K. Tanaka

Recap Recursive function Programming language TPL Enumeration the Computably enumerable set Computable set

Logic and Computation I Chapter 1 Introduction to theory of computation

Kazuyuki Tanaka

BIMSA

September 24, 2024

・ロト ・四ト ・ヨト ・ヨト

э

K. Tanaka

Recap Recursive functions Programming language TPL Enumeration theorem Computably enumerable set Computable set

- Logic and Computation I ——

- Part 1. Introduction to Theory of Computation
- Part 2. Propositional Logic and Computational Complexity
- Part 3. First Order Logic and Decision Problems
- Part 4. Modal logic

- Part 1. Schedule

- Sep.10, (1) Automata and monoids
- Sep.12, (2) Turing machines
- Sep.19, (3) Computable functions and primitive recursive functions
- Sep.24, (4) Decidability and undecidability
- Sep.26, (5) Partial recursive functions and computable enumerable sets
- Oct. 8, (6) Rice's theorem and many-one reducibility

K. Tanaka

Recap

- Recursive functions Programming language TPL Enumeration theorem Computably enumerable set
- f is computable iff there is a TM such that for an input word $1^{m_1}0\cdots 01^{m_k}$, it enters an final state with an remaining sequence $1^{f(m_1,\ldots,m_k)}$ on the tape iff $\{1^{m_1}0\cdots 01^{m_k}01^{f(m_1,\ldots,m_k)}: m_1,\ldots,m_k \in \mathbb{N}\}$ is a type-0 language on $\{0,1\}$.
- The primitive recursive functions are obtained from constant 0, successor function S(x) = x + 1, projection $P_i^n(x_1, x_2, ..., x_n) = x_i \ (1 \le i \le n)$, by way of Composition and Primitive recursion:

If $g,\,h$ are prim. rec. functions, so is f defined by:

$$f(x_1, \dots, x_n, 0) = g(x_1, \dots, x_n),$$

$$f(x_1, \dots, x_n, y + 1) = h(x_1, \dots, x_n, y, f(x_1, \dots, x_n, y)).$$

- An *n*-ary relation $R \subset \mathbb{N}^n$ is primitive recursive, if its characteristic function $\chi_R : \mathbb{N}^n \to \{0, 1\}$ is primitive recursive.
- The graph of a primitive recursive function is primitive recursive.

Recap

Examples Examples

Computation K. Tanaka

Logic and

Recap

Recursive functions Programming language TPL Enumeration theorem Computably enumerable set Computable set x + y, $\dot{x-y}$, $x \cdot y$, x/y, x^y , x!, $\max\{x, y\}$, $\min\{x, y\}$ are prim. rec. functions. x < y, x = y, prime(x) are prim. rec. relations.

- Example 14

Let $p(\boldsymbol{x}) = ``(\boldsymbol{x}+1)\text{-th}$ prime number ", that is ,

 $p(0) = 2, p(1) = 3, p(2) = 5, \dots$

Then, p(x) is a primitive recursive function since it is defined as follows.

p(0) = 2, $p(x+1) = \mu y < p(x)! + 2 \ (p(x) < y \land \operatorname{prime}(y))$.

A finite sequence of natural numbers (x_0, \ldots, x_{n-1}) can be represented by a unique natural number x, called a sequence number, defined as follows,

$$x = p(0)^{x_0+1} \cdot p(1)^{x_1+1} \cdot \dots \cdot p(n-1)^{x_{n-1}+1}.$$

Example 15

K. Tanaka

Recap

Recursive functions Programming language TPL Enumeration theorem Computably enumerable set Computable set

