#### K. Tanaka

#### Recap

Proof Deduction theorem Inconsistency Completeness theorem for propositional logic Compactness theorem of

propositional logic

# Chapter 2. Propositional logic and computational complexity

Kazuyuki Tanaka

BIMSA

October 15, 2024



人口 医水理 医水理 医水理 医

- 22

19

K. Tanaka

#### Recap

Proof Deduction theorem Inconsistency Completeness theorem for propositional logic Compactness theorem of

### Logic and Computation I

- Part 1. Introduction to Theory of Computation
- Part 2. Propositional Logic and Computational Complexity
- Part 3. First Order Logic and Decision Problems
- Part 4. Modal logic

### 🔶 Part 2. Schedule

- Oct.10, (1) Tautologies and proofs
- Oct.15, (2) The completeness theorem of propositional logic
- Oct.17, (3) SAT and NP-complete problems
- Oct.22, (4) NP-complete problems about graphs
- Oct.24, (5) Time-bound and space-bound complexity classes
- Oct.29, (6) PSPACE-completeness and TQBF

#### K. Tanaka

#### Recap

- Proof Deduction theorem
- nconsistency
- Completeness theorem for propositional logic Compactness theorem of propositional logic

- Propositional logic is the study of logical connections between propositions.
  ¬ (not ···), ∧ (and), ∨ (or), → (implies).
- If a proposition  $\varphi$  is always true, i.e.,  $V(\varphi) = T$  for any truth-value function V, then  $\varphi$  is said to be **valid** or a **tautology**, written as  $\models \varphi$ .
- We consider an axiomatic system that derives all valid propositions only using  $\neg, \rightarrow$ . We can omit  $\lor$  and  $\land$  by setting  $\varphi \lor \psi := \neg \varphi \rightarrow \psi$ ,  $\varphi \land \psi := \neg(\varphi \rightarrow \neg \psi)$ .
- A proof is a sequence of propositions  $\varphi_0, \varphi_1, \cdots, \varphi_n$  satisfying the following conditions: for each  $k \leq n$ ,
  - (1)  $\varphi_k$  is one of axioms P1, P2, P3,

$$\begin{array}{l} \mathsf{P1.} \hspace{0.2cm} \varphi \rightarrow (\psi \rightarrow \varphi) \\ \mathsf{P2.} \hspace{0.2cm} \left( \varphi \rightarrow (\psi \rightarrow \theta) \right) \rightarrow \left( (\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \theta) \right) \\ \mathsf{P3.} \hspace{0.2cm} (\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi), \hspace{0.2cm} \mathsf{or} \end{array}$$

(2) There exist i, j < k such that  $\varphi_j = \varphi_i \rightarrow \varphi_k$  (MP).

The last component of proof  $\varphi_n$  is called a **theorem**, and we denote  $\vdash \varphi_n$ .

• In this lecture, we will prove the completeness theorem:  $\vdash \varphi \Leftrightarrow \models \varphi$ .

Recap

#### K. Tanaka

#### Recap

#### Proof

Deduction theorem

Completeness theorem for propositional logic Compactness theorem of propositional logic

# §2.2. Completeness theorem for propositional logic

We first extend the concept "Proof" as follows.

### Definition 2.6 (Proof)

Given a set of propositions  $\Gamma$ , a sequence of propositions  $\psi_0, \psi_1, \cdots, \psi_n$  is said to be a **proof** of  $\psi_n$  in  $\Gamma$ , if for each  $k \leq n$ ,

 $(1) \hspace{0.2cm} \psi_k \hspace{0.2cm} \text{belongs to} \hspace{0.2cm} \{ \mathrm{P1}, \mathrm{P2}, \mathrm{P3} \} \cup \Gamma \text{, or}$ 

```
(2) There exist i, j < k such that \psi_j = \psi_i \rightarrow \psi_k.
```

If there exists a proof of  $\psi$  in  $\Gamma$ , then  $\psi$  is said to be **provable** in  $\Gamma$ , or a **theorem** of  $\Gamma$ , written as  $\Gamma \vdash \psi$ .

