which is not satisfiable.

Proof

- Let T^S be the collection of SNF σ^S for each sentence σ in T. (Notice that all the Skolem functions should be distinct. Regarding the equality, you can add the equality axiom Eq to T if necessary.)
 - By Theorem 3.9, T^S is a conservative extension of T. In particular, the satisfiability of T is equivalent to the satisfiability of T^S .
 - Let Σ be the set of quantifier-free sentences $\varphi(\vec{t})$ for all SNF $\forall \vec{x} \varphi(\vec{x})$ in T^S and all terms \vec{t} (in the Herbrand domain U) which are constructed by function symbols used in T^S .
 - Now, if Σ is satisfiable (in the sense of propositional logic or first-order logic), then from Lemma 3.12, Σ has a Herbrand structure \mathcal{U} as its model.

K. Tanaka

Formal system o first-order logic

Compactness theorem

Gödel's completenes theorem

Application of the compactness theorem

Summary

- If $\mathcal{U} \models \Sigma$, then for any SNF $\forall \vec{x} \varphi(\vec{x})$ in T^S , all the substitution instances of $\varphi(\vec{x})$ hold in \mathcal{U} , hence also $\forall \vec{x} \varphi(\vec{x})$ holds in \mathcal{U} , which means that \mathcal{U} is a model of T^S , hence also a model of T.
- Now, assume that T is not satisfiable. Then, Σ is not satisfiable. Here again, from Lemma 3.12, Σ is not satisfiable in the sense of propositional logic.
- By the compactness of propositional logic, some finite subset Σ' of Σ is not satisfiable, and it is also not satisfiable in the sense of first-order logic.
- Now, let T'^S be the finite set of SNF's $\forall \vec{x} \varphi(\vec{x})$ in T^S which correspond to $\varphi(\vec{t})$ in Σ' . Moreover, let T' be the finite sets of σ for σ^S in T'^S .
- In general, if T'^S has a model, then it is also a model of $\Sigma'.$ Thus, T'^S is not satisfiable.

• Therefore, the finite subset T' of T is also not satisfiable.

K. Tanaka

Formal system of first-order logic

Compactness theorem

Gödel's completeness theorem

Application of the compactness theorem

Summary

From the compactness theorem, we can derive the general completeness theorem.

Theorem 3.16 (Gödel's completeness theorem)

In first order logic, $T \vdash \varphi \Leftrightarrow T \models \varphi$.

Proof.

- \Rightarrow has been proved as above (page 7).
- To show \Leftarrow , assume $T\models\varphi$ and φ is a sentence.
- Then $T \cup \{\neg \varphi\}$ is not satisfiable.
- By the compactness theorem, there exists a finite set $\{\sigma_1, \ldots, \sigma_n\}$ of T such that $\{\sigma_1, \ldots, \sigma_n, \neg \varphi\}$ is not satisfiable.
- Then, $(\sigma_1 \wedge \cdots \wedge \sigma_n) \rightarrow \varphi$ is valid.
- From the completeness theorem (a weak version), $(\sigma_1 \wedge \cdots \wedge \sigma_n) \rightarrow \varphi$ is provable, and from MP, $\{\sigma_1, \ldots, \sigma_n\} \vdash \varphi$, hence $T \vdash \varphi$.

13/20

K. Tanaka

Formal system o first-order logic

Compactness theorem

Gödel's completeness theorem

Application of the compactness theorem

Summary

Existence of non-standard models of arithmetic

- Let N = (N, 0, 1, +, ·, <) be the standard model of arithmetic (natural number theory). Let Th(N) := {σ : N ⊨ σ}. N is naturally a model of Th(N), but there also exist models of Th(N) that are not isomorphic to N, which are called nonstandard models of arithmetic.
- Using the compactness theorem, we construct a nonstandard model of arithmetic as follows. First, with c as a new constant, for each $k\in\mathbb{N}$

$$T_k = Th(\mathcal{N}) \cup \{0 < c, 1 < c, 1+1 < c, 1+1+1 < c, \dots, \overbrace{1+1+\dots+1}^{k-1} < c\}$$

