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A Yes/No problem belongs to P if there exists a deterministic TM and a
e polynomial p(z) s.t. for any input string of length n, it returns the correct
answer within p(n) steps.

A problem belongs to NP if there is a nondet. TM and a polynomial p(z) s.t.
for any input string of length n, it stops within p(n) steps.

> The answer is Yes, if at least one accepting computation process admits it;

> The answer is No, if all the computation processes reject.

Q; is poly(nomial)-time reducible to Q2, denote Q1< Qq, if there exists a
polytime algorithm A which solves a problem ¢; in Q; as problem A(q1) in Qa.

Q is NP-hard if for any NP problem Q’, Q" <, Q.
An NP-hard NP problem is said to be NP-complete.
Theorem 2.20

The Cook-Levin theorem: SAT is NP-complete.

3/18



Logic and
Computation

K. Tanaka

We also showed the satifiablity problem SAT restricted to some special Boolean
formulas remains NP-complete.

® A variable z and its negation —z are called literals. A disjunction (V) of
literals is called a clause. A conjunction (A) of clauses is called a CNF
(conjunctive normal form).

® CNF-SAT is the satisfiability problem for conjunctive normal forms.

Theorem 2.23
CNF-SAT is NP-complete.

e A CNF with exactly 3 literals in each clause is called a 3-CNF. 3-SAT is the
satisfiability problem for 3-CNF.

Theorem 2.24
3-SAT is NP-complete.
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® If ¢ has aclause [y V---VI(k > 4), replace it with the following:
(ll\/ZQ\/xl)/\(l3\/£'1\/x2)/\(l4\/£'2\/x3)/\~ . '/\(lk72\/jk74vxk73)/\(lk71\/lk\/i'kfg)

where T represents —z.

® For a clause with only one literal 1, replace it with
(hvayVa) AN(l1 Ve VE) Al VT Vo) Al VIV T2).
® For a clause with only two literals 1 V 2, replace it with
(lhVvigVva) Al VigV ).
® |t is easy to see that the satisfiability condition does not change by these

transformations.

® Since the above transformations can be performed by polynomial-time
algorithms, CNF-SAT is polynomial-time reducible to 3-SAT. OJ
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® Following Cook’s work on SAT, in 1972 R. Karp published a list
B of 21 NP-complete problems. In addition to 3-SAT, there are
B Hamiltonian cycle, graph coloring, knapsack problem.

/ SATISFIABILIH\

Verts

CLIQUE 0-1 INTEGER SATISFIABILITY WITH AT
I \ PROGRAMMING MOST 3 LITERALS PER CLAUSE
NODE SET l
COVER PACKING CHROMATIC NUMBER
FEEDBACK FEEDBACK DIRECTED EXACT CLIQUE
NODE SET ARC SET  HAMILTON COVER COVER
CIRCUIT COVERING
3-DIMENSIONAL HITTING STEINER
KNAPSACK
UNDIRECTED MATCHING SET TREE
HAMILTON
CIRCUIT

SEQUENCING PARTITION
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Vertex cover

Definition 2.25

A directed graph G = (V, E) consists of a set of vertices V' and a set of edges
ECV xV. Agraphs.t. (u,v) € E< (v,u) € E is called an undirected graph.

Here, we only consider finite graphs.

Definition 2.26

A vertex cover of an undirected graph G = (V, E) is a subset S C V of vertices
such that for any edge (u,v) € E of G,u € SorveS.

XVetex

Edge

The set of © is a vertex cover, in which every edge has at least one endpoiat/ 18
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K. Tanaka ® The vertex cover problem VC: Given an undirected graph G and a natural

number k, decide whether there exists a vertex cover S of GG consisting of k
sy vertices.

® The problem of finding the minimum size k of a vertex cover for an undirected
graph G is called the minimum vertex cover problem.

Theorem 2.28

The vertex cover problem for undirected graphs is NP-complete.

Consider how to input G = (V, E) to the TM

® |f the cardinality of V is n, E can be represented by an n x n matrix with
components 0, 1, which is called a adjacency matrix. Then, a graph G
can be represented by a 0,1 sequence of length n2.

® So, a polynomial size of a graph G can be regarded as a polynomial of V.
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Introductiol
Vertex cover

Proof.

/VC is an NP problem

N

® Choose a arbitrary set S of k vertices and check if it is a vertex cover.

® |t is easy to decide (in poly-time) whether S is a vertex cover, since we
only need to check that for each edge, one of its endpoints belongs to 5.

/

To show it is NP-hard, prove 3-SAT <, VC

e Consider a 3-CNF formula ¢ = /\ (l{ v lg v lé) Let {z1,...,2,} be the
j<m
variables in . That is, I (j < m,s < 3) is z; or T;.
® Then construct the graph G = (V, E) such that
o V= {u;,z:i<n}U{L] L} L}:j<m},

 B={(x;,#) i < n} U{(L], L), (L3, L3), (L3, L)  § < m}
U{(ls,Ls) : j < m,s < 3}

~
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Vertex cover

Proof. For example, let G be the graph for ¢ = (x1 V 22 V Z3) A (T2 V 23V T4).

Iy

a 2 P £ & o “ e Check whether there is a v.c. S
of size k = n+2m(= 8) for G.

® A v.c. must contain x; or T;
for each i < n, and at least
two of LJ,LJ,LJ for each
j < m. Hence, a v.c. of size
k =n 4+ 2m will contain

I I 2 7 exactly one of x; or Z; and
exactly two of L7, L}, L].

® So, one of Lj Lj,Lg is not in .S, and it must connect with either x; or Z; in S.

