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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation
• Part 2. Propositional Logic and Computational Complexity
• Part 3. First Order Logic and Decision Problems
• Part 4. Modal logic� �

Part 2. Schedule� �
• Oct.10, (1) Tautologies and proofs
• Oct.15, (2) The completeness theorem of propositional logic
• Oct.17, (3) SAT and NP-complete problems
• Oct.22, (4) NP-complete problems about graphs
• Oct.24, (5) Time-bound and space-bound complexity classes
• Oct.29, (6) PSPACE-completeness and TQBF� �
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Recap
• Propositional logic is the study of logical connections between propositions.

¬ (not · · · ), ∧ (and), ∨ (or), → (implies).
• If a proposition φ is always true, i.e., V (φ) = T for any truth-value function V , then
φ is said to be valid or a tautology, written as |= φ.

• We consider an axiomatic system that derives all valid propositions only using ¬,→.
We can omit ∨ and ∧ by setting φ ∨ ψ := ¬φ→ ψ, φ ∧ ψ := ¬(φ→ ¬ψ).

• A proof is a sequence of propositions φ0, φ1, · · · , φn satisfying the following
conditions: for each k ≤ n,
(1) φk is one of axioms P1, P2, P3,

P1. φ→ (ψ → φ)

P2.
(
φ→ (ψ → θ)

)
→

(
(φ→ ψ) → (φ→ θ)

)
P3. (¬ψ → ¬φ) → (φ→ ψ), or

(2) There exist i, j < k such that φj = φi → φk (MP).
The last component of proof φn is called a theorem, and we denote ⊢ φn.

• In this lecture, we will prove the completeness theorem: ⊢ φ⇔ |= φ.
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§2.2. Completeness theorem for propositional
logic

We first extend the concept “Proof” as follows.

Definition 2.6 (Proof)
Given a set of propositions Γ, a sequence of propositions ψ0, ψ1, · · · , ψn is said to be a
proof of ψn in Γ, if for each k ≤ n,

(1) ψk belongs to {P1,P2,P3} ∪ Γ, or

(2) There exist i, j < k such that ψj = ψi → ψk.

If there exists a proof of ψ in Γ, then ψ is said to be provable in Γ, or a theorem of Γ,
written as Γ ⊢ ψ.

The definitions of “proof” and “theorem” in the last lecture are obtained as a special case
by setting Γ = ∅.
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Theorem 2.7 (Deduction Theorem)
If Γ ∪ {φ} ⊢ ψ, then Γ ⊢ φ→ ψ.

Proof. We prove by induction on the length of a proof for Γ ∪ {φ} ⊢ ψ.
Let ψ0, ψ1, · · · , ψk(= ψ) be a proof (with length k + 1) of ψ in Γ ∪ {φ}.

Case k = 0� �
(1) If ψ belongs to {P1,P2,P3} ∪ Γ, the following is a proof of φ→ ψ in Γ.

φ0 =ψ : in {P1,P2,P3} ∪ Γ
φ1 =ψ → (φ→ ψ) : P1
φ2 =φ→ ψ : φ1 = φ0 → φ2

(2) If ψ is φ, then φ→ ψ is φ→ φ, which was proved in the last lecture.� �
5 / 19



Logic and
Computation

K. Tanaka

Recap
Proof
Deduction theorem
Inconsistency
Completeness
theorem for
propositional logic
Compactness
theorem of
propositional logic

Case k ≥ 1� �
(1) If ψk = ψ belongs to {P1,P2,P3} ∪ Γ ∪ {φ}, the same as case k = 0.
(2) Consider the case where there exist i, j < k and ψj = ψi → ψk.

• By the induction hypothesis, we have Γ ⊢ φ→ ψi and Γ ⊢ φ→ ψj .
• Let φ0, φ1, · · · , φm be a proof of φ→ ψi in Γ, and let φm+1, · · · , φn be a

proof of φ→ ψj in Γ.
• Then φ0, · · · , φm, φm+1, · · · , φn is also a proof of φ→ ψj in Γ.
• If we add the following φn+1, φn+2, φn+3 after φ0, · · · , φn, we obtain a

proof of φ→ ψ in Γ.
φn+1 =(φ→ (ψi → ψk)) → ((φ→ ψi) → (φ→ ψk)) : P2
φn+2 =(φ→ ψi) → (φ→ ψk) : φn+1 = φn → φn+2

φn+3 =φ→ ψk : φn+2 = φm → φn+3� �
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The converse of Deduction Theorem “If Γ ⊢ φ→ ψ, Γ∪ {φ} ⊢ ψ” can be obtained directly
by Modus Ponens.

The following example demonstrates the effectiveness of Deduction Theorem.

