
Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Logic and Computation I
Chapter 1 Introduction to theory of computation

Kazuyuki Tanaka

BIMSA

September 24, 2024

1 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Logic and Computation I� �
• Part 1. Introduction to Theory of Computation
• Part 2. Propositional Logic and Computational Complexity
• Part 3. First Order Logic and Decision Problems
• Part 4. Modal logic� �

Part 1. Schedule� �
• Sep.10, (1) Automata and monoids
• Sep.12, (2) Turing machines
• Sep.19, (3) Computable functions and primitive recursive functions
• Sep.24, (4) Decidability and undecidability
• Sep.26, (5) Partial recursive functions and computable enumerable sets
• Oct. 8, (6) Rice’s theorem and many-one reducibility� �2 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Recap
• f is computable iff there is a TM such that for an input word 1m10 · · · 01mk ,

it enters an final state with an remaining sequence 1f(m1,...,mk) on the tape iff
{1m10 · · · 01mk01f(m1,...,mk) : m1, . . . ,mk ∈ N} is a type-0 language on {0, 1}.

• The primitive recursive functions are obtained from constant 0, successor
function S(x) = x+ 1, projection Pn

i (x1, x2, . . . , xn) = xi (1 ≤ i ≤ n), by
way of Composition and Primitive recursion:
If g, h are prim. rec. functions, so is f defined by:

f(x1, . . . , xn, 0) = g(x1, . . . , xn),

f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f(x1, . . . , xn, y)).

• An n-ary relation R ⊂ Nn is primitive recursive, if its characteristic function
χR : Nn → {0, 1} is primitive recursive.

• The graph of a primitive recursive function is primitive recursive.
3 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Examples� �
x+ y, x−̇y, x · y, x/y, xy, x!, max{x, y}, min{x, y} are prim. rec. functions.
x < y, x = y, prime(x) are prim. rec. relations.� �
Example 14� �

Let p(x) = “(x+ 1)-th prime number ”, that is ,

p(0) = 2, p(1) = 3, p(2) = 5, . . .

Then, p(x) is a primitive recursive function since it is defined as follows.

p(0) = 2, p(x+ 1) = µy < p(x)! + 2 (p(x) < y ∧ prime(y)).� �
A finite sequence of natural numbers (x0, . . . , xn−1) can be represented by a
unique natural number x, called a sequence number, defined as follows,

x = p(0)x0+1 · p(1)x1+1 · · · · · p(n− 1)xn−1+1.

4 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Example 15� �
• Fixing n, a mapping from (x0, . . . , xn−1) ∈ Nn to its sequence number
x ∈ N is a primitive recursive function.
• Conversely, let c(x, i) be a function taking the i-th element xi from x. It

is primitive recursive, since

xi = c(x, i) = µy < x (¬∃z < x (p(i)y+2 · z = x)).

• The length of a sequence x, denote leng(x), is primitive recursive, since

leng(x) = µi < x (¬∃z < x (p(i) · z = x)).

• Finally, we define a relation Seq(x) to mean that x is a sequence number.
Then it is primitive recursive, since

Seq(x)⇔ ∀i < x∀z < x (p(i) · z = x→ i ≤ leng(x)).� �
5 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Gödel numbers
Definition 1.27
Let Ω be a finite (or countably infinite) set of symbols with an injection ϕ : Ω→ N.
For a string s = a0 · · · an−1 from Ω, the number sequence of (ϕ(a0) · · ·ϕ(an−1)),
i.e.,

p(0)ϕ(a0)+1 · p(1)ϕ(a1)+1 · · · · · p(n− 1)ϕ(an−1)+1

is called the Gödel number of s, denoted by ⌜s⌝.

The mapping ⌜ ⌝ is an injection from the set of all strings Ω∗ to N.
Example 16� �

Let Ω = {0, 1,+, (,)}, ϕ(0) = 0, ϕ(1) = 1, ϕ(+) = 3, ϕ(() = 5 and ϕ()) = 6.
Then,

⌜(1 + 0) + 1⌝ = 26 · 32 · 54 · 71 · 117 · 134 · 172� �
6 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Exercise 1.3.3� �
The symbol set Ω is the same as the example above. “Terms” are defined as
below
(1) 0, 1 are terms.

(2) if s and t are terms, so is (s+ t).
e.g., ((1 + 0) + 1) is a term, but (1 + 0) + 1 is not a term.

