
Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

Logic and Computation I
Part 2. Propositional logic and computational complexity

Kazuyuki Tanaka

BIMSA

October 17, 2024

1 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

Logic and Computation I� �
• Part 1. Introduction to Theory of Computation
• Part 2. Propositional Logic and Computational Complexity
• Part 3. First Order Logic and Decision Problems
• Part 4. Modal logic� �

Part 2. Schedule� �
• Oct.10, (1) Tautologies and proofs
• Oct.15, (2) The completeness theorem of propositional logic
• Oct.17, (3) SAT and NP-complete problems
• Oct.22, (4) NP-complete problems about graphs
• Oct.24, (5) Time-bound and space-bound complexity classes
• Oct.29, (6) PSPACE-completeness and TQBF� �2 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

Recap
• Propositional logic is the study of logical connections between propositions.

• If any truth-value function V satisfying all propositions in Γ also satisfies φ,
then φ is said to be a tautological consequence of Γ, written as Γ |= φ.

• A proof of φ in Γ is a sequence of propositions φ0, φ1, · · · , φn(= φ) satisfying
the following conditions: for k ≤ n,
(1) φk belongs to {P1,P2,P3} ∪ Γ, or
(2) there exist i, j < k such that φj = φi → φk (MP).

If a proof of φ in Γ exists, φ is called a theorem in Γ, written as Γ ⊢ φn.

• Completeness theorem: Γ ⊢ φ ⇔ Γ |= φ.

• Completeness theorem(another version): Γ is consistent ⇔ Γ is satisfiable.

• Compactness theorem: If any finite subset of Γ is satisfiable, also is Γ.

3 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

§2.3. SAT and NP-complete problems
Historical introduction
• Decision problem (Entscheidungsproblem) is to determine the

existence of a solution or property rather than figuring out a
specific solution.

• Gödel’s incompleteness theorem (1931) showed that ordinary
deductive systems cannot solve the decision problem of arithmetic.

• Turing and Church (1936) solved the decision problem of
first-order logic in a completely negative way.

• Turing defined the so-called universal Turing machine. After
demonstrating the undecidability of the halting problem K, he
expressed the problem as the satisfiability of first-order logic.

K. Gödel

A. Turing

4 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

Historical introduction (continued)
• For decidable problems, it is important to find efficient

algorithms and to show the limits of their efficiency.

• Research on computational efficiency or complexity began in
1965 with the paper “On the Computational Complexity of
Algorithms” by J. Hartmanis and R.E. Stearns, published in
the Transaction of the American Mathematical Society.

J. Hartmanis

R.E. Stearns

5 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

• Two measures of computational efficiency: time and space
• Today, we only consider time complexity, especially polynomial time one.
The class P of polynomial-time problems� �

A decision problem is polynomial-time solvable if there exists a deterministic
(multi-tape) TM and a polynomial p(x) such that for an input string of length
n, it returns the correct answer (Yes or No) within p(n) steps.� �
The class NP of polynomial-time nondeterministic problems� �

A problem is a nondeterministic polynomial-time solvable if there is a non-
deterministic TM and a polynomial p(x) such that for an input string of length
n, it always stops within p(n) steps and answers
▷ Yes, if at least one accepting computation process admits it;
▷ No, if all the computation processes reject.� �

Clearly, P ⊂ NP. But, P = NP?
It is widely believed that this is not the case, which is called P ̸= NP conjecture.

6 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

Definition 2.16 (Polynomial time reducibility)
A problem Q1 is polynomial (time) reducible to Q2, denoted as Q1 ≤p Q2 if
there exists a polynomial-time (deterministic) algorithm A which can solve a
problem q1 in Q1 as the problem A(q1) in Q2.

• A in the above definition can be seen as a deterministic polynomial-time TM
with outputs.

• We solve a problem q1 in Q1 as the problem A(q1) in Q2, by taking answer
Yes/NO to A(q1) in Q2 as answer Yes/NO to q1 in Q1.

• If Q1 ≤p Q2, then Q1 can be solved polynomially by using an algorithm for
Q2, and so generally Q2 is more difficult.