Exercise: show ⊢ ¬φ→ (φ→ ψ)� �
• By the deduction theorem, it suffices to show {¬φ,φ} ⊢ ψ.
• Since {¬φ,φ} ⊢ ¬φ, then using MP to P1 and this, we have
{¬φ,φ} ⊢ ¬ψ → ¬φ.

• By applying MP to P3, {¬φ,φ} ⊢ φ→ ψ.
• Again by MP, {¬φ,φ} ⊢ ψ.� �
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• The above example means that the contradiction (¬φ, φ) implies any proposition ψ.
• We investigate this in more detail. Let ⊥ be a proposition representing

“contradiction”, say ¬(p0 → p0).

Definition 2.8 (Inconsistency)
A set Γ of propositions is said to be inconsistent if ⊥ is provable from Γ.
Otherwise, Γ is said to be consistent.

Lemma 2.9
Γ ⊢ ψ for any ψ, if Γ is inconsistent.

∵ If Γ is inconsistent, ¬(p0 → p0) is provable in Γ. And p0 → p0 was shown to be provable.

Lemma 2.10
If Γ is consistent, then for any φ, φ or ¬φ cannot be proved from Γ.

∵ If Γ ⊢ φ and Γ ⊢ ¬φ for some φ, then Γ is inconsistent.
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The following lemma establishes the basic principle connecting the notions of provability
and contradiction.

Lemma 2.11
Γ ∪ {¬φ} is inconsistent ⇔ Γ ⊢ φ.

Proof.
(⇒) Assume Γ ∪ {¬φ} ⊢ ¬(p0 → p0). By Deduction Theorem, Γ ⊢ ¬φ→ ¬(p0 → p0).
So by P3, Γ ⊢ (p0 → p0) → φ. Since ⊢ (p0 → p0), we conclude Γ ⊢ φ.

(⇐) If Γ ⊢ φ, then Γ ∪ {¬φ} can prove both φ and ¬φ, that it, Γ ∪ {¬φ} is
inconsistent. □

Therefore,

Lemma 2.12
If Γ is consistent, then for any φ, Γ ∪ {φ} or Γ ∪ {¬φ} is consistent.

This lemma lays the basis of a proof for completeness theorem.
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Completeness theorem for propositional logic

Theorem 2.13 (Completeness theorem for propositional logic)
⊢ φ ⇐⇒ |= φ

Proof

⊢ φ =⇒ |= φ� �
• Let V be any truth value function.
• If φ is the axiom P1, P2, P3, V (φ) = T.
• Also, if V (φ) = T and V (φ→ ψ) = T, then V (ψ) = T.
• Thus, for all theorems φ, V (φ) = T.� �

10 / 19



Logic and
Computation

K. Tanaka

Recap
Proof
Deduction theorem
Inconsistency
Completeness
theorem for
propositional logic
Compactness
theorem of
propositional logic

⊢ φ ⇐= |= φ� �
• Suppose that a proposition φ is not a theorem.

Goal: show there exists a truth value function V s.t. V (φ) = F.
• List all the propositions in an appropriate order as φ0, φ1, φ2, · · · .
• Given Γ0 = {¬φ}1, we define an infinitely increasing sequence of consistent sets
Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ · · · as follows: for any n ≥ 0,
• if Γn ∪ {φn} is consistent, Γn+1 = Γn ∪ {φn};
• otherwise, Γn+1 = Γn.

• Then Γ =
∪

n Γn is consistent.
• Suppose Γ were inconsistent. Since the number of elements of Γ used in the

proof of ⊥ is finite, there is a sufficiently large N s.t. ΓN includes all such
elements. Therefore, ΓN ⊢⊥, which violates the consistency of ΓN .

1: Γ0 is consistent by Lemma 2.11.� �
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⊢ φ ⇐= |= φ (continued)� �
• Furthermore, Γ is a maximal consistent set. That is, either φn ∈ Γ or ¬φn ∈ Γ

holds for any φn.

• Suppose Γ ̸⊢ φn. Then, Γ ∪ {¬φn} is consistent. So letting φm = ¬φn,
Γm ∪ {φm} is consistent, and so φm ∈ Γm+1 ⊆ Γ, that is, ¬φn ∈ Γ.

• Similarly, if Γ ̸⊢ ¬φn, then φn ∈ Γ.

• Since Γ is consistent, by Lemma 2.10 φn or ¬φn cannot be proved from Γ, and
so φn or ¬φn belongs to Γ.

• Thus, for any formula φn, φn ̸∈ Γ ⇔ ¬φn ∈ Γ.� �
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⊢ φ ⇐= |= φ (continued)� �
• Define a function V as follows: V (φn) = T ⇔ φn ∈ Γn+1.

• We then show that V is a truth value function.
• It follows from the maximal consistency that

V (¬φn) = T ⇔ V (φn) = F.