Show that the predicate Term(x) expressing “x is the Gödel number of a term”
is primitive recursive.� �

7 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Recursive functions
Definition 1.28
The recursive functions are defined as follows
1. Constant 0, Successor S(x) = x+ 1, Projections Pn

i (x1, x2, · · · , xn) = xi
are recursive functions.

2. Composition. 3. Primitive recursion.
4. minimalization (or minimization).

Let g : Nn+1 → N be a recursive function such that
∀x1 · · · ∀xn∃y g(x1, · · · , xn, y) = 0. Define a function f : Nn → N by

f(x1, · · · , xn) = µy(g(x1, · · · , xn, y) = 0),

where µy(g(x1, · · · , xn, y) = 0) denotes the smallest y such that
g(x1, · · · ,xn, y) = 0. Then, f is recursive.

8 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

• Recursive functions are (total) computable functions, like primitive recursive
functions.

• However, condition 4 in the above definition (not included in the definition of
primitive recursive functions) is problematic sometimes, since it is often
difficult to guarantee its totality condition ∀x1 · · · ∀xn∃y g(x1, · · · , xn, y) = 0
in a absolutely computable way, or in a rigid formal system.

• For instance, the class of recursive functions allowed in Peano arithmetic does
not match the class of recursive functions allowed in ZF set theory.

• A function defined by removing this totality condition is called a partial
recursive function, and we will discuss it later (in Lecture 5).

9 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

§1.4. Computability and Incomputability

• Today, we will only consider a deterministic single-tape Turing machine on
Ω = {0, 1,B}.

• We will introduce a Programming Language, called TPL, that has an
instruction for each operation of Turing machine.

• Any Turing machine can be emulated by a TPL program on a unique Turing
machine (called a universal Turing machine).

• Finally, we will prove the existence of an incomputable (non-computable) set
K.

10 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Definition 1.29 (Programming language TPL)
Instructions (code ♯, the corresponding TM operations)bababababababababababababababababab

halt (code 0, enter a final state)
moveright (code 1, move the head to right by one cell)
moveleft (code 2, move the head to left by one cell)
write 0 (code 3, write “0” on the tape)
write 1 (code 4, write “1” on the tape)
write B (code 5, write “B” On the tape)
goto l (code 6 + 3l, jump to the l-th instruction)
if 0 then goto l (code 7 + 3l, if TM reads 0, jump to the l-th

instruction)
if 1 then goto l (code 8 + 3l, if TM reads 1, jump to the l-th

instruction)

11 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Definition 1.29 (continued)
A program of TPL is a list of instructions separated by “;”.

For readability, a line number is added at each instruction.
In the instruction “goto l”, l corresponds to such a line number.

An example of TPL program P0� �
0: if 1 then goto 2;
1: goto 1;
2: moveright;
3: if 1 then goto 1;
4: if 0 then goto 6;
5: halt;
6: moveright;
7: goto 0

The left program intends to accept
the language 1(01)∗

� �
12 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Definition 1.30 (TM MP realizes TPL program P)
Let P be be a TPL program. We define a (deterministic) Turing machine
MP = (Q,Ω, δ, q0, F) which realizes P. Here, Q = {0, 1, . . . , n− 1} is the set of
line numbers of P. Ω = {0, 1,B}. q0 = 0, F = {a line number of halt}. The
transition function δ : Q× Ω→ Ω× {L,R,N} ×Q is defined as follows.

l: halt, δ(l, x) = (x,N, l),
l: moveright, δ(l, x) = (x,R, l + 1),
l: moveleft, δ(l, x) = (x, L, l + 1),
l: write ?, δ(l, x) = (?, N, l + 1), for ? = 0, 1,B,
l: goto k, δ(l, x) = (x,N, k),
l: if ? then goto k, δ(l, ?) = (?, N, k) and

δ(l, y) = (y,N, l + 1) for y ̸=?.

The language accepted by TPL P is the language accepted by the associated
Turing machine MP . The partial function f : Ω∗ → Ω∗ defined by P is a function
defined by MP .

