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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation
• Part 2. Propositional Logic and Computational Complexity
• Part 3. First Order Logic and Decision Problems
• Part 4. Modal logic� �

Part 2. Schedule� �
• Oct.10, (1) Tautologies and proofs
• Oct.15, (2) The completeness theorem of propositional logic
• Oct.17, (3) SAT and NP-complete problems
• Oct.22, (4) NP-complete problems about graphs
• Oct.24, (5) Time-bound and space-bound complexity classes
• Oct.29, (5-2) Relations between Time and space complexity classes
• Oct.31, (6) Hierarchy theorems, (7) PSPACE-completeness and TQBF� �
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Recap
• For a function f : N→ N, we define the following four complexity classes.

DTIME(f(n))
def
= {L(M) | M is O(f(n)) time deterministic TM},

NTIME(f(n))
def
= {L(M) | M is O(f(n)) time non-deterministic TM},

DSPACE(f(n))
def
= {L(M) | M is O(f(n)) space deterministic TM},

NSPACE(f(n))
def
= {L(M) | M is O(f(n)) space non-deterministic TM}.

• For major functions f , we have

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE.

• Savitch’s theorem: for S(n) ≥ log n, NSPACE(S(n)) ⊆ DSPACE(S(n)2).
• Immermann-Szelepcsényi’s theorem: for S(n) ≥ log n, NSPACE(S(n)) is

closed under complement.
3 / 20
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§2.6. Hierarchy theorems
• We will show that some complexity classes are not equivalent, that is, the

existence of a hierarchy of complexity classes.
• As in the previous lectures, T (n) is time-constructible with T (n) > n, and

S(n) is space-constructible with S(n) ≥ log n.

Theorem 2.39 (Space Hierarchy Theorem)
Let S(n) ≥ log n be space constructible. Then for any S′(n) = o(S(n)), there
exists a problem in DSPACE(S(n)) but not in DSPACE(S′(n)).

Proof.
• Prove by a diagonalization argument.
• Let M0,M1, . . . enumerate the deterministic Turing machines with alphabet
{0, 1}.
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Proof (continued)
• For a binary string x ∈ {0, 1}∗, let ♯(x) be the natural number represented by
x as the binary representation ignoring 0’s at its head. Therefore, for any
natural number i, there exists an arbitrarily long sequence x such that
♯(x) = i.

Now, construct a machine M with O(S(n)) space that cannot be imitated in the
o(S(n)) space. For a binary string x of length n,

1 Mark S(n) cells on the working tape (∵ S(n) is constructible),
2 If i = ♯(x), imitate Mi with input x in space S(n).
3 By the imitation, if M is going to run over space S(n), it stops and accepts x.
4 As in the proof of theorem 2.35, if Mi runs for a sufficiently long time 2kS(n),

it is already in a roop. So, M stops and accepts x (in O(S(n)) space).
5 If Mi accepts/rejects x in space S(n), then M rejects/accepts x

(respectively).
This machine M operates in O(S(n)) space.
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Proof (continued)
• By way of contradiction, we assume there exists an Mi mimicking M in space
S′(|x|) = o(S(n)).

• Consider a sufficiently long input x (S′(|x|) < S(|x|)) such that ♯(x) = i.
• By the definition of M , M and Mi give different results for input x in space

S(|x|), which is a contradiction.
Note that S′(n) is not assumed to be space constructible in the theorem.
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Theorem 2.40 (Time Hierarchy Theorem)
Let T (n) be time constructible and T (n) > n. For any T ′(n) such that

T ′(n) log T ′(n) = o(T (n)),

there exists a problem in DTIME(T (n)) but not in DTIME(T ′(n)).

This proof is similar to that of Space Hierarchy Theorem. Note that a universal
machine for the T ′(n)-time machines operates in time O(T ′(n) log T ′(n)).

Exercise 2.6.1� �
Prove the Time Hierarchy Theorem.� �

From the above hierarchy theorems, we have the following.

L ⊊ PSPACE ⊊ EXPSPACE, P ⊊ EXP.
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For nondeterministic classes, we also have hierarchy theorems. Since their
arguments are much more complex, we only state two major theorems and key
ideas of the poofs.
Theorem 2.41 (Ibarra, 1972)
For any real number r > s ≥ 1,

NSPACE(ns) ⊊ NSPACE(nr).

