Logic and
Computation

K. Tanaka

Introductiol

Asymptotic notations

Time-bound and
und

Logic and Computation |

Chapter 2. Propositional logic and computational complexity

Kazuyuki Tanaka
BIMSA
October 24, 2024

B ihvﬁﬁﬁ[
P

1/25

Logic and
Computation

K. Tanaka

~ Logic and Computation |

-

~
e Part 1. Introduction to Theory of Computation
® Part 2. Propositional Logic and Computational Complexity
® Part 3. First Order Logic and Decision Problems
* Part 4. Modal logic
J
~ Part 2. Schedule ~

Oct.10, (1) Tautologies and proofs

Oct.15, (2) The completeness theorem of propositional logic
Oct.17, (3) SAT and NP-complete problems

Oct.22, (4) NP-complete problems about graphs

Oct.24, (5) Time-bound and space-bound complexity classes
Oct.29, (6) PSPACE-completeness and TQBF

Logic and
Computation

Recap

K. Tanaka

® An NP-hard NP problem is said to be NP-complete.

Recap

B ® The following are NP-complete: SAT, CNF-SAT, 3-SAT, VC and
- (d)HAMCYCLE.
TSP

The Traveling Salesman Problem: does there exist a Hamiltonian cycle such
that the sum of edge weights is less than or equal to k7

It can be shown that TSP is also NP-complete.
® For TSP to be NP, choose an arbitrary path and check whether it satisfies the
condition or not.

® For the reversal, the existence of a Hamiltonian cycle is the existence of a
TSP solution with edge weight 1 and sufficiently large k, and so

HAMCYCLE <, TSP.
=P 3/25

Logic and
Computation

§2.5. Time/space-bound complexity classes:
Introduction

K. Tanaka

® In last lectures, we defined the P and NP classes by polynomial time
constraints on Turing machines.

® Today, we will consider complexity classes defined by not only polynomials but
also more general function families. We will also treat space (tape usage)
constraints, and discuss their difference in computing power.

® The families of functions we treat as constraints are classified by asymptotic
behavior.

425

Logic and
Computation

Asymptotic notations
The followings are used to compare the growth rates of number-theoretic functions.
pompaieoions Definition 2.31
For number-theoretic functions f : N — N and g : N — N,

K. Tanaka

® f(n)=0(g(n)) 4 there exists some ¢ > 0 and for sufficiently large n,

f(n) <e-g(n).

def

* f(n) =6(g(n)) < f(n) = O(g(n)) and g(n) = O(f(n)).
® f(n)=o(g(n)) 4 For any ¢ > 0, for any sufficiently large n,
f(n) <c-g(n).

Here, “for a sufficiently large n" means “there exists N s.t. for any n > N";
“="is a special symbol, different from the usual equal symbol. 5 /25

Logic and
Computation

K. Tanaka

® The first “O" is particularly important, which is called the “Big O" notation.

® Note that in classical mathematics (Bachmann, Landau), “O" is often used in
stead of "©".

® |n addition to the above notation,

f(n) = Q(g(n)) € g(n) = O(f(n))

f(n) = w(g(n)) € g(n) = o(f(n))

are also used. But, we will not use them here, since it is easy to get confused
with another usage: f(n) = Q(g(n)) <"for some ¢ > 0 and infinitely many n,
f(n) >c-g(n)" (Hardy, Littlewood).

6/25

Logic and
Computation

K. Tanaka

Asymptotic notations

Unless otherwise stated, the base of the logarithmic function log(n) is 2, but for
any r > 1, log,.(n) = @log(n) = O(log(n)).

Exercise 2.5.1
o |s 2"l = O(2")? Is 22" = O(2")?
® Show max(f(n),g(n)) = ©(f(n) + g(n)).
¢ Show log(n!) = ©(nlogn).

A number-theoretic function f used for bounding time and space is
> monotonically increasing,

> so simple (time-constructible and space-constructible) that it can be checked
at any time during computation whether it is in the time or space bound.

By the latter condition, we may suppose that any computational process should
halt within the time or space bound even if it is not accepted.

7/25

Logic and
Computation

K. Tanaka

We assume that a Turing machine has one input tape and an arbitrary number of
working tapes.
® We write |z| for the length of the symbol string x.

Definition 2.32

> A (deterministic/non-deterministic) Turing machine runs in time f(n) or is
f(n) time-bounded, if for every input x (except finitely many), its calculation
process ends within f(|z|) steps.

