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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation
• Part 2. Propositional Logic and Computational Complexity
• Part 3. First Order Logic and Decision Problems
• Part 4. Modal logic� �

Part 3. Schedule� �
• Nov. 5, (1) What is first-order logic?
• Nov. 7, (2) Skolem’s theorem
• Nov.12, (3) Gödel’s completeness theorem
• Nov.14, (4) Ehrenfeucht-Fraïssé’s theorem
• Nov.19, (5) Presburger arithmetic
• Nov.21, (6) Peano arithmetic and Gödel’s first incompleteness theorem
• Nov.26, (7) Gödel’s second incompleteness theorem� �2 / 20
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Recap: Computational complexity
• A decision problem belongs to P (NP) or PSPACE (NPSPACE) if there is

a (non-)deterministic TM and a polynomial p(x) s.t. for an input of size n, it
returns the correct answer within p(n) steps or p(n) cells of tape, respectively.

• By Savitch’s theorem, PSPACE = NPSPACE. It is not known that the
following inclusions are proper: P ⊆ NP ⊆ PSPACE.

• A problem Q is NP-hard (PSPACE-hard) if any NP (PSPACE) problem is
polynomial-time reducible to Q. An NP-hard NP problem is NP-complete.
Similarly for PSPACE.

• The Cook-Levin theorem: SAT is NP-complete. Here, SAT is a problem to
determine whether a given Boolean formula is satisfiable or not.

• Theorem: TQBF is PSPACE-complete. Here, TQBF is to determine
whether a quantified Boolean formula without free variables is true or not.
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Review: Propositional logic
• Propositional logic is the study of logical connections between propositions.

• Γ |= φ means that φ is a tautological consequence of Γ, i.e., any truth-value
function V satisfying all propositions in Γ also satisfies φ.

• Γ ⊢ φ means that φ is a theorem in Γ, i.e., Γ is deducible from Γ by means
of axioms and rules of propositional logic.

• Completeness theorem: Γ ⊢ φ ⇔ Γ |= φ.

• Completeness theorem (another version): Γ is consistent ⇔ Γ is
satisfiable.

• Compactness theorem:
If any finite subset of Γ is satisfiable, then Γ is also satisfiable.
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§3.1. What is first-order logic?
• First order logic is obtained from propositional logic by adding symbols: ∀, ∃.

• a quantifier ∀x expresses “for any element x (of the underlying set)”,
• a quantifier ∃x expresses “there exists an element x (of the set)”.

• Historically, first order logic was tailored by D. Hilbert from Russell’s type
theory to capture mathematical theories in algebraic-style formulations.

• He describes the satisfiability problem of first-order logic as “the main
problem (Hauptproblem) of mathematical logic ” (1928).

• In this part, we will discuss first-order logic, especially from this point of view.
(2,3,4) Skolem’s theorem, Gödel’s completeness theorem, Ehrenfeucht-Fraïssé’s thm.

(5) Presburger arithmetic: a decidable fragment of first-order arithmetic.
(6,7) Peano arithmetic and Gödel’s incompleteness theorems: negative answers to

the “main problem”.
6 / 20
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First order logic
• In order to develop a formal argument, we first specify the symbols involved.
Symbols of first-order logic� �
• Common logical symbols:

1 propositional connectives: ¬ (not), ∧ (and), ∨ (or), → (implies),
2 quantifiers: ∀ (for any · · · ), ∃ (there exists · · · ).
3 variables: x0, x1, · · ·
4 equality: =, and auxiliary symbols such as parentheses (,).

• Mathematical symbols of a specific theory:
constants c, · · · ; function symbols f, · · · ; relation symbols R, · · · .� �

• The latter set of symbols is called the language1L of the theory. L may be
infinite, though in an ordinary theory, at most five or six symbols are used.

1“Langauge” here is different from that in Part 1 and 2 of this course.
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• A structure in language L (simply, an L-structure) is defined as a non-empty
set A equipped with an interpretation of the symbols in L, denoted as

A = (A, cA, · · · , fA, · · · ,RA, · · · ).

• A is called the domain of the structure A. We often denote a structure A
simply by its domain A if it is clear from the context.

• Each function symbol has a predetermined number of arguments, called its
arity. If the arity of f is n, then fA : An → A.