- Fixing n, a mapping from $(x_0, \ldots, x_{n-1}) \in \mathbb{N}^n$ to its sequence number $x \in \mathbb{N}$ is a primitive recursive function.
- Conversely, let c(x, i) be a function taking the *i*-th element x_i from x. It is primitive recursive, since

$$x_i = c(x, i) = \mu y < x \ (\neg \exists z < x \ (p(i)^{y+2} \cdot z = x)).$$

• The length of a sequence x, denote leng(x), is primitive recursive, since

$$\operatorname{leng}(x) = \mu i < x \ (\neg \exists z < x \ (p(i) \cdot z = x)).$$

• Finally, we define a relation Seq(x) to mean that x is a sequence number. Then it is primitive recursive, since

 $\operatorname{Seq}(x) \Leftrightarrow \forall i < x \forall z < x \ (p(i) \cdot z = x \to i \le \operatorname{leng}(x)).$

• • • • • • • • • • • • •

K. Tanaka

Recap Recursive functions Programming language TPL Enumeration theor Computably enumerable set

Gödel numbers

Definition 1.27

Let Ω be a finite (or countably infinite) set of symbols with an injection $\phi : \Omega \to \mathbb{N}$. For a string $s = a_0 \cdots a_{n-1}$ from Ω , the number sequence of $(\phi(a_0) \cdots \phi(a_{n-1}))$, i.e., $p(0)^{\phi(a_0)+1} \cdot p(1)^{\phi(a_1)+1} \cdots \cdot p(n-1)^{\phi(a_{n-1})+1}$

is called the **Gödel number** of s, denoted by $\lceil s \rceil$.

The mapping $\lceil \neg \rceil$ is an injection from the set of all strings Ω^* to \mathbb{N} .

– Example 16

Let
$$\Omega = \{0, 1, +, (,)\}$$
, $\phi(0) = 0$, $\phi(1) = 1$, $\phi(+) = 3$, $\phi(() = 5$ and $\phi()) = 6$. Then,

$$\lceil (1+0) + 1 \rceil = 2^6 \cdot 3^2 \cdot 5^4 \cdot 7^1 \cdot 11^7 \cdot 13^4 \cdot 17^2$$

K. Tanaka

Recap Recursive functions Programming language TPL Enumeration theory Computably enumerable set

- Exercise 1.3.3 –

The symbol set Ω is the same as the example above. "Terms" are defined as below

(1) 0, 1 are terms.

(2) if s and t are terms, so is
$$(s + t)$$
.
e.g., $((1 + 0) + 1)$ is a term, but $(1 + 0) + 1$ is not a term.

Show that the predicate $\operatorname{Term}(x)$ expressing "x is the Gödel number of a term" is primitive recursive.

Recursive functions

Logic and Computation

K. Tanaka

Recap

Recursive functions

- anguage TPL Enumeration theorem Computably enumerable set
- Definition 1.28

The recursive functions are defined as follows

- 1. Constant 0, Successor S(x) = x + 1, Projections $P_i^n(x_1, x_2, \dots, x_n) = x_i$ are recursive functions.
- 2. Composition. 3. Primitive recursion.
- 4. minimalization (or minimization). Let $g: \mathbb{N}^{n+1} \to \mathbb{N}$ be a recursive function such that $\forall x_1 \cdots \forall x_n \exists y \ g(x_1, \cdots, x_n, y) = 0$. Define a function $f: \mathbb{N}^n \to \mathbb{N}$ by

$$f(x_1,\cdots,x_n)=\mu y(g(x_1,\cdots,x_n,y)=0),$$

where $\mu y(g(x_1,\cdots,x_n,y)=0)$ denotes the smallest y such that $g(x_1,\cdots,x_n,y)=0.$ Then, f is recursive.

.

K. Tanaka

Recap

- Recursive functions Programming language TPL
- Enumeration theor Computably enumerable set

- Recursive functions are (total) computable functions, like primitive recursive functions.
- However, condition 4 in the above definition (not included in the definition of primitive recursive functions) is problematic sometimes, since it is often difficult to guarantee its totality condition ∀x1 ··· ∀xn∃y g(x1, ··· , xn, y) = 0 in a absolutely computable way, or in a rigid formal system.
- For instance, the class of recursive functions allowed in Peano arithmetic does not match the class of recursive functions allowed in ZF set theory.
- A function defined by removing this totality condition is called **a partial recursive function**, and we will discuss it later (in Lecture 5).

