
Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

Logic and Computation I
Chapter 2. Propositional logic and computational complexity

Kazuyuki Tanaka

BIMSA

October 29, 2024

1 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

Logic and Computation I� �
• Part 1. Introduction to Theory of Computation
• Part 2. Propositional Logic and Computational Complexity
• Part 3. First Order Logic and Decision Problems
• Part 4. Modal logic� �

Part 2. Schedule� �
• Oct.10, (1) Tautologies and proofs
• Oct.15, (2) The completeness theorem of propositional logic
• Oct.17, (3) SAT and NP-complete problems
• Oct.22, (4) NP-complete problems about graphs
• Oct.24, (5) Time-bound and space-bound complexity classes
• Oct.29, (6) Hierarchy theorems
• Oct.31, (7) PSPACE-completeness and TQBF� �

2 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

Recap
We assume that a Turing machine has one input tape and an arbitrary number of
working tapes. We write |x| for the length of the symbol string x.
▷ A TM runs in time f(n) or is f(n) time(-bounded), if for every input x

(except finitely many), all calculation processes end within f(|x|) steps.
▷ A TM runs in space f(n) or is f(n) space(-bounded), if for every input x

(except finitely many), no calculation processes use more than f(|x|) cells on
each working tape.

The Linear Speedup Theorem� �
A language acceptable by a f(n) time/space-bounded TM (det or non-det) is
also acceptable by ϵf(n) time/space-bounded TM, for any constant ϵ > 0.� �

 ⋯ ⋯ ⋯ ⋯ ⋯

𝛽𝛼 𝛾

 ∗

 1 0 1 0 0 0 1 1 1

3 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

A number-theoretic function f : N→ N used for bounding time and space is
▷ monotonically increasing,
▷ so simple (time-constructible and space-constructible) that it can be checked

at any time during computation whether it is in the time or space bound.
By the latter condition, we may suppose that any computational process should
halt within the time or space bound even if it is not accepted.

For f, g : N→ N, their growth rates (asymptotic behaviors) are compared as
• f(n) = O(g(n))

def⇔ there exists some c > 0 and for sufficiently large n,

f(n) ≤ c · g(n).

• f(n) = Θ(g(n))
def⇔ f(n) = O(g(n)) and g(n) = O(f(n)).

4 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

In the following, by “O(f(n)) time (space)”, we mean “for some g(n) = O(f(n)),
g(n) time (space)”.

Definition 2.33
For a function f : N→ N, we define the following four complexity classes.

DTIME(f(n))
def
= {L(M) | M is O(f(n)) time deterministic TM},

NTIME(f(n))
def
= {L(M) | M is O(f(n)) time non-deterministic TM},

DSPACE(f(n))
def
= {L(M) | M is O(f(n)) space deterministic TM},

NSPACE(f(n))
def
= {L(M) | M is O(f(n)) space non-deterministic TM}.

5 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

By using O(f(n)) for bounding, we have a stable class that does not depend on
the detailed definition of the Turing machine.
Definition 2.34 (Major Complexity Classes 1)

L (or LOGSPACE) def
= DSPACE(log n),

NL (or NLOGSPACE) def
= NSPACE(log n),

P
def
= DTIME(nO(1)) =

∪
k

DTIME(nk),

NP
def
= NTIME(nO(1)) =

∪
k

NTIME(nk),

PSPACE
def
= DSPACE(nO(1)) =

∪
k

DSPACE(nk),

NPSPACE
def
= NSPACE(nO(1)) =

∪
k

NSPACE(nk).

6 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

Example 4� �
• The problem STCon(nect) is to determine whether there is a path from

a vertex s to a vertex t in a directed graph G.
• Non-deterministic space complexity: STCon ∈ NL.

• Let n be the number of vertices of G. Extend a path from s
non-deterministically, and accept it when it reaches t. Because it does not
need to record the history, O(log n) space is enough for keeping the
information on the current vertex, the next one you will visit, and the
number of steps you have taken.

• The above NL algorithm can been roughly seen as a non-deterministic
linear time one.

• For deterministic case, STCon is in P and DSPACE(log2 n), which is
shown by Theorem 2.36 and 2.37 (Savitch’s Theorem).� �

7 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

Theorem 2.35
For any space-constructible function S(n) ≥ log n,

DSPACE(S(n)) ⊆ DTIME(2O(S(n))) =
∪
k

DTIME(2kS(n)),

NSPACE(S(n)) ⊆ NTIME(2O(S(n))) =
∪
k

NTIME(2kS(n)).

In particular, L ⊆ P, and NL ⊆ NP.

Proof idea.
• Let M be a machine running in space S(n). Then, the number of its

configurations is ≤ |Q|nS(n)|Ω|S(n) ≤ cS(n) for a constant c. So, a
computational process longer than cS(n) includes a repetition of the same
configuration. Hence, we may only consider computational time shorter than
cS(n), i.e., 2O(S(n)).