The definitions of "proof" and "theorem" in the last lecture are obtained as a special case by setting  $\Gamma = \emptyset$ .

#### K. Tanaka

#### Recap

Proof

#### Deduction theorem

Inconsistency

Completeness theorem for propositional logic Compactness theorem of propositional logic

### Theorem 2.7 (Deduction Theorem)

If  $\Gamma \cup \{\varphi\} \vdash \psi$ , then  $\Gamma \vdash \varphi \rightarrow \psi$ .

**Proof.** We prove by induction on the length of a proof for  $\Gamma \cup \{\varphi\} \vdash \psi$ . Let  $\psi_0, \psi_1, \dots, \psi_k (= \psi)$  be a proof (with length k + 1) of  $\psi$  in  $\Gamma \cup \{\varphi\}$ .

Case k = 0(1) If  $\psi$  belongs to  $\{P1, P2, P3\} \cup \Gamma$ , the following is a proof of  $\varphi \to \psi$  in  $\Gamma$ .  $\varphi_0 = \psi$  : in  $\{P1, P2, P3\} \cup \Gamma$   $\varphi_1 = \psi \to (\varphi \to \psi)$  : P1  $\varphi_2 = \varphi \to \psi$  :  $\varphi_1 = \varphi_0 \to \varphi_2$ (2) If  $\psi$  is  $\varphi$ , then  $\varphi \to \psi$  is  $\varphi \to \varphi$ , which was proved in the last lecture.

#### K. Tanaka

Case  $k \ge 1$ 

#### Recap

Proo

#### Deduction theorem

nconsistency

Completeness theorem for propositional logic Compactness theorem of propositional logic (1) If  $\psi_k = \psi$  belongs to  $\{P1, P2, P3\} \cup \Gamma \cup \{\varphi\}$ , the same as case k = 0.

(2) Consider the case where there exist i, j < k and  $\psi_j = \psi_i \rightarrow \psi_k$ .

- By the induction hypothesis, we have  $\Gamma \vdash \varphi \rightarrow \psi_i$  and  $\Gamma \vdash \varphi \rightarrow \psi_j$ .
- Let  $\varphi_0, \varphi_1, \cdots, \varphi_m$  be a proof of  $\varphi \to \psi_i$  in  $\Gamma$ , and let  $\varphi_{m+1}, \cdots, \varphi_n$  be a proof of  $\varphi \to \psi_j$  in  $\Gamma$ .

イロト イポト イヨト イヨト ニヨー

- Then  $\varphi_0, \cdots, \varphi_m, \varphi_{m+1}, \cdots, \varphi_n$  is also a proof of  $\varphi \to \psi_j$  in  $\Gamma$ .
- If we add the following  $\varphi_{n+1}, \varphi_{n+2}, \varphi_{n+3}$  after  $\varphi_0, \cdots, \varphi_n$ , we obtain a proof of  $\varphi \to \psi$  in  $\Gamma$ .

 $\begin{array}{l} \varphi_{n+1} = & (\varphi \to (\psi_i \to \psi_k)) \to ((\varphi \to \psi_i) \to (\varphi \to \psi_k)) & : \mathsf{P2} \\ \varphi_{n+2} = & (\varphi \to \psi_i) \to (\varphi \to \psi_k) & : \varphi_{n+1} = \varphi_n \to \varphi_{n+2} \\ \varphi_{n+3} = & \varphi \to \psi_k & : \varphi_{n+2} = \varphi_m \to \varphi_{n+3} \end{array}$ 

#### K. Tanaka

#### Recap

Proof

#### Deduction theorem

nconsistency

Completeness theorem for propositional logic Compactness theorem of propositional logic The converse of Deduction Theorem "If  $\Gamma \vdash \varphi \rightarrow \psi$ ,  $\Gamma \cup \{\varphi\} \vdash \psi$ " can be obtained directly by Modus Ponens.