Lemma 2.17
Q1 ≤p Q2 ∧ Q2 ∈ P ⇒ Q1 ∈ P.

7 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

Definition 2.18
• A problem belonging to NP is called an NP problem.

• A problem Q (not limited to NP problems) is said to be NP-hard if for any
NP problem Q′, Q′ ≤p Q.

• An NP-hard NP problem is said to be NP-complete.

An NP-complete problem is the most difficult problem in NP. If there is a
NP-complete problem that can be solved by P, all NP problems can be solved by P,
so P = NP.

The first NP-complete problem discovered by Cook in 1971 was the satisfiability
problem for propositional logic (Boolean algebra). Subsequently, many other
NP-complete problems were found by R. Karp.

8 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

Definition 2.19 (Satisfiability problem)
The satisfiability problem SAT is to determine whether a give proposition (or a
Boolean formula) is satifiable or not, i.e., whether there exists a truth assignment
that makes the proposition (Boolean formula) have value T (or 1).

• From now on, the decision problem Q is identified with the set of (symbol
strings representing) individual problems whose answer is Yes. Therefore, SAT
is regarded as the set of satisfiable propositions (Boolean formulas).

• Here, we use T,F instead of the constants 1, 0 even in Boolean formulas, in
order to distinguish them from natural numbers. So, propositions and Boolean
formulas are not distinguished.

• For example, for a Boolean formula φ(x1, x2) = (¬x1 ∨ ¬x2) ∧ (x1 ∨ ¬x2), we
have φ(T,F) = T, so φ(x1, x2) ∈ SAT.

9 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

Theorem 2.20 (Cook - Levin theorem)
SAT is NP-complete.

S. Cook L. Levin

S. Cook was an assistant professor of Mathematics at the University of California,
Berkeley at the time of his discovery. He received his PhD from Harvard University
under the supervision of mathematical logician Prof. Hao Wang.

L. Levin, who was Kolmogorov’s student in Moscow, independently made a similar
discovery. So it is called the Cook-Levin theorem.

10 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

Proof.
SAT ∈ NP� �
• First of all, an input formula must be expressed as a sequence from a

finite set of symbols. Among others, we need to express infinitely many
variables xn’s in finitely many symbols, so we will simply express variables
x0, x1, x2, . . . by symbol strings 1, 11, 111, And we loosely assume
that the variables are used consecutively in order of x0, x1, x2,
Thus, for example, (¬x0 ∨ ¬x1 ∨ F) ∧ (x0 ∨ ¬x2) is expressed by
(¬1∨¬11∨F)∧ (1∨¬111). Then, a formula with length n can be coded
as a symbolic string with length ≤ n2.

• Next, we non-deterministically choose a sequence of T’s and F’s by which
a given formula is evaluated. By a sequence TFT, for example, we denote
the assignment of T, F, and T to the variables x0, x1, and x2, respectively.� �

11 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

SAT ∈ NP (continued)� �
• Suppose we choose the sequence TFT and then we evaluate φ as follows.
• In an input string, replace 1, 11, 111 (not part of a longer sequence of

1’s) by T, FF, TTT. Then, (¬1 ∨ ¬11 ∨ F) ∧ (1 ∨ ¬111) becomes

(¬T ∨ ¬FF ∨ F) ∧ (T ∨ ¬TTT).

• Repeat the following process. If we find symbol ¬ that precedes T or F,
replace ¬ and all subsequent T’s or F’s with their opposite truth symbols.
Then, the above example becomes

(FF ∨ TTT ∨ F) ∧ (T ∨ FFFF)

• For subformulas of truth strings connected by ∨ or ∧, replace each symbol
with the truth symbol of the result by the operations. Hence we have,

(TTTTTTTT) ∧ (TTTTTT)� �
12 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

SAT ∈ NP (continued)� �
• If a sequence of truth symbols is ended with parentheses, then replace

both parentheses with the truth symbols inside.

(TTTTTTTT)∧(TTTTTT) =⇒ TTTTTTTTTT∧TTTTTTTT

• For this example, perform the operation ∧ again, we obtain

TTTTTTTTTTTTTTTTTTTT

which shows that the assignment TFT satisfies φ. If we obtain a sequence
of F’s for some assignment, then φ is not satisfied by the assignment.