8 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

Theorem 2.36
For any T (n) and S(n) ≥ log n,

NTIME(T (n)) ⊆ DSPACE(T (n)), (♢)

NSPACE(S(n)) ⊆ DTIME(2O(S(n))) (♣)

In particular, NP ⊆ PSPACE, and NL ⊆ P.
Proof.
(♢) Given a T (n)-time NTM M , let a DTM M ′ perform a depth-first search on
its computation tree. To exhaust all path searches, M ′ does not need to remember
the history of configurations of M , but it is sufficient to memorize that of
transition branches, which can be done in T (n) space. Also, for the simulation of
M , T (n) space is enough.
(♣) Given a S(n)-space NTM M , let a DTM M ′ enumerate reachable configs. of
M by some deterministic way (e.g., width-first) until a final config. is reached.
Note that when you rewrite a list of 2O(S(n)) configurations 2O(S(n)) times, the
computation steps are 2O(S(n)) · 2O(S(n)) = 2O(S(n)) (cf. Theorem 2.35). 9 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

Theorem 2.37 (Savitch’s theorem)
For any S(n) ≥ log n,

NSPACE(S(n)) ⊆ DSPACE(S(n)2).

In particular, PSPACE = NPSPACE, and EXPSPACE = NEXPSPACE.
By Example 4, STCon ∈ DSPACE(log2(n)).
Proof.

• By the proof of (♣) in Theorem 2.36, for a S(n)-space NTM M , there exists
some constant c such that M can be mimicked by a cS(n)-time DTM. This
simulation needs cS(n) space, but can be improved as below.

• By Reach(α, β, k), we mean the existence of a transition from a configuration
α to a configuration β within k(≤ cS(n)) steps in a S(n)-space NTM M .

10 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

Proof(continued). Reach(α, β, k) is determined recursively as follows.
▷ If k = 0, check whether α = β.
▷ If k = 1, check whether it can move from α to β in one step.
▷ If k ≥ 2, check whether there is a computational configuration γ that satisfies

both Reach

(
α, γ,

k

2

)
and Reach

(
γ, β,

k

2

)
. If so, Reach(α, β, k) also holds.

If k

2
is not an integer, one side is rounded up and the other rounded down.

▷ For k

2
≥ 2, first seek a γ′ s.t. Reach

(
α, γ′,

k

22

)
and Reach

(
γ′, γ,

k

22

)
.

Later, seek a γ′ s.t. Reach

(
γ, γ′,

k

22

)
and Reach

(
γ′, β,

k

22

)
.

By repeating this recursive process, we obtain a binary tree whose height is about
log2 k = O(S(n)). In each branching, O(S(n)) space is necessary to memorize the
configuration. In a total pass, it can be executed in O(S(n)2) space.

11 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

Theorem 2.38 (Immermann- Szelepcsényi theorem)
For any S(n)(≥ log n), NSPACE(S(n)) is closed under complement.

Proof.
• Suppose a NTM M accepts a language A with S(n) space. We will construct a

NTM M that accepts the complement Ac with S(n) space.
• A configuration of M can be represented by a string of length S(n), and so the

total number is cS(n) for some constant c.
• Consider the directed graph G with the configurations as vertices and the transition

relations as directed edges. It is sufficient to determine whether there is a path
from the initial state to a final state in the graph G. We may assume that M has a
unique accepting configuration, by making M erase its worktape and return its
heads to the starting positions after the computation.

• To get the answer Yes for the existence of such a path, it is nondeterministically
computable in log(cS(n)) = O(S(n)) space as shown in Example 4 (STCon).

12 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

• To get No, it seems to require a huge amount of spaces to examine all possible
paths, but there is a surprisingly simple process.

• Let Vi be the set of vertices reachable within i steps from the initial configuration.
Let m(i) = |Vi|. By counting m(i), we can check whether all paths are examined.

• To compute m(i+ 1), we check whether α ∈ Vi+1 for each vertex α in some order.
If yes, increment a counter by one. The final value of the counter is m(i+ 1).

𝑉ଵ
𝑉௜

𝑉௜ାଵ

 ⋯ ⋯

𝛽
𝛼

• To check α ∈ Vi+1, non-deterministically choose
an element β of Vi (m(i) times) and check if
there is an edge from β to α or α = β.

• Finally, for some i ≤ cS(n), m(i+ 1) = m(i). If
the final configuration does not appear before i,
then M will not accept the input, so M will
accept it.

13 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

Since NSPACE(n) matches the class of context-sensitive languages, this also
solved the long-standing open question: Is the complement of a context-sensitive
language is still context-sensitive?

Highlights of the above results are:

PSPACE = NPSPACE, EXPSPACE = NEXPSPACE

and
L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE

Among them, topic on which is/are a proper inclusion relation will be discussed in
the last half of this lecture.

14 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

§2.6. Hierarchy theorems
• We will show that some complexity classes are not equivalent, that is, the existence

of a hierarchy of complexity classes.

• As in the previous lectures, T (n) is time-constructible with T (n) > n, and S(n) is
space-constructible with S(n) ≥ log n.