化白水 化塑料 化医水化医水合 医

The following example demonstrates the effectiveness of Deduction Theorem.

– Exercise: show  $\vdash \neg \varphi \rightarrow (\varphi \rightarrow \psi)$  –

- By the deduction theorem, it suffices to show  $\{\neg \varphi, \varphi\} \vdash \psi$ .
- Since  $\{\neg \varphi, \varphi\} \vdash \neg \varphi$ , then using MP to P1 and this, we have  $\{\neg \varphi, \varphi\} \vdash \neg \psi \rightarrow \neg \varphi$ .
- By applying MP to P3,  $\{\neg \varphi, \varphi\} \vdash \varphi \rightarrow \psi$ .
- Again by MP,  $\{\neg \varphi, \varphi\} \vdash \psi$ .

K. Tanaka

#### Recap

Proof Deduction theorem

#### Inconsistency

Completeness theorem for propositional logic Compactness theorem of propositional logic

- The above example means that the contradiction  $(\neg \varphi, \varphi)$  implies any proposition  $\psi$ .
- We investigate this in more detail. Let  $\perp$  be a proposition representing "contradiction", say  $\neg(p_0 \rightarrow p_0)$ .

### Definition 2.8 (Inconsistency)

A set  $\Gamma$  of propositions is said to be **inconsistent** if  $\bot$  is provable from  $\Gamma$ . Otherwise,  $\Gamma$  is said to be **consistent**.

### Lemma 2.9

 $\Gamma \vdash \psi$  for any  $\psi \text{, if } \Gamma$  is inconsistent.

 $\therefore$  If  $\Gamma$  is inconsistent,  $\neg(p_0 \rightarrow p_0)$  is provable in  $\Gamma$ . And  $p_0 \rightarrow p_0$  was shown to be provable.

### Lemma 2.10

If  $\Gamma$  is consistent, then for any  $\varphi$ ,  $\varphi$  or  $\neg \varphi$  cannot be proved from  $\Gamma$ .

 $:: \mathsf{If} \ \Gamma \vdash \varphi \ \mathsf{and} \ \Gamma \vdash \neg \varphi \ \mathsf{for some} \ \varphi, \ \mathsf{then} \ \Gamma \ \mathsf{is inconsistent}.$ 

K. Tanaka

#### Recap

Proof Deduction theorer

#### Inconsistency

Completeness theorem for propositional logic Compactness theorem of propositional logic The following lemma establishes the basic principle connecting the notions of provability and contradiction.

### Lemma 2.11

 $\Gamma \cup \{\neg \varphi\} \text{ is inconsistent } \Leftrightarrow \Gamma \vdash \varphi.$ 

### Proof.

( $\Rightarrow$ ) Assume  $\Gamma \cup \{\neg \varphi\} \vdash \neg (p_0 \rightarrow p_0)$ . By Deduction Theorem,  $\Gamma \vdash \neg \varphi \rightarrow \neg (p_0 \rightarrow p_0)$ . So by P3,  $\Gamma \vdash (p_0 \rightarrow p_0) \rightarrow \varphi$ . Since  $\vdash (p_0 \rightarrow p_0)$ , we conclude  $\Gamma \vdash \varphi$ .

 $(\Leftarrow) \quad \text{If } \Gamma \vdash \varphi \text{, then } \Gamma \cup \{\neg \varphi\} \text{ can prove both } \varphi \text{ and } \neg \varphi \text{, that it, } \Gamma \cup \{\neg \varphi\} \text{ is inconsistent.}$ 

Therefore,

Lemma 2.12

If  $\Gamma$  is consistent, then for any  $\varphi$ ,  $\Gamma \cup \{\varphi\}$  or  $\Gamma \cup \{\neg\varphi\}$  is consistent.