13 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Program P0 ⇒ TM MP0
� �

We define a (deterministic) Turing machineMP0 = (Q,Ω, δ, q0, F), where Q =
{0, 1, . . . , 7}, Ω = {0, 1,B}, q0 = 0, F = {5}, and
δ is defined as follows: for any x ∈ Ω,

0: if 1 then goto 2;
1: goto 1;
2: moveright;
3: if 1 then goto 1;
4: if 0 then goto 6;
5: halt;
6: moveright;
7: goto 0

δ(0, 1) = (1, N, 2), δ(0, y) = (y,N, 1) for y ̸= 1
δ(1, x) = (x,N, 1)
δ(2, x) = (x,R, 3)
δ(3, 1) = (1, N, 1), δ(3, y) = (y,N, 4) for y ̸= B
δ(4, 0) = (0, N, 6), δ(4, y) = (y,N, 5) for y ̸= 1
δ(5, x) = (x,N, 5)
δ(6, x) = (x,R, 7)
δ(7, x) = (x,N, 0)� �

14 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Example 17. TM M1 such that L(M1) = {wwR : w ∈ {0, 1}∗}� �

B.I BL

8

4,

5,6

0/BN

1/lN

B/BN

0/BR

11,

12,13

0,1

B;'BR B!BR

0110N

1/lN

B/BN

29

I/BR

Q,IOL'

1/IL

24,

25,26

17,

18,19

1/ BL

0/0N

B!BN

B11 BL

21

� �
15 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

A TPL program P1 for L(M1)� �
0: if 0 then goto 3;
1: if 1 then goto 16;
2: halt;

3: write B;
4: moveright;
5: if 0 then goto 4;
6: if 1 then goto 4;
7: moveleft;
8: if 0 goto 10;
9: goto 29;
10: write B;
11: moveleft;
12: if 0 then goto 11;
13: if 1 then goto 11;
14: moveright;
15: goto 0;

16: write B;
17: moveright;
18: if 0 then goto 17;
19: if 1 then goto 17;
20: moveleft;
21: if 1 goto 23;
22: goto 29;
23: write B;
24: moveleft;
25: if 0 then goto 24;
26: if 1 then goto 24;
27: moveright;
28: goto 0;

29: goto 29

� �16 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

• One step of TM M1 is described as two or three instructions in P1.

• For instance, look at (4, 5, 6)← (0, 1) in the figure of Example 17 where the
edge is labeled by 0/BR. Then, this step is expressed in P1 as
0: if 0 then goto 3;
3: write B;
4: moveright;

• P1 was made very efficiently. But without consideration of efficiency, it is
routine to make a TPL program for a given TM.

Theorem 1.31
For any Turing machine M, there exists a TPL program P such that
L(M) = L(MP).

Proof. (Leave it to the students.)

17 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

A program P is a sequence of instructions with codes c0, c1, . . . , cl.

Example: P0� �
0: if 1 then goto 2;
1: goto 1;
2: moveright;
...

Code c0 = 8 + 3 · 2 = 14
Code c1 = 6 + 3 · 1 = 9
Code c2 = 1
...� �

P can be represented by a sequence 1c00 · · · 01clon {0, 1}∗.
The Gödel number of a program ⌜P⌝ is

p(0)c0+1 · p(1)c1+1 · · · · · p(l)cl+1.

According to the previous theorem, for any TM M, there is a TPL program PM.
The Gödel number ⌜PM⌝ is called the index (or code) of TM M.

18 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Partial computable functions

• The definition of computable functions in Lecture 3 can be applied to partial
functions. Namely, a partial function f : Nk −→ N is computable if
{1m10 · · · 01mk01f(m1,...,mk) : m1, . . . ,mk ∈ N} is a 0-type language.

• Then, the partial function f realized by M with index e is represented by {e}k
(or simply {e}) (called Kleene’s bracket notation).

• When e is not a code of TM, {e} is regarded as a partial function with empty
domain.

19 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Each TPL Program P is executed as a distinct TM MP . However, we can
construct a “Universal Turing Machine” as a interpreter of TPL Programs. More
strictly, we have the following theorem.

Theorem 1.32 (Enumeration theorem)
For any n ≥ 0, there exists a natural number en such that for any d, x1, . . . , xn,

{en}n+1(d, x1, . . . , xn) ∼ {d}n(x1, . . . , xn).

f(x1, . . . , xn) ∼ g(x1, . . . , xn) means either both sides are not defined or they are
defined with the same value.

This theorem affirms the existence of a universal TM with index en that is able to
mimic any TM with index d.

20 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Proof. We will construct a universal Turing machine M with index en.
• M has one input tape and two working tapes.