• Each relation symbol also has an arity. If the arity of R is n, then RA ⊆ An.

• A constant could be regarded as a function symbol with no argument (0-ary
function), but a constant often plays a special role distinct from a function.
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Example 1� �
• The ordered field of real numbers R = (R, 0, 1,+, ·, <) is a structure in

the language LOR = {0, 1,+, ·, <}, where 0 and 1 are constants, + and ·
are binary function symbols, and < is a binary relation symbol.

• Rigorously, R should be written as (R, 0R, 1R,+R, ·R, <R). For instance,
+R is a function corresponding to a function symbol +. However, we
often omit a superscipt R unless a serious confusion might occur.

• The subscript OR of LOR stands for ordered rings, since a typical
structure in this language is an ordered ring (e.g., integers). However, a
structure in LOR is not necessarily an ordered ring. E.g., (N, 0, 1,+, ·, <)
is not a ring.� �
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A “term” of a language L is a symbol string to denote an element of L-structure A.

Definition 3.1 (Terms)
The terms of a language L are defined inductively as follows.

1 variables and constants in L are terms of L.
2 If t0, · · · , tn−1 are terms and f is an n-ary function symbol of L, then

f(t0, · · · , tn−1) is a term of L.

For a term t with no variables, its value in a structure A, denoted tA, is defined
inductively as follows.

1 the value of constant c in L is cA.
2 the value of term f(t0, · · · , tn−1) is fA(tA1 , · · · , tAn−1).

10 / 20
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A formula is introduced as a symbol string to describe a property of a structure.

Definition 3.2 (Formulas)
The formulas of language L are inductively defined as follows.
(1) s, t, t0, · · · , tn−1 are terms of L, and R is an n-ary relation symbol of L, then

s = t and R(t0, · · · , tn−1)

are formulas of L, which are called atomic formulas.

(2) If φ,ψ are formulas of L, then so are the followings

¬(φ), (φ) ∧ (ψ), (φ) ∨ (ψ), (φ) → (ψ), ∀x(φ), ∃x(φ),

where x is any variable.

As in propositional logic, parentheses in a formula are appropriately omitted.
∀x(φ) means “for any x, φ holds”, ∃x(φ) means “there exists an x s.t. φ holds”.
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Example 2� �
In (N, 0, 1,+, ·, <), the following formula φ(x) denotes “x is prime”.

φ(x) ≡ ∀y∀z(x = y · z → (y = 1 ∨ z = 1)) ∧ x > 1.� �
Exercise 3.1.1� �

In the structure N of natural numbers in the language LOR = {0, 1,+, ·, <},
express the following statements by a first-order formula.
(1) There are infinitely many prime numbers.
(2) Every even number greater than 2 can be written as the sum of two

primes.� �
12 / 20
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For in-depth discussion on formulas, we must clarify the role of variables in them.
• Let Q denote ∃ or ∀. Assume φ contains a subformula of the form Qx(ψ),

where no quantifier of the form Qx appears in ψ. Then each occurrence of x
in (Qx and ψ) is said to be bound in φ. An occurrence of the variable x in
the formula φ is said to be free when it is not bound.

• A variable may have both bound and free occurrences in a formula. E.g., in

(∀x(x ≤ y)) → (∃y(x ≤ y)),

the first two of the three occurrences of x are bound, and last one is free.
• If a variable occurs both bound and free in a formula, we often automatically

replace the bound occurrence with another variable to avoid unnecessary
misreading. For example, the above formula can be rewritten as

(∀w(w ≤ y)) → (∃z(x ≤ z)).

Then, the variables in a formula can be separated into free variables and
bound variables.

13 / 20
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• A formula without free variables is called a sentence.

• For a formula φ with free variables among {x1, . . . , xn}, a sentence of the
form ∀x1 · · · ∀xnφ is called the universal closure of φ.

• We often add new constants to a given language L to handle some elements
of a structure A. Let ca be a constant (name) for an element a of A. Then
for B ⊆ A, by LB we denote the language L extended with new constants ca
for all elements a of B. By AB, we denote an LB-structure obtained from the
L-structure A by interpreting ca as a for each element a of B.

• This kind of expansion is often made implicitly. Unless a serious confusion
occurs, we may write A for AA, and a and ca are indiscriminate.

