Logic and Computation

K. Tanaka

Recap

Vertex cover

Hamiltonian cycle

Summary

Logic and Computation I

Chapter 2. Propositional logic and computational complexity

Kazuyuki Tanaka

BIMSA

October 22, 2024

K. Tanaka

Recap

Vertex cover Hamiltonian cycle

Summary

Doub 1 Introduction to Theory of Commutation

- Part 1. Introduction to Theory of Computation
- Part 2. Propositional Logic and Computational Complexity
- Part 3. First Order Logic and Decision Problems
- Part 4. Modal logic

ogic and Computation I

Part 2. Schedule

- Oct.10, (1) Tautologies and proofs
- Oct.15, (2) The completeness theorem of propositional logic
- Oct.17, (3) SAT and NP-complete problems
- Oct.22, (4) NP-complete problems about graphs
- Oct.24, (5) Time-bound and space-bound complexity classes
- Oct.29, (6) PSPACE-completeness and TQBF

Recap

- A Yes/No problem belongs to ${\bf P}$ if there exists a **deterministic** TM and a polynomial p(x) s.t. for any input string of length n, it returns the correct answer within p(n) steps.
- A problem belongs to NP if there is a **nondet**. TM and a polynomial p(x) s.t. for any input string of length n, it stops within p(n) steps.

 - ▶ The answer is No, if all the computation processes reject.
- Q_1 is poly(nomial)-time reducible to Q_2 , denote $Q_1 \leq_{\mathbf{p}} Q_2$, if there exists a polytime algorithm A which solves a problem q_1 in Q_1 as problem $A(q_1)$ in Q_2 .
- Q is NP-hard if for any NP problem Q', $Q' \leq_p Q$.
- An NP-hard NP problem is said to be NP-complete.

Theorem 2.20

The Cook-Levin theorem: SAT is NP-complete.

We also showed the satisfiablity problem SAT restricted to some special Boolean formulas remains NP-complete.

- A variable x and its negation $\neg x$ are called **literals**. A disjunction (\lor) of literals is called a **clause**. A conjunction (\land) of clauses is called a **CNF** (conjunctive normal form).
- **CNF-SAT** is the satisfiability problem for conjunctive normal forms.

Theorem 2.23

CNF-SAT is NP-complete.

• A CNF with exactly 3 literals in each clause is called a **3-CNF**. **3-SAT** is the satisfiability problem for 3-CNF.

Theorem 2.24

3-SAT is NP-complete.

```
Logic and
Computation
 K. Tanaka
```

Proof. • To show CNF-SAT \leq_p 3-SAT, let ϕ be a CNF formula.

where \bar{x} represents $\neg x$.

• For a clause with only one literal l_1 , replace it with

transformations.

• If ϕ has a clause $l_1 \vee \cdots \vee l_k (k \geq 4)$, replace it with the following: $(l_1 \lor l_2 \lor x_1) \land (l_3 \lor \bar{x}_1 \lor x_2) \land (l_4 \lor \bar{x}_2 \lor x_3) \land \cdots \land (l_{k-2} \lor \bar{x}_{k-4} \lor x_{k-3}) \land (l_{k-1} \lor l_k \lor \bar{x}_{k-3})$

 $(l_1 \vee x_1 \vee x_2) \wedge (l_1 \vee x_1 \vee \bar{x}_2) \wedge (l_1 \vee \bar{x}_1 \vee x_2) \wedge (l_1 \vee \bar{x}_1 \vee \bar{x}_2).$

• For a clause with only two literals $l_1 \vee l_2$, replace it with

 $(l_1 \vee l_2 \vee x_1) \wedge (l_1 \vee l_2 \vee \bar{x}_1).$

• It is easy to see that the satisfiability condition does not change by these

Since the above transformations can be performed by polynomial-time

algorithms, CNF-SAT is polynomial-time reducible to 3-SAT.

K. Tanaka

Introduction
Vertex cover

Summany

§2.4. NP-complete problems about graphs

ullet Following Cook's work on SAT, in 1972 R. Karp published a list of 21 NP-complete problems. In addition to 3-SAT, there are Hamiltonian cycle, graph coloring, knapsack problem.

Logic and Computation

K. Tanaka

Recap
Introduction
Vertex cover

Summar

Definition 2.25

A directed graph G=(V,E) consists of a set of vertices V and a set of edges $E\subseteq V\times V$. A graph s.t. $(u,v)\in E\Leftrightarrow (v,u)\in E$ is called an undirected graph.

Here, we only consider finite graphs.

Definition 2.26

A vertex cover of an undirected graph G=(V,E) is a subset $S\subseteq V$ of vertices such that for any edge $(u,v)\in E$ of $G,\ u\in S$ or $v\in S$.