> A (deterministic/non-deterministic) Turing machine runs in space f(n) or is
f(n) space-bounded, if for every input = (except finitely many), its
calculation does not use more than f(|x|) cells on each working tape.

As for the space bound, we only measure the used spaces of the working tapes.
Therefore, the space bounding function f(n) can take a value smaller than the
input length n (e.g., f(n) =logn).

8/25

Logic and The Linear Speedup Theorem

Computation
K. Tanaka A language acceptable by a f(n) time/space-bounded TM (det or non-det) is
also acceptable by €f(n) time/space-bounded TM, for any constant € > 0.

- ® Let ¢ > 0 be an integer, and a Turing machine M that runs in space ¢S(n).

: We construct a Turing machine M’ that emulates it in space S(n). To this
end, divide each working tape of M into segments with length ¢, and treat
each segment as one symbol.

® For speedup, M’ also treats a segment of ¢ symbols of M as one symbol. Let
[be a segment where the head is placed, and a and - be the left and right of
B. In 4 steps (L,R,R,L), M’ can gather all information of «, 3, 7.

a B Y

A A A

BEREnn 23 ° nenna

® During ¢ consecutive moves of M, its head will stay in («, 3) or (3,7). So in
2 steps, M’ can change its tape according to M's configuration after ¢ moves.
In sum, M’ can mimic M's ¢ moves in 6 steps, that is, it is gf(n) time b@U/1§5

Logic and
Computation

K. Tanaka

hz ey 3
2z 842 ;
® e
Sl 2 g
g
2 gf g3
22

In the following, we often omit “bound” or “bounded” for short. For instance, we
just say a f(n) time TM for a f(n) time-bounded TM. Also by “in O(f(n)) time
(space)”, we mean “for some g(n) = O(f(n)), g(n) time (space)".

Definition 2.33

For a function f : N — N, we define the following four complexity classes.

DTIME(f(n)) % {L(M)|M is O(f(n)) time deterministic TM},

NTIME(f(n)) def {L(M) | M is O(f(n)) time non-deterministic TM},
DSPACE(f(n)) e {L(M) | M is O(f(n)) space deterministic TM},
NSPACE(f(n)) e {L(M) | M is O(f(n)) space non-deterministic TM}.

10 /25

comioten By using O(f(n)) for bounding, we have a stable class that does not depend on

K. Tanaka the detailed definition of the Turing machine. For important number-theoretic
functions f, we have the following classes.

s Definition 2.34 (Major Complexity Classes 1)

i“;,“f L (or LOGSPACE) = DSPACE(logn),
2 NL (or NLOGSPACE) ! NSPACE(log n)
P ¥ DTIME®C®Y) =| DTIME(n"),
k
NP = NTIME(n®®) =| JNTIME(n"),
k
PSPACE © DSPACE(n®Y) = | JDSPACE(n"),
NPSPACE « NSPACE(n®") = | JNSPACE(n").

k 11/25

Logic and
Computation

Definition 2.34 (Major Complexity Classes 2)

K. Tanaka

S EXP (or EXPTIME) € DTIME(2"”") =| JDTIME(2™"),
e o e k
NEXP (or NEXPTIME) € NTIME(2"*") =| JNTIME(2"),
k
EXPSPACE « DSPACE(2"”"”) = | JDSPACE(2""),
k
def O(1) k
NEXPSPACE < NSPACE(2"”") = | JNSPACE(2"").

k

Although not introduced here, the class E def DTIME(29() and
NE ' NTIME(20() should not be confused with EXP and NEXP.

12 /25

Logic and
Computation

~ Example 4

K. Tanaka

~
® The problem STCon(nect) is to determine whether there is a path from
s to t for two vertices s and t of a directed graph G.
® Non-deterministic space complexity: STCon € NL.
® |et n be the number of vertices of G. Extend a path from s

non-deterministically, and accept it when it reaches ¢. Because it does not
need to record the history, O(logn) space is enough for keeping the
information on the current vertex, the next one you will visit, and the
number of steps you have taken.

® The above NL algorithm can been roughly seen as a non-deterministic
linear time one.

® For deterministic case, STCon is in P and DSPACE(log® n), which is
shown by Theorem 2.36 and 2.37 (Savitch's Theorem).

