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® Part 1. Introduction to Theory of Computation

® Part 2. Propositional Logic and Computational Complexity
® Part 3. First Order Logic and Decision Problems

® Part 4. Modal logic

s Part 2. Schedule ™
® Oct.10, (1) Tautologies and proofs
® QOct.15, (2) The completeness theorem of propositional logic
® Oct.17, (3) SAT and NP-complete problems
® Oct.22, (4) NP-complete problems about graphs
® Oct.24, (5) Time-bound and space-bound complexity classes
® Oct.29, (6) PSPACE-completeness and TQBF
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Recap

® Propositional logic is the study of logical connections between propositions.

= (not --+), A (and), V (or), — (implies).
If a proposition ¢ is always true, i.e., V() = T for any truth-value function V, then
 is said to be valid or a tautology, written as = .

® We consider an axiomatic system that derives all valid propositions only using —, —.
We can omit V and A by setting p V9 := —p — ¥, o Ap := =(p — ).
A proof is a sequence of propositions ¢g, 1, - , . satisfying the following
conditions: for each k < n,
(1) r is one of axioms P1, P2, P3,
PL o= (¢ = @)
P2 (¢ w—0) = (=9 > (0 —0)
P3. (m = =) = (¢ = ), or
(2) There exist 4, j < k such that ¢; = vi — @i (MP).
The last component of proof ¢, is called a theorem, and we denote I ,,.

® In this lecture, we will prove the completeness theorem: - ¢ < = .
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§2.2. Completeness theorem for propositional
logic
We first extend the concept “Proof” as follows.
Definition 2.6 (Proof)

Given a set of propositions I', a sequence of propositions g, ¥1, -+ , 1, is said to be a
proof of v, in ', if for each k < n,

(1) 4y belongs to {P1,P2,P3} UT, or
(2) There exist 4,5 < k such that ¢; = ¥; = .
If there exists a proof of ¢ in I, then %) is said to be provable in T", or a theorem of T,

written as I' = 2.

The definitions of “proof” and “theorem” in the last lecture are obtained as a special case
by setting I' = @.
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Theorem 2.7 (Deduction Theorem)
If DU {p} - o, then T ¢ — 1.

Proof. We prove by induction on the length of a proof for T'U {p} I 4.
Let o, %1, -+, (= ) be a proof (with length k& + 1) of ¢ in T'U {¢}.

-~ Case k=0 ~N
(1) If ¥ belongs to {P1,P2,P3} UT, the following is a proof of ¢ — ¢ in I".
wo =1 »in {P1,P2,P3} UT
01 =% = (¢ = ) : P1
P2 =p =9 L1 =po = 2
L (2) If ¥ is ¢, then ¢ — 1) is ¢ — p, which was proved in the last lecture. )
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~ Case k>1 ~
(1) If ¥y, = o belongs to {P1,P2,P3} UT' U {}, the same as case k = 0.

(2) Consider the case where there exist ¢, j < k and ¢; = 1; — ¥y

® By the induction hypothesis, we have I' = ¢ — 9; and I' F ¢ — ;.

® let wg, 1, ,9m be aproof of p —; in T, and let @41, -+, 9, be a
proof of ¢ — 4 in I.

® Then @o, -, ©m,Pm+1," - ,@n is also a proof of o — 1p; in I.

® |f we add the following ¢, 41, ©n+2, ©n+s after g, - -, @y, we obtain a
proof of p — ¢ in I,

Py (0 = (i = i) = (¢ = ¥i) = (¢ = ¥x)) P2

Pny2 = = i) = (¢ — Yi) " Pntl = Pn 7 Pni2

Pny3 =p = Y D Pnt2 = Pm = Pnis
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The converse of Deduction Theorem “If '+ ¢ — 3, T U {p} F " can be obtained directly
by Modus Ponens.

The following example demonstrates the effectiveness of Deduction Theorem.

~ Exercise: show F = — (¢ — ) ~

® By the deduction theorem, it suffices to show {—p, o} F 1.