This lemma lays the basis of a proof for completeness theorem.

#### K. Tanaka

#### Recap

Proof Deduction theorem

Completeness theorem for propositional logic

Compactness theorem of propositional logi

### Completeness theorem for propositional logic

イロト 不得下 イヨト イヨト 一日

Theorem 2.13 (Completeness theorem for propositional logic)

 $\vdash \varphi \quad \Longleftrightarrow \ \models \varphi$ 

### Proof

### $\begin{array}{ccc} & \vdash \varphi \implies & \models \varphi \end{array}$

- Let V be any truth value function.
- If  $\varphi$  is the axiom P1, P2, P3,  $V(\varphi) = T$ .
- Also, if  $V(\varphi) = T$  and  $V(\varphi \to \psi) = T$ , then  $V(\psi) = T$ .
- Thus, for all theorems  $\varphi$ ,  $V(\varphi) = T$ .

K. Tanaka

#### Recap

Proof Deduction theorem

Completeness theorem for propositional logic

Compactness theorem of propositional logic

- Suppose that a proposition φ is not a theorem.
  Goal: show there exists a truth value function V s.t. V(φ) = F.
- List all the propositions in an appropriate order as  $arphi_0, arphi_1, arphi_2, \cdots$  .
- Given  $\Gamma_0 = \{\neg\varphi\}^1$ , we define an infinitely increasing sequence of consistent sets  $\Gamma_0 \subseteq \Gamma_1 \subseteq \Gamma_2 \subseteq \cdots$  as follows: for any  $n \ge 0$ ,
  - if  $\Gamma_n \cup \{\varphi_n\}$  is consistent,  $\Gamma_{n+1} = \Gamma_n \cup \{\varphi_n\}$ ;
  - otherwise,  $\Gamma_{n+1} = \Gamma_n$ .
- Then  $\Gamma = \bigcup_n \Gamma_n$  is consistent.
  - Suppose  $\Gamma$  were inconsistent. Since the number of elements of  $\Gamma$  used in the proof of  $\bot$  is finite, there is a sufficiently large N s.t.  $\Gamma_N$  includes all such elements. Therefore,  $\Gamma_N \vdash \bot$ , which violates the consistency of  $\Gamma_N$ .

化白豆 化间面 化医医水 医医小 医

<sup>1</sup>:  $\Gamma_0$  is consistent by Lemma 2.11.

#### K. Tanaka

#### Recap

#### Proof Deduction theorem

Completeness theorem for propositional logic

Compactness theorem of propositional logic

### $\vdash \varphi \Longleftarrow \models \varphi$ (continued) -

- Furthermore,  $\Gamma$  is a maximal consistent set. That is, either  $\varphi_n \in \Gamma$  or  $\neg \varphi_n \in \Gamma$  holds for any  $\varphi_n$ .
- Suppose  $\Gamma \not\vdash \varphi_n$ . Then,  $\Gamma \cup \{\neg \varphi_n\}$  is consistent. So letting  $\varphi_m = \neg \varphi_n$ ,  $\Gamma_m \cup \{\varphi_m\}$  is consistent, and so  $\varphi_m \in \Gamma_{m+1} \subseteq \Gamma$ , that is,  $\neg \varphi_n \in \Gamma$ .
- Similarly, if  $\Gamma \not\vdash \neg \varphi_n$ , then  $\varphi_n \in \Gamma$ .
- Since  $\Gamma$  is consistent, by Lemma 2.10  $\varphi_n$  or  $\neg \varphi_n$  cannot be proved from  $\Gamma$ , and so  $\varphi_n$  or  $\neg \varphi_n$  belongs to  $\Gamma$ .
- Thus, for any formula  $\varphi_n$ ,  $\varphi_n \notin \Gamma \Leftrightarrow \neg \varphi_n \in \Gamma$ .