• By the maximal consistency, we can show φm → φn ∈ Γ ⇔ ¬φm ∈ Γ or φn ∈ Γ,
since φm → φn ̸∈ Γ ⇔ ¬(φm → φn) ∈ Γ ⇔ φm ∈ Γ and ¬φn ∈ Γ.
Then, we have

V (φm → φn) = T ⇔ V (φm) = F or V (φn) = T.

• It is clear that V (φ) = F since Γ0 = {¬φ}. Thus V is a truth-value function that
assigns the value F to φ, and so φ is not a tautology.� �
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• As we generalized provability ⊢, we can also generalize validity |=.

• By Γ |= φ, we mean that if a truth-value function V assigns the value T to all
propositions in Γ then it assigns the value T to φ. In such a case, φ is called the
tautological consequence of Γ.

• The completeness theorem can also be generalized as follows.

Theorem 2.14 (The generalized completeness theorem of propositional logic)
Γ ⊢ φ ⇐⇒ Γ |= φ.

Proof.
(⇒) Let V be a truth-value function that assigns the value T to all propositions in Γ. For
the three axioms φ, we have already seen V (φ) = T. Also, when V (φ) = T and
V (φ→ ψ) = T, V (ψ) = T. Thus, for all theorems φ derived from Γ, V (φ) = T.
(⇐) Suppose that a proposition φ is not a theorem of Γ. It suffices to show that there
exists a truth-value function V that assigns value T to all propositions of Γ and value F to
φ. To construct such a V , just replace Γ0 = Γ ∪ {¬φ} in the proof of the last theorem. □
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• We say that Γ is satisfiable if there is a truth value function that assigns the value T
to all propositions belonging to Γ.

We can state the completeness theorem as follows.

Completeness theorem (another version)� �
Γ is consistent ⇐⇒ Γ is satisfiable.� �

• Γ is consistent
⇔ Γ ̸⊢⊥
⇔ Γ ̸|=⊥
⇔ there is a V that assigns T to all in Γ
⇔ there is a V that assigns T to all in Γ
⇔ Γ is satisfiable.
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Theorem 2.15 (Compactness theorem of propositional logic)
If any finite subset of Γ is satisfiable, then Γ is also satisfiable.

Proof.
• By contrapositive method, suppose no truth-value function assigns the value T to all

propositions in Γ. Goal: there is some finite subset Γ′ ⊂ Γ s.t. there is no truth-value
function that assigns the value T to all propositions of Γ′.

• Now, by assumption, any proposition is a tautological consequence of Γ, especially
Γ |=⊥.

• Thus, by the generalized completeness theorem, we get Γ ⊢⊥.
• Since the proof consists of a finite number of propositions, there exists a finite subset
Γ′ of Γ such that Γ′ ⊢⊥.

• Again, by the generalized completeness theorem, Γ′ |=⊥.
• Since there is no truth-value function that assigns the value T to ⊥, a truth-value

function that assigns the value T to all propositions in Γ′ does not exist.
□
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The name of compactness theorem comes from the Heine-Borel compactness of topological
spaces.

Alternative proof for compactness theorem� �
• Consider X = {T,F}N as the topological space with product topology, where
{T,F} has a discrete topology. Since every finite space is compact, the product
space X is also compact by Tychonoff’s theorem (also equivalent to the finite
intersections property).

• Elements of X can be interpreted as functions v that assign truth values T, F to
atomic propositions p0, p1, p2, · · · .

• Also, the function v can be uniquely extended to the truth value function V = v̄,
so they can be identified.

• Now, for a proposition φ, let Cφ be the set of functions v that assign T to φ.
That is, Cφ = {v ∈ X : v̄(φ) = T}.

• Since there are only finite atomic propositions in φ, Cφ is a clopen (i.e., closed
and open) set of X.

• Therefore, if for any finite subset Γ′of Γ,
∩
{Cφ : φ ∈ Γ′} is non-empty, then∩

{Cφ : φ ∈ Γ} is also, that is, Γ is satifiable.� �17 / 19
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Exercise and Summary
Exercise 2.2.1: Use the compactness theorem to prove the following� �

An infinite graph (its vertices) can be colored with k colors (so that each edge has a
different color at each end) iff any finite subgraph of it can be colored with k colors.� �
• Deduction theorem: If Γ ∪ {φ} ⊢ ψ, Γ ⊢ φ→ ψ.

• Completeness theorem: Γ ⊢ φ ⇔ Γ |= φ.

• Completeness theorem (another version): Γ is consistent ⇔ Γ is satisfiable.

• Compactness theorem: If any finite subset of Γ is satisfiable, then Γ is also satisfiable.

Further readings� �
E. Mendelson. Introduction to Mathematical Logic, CRC Press, 6th edition, 2015.� �
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