13/25

Logic and
Computation

K. Tanaka

We now examine the inclusion relationships between various complexity classes.

~ Time-constructible / Space-constructible functions ~
> f(n) is time-constructible if there is a deterministic machine that count
f(n) in O(f(n)) steps for input 1.

> S(n) is space-constructible if there is a deterministic machine that, for
input 1™, marks S(n) cells and stops without using more than S(n) cells

of the working tape.
- J

~ Examples ™~

® logn, (logn)? are space-constructible.

e n, nlogn, n3, 2008m)* 2n p1 221 3re time and space constructible.

- J

From now on, unless otherwise stated,

> T'(n) is a time-constructible number-theoretic function, and 7'(n) > n.

> S(n) is a space-constructible number-theoretic function, and S(n) > logn.

14 /25

Logic and
Computation

K. Tanaka

First, the following are clear from the definition of a (non-)deterministic Turing
machine.

DTIME(T (n))
DSPACE(S(n))

NTIME(T (n)),

-
C NSPACE(S(n)).

The following are also clear from the fact that a machine can only move the head
on each tape by one cell.

DTIME(T (n))
NTIME(T(n))

DSPACE(T(n)),
NSPACE(T(n)).

N 1N

15 /25

Logic and Theorem 235

Computation

K. Tanaka For any space-constructible function S(n) > logn,

DSPACE(S(n)) < DTIME(2°®(")) = | |DTIME(2*™),

Time-bound and k

NSPACE(S(n)) C NTIME(2OS™) = | |NTIME(2H5™).
k

In particular, L C P, and NL C NP.

Proof.
® \We only consider the deterministic case. The proof for the non-deterministic
case is almost the same.
® Let M be a machine running in space S(n). Assume M has only a single
working tape. Then a machine M’ mimicking M in time 29(5(") has also one
working tape but with a separate track for a clock in order to stop in ¢%(™)
steps. ¢ will be given below.

16 / 25

Logic and
Computation

K. Tanaka

Proof.(continued)

2 and @ are the set of symbols and of states for M. Let || =d, and |Q| = q.

For an input of length n, at most d°(™) sequences of symbols can be written
on the working tape before stopping.

A computational configuration of M is determined by such a sequence on the
working tape together with a state, an input head position, a working head
position. Thus, the number of configurations is < an(n)dS(”) < 3™ for a
sufficiently large constant ¢ (*." S(n) > logn). So, a computational process
longer than ¢5(") includes a repetition of the same configuration. Hence, we
may only consider computational processes shorter than this.

M’ mimicks M by updating M's configurations, so it takes O(S(n)) steps for
mimicking one step of M. M’ also needs some steps for updating the
counting track, but they can be also included in O(S(n)).

With the counting track, M’s simulation will stop in ¢%(), so the total time
for M’ is O(S(n)cs(”)), which is 20(5(n)]

17 /25

Logic and
Computation

K. Tanaka

Theorem 2.36
For any T'(n) and S(n) > logn,

NTIME(T(n)) C DSPACE(T(n)), (&)
NSPACE(S(n)) € DTIME(205()) ()

In particular, NP C PSPACE, and NL C P.

Proof.

(&) Given a T'(n)-time NTM M, a DTM M’ performs a depth-first search on its

computation tree. M’ does not need to remember the configuration history of M,

but only needs which calculation processes have been searched. So, T'(n) space can
be used repeatedly for calculation.

(%) A DTM M’ imitates a S(n)-space NTM M with width-first search in a way
similar to that of Theorem 2.35.

18 /25

Logic and
Computation

K. Tanaka

Theorem 2.37 (Savitch's theorem)

For any S(n) > logn,

NSPACE(S(n)) € DSPACE(S(n)?).

In particular, PSPACE = NPSPACE, and EXPSPACE = NEXPSPACE.
By Example 4, STCon € DSPACE(log?(n)).

Proof.

® By the proof of (&) in Theorem 2.36, for a S(n)-space NTM M , there exists
some constant ¢ such that M can be mimicked by a ¢5(™-time DTM. This
simulation needs ¢°(™ space, but can be improved as below.

® For a S(n)-space NTM M, the existence of a transition from a configuration «
to a configuration 3 within k(< ¢5(") steps is represented by Reach(a, 3, k).

19 /25

Logic and Proof(continued). Reach(c, 3, k) is determined recursively as follows.
Computation
K. Tanaka > If k=0, check whether a = §.