Theorem 2.39 (Space Hierarchy Theorem)
Let S(n) ≥ log n be space constructible. Then for any S′(n) = o(S(n)), there
exists a problem in DSPACE(S(n)) but not in DSPACE(S′(n)).

Proof.
• Prove by a diagonalization argument.

• Let M0,M1, . . . enumerate the deterministic Turing machines with alphabet {0, 1}.

15 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

Proof (continued)
• For a binary string x ∈ {0, 1}∗, let ♯(x) be the natural number represented by x as

the binary representation ignoring 0’s at its head. Therefore, for any natural
number i, there exists an arbitrarily long sequence x such that ♯(x) = i.
Now, construct a machine M with O(S(n)) space that cannot be imitated in the
o(S(n)) space. For a binary string x of length n,

1 Mark S(n) cells on the working tape (∵ S(n) is constructible),

2 If i = ♯(x), imitate Mi with input x in space S(n).

3 By the imitation, if M is going to run over space S(n), it stops and accepts x.

4 As in the proof of theorem 2.35, if Mi runs for a sufficiently long time 2kS(n), it is
already in a roop. So, M stops and accepts x (in O(S(n)) space).

5 If Mi accepts/rejects x in space S(n), then M rejects/accepts x (respectively).
This machine M operates in O(S(n)) space.

16 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

Proof (continued)

• By way of contradiction, we assume there exists an Mi mimicking M in space
S′(|x|) = o(S(n)).

• Consider a sufficiently long input x (S′(|x|) < S(|x|)) such that ♯(x) = i.

• By the definition of M , M and Mi give different results for input x in space S(|x|),
which is a contradiction.

Note that S′(n) is not assumed to be space constructible in the theorem.

17 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

Theorem 2.40 (Time Hierarchy Theorem)
Let T (n) be time constructible and T (n) > n. For any T ′(n) such that

T ′(n) log T ′(n) = o(T (n)),

there exists a problem in DTIME(T (n)) but not in DTIME(T ′(n)).

This proof is similar to that of Space Hierarchy Theorem. Note that a universal
machine for the T ′(n)-time machines operates in time O(T ′(n) log T ′(n)).

Exercise 2.6.1� �
Prove the Time Hierarchy Theorem.� �

From the above hierarchy theorems, we have the following.

L ⊊ PSPACE ⊊ EXPSPACE, P ⊊ EXP.

18 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

For nondeterministic classes, we also have hierarchy theorems. Since their
arguments are much more complex, we only state two major theorems and key
ideas of the poofs.
Theorem 2.41 (Ibarra, 1972)
For any real number r > s ≥ 1,

NSPACE(ns) ⊊ NSPACE(nr).

Proof by contradiction. For instance, suppose NSPACE(n4) = NSPACE(n3).
Then by the padding method (we will show in the next slide), we also have
NSPACE(n5) = NSPACE(n4) and then NSPACE(n6) = NSPACE(n5), etc.
Thus, NSPACE(n7) = NSPACE(n3). However,

NSPACE(n3) ⊆ DSPACE(n6)(from Savitch’s theorem)
⊊ DSPACE(n7)(from the space hierarchy theorem)
⊆ NSPACE(n7)

which is a contradiction. 19 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

The padding method
.
Let A be a language accepted by an n5 space NTM M . Then, let

A′ = {x ♯m | x ∈ A, |x|5 = |x ♯m|4},

where ♯ is a new symbol not belonging to M �
Define a NTM M ′ to operate on input x ♯m as follows.

(i) Check if |x|5 = |x ♯m|4. If no, reject.

(ii) If Yes�then mimic M ’s moves on input x�

Since M operates on x in space |x|5, M ′ operates in space |x|5 = |x♯m|4, and so
A′ = L(M ′) ∈ NSPACE(n4). Hence also�A ∈ NSPACE(n4)�
Further generalizations are left to the audience.

20 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

Theorem 2.42 (Cook 1973)
For any real number r > s ≥ 1,

NTIME(ns) ⊊ NTIME(nr).

The proof is more cumbersome because there is no counterpart of Savitch’s
theorem for time complexity classes. It uses a technique of so-called lazy
diagonalization.

21 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

Summary
As already mentioned,

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE.

From today’s theorems,

NL ⊊ PSPACE, P ⊊ EXP, NP ⊊ NEXP, PSPACE ⊊ EXPSPACE.

For each of the above four relations, there are two complexity classes are
sandwiched between them. E.g., P and NP are sandwiched between
NL ⊊ PSPACE. So, in such consecutive four classes, at lease one of adjacent pairs
must be a proper inclusion. However, it is widely open to decide which pair is
proper.

Further readings� �
D.C. Kozen, Theory of Computation, Springer, 2006.� �

22 / 23

Logic and
Computation

K. Tanaka

Major Complexity
Classes
Savitch and
Immermann-
Szelepcsenyi
§2.6. Hierarchy
theorems

Thank you for your attention!

23 / 23

	Major Complexity Classes
	Savitch and Immermann-Szelepcsenyi
	§2.6. Hierarchy theorems