• The choice of an assignment is non-deterministic. But after that, the
calculation is deterministic and does not change the length of a symbolic
sequence. Since a rewriting process in each item requires computation
steps in a constant multiple of input length n, the whole calculation must
halt within a constant multiple of n2 steps for an input string of length n.
Hence SAT ∈ NP.� �13 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

Any NP-problem R can be reduced to SAT in polynomial time� �
• Let M = (Q,Ω, δ,Q0, F) be a nondeterministic TM with a single tape to

decide (accept) the problem R in polynomial time p(n).

• We construct will a Boolean formula Φw representing the computation
process of M on input w of length n, and M accepts w in polynomial
time p(n) if and only if Φw is satisfiable.

• In Φw, a variable xt,i,a denotes “a(∈ Ω ∪Q) is the (i+ 1)-th symbol in
the computational configuration a1 · · · aj−1qaj · · · ak at time t ≤ p(n)”.

• Since t is bounded by p(n), the used area of the tape does not exceed
n+ p(n). In addition, Ω ∪Q is a finite set. Therefore, the total number
of variables xt,i,a is a constant multiple of p(n)2.� �

14 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

Any NP problem R can be reduced to SAT in polynomial time� �
• Suppose M ’s input is w = w1 · · ·wn and other cells are blank (symbol B).
• Then, to represent the condition of initial configuration (t = 0), we define

the following Boolean formula φw :∨
q∈Q0

(
x0,0,q ∧

∧
a ̸=q ¬x0,0,a

)
∧
(
x0,1,w1 ∧

∧
a ̸=w1

¬x0,1,a
)
∧ · · · ∧

(
x0,n,wn ∧

∧
a ̸=wn

¬x0,n,a
)

∧
∧

i>n

(
x0,i,B ∧

∧
a ̸=B ¬x0,i,a

)
. (note: i ≤ n+ p(n))

• A truth value assignment satisfying φw denotes an initial config. of M .
• The number of variables included in φw is a constant multiple of p(n).� �

15 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

Any NP problem R can be reduced to SAT in polynomial time (continued)� �
• Next, we consider M ’s transition rule X : (a′, L, q) ∈ δ(p, a)

· · · bpa · · · ▷ · · · qba′ · · ·

• We assume that bpa is the (i+ 1)-th to (i+ 3)-th symbols of
computational configuration at time t.

• The relation between xt,_ _ and xt+1,_ _, denoted as φ(t, i,X), is
expressed as:
(xt,i,b ∧ xt,i+1,p ∧ xt,i+2,a) ∧ (xt+1,i,q ∧ xt+1,i+1,b ∧ xt+1,i+2,a′)

∧
∧

c ̸=q ¬xt+1,i,c ∧
∧

c ̸=b ¬xt+1,i+1,c ∧
∧

c ̸=a′ ¬xt+1,i+2,c

∧
∧

j /∈{i,i+1,i+2},a(xt+1,j,a ↔ xt,j,a).

• Assuming φ(t, i,X) has value T, the values of xt+1,_ _ are uniquely
determined from the truth value assignment of xt,_ _.

• The total number of variables in φ(t, i,X) is a constant multiple of p(n).
• Other transitions can be treated similarly, so the details are omitted.� �16 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

Any NP problem R can be reduced to SAT in polynomial time (continued)� �
• Composing the above Boolean formulas, we define:

Φw ≡ φw ∧

∧
t

∨
i,X

φ(t, i,X)

 ∧
∨

t,i,q∈F
xt,i,q

• The final disjunct means that a final state q ∈ F appears in the
computation.

• Since the variables contained in Φw are constant multiples of p(n)3, we
construct Φw from w by a deterministic polynomial-time algorithm.

• By the definition of Φw, it is clear that

w ∈ L(M) ⇔ Φw ∈ SAT

• Thus problem R can be reduced to SAT in polynomial time.� �
17 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

By the completeness theorem, the set of theorems of propositional logic is
equivalent to the set of tautologies. So, it turns out to be polynomial-time
reducible to the complement of SAT.

⊢ φ ⇔ ¬φ /∈ SAT.