• Let 1d01x10 · · · 01xn be an input on the first tape.

• Let the index part 1d represent the program
{the instruction of code c0;
the instruction of code c1;
· · · ;
the instruction of code cl}.

• Write 1c00 · · · 01cl on the 2nd tape and remove 1d0 on the 1st tape.

• Execute the instructions on the 2nd tape sequentially, rewriting the string on
the 1st tape with the help of the 3rd tape.

21 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Proof.(Continued)
• The 3rd tape will be used to find the next executable operation when the goto

instruction or if ? then goto instruction is executed on the 2nd tape.
• For instance, 16+3l sandwiched between two 0’s means goto l, and so the

next executable instruction is given by the sequence of 1’s between the
l-th 0 and the l+ 1-th 0. To find it on the 2nd tape, we need to store the
number of 0’s counted from the left to the end of the string.

• Instructions other than goto and if ? then goto can be easily executed, and
finding the next executable instruction is also obvious.

• When halt instruction is executed, M enters a final state.

• At that time, 1{d}n(x1,...,xn) is written on the 1st tape.

22 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Definition 1.33
A set X ⊂ Nn is called computably enumerable, CE for short, if

{1x10 · · · 01xn : (x1, . . . , xn) ∈ X}

is a type-0 language.

In other words, X ⊂ Nn is CE iff it is the domain of some partial computable
function. Other equivalent definitions will be given in the next lecture.

23 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Now, let K be a set of natural numbers defined as

K := {e : e ∈ dom({e}1)} = {e : (e, e) ∈ dom({e1}2)}.

where e1 is the code of the universal TM in the previous theorem. We call K the
halting problem. Strictly speaking, this is a special kind of halting problem, and
the general case K0 will be given later.

Theorem 1.34 (Turing)
K is CE but its complement N−K is not CE.

24 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Proof.
• To show K is CE.

We construct a TM M accepting {1e : e ∈ K} as follows.
• For input 1e, it rewrites as 1e01e on the tape.

• Then, M mimics the universal TM that realizes {e1}2.

• This TM enters a final state, if (e, e) ∈ dom({e1}2), i.e., e ∈ K.

• By contradiction, assume that N−K is a CE set.
Assume a TM with code d that accepts {1e : e ̸∈ K}. At this time,

d ∈ K⇔ d ∈ dom({d}1)⇔ d ∈ {e : e ̸∈ K} ⇔ d ̸∈ K

Therefore, either d ∈ K or d ̸∈ K leads to a contradiction.

25 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Definition 1.35
A set X ⊂ Nn is computable (or recursive, decidable) if both X and its

complement are CE.

• K is an incomputable CE set.
• A set X ⊂ Nn is computable iff its characteristic function χR is computable.
• (⇒) If we have partial computable functions f and g with dom(f) = X

and dom(g) = Nn −X, then for any input 1x10 · · · 01xn , execute the
computations for f , g in parallel and decide the output (1 or 0)
depending on which one stops first. Such computation always terminates.

• If a function f(x) has a finite value at x = n, we write f(n) ↓. That is

f(n) ↓⇔ n ∈ dom(f).

Then we also write K as
K = {e : {e}(e) ↓}

26 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Exercise 1.4.1� �
Show that the following two sets are incomputable CE set.

K0 = {(x, e) : {e}(x) ↓},

K1 = {e : dom({e}) ̸= ∅}.

� �
• K0 is the original halting problem: given a program and input, decide when

the machine will halt.

• Since we use the special halting problem K more frequently, we refer K0 as the
“membership decision problem (MEM)”.

27 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set

Summary

• Enumeration theorem: Any Turing machine can be emulated by a TPL
program on a universal Turing machine.

• A set X ⊂ Nn is CE if {1x10 · · · 01xn : (x1, . . . , xn) ∈ X} is a type-0 language.

• X is computable if both X and Xc are CE.

• K is CE but not computable.
Further readings� �

N. Cutland. Computability: An Introduction to Recursive Function Theory,
Cambridge University Press, 1st edition, 1980.� �

28 / 29

Logic and
Computation

K. Tanaka

Recap
Recursive functions
Programming
language TPL

Enumeration theorem
Computably
enumerable set
Computable set Thank you for your attention!

29 / 29

	Recap
	Recursive functions
	Programming language TPL
	Enumeration theorem
	Computably enumerable set
	Computable set