Proof by contradiction. For instance, suppose NSPACE(n4) = NSPACE(n3).
Then by the padding method (we will show in the next slide), we also have
NSPACE(n5) = NSPACE(n4) and then NSPACE(n6) = NSPACE(n5), etc.
Thus, NSPACE(n7) = NSPACE(n3). However,

NSPACE(n3) ⊆ DSPACE(n6)(from Savitch’s theorem)
⊊ DSPACE(n7)(from the space hierarchy theorem)
⊆ NSPACE(n7)

which is a contradiction. 8 / 20
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The padding method

Let A be a language accepted by an n5 space NTM M . Then, let

A′ = {x ♯m | x ∈ A, |x|5 = |x ♯m|4},

where ♯ is a new symbol not belonging to M �
Define a NTM M ′ to operate on input x ♯m as follows.

(i) Check if |x|5 = |x ♯m|4. If no, reject.
(ii) If Yes�then mimic M ’s moves on input x�

Since M operates on x in space |x|5, M ′ operates in space |x|5 = |x♯m|4, and so
A′ = L(M ′) ∈ NSPACE(n4). Hence also�A ∈ NSPACE(n4)�
Further generalizations are left to the audience.
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Theorem 2.42 (Cook 1973)
For any real number r > s ≥ 1,

NTIME(ns) ⊊ NTIME(nr).

The proof is more cumbersome because there is no counterpart of Savitch’s
theorem for time complexity classes. It uses a technique of so-called lazy
diagonalization.
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§2.7. PSPACE and TQBF

• PSPACE, along with NP, captures many natural decision problems.

• R. Karp introduced the notion of PSPACE completeness.
A problem is said to be PSPACE complete, if it is PSPACE and any PSPACE
problem is polynomial-time reducible to it.

• A QBF (quantified Boolean formula) is built from variables x0, x1, x2, ... and
constants 0, 1 by way of operations ∧,∨,¬ and quantifiers ∀, ∃, where
∃xA(x) is equivalent to A(0) ∨A(1), and ∀xA(x) is A(0) ∧A(1).

• TQBF (true QBF) denotes a problem to decide whether a QBF (quantified
Boolean formula) is true. It is also called simply QBF in some books.

• Stockmeyer et al. show that TQBF is PSPACE-complete.
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• A QBF can be seen as a first-order formula about the simple Boolean algebra
2 = {0, 1}.

Example 5: An equivalent transformation of QBF� �
∀x∃yA(x, y) ↔ ∃yA(0, y) ∧ ∃yA(1, y)

↔ (A(0, 0) ∨A(0, 1)) ∧ (A(1, 0) ∨A(1, 1)).� �
• Any QBF can be transformed into a prenex normal form (i.e., a boolean

expression prefixed by a sequence of quantifiers) by the following rules:
(∃yA) ∧B ⇒ ∃y(A ∧B), (∃yA) ∨B ⇒ ∃y(A ∨B) (y is not free in B),
(∀yA) ∧B ⇒ ∀y(A ∧B), (∀yA) ∨B ⇒ ∀y(A ∨B) (y is not free in B),
¬∃xA ⇒ ∀x¬A, ¬∀xA ⇒ ∃x¬A.

• Note that the elimination of quantifiers, as in Example 5, increases the length
of the expression exponentially, whereas the transformation to the prenex
normal form does not change the length of the expression.
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• We consider TQBF as a problem to decide the truth value of a formula A in
the form Q1x1...QnxnB(x1, ..., xn) (with a Boolean expression B(x1, ..., xn)).

• Now, if all Qi are ∃, then A is true ⇔ B is satisfiable.
Therefore, TQBF includes SAT as a special case.

• If all Qi are ∀, then A is true ⇔ B is valid (tautology).

• When we discussed SAT as a NP-complete problem, we should have taken
care to handle subscripts for variables x0, x1, x2, ..., but PSPACE is a much
broader class so that we may ignore such a coding issue.

Theorem 2.43
TQBF is PSPACE-complete.