® Since {—¢, v} F —p, then using MP to P1 and this, we have
{~e, 0} E—tp = .

® By applying MP to P3, {—¢, o} F ¢ — 9.

® Again by MP, {—¢, ¢} - 1.
N J
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® We investigate this in more detail. Let L be a proposition representing
“contradiction”, say —(pp — po)-
Definition 2.8 (Inconsistency)

A set I' of propositions is said to be inconsistent if L is provable from I".
Otherwise, T is said to be consistent.

Lemma 2.9
I' E 4 for any 1, if " is inconsistent.

- If T is inconsistent, —(pg — po) is provable in T'. And py — po was shown to be provable.

Lemma 2.10

If " is consistent, then for any ¢, ¢ or = cannot be proved from I

IfI'F ¢ and I' - =y for some ¢, then I' is inconsistent.
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The following lemma establishes the basic principle connecting the notions of provability
and contradiction.

Lemma 2.11
I'U {—¢} is inconsistent < T' F .

Proof.
(=) Assume T'U{—¢}F —(pp — po). By Deduction Theorem, I' - =@ — —(py — po).
So by P3, T'F (po — po) — ¢. Since - (pg — po), we conclude T' - ¢.

(<) T F g, then T'U{—p} can prove both ¢ and —¢p, that it, T' U {—p} is
inconsistent. O

Therefore,

Lemma 2.12
If T" is consistent, then for any ¢, I'U {¢} or I' U {—} is consistent.

This lemma lays the basis of a proof for completeness theorem.
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Completeness theorem for propositional logic

Theorem 2.13 (Completeness theorem for propositional logic)
Fo <= [Ep

Proof

~ Fo= EFo ~N
® |et V be any truth value function.

® If  is the axiom P1, P2, P3, V() =T.

e Also, if V(¢) =T and V(¢ — ¢) =T, then V(¢p) = T.

® Thus, for all theorems ¢, V() =T.
- J
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Deduc

Completeness
theorem for
propositional logic

e = Fy

-

~N
® Suppose that a proposition ¢ is not a theorem.
Goal: show there exists a truth value function V' s.t. V(¢) =F.
® |ist all the propositions in an appropriate order as ¢q, @1, P2, - .
® Given I'y = {—¢}!, we define an infinitely increasing sequence of consistent sets
ToCTy CTy C--- as follows: for any n > 0,
o if I',, U{p,} is consistent, Ty, 11 =T U {pn};
® otherwise, I';, 11 =T'),.
® ThenI' =, I', is consistent.
® Suppose I' were inconsistent. Since the number of elements of I" used in the
proof of L is finite, there is a sufficiently large N s.t. Iy includes all such
elements. Therefore, I'y F_L, which violates the consistency of T'y.
L. T'g is consistent by Lemma 2.11.
J
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~ F ¢ <= [ ¢ (continued) ~

® Furthermore, I' is a maximal consistent set. That is, either ¢, € ' or =p,, € T
holds for any ¢,,.

® Suppose I' I/ ¢,,. Then, ' U {—¢,,} is consistent. So letting ., = 7@,
T, U{pm} is consistent, and so ¢, € I';p1 C T, that is, —p, € T

® Similarly, if I' ¥ =, then ¢, € T

® Since I is consistent, by Lemma 2.10 ¢,, or —¢,, cannot be proved from I', and
S0 ¢, or —p, belongs to T'.

® Thus, for any formula ¢, ¢, €T < —p, € T
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Deduction theorem

Completeness
theorem for
propositional logic

~ F ¢ <= kE ¢ (continued)

® Define a function V as follows:  V(p,) =T < ¢, € Tyi1.

® \We then show that V is a truth value function.
® |t follows from the maximal consistency that

V(~pn) =T < V(p,) =F.
® By the maximal consistency, we can show ¢,, — ¢, € I' < —p,, € [ or ¢, € T,
since Yy — on €T < (pm = pn) €T S @ €T and —p,, €T
Then, we have
V(iem = on) =T & V(em) =F or V(pn) =T.