- The structure of \mathcal{N} plus the interpretation of the constant c as k+1 is a model of T_k . Let $T = \bigcup_{k \in \mathbb{N}} T_k$. Any finite subset of T is contained in some T_k and so satisfiable. Hence, by the compactness theorem, T also has a model \mathcal{M} , where the value of c is larger than any standard natural number.
- By removing the constant c from the structure, \mathcal{M} can be regarded as a non-standard model of arithmetic in the language \mathcal{L}_{OR} $\rightarrow \langle \mathbb{P} \rangle \langle \mathbb$

k times

K. Tanaka

Formal system o first-order logic

Compactness theorem

Gödel's completeness theorem

Application of the compactness theorem

Summary

Existence of arbitrarily large models

- If T has an arbitrarily large finite model, then T has a model of arbitrarily large infinite cardinality.
- Let $\{c_i : i \in \kappa\}$ be a set of constants with infinite cardinality κ . We consider

 $T' = T \cup \{ c_i \neq c_j : i \neq j \text{ and } i, j \in \kappa \}$

- For any finite subset of T', it is satisfiable if we take a finite model of T with at least the number of constants c_i in it, and interpret each constant as a distinct element.
- Therefore, from the compactness theorem, T' also has a model, which is a model of T with more than κ elements.
- To construct a model with exactly the same cardinality as *T*, we use a generalized version of the Löwenheim-Skolem's downward theorem.

K. Tanaka

Formal system of first-order logic

Compactness theorem

Gödel's completeness theorem

Application of the compactness theorem

Summary

- Remark

- By the above example, there is no first-order theory that has arbitrarily large finite models and has no infinite models.
- Thus the relation $T \models_{\text{finite}} \varphi$ asserting that a formula φ is true for any finite model \mathcal{M} of theory T cannot be captured by the first order system (Trakhtenbrot theorem, which will be introduced in next semester).

K. Tanaka

Formal system of first-order logic

Compactness theorem

Gödel's completeness theorem

Application of the compactness theorem

Summary

Connectivity of graphs

- A graph G = (V, E) consists of a set V of vertices and the relation E ⊂ V × V representing the edges.
 We consider an undirected graph (a directed graph can be treated similarly).
- Let c_1 and c_2 be constants. For each $n \in \mathbb{N}$, define φ_n as follows:

$$\varphi_n \equiv \neg \exists x_1 \exists x_2 \dots \exists x_n (E(\mathbf{c}_1, x_1) \land E(x_1, x_2) \land \dots \land E(x_n, \mathbf{c}_2)),$$

meaning there is no path of length n+1 from c_1 to c_2 , and φ_0 is $\neg E(c_1,c_2)$.

• Suppose there is a first order sentence σ expressing the connectivity of c_1 and c_2 . Consider the following T, which has a model by compactness theorem.

$$T = \{\sigma\} \cup \{\varphi_n : n \in \mathbb{N}\} \cup \{c_1 \neq c_2\}$$

- But in that model there is no finite-length path from c_1 to c_2 , which contradicts with the connectivity that σ represents.
- Therefore, there is no sentence of first-order logic expressing connectivity.

K. Tanaka

Formal system of first-order logic

Compactness theorem

Gödel's completenes theorem

Application of the compactness theorem

Summary

- In this way, for all graphs including infinite graphs, connectivity cannot be expressed by a first-order formula.
 - But what if we restrict ourselves to finite graphs?
 - Even in this case, connectivity cannot be formulated. For that purpose, the Ehrenfeucht-Fraïssé game introduced in the next lecture is effective.

化白水 化塑料 化医水化医水合 医

K. Tanaka

Formal system o first-order logic

Compactness theorem

Gödel's completeness theorem

Application of the compactness theorem

Summary

• Formal system of first-order logic: formal system of propositional logic + $\forall x \varphi(x) \rightarrow \varphi(t)$ (the quantification axiom) + the generalization inference rule

Summarv

- Henkin axiom $\exists x \varphi(x) \rightarrow \varphi(c_{\exists x \varphi(x)})$, by which any sentence can be rewritten as a formula without quantifiers.
- **Compactness theorem.** If a set T of sentences of first order logic is not satisfiable, then there exists some finite subset of T which is not satisfiable.
- Gödel's completeness theorem. In first order logic, $T \vdash \varphi \Leftrightarrow T \models \varphi$.
- Application of the compactness theorem

 \triangleright Existence of non-standard models of arithmetic.

 \triangleright Existence of arbitrarily large models.

 \triangleright Connectivity of graphs can not be exressed in a first-order formula.

Further readings

H.D.Ebbinghaus, et al., Mathematical Logic 3rd ed., Graduate Texts in Math, Springer 2021. 19 / 20

K. Tanaka

Formal system of first-order logic

Compactness theorem

Gödel's completeness theorem

Application o the compactness theorem

Summary

Thank you for your attention!