#### K. Tanaka

#### Recap

Proof Deduction theore

Completeness theorem for propositional logic

Compactness theorem of propositional logic

### $\varphi \Leftarrow \models \varphi \text{ (continued)}$

- Define a function V as follows:  $V(\varphi_n) = T \Leftrightarrow \varphi_n \in \Gamma_{n+1}.$
- We then show that V is a truth value function.
  - It follows from the maximal consistency that

$$V(\neg \varphi_n) = \mathbf{T} \Leftrightarrow V(\varphi_n) = \mathbf{F}.$$

• By the maximal consistency, we can show  $\varphi_m \to \varphi_n \in \Gamma \Leftrightarrow \neg \varphi_m \in \Gamma$  or  $\varphi_n \in \Gamma$ , since  $\varphi_m \to \varphi_n \notin \Gamma \Leftrightarrow \neg (\varphi_m \to \varphi_n) \in \Gamma \Leftrightarrow \varphi_m \in \Gamma$  and  $\neg \varphi_n \in \Gamma$ . Then, we have

$$V(\varphi_m \to \varphi_n) = T \Leftrightarrow V(\varphi_m) = F \text{ or } V(\varphi_n) = T$$

イロト 不得 トイヨト イヨト

• It is clear that  $V(\varphi) = F$  since  $\Gamma_0 = \{\neg \varphi\}$ . Thus V is a truth-value function that assigns the value F to  $\varphi$ , and so  $\varphi$  is not a tautology.

K. Tanaka

#### Recap

Proof Deduction theorem

Completeness theorem for propositional logic

Compactness theorem of propositional logic

- As we generalized provability  $\vdash$ , we can also generalize validity  $\models$ .
- By Γ ⊨ φ, we mean that if a truth-value function V assigns the value T to all propositions in Γ then it assigns the value T to φ. In such a case, φ is called the tautological consequence of Γ.
- The completeness theorem can also be generalized as follows.

Theorem 2.14 (The generalized completeness theorem of propositional logic)  $\Gamma \vdash \varphi \iff \Gamma \models \varphi.$ 

### Proof.

( $\Rightarrow$ ) Let V be a truth-value function that assigns the value T to all propositions in  $\Gamma$ . For the three axioms  $\varphi$ , we have already seen  $V(\varphi) = T$ . Also, when  $V(\varphi) = T$  and  $V(\varphi \rightarrow \psi) = T$ ,  $V(\psi) = T$ . Thus, for all theorems  $\varphi$  derived from  $\Gamma$ ,  $V(\varphi) = T$ .

( $\Leftarrow$ ) Suppose that a proposition  $\varphi$  is not a theorem of  $\Gamma$ . It suffices to show that there exists a truth-value function V that assigns value T to all propositions of  $\Gamma$  and value F to  $\varphi$ . To construct such a V, just replace  $\Gamma_0 = \Gamma \cup \{\neg \varphi\}$  in the proof of the last theorem.  $\Box$ 

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

K. Tanaka

#### Recap

Proof Deduction theorem

nconsistency

Completeness theorem for propositional logic

Compactness theorem of propositional logic  We say that Γ is satisfiable if there is a truth value function that assigns the value T to all propositions belonging to Γ.

・ロト ・四ト ・ヨト

We can state the completeness theorem as follows.

Completeness theorem (another version)

 $\Gamma$  is consistent  $\iff \Gamma$  is satisfiable.

- $\Gamma$  is consistent
  - $\Leftrightarrow \quad \Gamma \not\vdash \perp$
  - $\Leftrightarrow \quad \Gamma \not\models \bot$
  - $\Leftrightarrow \quad \text{there is a } V \text{ that assigns } T \text{ to all in } \Gamma$
  - $\Leftrightarrow \quad {\rm there \ is \ a} \ V \ {\rm that \ assigns \ T \ to \ all \ in \ \Gamma}$
  - $\Leftrightarrow \quad \Gamma \text{ is satisfiable.}$

K. Tanaka

#### Recap

Proof Deduction theorem

Completeness theorem for propositional log

Compactness theorem of propositional logic

### Theorem 2.15 (Compactness theorem of propositional logic)

If any finite subset of  $\Gamma$  is satisfiable, then  $\Gamma$  is also satisfiable.