14 / 20
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Definition 3.3 (Tarski’s truth definition clauses)
For a sentence φ in LA, “φ is true in A” (denote A|=φ) is defined as follows.

A |= s = t⇔ sA = tA,

A |= R(s0, · · · , sn−1) ⇔ RA(sA0 , ..., s
A
n−1),

A |= ¬φ⇔ A |= φ does not hold,
A |= φ ∧ ψ ⇔ A |= φ and A |= ψ,

A |= φ ∨ ψ ⇔ A |= φ or A |= ψ,

A |= φ→ ψ ⇔ if A |= φ, then A |= ψ,

A |= ∀xφ(x) ⇔ for any constant a,A |= φ(a),

A |= ∃xφ(x) ⇔ there exists a constant a s.t. A |= φ(a).

The truth of a formula with free variables is defined by the truth of its universal
closure.
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Definition 3.4
For L-structures A, B, a function ϕ : A→ B satisfying the following conditions is
called a homomorphism:
(1) For all constants c, ϕ(cA) = cB.

(2) For each n-ary function symbol f, for any a0, . . . , an−1 ∈ A,

ϕ(fA(a0, . . . , an−1)) = fB(ϕ(a0), . . . , ϕ(an−1)).

(3) For each n-ary relation symbol R, for any a0, . . . , an−1 ∈ A,

RA(a0, . . . , an−1) =⇒ RB(ϕ(a0), . . . , ϕ(an−1)).

In particular, a bijective homomorphism ϕ is called an isomorphism. If there is an
isomorphism between A and B, they are also called isomorphic, denoted by A ∼= B.
• A is a substructure of B, denoted by A ⊂ B, if A ⊂ B and the inclusion

function i : A→ B (i.e., i(a) = a) is a homomorphism.

16 / 20
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• If A ∼= B, then it can be shown by simple induction that,

A |= φ⇔ B |= φ for any sentence φ.︸ ︷︷ ︸
A ≡ B, elementary equivalence (defined later)

• However, the converse A ≡ B ⇒ A ∼= B does not hold in general. (An counter
example can be made by the Löwenheim-Skolem theorem in the next lecture.)

Definition 3.5
• A set T of sentences in a language L is called a theory.

• A is called a model of T , denote A |= T , if all the sentences of T are true in
A. A theory is said to be satisfiable if it has a model.

• We say that φ holds in T , denote T |= φ, if any model A of T is also a model
of φ. In particular, when T = ∅, we write |= φ and such a φ is said to be
valid.

17 / 20
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• The formal system of first-order logic will be introduced in the folllowing
lectures.

• We write T ⊢ φ if we have a proof of φ in T .

• Gödel’s completeness theorem asserts
T ⊢ φ⇔ T |= φ.

• In the next lecture, we will focus on Skolem’s theorem, which is the prototype
of this theorem, and derive Gödel’s completeness theorem from it.

Exercise 3.1.2� �
1 In the structure (R, <, f) of real numbers, construct a formula expressing

“the function f(x) is continuous at x = a”.
(Note: The structure is not equipped with any arithmetical operators).

2 In the structure (R, <, f), show that there is no formula that expresses
“f(x) is differentiable at x = a” (Padoa’s method).� �
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Summary
• First-order logic is developed in the common logical symbols (propositional

connectives, quantifiers ∀x and ∃x and equality =) and specific mathematical
symbols. The set of mathematical symbols to use is called a language.

• A structure in language L (simply, a L-structure) is defined as a non-empty
set A equipped with an interpretation of the symbols in L.

• A term is a symbol string to denote an element of a structure. A formula is a
symbol string to describe a property of a structure. A formula without free
variables is called a sentence.

• “A sentence φ is true in A”, written as A |= φ is defined by Tarski’s clauses.

• A set of sentences in the language L is called a theory. A is a model of T ,
denoted by A |= T , if ∀φ ∈ T (A |= φ).

• We say that φ holds in T , written as T |= φ, if ∀A(A |= T → A |= φ).
19 / 20
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• In the following lectures, we will introduce a proof system for first-order logic.
Later, we will prove the completeness theorem: T ⊢ φ ⇔ T |= φ.

Further readings� �
E. Mendelson. Introduction to Mathematical Logic, CRC Press, 6th edition,
2015.� �

Thank you for your attention!
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