> If £k =1, check whether it can move from « to 3 in one step.

> If k > 2, check whether there is a computational configuration ~ that satisfies

k k
both Reach <a,7, 2) and Reach <’y,6, 2>. If so, Reach(a, 3, k) also holds.

If 3 is not an integer, one side is rounded up and the other rounded down.
k . , , k , k
> For 3 > 2, first seek a 4’ s.t. Reach | a, 7/, 52 and Reach [v/, ~, 2)

k k
Later, seek a 7/ s.t. Reach <7,7’, 22) and Reach <7’,B, 22)

By repeating recursive branchings in this way, we obtain a binary tree with a height
of about logy &k = O(S(n)). In each stage, O(S(n)) space is necessary to memorize
the configuration. In total, it can be executed in O(S(n)?) space.

L]

20 /25

Logic and
Computation

K. Tanaka

Theorem 2.38 (Immermann- Szelepcsényi theorem)

For any S(n)(> logn), NSPACE(S(n)) is closed under complement.

Proof.

Suppose a NTM M accepts a language A with S(n) space, we will construct a
NTM M that accepts the complement A¢ with S(n) space.

A configuration of M can be represented by a string of length S(n), and so the

total number is ¢°(™ for some constant c.

Consider the directed graph G with the configurations as vertices and the transition
relations as directed edges. It is sufficient to determine whether there is a path
from the initial state to a final state in the graph G. We may assume that M has a
unique accepting configuration, by making M erase its worktape and return its
heads to the starting positions after the computation.

To get the answer Yes for the existence of such a path, it is computable in
log(¢®™) = O(S(n)) space as shown in Example 4 (STCon).
21 /25

coogead, @ To get No, it seems to require a huge amount of spaces to examine all possible

% Tenele paths, but there is a surprisingly simple process.

® Let V; be the set of vertices reachable within ¢ steps from the initial configuration.
Let m(i) = |V;|. By counting m(i), we can check whether all paths are examined.

® To compute m(i + 1), we check whether o € V; 11 for each vertex o in some order.
If yes, increment a counter by one. The final value of the counter is m(i + 1).

® To check a vertex a € V; 11, non-deterministically
choose an element 3 of V; (with a possible i-step
path from the initial conf.) and check if there is
an edge from 3 to a or a = 3. lterate this
process m(i) times.

e Finally, for some i < 5™, m(i +1) = m(i). If
the final configuration does not appear before 7,
i.e., if the final configuration does not enter V;,

then M will not accept the input, so M will
accept it. 22/25

Logic and
Computation

K. Tanaka

Since NSPACE(n) matches the class of context-sensitive languages, this also
solved the long-standing open question: Is the complement of a context-sensitive
language is still context-sensitive?

Highlights of the above results are:
PSPACE = NPSPACE, EXPSPACE = NEXPSPACE

and
L C NLCP C NP C PSPACE C EXP C NEXP C EXPSPACE

Among them, topic on which is/are a proper inclusion relation will be discussed in
the next lecture.

23 /25

Logic and
Computation

Summary

K. Tanaka

® For a function f: N — N, we define the following four complexity classes.
DTIME(f(n)) % {L(M)|M is O(f(n)) time deterministic TM},
NTIME(f(n)) = {L(M) | M is O(f(n))
DSPACE(f(n)) e {L(M) | M is O(f(n)) space deterministic TM},
Summary NSPACE(f(n)) % {L(M)| M is O(f(n))
L C NL C P C NP CPSPACE C EXP C NEXP C EXPSPACE
® Savitch' theorem: for any S(n) > logn, NSPACE(S(n)) € DSPACE(S(n)?).

® Immermann-Szelepcsényi's theorem: for any S(n)(> logn), NSPACE(S(n)) is
closed under complement.

time non-deterministic TM},

(n)) space non-deterministic TM}.

Further readings
[D.C. Kozen, Theory of Computation, Springer, 2006. o1 /2}

Logic and
Computation

K. Tanaka

Introduction
Asymptotic notations

Time-bound and
space-bound

Major Complexity
Classes

Thank you for your attention!

Savitch and
Immermann-

Szelepcsenyi

Summary

25 /25

	Recap
	Introduction
	Asymptotic notations
	Time-bound and space-bound
	Major Complexity Classes
	Basic relations
	Savitch and Immermann-Szelepcsenyi

	Summary