® |t is clear that V(¢) = F since I'g = {—p}. Thus V is a truth-value function that
assigns the value F to ¢, and so ¢ is not a tautology.
J

-
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® By I' = ¢, we mean that if a truth-value function V' assigns the value T to all
propositions in I" then it assigns the value T to . In such a case, ¢ is called the
tautological consequence of I'.

® The completeness theorem can also be generalized as follows.

Theorem 2.14 (The generalized completeness theorem of propositional logic)
'y <<= TEo

Proof.

(=) Let V be a truth-value function that assigns the value T to all propositions in T'. For
the three axioms ¢, we have already seen V(¢) = T. Also, when V(p) =T and

V(e —¢) =T, V(¢) =T. Thus, for all theorems ¢ derived from T, V(¢) = T.

(<) Suppose that a proposition ¢ is not a theorem of I'. It suffices to show that there
exists a truth-value function V' that assigns value T to all propositions of I" and value F to
©. To construct such a V, just replace T'o = T' U {—¢} in the proof of the last theorem. O
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Deduction theorem

Inconsisten
Completeness
theorem for
propositional logic

® \We say that T is satisfiable if there is a truth value function that assigns the value T
to all propositions belonging to T".

We can state the completeness theorem as follows.

Completeness theorem (another version)

T is consistent <= T is satisfiable.

® [ is consistent

teeee

'L

IEL

there is a V' that assigns T to all in T’
there is a V that assigns T to all in T’
I is satisfiable.
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Compactness
theorem of
propositional logic

Theorem 2.15 (Compactness theorem of propositional logic)

If any finite subset of T is satisfiable, then I' is also satisfiable.

Proof.

By contrapositive method, suppose no truth-value function assigns the value T to all
propositions in I'. Goal: there is some finite subset IV C I" s.t. there is no truth-value
function that assigns the value T to all propositions of I".

Now, by assumption, any proposition is a tautological consequence of I', especially

=L,
Thus, by the generalized completeness theorem, we get I' L.

Since the proof consists of a finite number of propositions, there exists a finite subset
IV of " such that TV ~_L.

Again, by the generalized completeness theorem, IV =1

Since there is no truth-value function that assigns the value T to L, a truth-value
function that assigns the value T to all propositions in I does not exist.
]
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Compactness
theorem of
propositional logic

The name of compactness theorem comes from the Heine-Borel compactness of topological

spaces.
-~ Alternative proof for compactness theorem

Consider X = {T,F}V as the topological space with product topology, where
{T,F} has a discrete topology. Since every finite space is compact, the product
space X is also compact by Tychonoff’s theorem (also equivalent to the finite
intersections property).

Elements of X can be interpreted as functions v that assign truth values T, F to
atomic propositions pg, p1,p2, - - - -

Also, the function v can be uniquely extended to the truth value function V' = 1,
so they can be identified.

Now, for a proposition ¢, let C,, be the set of functions v that assign T to ¢.
Thatis, C, = {ve X :9(p) =T}.

Since there are only finite atomic propositions in ¢, Cy, is a clopen (i.e., closed
and open) set of X.

Therefore, if for any finite subset I'of T, (\{Cy, : ¢ € I""} is non-empty, then
({C, : ¢ €'} is also, that is, I" is satifiable.

N

H=
~
N~
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Exercise 2.2.1: Use the compactness theorem to prove the following

An infinite graph (its vertices) can be colored with & colors (so that each edge has a
different color at each end) iff any finite subgraph of it can be colored with % colors.

® Deduction theorem: If TU{p} F ¢, T'F ¢ — .

Completeness theorem: T < T E .

Completeness theorem (another version): T'is consistent < T is satisfiable.

Compactness theorem: If any finite subset of I' is satisfiable, then I" is also satisfiable.

Further readings
E. Mendelson. Introduction to Mathematical Logic, CRC Press, 6th edition, 2015. ]
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Proof
Deduction theorem
Inconsistency

Completeness
theorem for
propositional logic
Compactness
theorem of
propositional logic

Thank you

for your attention!
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