Next, we show that SAT for a special class of Boolean formulas remains
NP-complete.
Definition 2.21
A variable x and its negation ¬x are called literals. A disjunction (∨) of literals is
called a clause. A conjunction (∧) of clauses is called a CNF (conjunctive normal
form).

Definition 2.22
CNF-SAT is the satisfiability problem for conjunctive normal forms.

Theorem 2.23
CNF-SAT is NP-complete.

18 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

Proof.
• Since CNF-SAT ⊂ SAT, CNF-SAT ∈ NP is obvious from SAT ∈ NP.

• Goal: SAT ≤p CNF-SAT.

• We are looking for a polynomial-time algorithm that converts a Boolean
formula to an equivalent CNF. But this is not easy. For instance, if you
convert

(φ1
1 ∧ φ1

2) ∨ (φ2
1 ∧ φ2

2) ∨ · · · ∨ (φn
1 ∧ φn

2)

to ∧
1≤i1,i2,...,in≤2

(φ1
i1 ∨ φ

2
i2 ∨ · · · ∨ φn

in),

then the formula size increases from 2n to n2. So, if one repeats this kind of
conversions, its size would be beyond polynomial.

19 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

Proof(continued)
• However, there is no need to construct an equivalent CNF. It is sufficient to

show that for any formula φ, there is a CNF formula ψ such that

φ ∈ SAT ⇔ ψ ∈ SAT. (1)

In fact, the CNF formula ψ(x⃗, y⃗) is

φ(x⃗) ↔ ∃y⃗ψ(x⃗, y⃗) (2)

where ∃y⃗ψ(x⃗, y⃗) is a quantified Boolean formulas (will be introduced in §2.6),
which means that there exists a truth assignment b⃗ to y⃗ s.t. ψ(x⃗, b⃗) holds.

• If φ(x⃗) and ψ(x⃗, y⃗) satisfy (2), they also satisfy (1).

20 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

Proof(continued)
• We may assume that φ(x⃗) is in the negation normal form, that is, a formula

with negation symbol ¬ only in front of variables. This transformation by De
Morgan’s rule does not change the total number of variables, and the formula
size at most double.

• We construct a CNF formula ψ(x⃗, y⃗) satisfying (2), by induction on the
construction of φ(x⃗), that is, φ(x⃗) ≡

∧
i φi(x⃗) or

∨
i φi(x⃗)

• Suppose for each φi(x⃗), there exists a CNF formula ψi(x⃗, y⃗i) satisfying (2).

• Then, for φ(x⃗) ≡
∧

i φi(x⃗), a CNF formula ψ(x⃗, y⃗) ≡
∧

i ψi(x⃗, y⃗i) also
satisfies (2). Here, we assume that for i ̸= j, y⃗i and y⃗j should not have
common variables.

21 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

Proof(continued)
• For φ(x⃗) ≡

∨
i φi(x⃗), we need to transform

∨
i ψi(x⃗, y⃗i) to a CNF formula:

▷ Let ψ′
1(x⃗, y⃗1, z1) be a CNF formula obtained from ψ1(x⃗, y⃗1) by replacing

each clause f with f ∨ z1.

▷ For i = 2, . . . , n− 1, let ψ′
i(x⃗, y⃗i, zi, zi−1) be a CNF formula obtained

from ψi(x⃗, y⃗i) by replacing each clause f with f ∨ zi ∨ ¬zi−1.

▷ Let ψ′
n(x⃗, y⃗n, zn−1) be a CNF formula obtained from ψn(x⃗, y⃗n) by

replacing each clause f with f ∨ ¬zn−1.

• Then, we can prove that CNF
∧

i ψ
′
i satisfies (2) with

∨
i ψi(x⃗, y⃗i).

• First, supposing
∨

i ψi(x⃗, y⃗i) ∈ SAT, we show
∧

i ψ
′
i ∈ SAT.

▷ There exists some k such that ψk(x⃗, y⃗k) ∈ SAT. Then ψ′
k is also

satisfiable (regardless of the value of zi).
▷ Let z1, . . . , zk−1 be T, and zk, . . . , zn−1 be F. Then, for each i ̸= k,
zi ∨ ¬zi−1 (z1 for i = 1 and ¬zn−1 for i = n) is T, and so ψ′

i is also T.
Thus

∧
i ψ

′
i ∈ SAT.