Proof.
• First, we show that TQBF is a PSPACE problem.
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TQBF is PSPACE

• For simplicity, consider the prenex normal form A ≡ ∀x1∃x2∀x3B(x1, x2, x3)
(B(x1, x2, x3) is a Boolean expression).

• To find the value of A by substituting 0, 1 for the variables in B(x1, x2, x3)
appropriately, we need to memorize the current assignment for x1, x2, x3
during the computation. So, this can be performed in the space of the length
of a given formula.

• By B(ba1, b
e
2, b

a
3), we denote an expression obtained from B(x1, x2, x3) by

substituting (ba1, b
e
2, b

a
3) for x1, x2, x3, respectively. Here, a value substituted

for a variable of ∀ is denoted as ba, and the value for ∃ is denoted as be.
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Proof continued
To evaluate ∀x1∃x2∀x3B(x1, x2, x3), the computation proceeds as follows.

1 . Examine B(0a, 0e, 0a). If true (value 1), check B(0a, 0e, 1a). If both are
true, go to 3; otherwise, go to 2.

2 . Examine B(0a, 1e, 0a). If true, check B(0a, 1e, 1a). If both are true, go to 3;
otherwise, reject (A is false).

3 . Examine B(1a, 0e, 0a). If true, check B(1a, 0e, 1a). If both are true, accept
(A is true); otherwise, go to 4.

4 . Examine B(1a, 1e, 0a). If true, check B(1a, 1e, 1a). If both are true, accept
(A is true); otherwise, reject (A is false).

It is easy to generalize the above computation to any QBF. This is a computation
in DSPACE(n).
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TQBF is PSPACE-hard
To show that TQBF is PSPACE-hard, let L be a PSPACE problem and M a
deterministic machine that accepts L in S(n) space.
Recall that the proof of NP-hardness in Cook’s theorem.
• Let φ(t, α) represent that α is M ’s computational configuration at time t.

More precisely, φ(t, α) is expressed as a conjunction of variables xt,i,a, which
represents that the i-th (≤ p(n)) symbol in the computation configuration at
time t(≤ p(n)) is a.

• The transition of the configuration is represented by the relation between
φ(t,_) and φ(t+ 1,_).

• Then, we can express that M accepts an input w in polynomial time p(n) by a
Boolean expression Φw of length about p(|w|)3.

Since S(n)-space is converted to 2O(S(n))-time, the size of Φw is also 2O(S(n)). It is
not polynomial-time reduction.
This can be improved by the same trick as used for Savitch’s theorem.
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Proof continued
Let Reach(α, β, t) be a formula expressing that configuration β can be reached
from configuration α within t steps. Since a configuration is a sequence of variables
xi,a (i < S(n)), there are 2S(n) variables in Reach(α, β, t).
Reach(α, β, t) is defined recursively as follows.
• Reach(α, β, 0) is equivalent to α = β, which is more precisely a conjunction of

equalities between variables. Let Reach(α, β, 1) denotes that β is reachable
from α in one step. The length of this formula is O(S(n)2).

• For t ≥ 2, Reach(α, β, t) ≡ ∃γ(Reach(α, γ, t/2) ∧ Reach(γ, β, t/2)) would
make the size of the final formula about 2log(t)S(n) ≈ 2S(n), since γ indeed
consists of S(n) variables.

• Instead, we define it by using ∀, ∃ as
∃γ∀δ1∀δ2((δ1 = α ∧ δ2 = γ) ∨ (δ1 = γ ∧ δ2 = β) → Reach(δ1, δ2, t/2)).

Then, the length of the final formula is about kS(n)log(t), that is, O(S(n)2).
Thus L ≤p TQBF, and TQBF is PSPACE complete. 17 / 20
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Prove DSPACE(n) ̸= P and DSPACE(n) ̸= NP.� �

18 / 20



Logic and
Computation

K. Tanaka

Recap
§2.6. Hierarchy
theorems
TQBF

Summary

Summary
• As already mentioned,

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE.

From today’s theorems,

NL ⊊ PSPACE, P ⊊ EXP, NP ⊊ NEXP, PSPACE ⊊ EXPSPACE.

• TQBF is PSPACE-complete.

Further readings� �
M. Sipser, Introduction to the Theory of Computation, 3rd ed., Course Tech-
nology, 2012.� �
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Thank you for your attention!
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