® Now, put z; =T if z; € S, and xz =F if z; € S. Then for each j, one of
l{,l%,lé is T, thus l] v l] V12 = T. Therefore, ¢ is satisfiable.

e Conversely, suppose there is a truth value function f satisfying . First, put x;
(or z;) into S if x; = T (or Z; = T) by f. Then for each j, at least one of
LJI,L%,LJ connects to x; or T; in S. Except one of such, put the other two
into S, which makes a v.c. S of size n + 2m.
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Vertex cove

Hamiltonian cycle

Hamiltonian cycles

Only finite connected graphs are considered here.

Recall: Eulerian cycles in an undirected graph

® An Eulerian path passes through every edge exactly once. An Eulerian
cycle is a Eulerian path whose start and end points coincide.

® A graph G has an Eulerian cycle iff the degree of each vertex of G is even.

e A Hamiltonian cycle is a cycle passing through every vertex exactly once.
® There is no known simple criterion for the existence of Hamiltonian path.
® R. Karp showed that this problem is NP-complete, which makes it clear that in

principle it is difficult to find such a criterion.

11/18



Logic and
Computation

K. Tanaka

Hamiltonian cycle

Definition 2.29

Directed Hamiltonian cycle problem (dHAMCYCLE): for a directed connected
graph, decide whether there is a Hamiltonian cycle (passing every vertex exactly
once, following the direction of the edges)

Theorem 2.30
dHAMCYCLE is NP-complete.

Proof. To show dHAMCYCLE € NP, choose an arbitrary path of a given directed
graph and check whether it is a Hamiltonian cycle.

For its NP-completeness, we prove that VC is poly-time reducible to it.
® An undirected graphs G = (V, E') and k are given to check VC.

® We construct a directed graph G* = (V*, E*) s.t. the following are equivalent

> G* has a Hamiltonian cycle.
> G has a vertex cover of size k.
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coegeend - Proof. (VC<,dHAMCYCLE, continued) v,

« Tamaka  Consider the graph G in the right figure with e Z
k = 2. We construct G* as follows:

e > For k = 2, two points K1, K5 are placed at e,
the top.

Hamiltonian cycle

> Since G consists of 4 vertices v;(i < 4), draw
. t .
4 lines V;°V' downward. If there is an edge
between v; and v; in G, then a pair of
two-way bridges are built so that it can go

back and forth between V V' and VjSVjt.

> Finally, draw a line from each K to each V*
and from each V' to each K;.

Suppose G* has a Ham cycle C'. If C has an edge
from K; to V*, then v; is put into a set S’ of
vertices of G. Since there are only m = 2 top
points K, the size of S is 2. ko K kK ki K ki K

13/18
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K. Tanaka ® First note that to go down from a vertex V;*,

C must go in one of the two ways shown in
the right figures (straight and detour).
o ® Suppose C enters V;* from K;. If C does

not enter V(j # i) from Ky, then there

must be a pair of double bridges between

VsV and VjSVjt, and C detours across them.

Otherwise, goes down straight along VV!.

® Thus, if C makes a detour, just one end of
the corresponding edge belongs to S
otherwise, both endpoints are in S. In any
case, S is a vertex cover of k vertices.

14 /18
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Vertex cove

Hamiltonian cycle

Proof. (VC <, dHAMCYCLE, continued)

e Conversely, if a vertex cover S of k vertices is given first, we can make a
Hamiltonian circuit C' by entering V.* from K; and choosing appropriate
detours from VisVit for v; € S. Therefore,

G has a vertex cover of size k < G* has a Hamiltonian cycle.

® The above argument can be generalized to any graphs. We omit this routine
work.

e Although G* looks much larger than G, it can be obtained by a
polynomial-time algorithm. In fact, the number of vertices of G* is a constant
multiple of the number of edges of G.

® That is, VC is polynomial-time reducible to dHAMCYCLE.

15/ 18
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Hamiltonian cycle

From this result, we can also show that the decision problem on the existence of
Hamiltonian cycles for undirected graphs is NP-complete.

Exercise 2.4.1

Show that the decision problem of the existence of Hamiltonian cycles for undi-
rected graphs (HAMCYCLE) is NP-complete.

Hint. It is sufficient to show dHAMCYCLE<{HAMCYCLE. Given a directed
graph (V, E)), we can constructed a undirected graph (V'  E’).

o |/ — {Umid7vin7vout ’ v E V}

o F/ — U {{’l}in,vmid},{vmid,UOUt}}U U {{UOUt,Uin}}.

veV (u,v)eE
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Vertex cove

Hamiltonian cycle

¢ The Traveling Salesman Problem (TSP) is a variation of the Hamiltonian

cycle problem.
® A weight (distance) assigned for each edge of an undirected graph.

® |s it possible to traverse all the points so that the sum of the weights of
the passed edges does not exceed a given limit k7

® Equivalently, does there exist a Hamiltonian cycle such that the sum of
edge weights is less than or equal to k7

It can be shown that TSP is also NP-complete.

® For TSP to be NP, choose an arbitrary path and check whether it
satisfies the condition or not.

® For the reversal, the existence of a Hamiltonian cycle is the existence of a
TSP solution with edge weight 1 and sufficiently large k, and so

HAMCYCLE <, TSP.
17/18
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® \We have shown that the vertex cover problem VC and the directed
Hamiltonian cycle problem dHAMCYCLE are NP-complete.

Summary

Further readings

M. Sipser, Introduction to the Theory of Computation, 3rd ed., Course Tech-
nology, 2012

Thank you for your attention!
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