22 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

Proof(continued)
• Conversely, suppose

∧
i ψ

′
i ∈ SAT.

▷ Consider a truth value assignment that makes this formula T and let zk
be the first variable that takes the value F. That is, from z1 to zk−1 are
T, and zk is F. Hence, zk ∨ ¬zk−1 added to each clause of ψk (although
the form is slightly different when k = 1, n) is F.

▷ So, to make ψ′
k satisfied, ψk must be T. Thus,

∨
i ψi ∈ SAT.

• The size of
∧

i ψ
′
i obtained in this way is a constant multiple of the total

number of clauses contained in
∨

i ψi, hence also a constant multiple of the
input length.

• In addition, the number of clauses does not change, and the number of
repetition is less than the input length, so the size of the obtained CNF
formula is bounded by n2 for the input size n.

• Therefore, this transformation is a polynomial-time algorithm, and SAT is
polynomial-time reducible to CNF-SAT.

23 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

A CNF with exactly 3 literals in each clause is called a 3-CNF, and the
satisfaction problem for it is called 3-SAT. It is also known to be NP-complete.

Theorem 2.24
3-SAT is NP-complete.

Proof.
• 3-SAT ∈ NP is obvious. Since CNF-SAT is NP-complete, it is enough to show

CNF-SAT ≤p 3-SAT.

• Let ϕ be a CNF formula. If there is a clause f ≡ l1 ∨ · · · ∨ lk(k ≥ 4) that
contains 4 or more literals, replace it with the following formula g:

(l1∨l2∨x1)∧(l3∨x̄1∨x2)∧(l4∨x̄2∨x3)∧· · ·∧(lk−2∨x̄k−4∨xk−3)∧(lk−1∨lk∨x̄k−3)

where x̄ represents ¬x.

• We can prove that the satisfiability of f is equivalent to the satisfiability of g,
as in the second half of the proof of the last theorem.

24 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

Proof(continued)
• For a clause with only one literal l1, replace it with

(l1 ∨ x1 ∨ x2) ∧ (l1 ∨ x1 ∨ x̄2) ∧ (l1 ∨ x̄1 ∨ x2) ∧ (l1 ∨ x̄1 ∨ x̄2).

• For a clause with only two literals l1 ∨ l2, replace it with

(l1 ∨ l2 ∨ x1) ∧ (l1 ∨ l2 ∨ x̄1).

• It is easy to see that the satisfiability condition does not change by these
transformations.

• Since the above transformations can be performed by polynomial-time
algorithms, CNF-SAT is polynomial-time reducible to 3-SAT.

Exercise 2.3.1� �
A CNF with exactly 2 literals in each clause is called a 2-CNF, and the satis-
faction problem for it is called 2-SAT. Prove that 2-SAT belongs to P.� �

25 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

Summary
• We have defined the classes P and NP.

• Q1 is polynomial (time) reducible to Q2, denoted as Q1 ≤p Q2, if there exists
a polynomial-time algorithm A which solves a problem q1 in Q1 as problem
A(q1) in Q2.

• Q is NP-hard if for any NP problem Q′, Q′ ≤p Q.

• An NP-hard NP problem is said to be NP-complete.

• The Cook-Levin theorem: SAT is NP-complete.

• We have shown that CNF-SAT and 3-SAT are also NP-complete.

Further readings� �
M. Sipser, Introduction to the Theory of Computation, 3rd ed., Course Tech-
nology, 2012.� �26 / 27

Logic and
Computation

K. Tanaka

Historical
introduction
The classes P and
NP
Polynomial time
reducibility
NP-complete
Satisfiability problem
Cook - Levin theorem
CNF-SAT

3-SAT

Summary

Thank you for your attention!

27 / 27

	Historical introduction
	The classes P and NP
	Polynomial time reducibility
	NP-complete
	Satisfiability problem
	Cook - Levin theorem
	CNF-SAT
	3-SAT
	Summary