### Proof.

- By contrapositive method, suppose no truth-value function assigns the value T to all propositions in  $\Gamma$ . Goal: there is some finite subset  $\Gamma' \subset \Gamma$  s.t. there is no truth-value function that assigns the value T to all propositions of  $\Gamma'$ .
- Now, by assumption, any proposition is a tautological consequence of  $\Gamma,$  especially  $\Gamma\models\!\!\perp.$
- Thus, by the generalized completeness theorem, we get  $\Gamma\vdash\perp.$
- Since the proof consists of a finite number of propositions, there exists a finite subset  $\Gamma'$  of  $\Gamma$  such that  $\Gamma' \vdash \perp$ .
- Again, by the generalized completeness theorem,  $\Gamma' \models \perp.$
- Since there is no truth-value function that assigns the value T to  $\bot$ , a truth-value function that assigns the value T to all propositions in  $\Gamma'$  does not exist.

16 / 19

K. Tanaka

#### Recap

Deduction theorem Inconsistency Completeness theorem for propositional logic Compactness

Compactness theorem of propositional logic The name of compactness theorem comes from the Heine-Borel compactness of topological spaces.

### - Alternative proof for compactness theorem

- Consider X = {T, F}<sup>N</sup> as the topological space with product topology, where {T, F} has a discrete topology. Since every finite space is compact, the product space X is also compact by Tychonoff's theorem (also equivalent to the finite intersections property).
- Elements of X can be interpreted as functions v that assign truth values T, F to atomic propositions  $p_0, p_1, p_2, \cdots$ .
- Also, the function v can be uniquely extended to the truth value function  $V=\bar{v},$  so they can be identified.
- Now, for a proposition  $\varphi$ , let  $C_{\varphi}$  be the set of functions v that assign T to  $\varphi$ . That is,  $C_{\varphi} = \{v \in X : \bar{v}(\varphi) = T\}.$
- Since there are only finite atomic propositions in  $\varphi$ ,  $C_\varphi$  is a clopen (i.e., closed and open) set of X.
- Therefore, if for any finite subset  $\Gamma'$  of  $\Gamma$ ,  $\bigcap \{C_{\varphi} : \varphi \in \Gamma'\}$  is non-empty, then  $\bigcap \{C_{\varphi} : \varphi \in \Gamma\}$  is also, that is,  $\Gamma$  is satifiable.

#### K. Tanaka

#### Recap

Proof Deduction theorem

Completeness theorem for

Compactness theorem of propositional logic

### Exercise and Summary

Exercise 2.2.1: Use the compactness theorem to prove the following -

An infinite graph (its vertices) can be colored with k colors (so that each edge has a different color at each end) iff any finite subgraph of it can be colored with k colors.

- Deduction theorem: If  $\Gamma \cup \{\varphi\} \vdash \psi$ ,  $\Gamma \vdash \varphi \rightarrow \psi$ .
- Completeness theorem:  $\Gamma \vdash \varphi \ \Leftrightarrow \ \Gamma \models \varphi.$
- Completeness theorem (another version):  $\Gamma$  is consistent  $\Leftrightarrow$   $\Gamma$  is satisfiable.
- Compactness theorem: If any finite subset of  $\Gamma$  is satisfiable, then  $\Gamma$  is also satisfiable.

Further readings

E. Mendelson. Introduction to Mathematical Logic, CRC Press, 6th edition, 2015.

#### K. Tanaka

#### Recap

Proof Deduction t

Inconsistency

Completeness theorem for propositional logic

Compactness theorem of propositional logic

## Thank you for your attention!