The set of ⊚ is a vertex cover, in which every edge has at least one endpoint,

Definition 2.27

- The vertex cover problem VC: Given an undirected graph G and a natural number k, decide whether there exists a vertex cover S of G consisting of k vertices.
- ullet The problem of finding the minimum size k of a vertex cover for an undirected graph G is called the **minimum vertex cover problem**.

Theorem 2.28

The vertex cover problem for undirected graphs is NP-complete.

Consider how to input G=(V,E) to the TM

- If the cardinality of V is n, E can be represented by an $n \times n$ matrix with components 0, 1, which is called a **adjacency matrix**. Then, a graph G can be represented by a 0, 1 sequence of length n^2 .
- \bullet So, a polynomial size of a graph G can be regarded as a polynomial of V.

Proof.

- VC is an NP problem
- Choose a arbitrary set S of k vertices and check if it is a vertex cover.
- It is easy to decide (in poly-time) whether S is a vertex cover, since we only need to check that for each edge, one of its endpoints belongs to S.

• Consider a 3-CNF formula $\varphi = \bigwedge (l_1^j \vee l_2^j \vee l_3^j)$. Let $\{x_1, \dots, x_n\}$ be the

To show it is NP-hard, prove $3\text{-SAT} \leq_n \text{VC}$

- variables in φ . That is, l_s^j $(j \le m, s \le 3)$ is x_i or $\overline{x_i}$. • Then construct the graph G = (V, E) such that
- $V = \{x_i, \bar{x}_i : i \leq n\} \cup \{L_1^j, L_2^j, L_3^j : j \leq m\},\$

 - $E = \{(x_i, \bar{x}_i) : i < n\} \cup \{(L_1^j, L_2^j), (L_2^j, L_3^j), (L_3^j, L_1^j) : j \le m\}$ $\cup \{(l_s^j, L_s^j): j < m, s < 3\}.$

Posan

Vertex cover
Hamiltonian cyc

Proof. For example, let G be the graph for $\varphi=(x_1\vee x_2\vee \bar{x}_3)\wedge (\bar{x}_2\vee x_3\vee \bar{x}_4).$ $\xrightarrow{x_1} \xrightarrow{\bar{x}_2} \xrightarrow{\bar{x}_3} \xrightarrow{\bar{x}_3} \xrightarrow{\bar{x}_4} \bullet \text{ Check whether there is a v.c. } S \text{ of size } k=n+2m(=8) \text{ for } G.$

 L_{2}^{1} L_{3}^{1} L_{1}^{2} L_{3}^{2}

- of size k=n+2m(=8) for G• A v.c. must contain x_i or \bar{x}_i for each $i\leq n$, and at least two of L_1^j, L_2^j, L_3^j for each $j\leq m$. Hence, a v.c. of size k=n+2m will contain exactly one of x_i or \bar{x}_i and exactly two of L_1^j, L_2^j, L_3^j .
- So, one of L_1^j, L_2^j, L_3^j is not in S, and it must connect with either x_i or \bar{x}_i in S.
- Now, put $x_i = T$ if $x_i \in S$, and $x_i = F$ if $\bar{x}_i \in S$. Then for each j, one of l_1^j, l_2^j, l_3^j is T, thus $l_1^j \vee l_2^j \vee l_3^j = T$. Therefore, φ is satisfiable.
- Conversely, suppose there is a truth value function f satisfying φ . First, put x_i (or \bar{x}_i) into S if $x_i = T$ (or $\bar{x}_i = T$) by f. Then for each j, at least one of L_1^j, L_2^j, L_3^j connects to x_i or \bar{x}_i in S. Except one of such, put the other two into S, which makes a v.c. S of size n+2m.

Hamiltonian cycles

Only finite connected graphs are considered here.

Recall: Eulerian cycles in an undirected graph

- An Eulerian path passes through every edge exactly once. An Eulerian cycle is a Eulerian path whose start and end points coincide.
- ullet A graph G has an Eulerian cycle iff the degree of each vertex of G is even.
- A **Hamiltonian cycle** is a cycle passing through every vertex exactly once.
- There is no known simple criterion for the existence of Hamiltonian path.
- R. Karp showed that this problem is NP-complete, which makes it clear that in principle it is difficult to find such a criterion.

Definition 2.29

Directed Hamiltonian cycle problem (**dHAMCYCLE**): for a directed connected graph, decide whether there is a Hamiltonian cycle (passing every vertex exactly once, following the direction of the edges)

Theorem 2.30

dHAMCYCLE is NP-complete.

graph and check whether it is a Hamiltonian cycle.

For its NP-completeness, we prove that VC is poly-time reducible to it.

- An undirected graphs G = (V, E) and k are given to check VC.
- We construct a directed graph $G^* = (V^*, E^*)$ s.t. the following are equivalent

Proof. To show dHAMCYCLE \in NP, choose an arbitrary path of a given directed

- $\triangleright G^*$ has a Hamiltonian cycle.
- \triangleright G has a vertex cover of size k.

Logic and Computation K. Tanaka

Hamiltonian cycle

Proof. (VC \leq_n dHAMCYCLE, continued) Consider the graph G in the right figure with k=2. We construct G^* as follows:

- \triangleright For k=2, two points K_1, K_2 are placed at the top. \triangleright Since G consists of 4 vertices $v_i (i \le 4)$, draw
 - 4 lines $V_i^s V_i^t$ downward. If there is an edge between v_i and v_i in G, then a pair of two-way bridges are built so that it can go back and forth between $V_i^{s}V_i^{t}$ and $\overline{V_i^{s}V_i^{t}}$.
 - and from each V_i^t to each K_l .

Suppose G^* has a Ham cycle C. If C has an edge from K_l to V_i^s , then v_i is put into a set S of vertices of G. Since there are only m=2 top

points K_l , the size of S is 2.

 \triangleright Finally, draw a line from each K_l to each V_i^s

Logic and

K. Tanaka

Recap Introduction

Vertex cover
Hamiltonian cycle

Summar

Proof. (VC \leq_p dHAMCYCLE, continued)

- First note that to go down from a vertex V_i^s , C must go in one of the two ways shown in the right figures (straight and detour).
- Suppose C enters V_i^s from K_1 . If C does not enter $V_j^s(j \neq i)$ from K_2 , then there must be a pair of double bridges between $\overline{V_i^s V_i^t}$ and $\overline{V_j^s V_j^t}$, and C detours across them. Otherwise, goes down straight along $\overline{V_i^s V_i^t}$.
- Thus, if C makes a detour, just one end of the corresponding edge belongs to S; otherwise, both endpoints are in S. In any case, S is a vertex cover of k vertices.

Proof. (VC \leq_p dHAMCYCLE, continued)

ullet Conversely, if a vertex cover S of k vertices is given first, we can make a Hamiltonian circuit C by entering V_i^s from K_l and choosing appropriate detours from $V_i^s V_i^t$ for $v_i \in S$. Therefore,

G has a vertex cover of size $k \Leftrightarrow G^*$ has a Hamiltonian cycle.

- The above argument can be generalized to any graphs. We omit this routine work.
- Although G^* looks much larger than G, it can be obtained by a polynomial-time algorithm. In fact, the number of vertices of G^* is a constant multiple of the number of edges of G.
- That is, VC is polynomial-time reducible to dHAMCYCLE.

Logic and Computation

K. Tanaka

Introduction

Hamiltonian cycle

Summary

From this result, we can also show that the decision problem on the existence of Hamiltonian cycles for undirected graphs is NP-complete.

Exercise 2.4.1

Show that the decision problem of the existence of Hamiltonian cycles for undirected graphs ($\rm HAMCYCLE$) is NP-complete.

Hint. It is sufficient to show dHAMCYCLE \leq_q HAMCYCLE. Given a directed graph (V, E), we can constructed a undirected graph (V', E').

- $V' = \{v^{\mathsf{mid}}, v^{\mathsf{in}}, v^{\mathsf{out}} \mid v \in V\}.$
- $\bullet \ E' = \bigcup_{v \in V} \Big\{ \{v^{\mathsf{in}}, v^{\mathsf{mid}}\}, \{v^{\mathsf{mid}}, v^{\mathsf{out}}\} \Big\} \cup \bigcup_{(u,v) \in E} \Big\{ \{u^{\mathsf{out}}, v^{\mathsf{in}}\} \Big\}.$

Logic and Computation

K. Tanaka

Introduction

Hamiltonian cycle

Summary

- The Traveling Salesman Problem (TSP) is a variation of the Hamiltonian cycle problem.
 - A weight (distance) assigned for each edge of an undirected graph.
 - Is it possible to traverse all the points so that the sum of the weights of the passed edges does not exceed a given limit k?
 - Equivalently, does there exist a Hamiltonian cycle such that the sum of edge weights is less than or equal to k?

It can be shown that TSP is also NP-complete.

- For TSP to be NP, choose an arbitrary path and check whether it satisfies the condition or not.
- For the reversal, the existence of a Hamiltonian cycle is the existence of a TSP solution with edge weight 1 and sufficiently large k, and so

HAMCYCLE \leq_p TSP.

Summary

• We have shown that the vertex cover problem VC and the directed Hamiltonian cycle problem dHAMCYCLE are NP-complete.

Further readings

M. Sipser, Introduction to the Theory of Computation, 3rd ed., Course Technology, 2012

Thank you for your attention!