K. Tanaka

Recap

Recursive functions

Programming anguage TPL Enumeration theorem Computably enumerable set Computable set

§1.4. Computability and Incomputability

- Today, we will only consider a deterministic single-tape Turing machine on $\Omega=\{0,1,B\}.$
- We will introduce a Programming Language, called **TPL**, that has an instruction for each operation of **T**uring machine.
- Any Turing machine can be emulated by a TPL program on a unique Turing machine (called a universal Turing machine).
- Finally, we will prove the existence of an incomputable (non-computable) set K.

K. Tanaka

Recap

Recursive functions

Programming language TPL

numeration theorem

enumerable set

 Instructions
 (code ♯, the corresponding TM operations)

 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5
 5

Definition 1.29 (Programming language TPL)

halt	(code 0, enter a final state)
moveright	(code 1, move the head to right by one cell)
moveleft	(code 2, move the head to left by one cell)
write 0	(code 3, write " 0 " on the tape)
write 1	(code 4, write "1" on the tape)
write B	(code 5, write "B" On the tape)
goto l	(code $6 + 3l$, jump to the <i>l</i> -th instruction)
if 0 then goto l	(code $7 + 3l$, if TM reads 0, jump to the l -th
	instruction)
if 1 then goto l	(code $8 + 3l$, if TM reads 1, jump to the <i>l</i> -th
	instruction)

C

K. Tanaka

Recap Recursive functions Programming language TPL Enumeration theore Computably enumerable set

Definition 1.29 (continued)

A program of TPL is a list of instructions separated by ";".

For readability, a line number is added at each instruction. In the instruction "goto l", l corresponds to such a line number.

– An example of TPL program \mathcal{P}_0

0: if 1 then goto 2;

- 1: **goto** 1;
- 2: moveright;
- 3: **if** 1 **then goto** 1;
- 4: if 0 then goto 6;

5: halt;

6: moveright;

7: **goto** 0

The left program intends to accept the language $1(01)^\ast$

・ロト ・周ト ・ヨト ・ヨー

K. Tanaka

Recap Recursive fu

Programming language TPL

numeration theoren Computably numerable set Computable set

Definition 1.30 (TM $\mathcal{M}_{\mathcal{P}}$ realizes TPL program \mathcal{P})

Let \mathcal{P} be be a TPL program. We define a (deterministic) Turing machine $\mathcal{M}_{\mathcal{P}} = (Q, \Omega, \delta, q_0, F)$ which realizes \mathcal{P} . Here, $Q = \{0, 1, \ldots, n-1\}$ is the set of line numbers of \mathcal{P} . $\Omega = \{0, 1, B\}$. $q_0 = 0$, $F = \{a \text{ line number of halt}\}$. The transition function $\delta : Q \times \Omega \to \Omega \times \{L, R, N\} \times Q$ is defined as follows.

 $\begin{array}{ll} l: \mbox{ halt,} & \delta(l,x) = (x,N,l), \\ l: \mbox{ moveright,} & \delta(l,x) = (x,R,l+1), \\ l: \mbox{ moveleft,} & \delta(l,x) = (x,L,l+1), \\ l: \mbox{ write } ?, & \delta(l,x) = (?,N,l+1), \mbox{ for } ? = 0,1, \mbox{ B}, \\ l: \mbox{ goto } k, & \delta(l,x) = (x,N,k), \\ l: \mbox{ if } ? \mbox{ then goto } k, \ \delta(l,?) = (?,N,k) \mbox{ and} \\ & \delta(l,y) = (y,N,l+1) \mbox{ for } y \neq ?. \end{array}$

The language accepted by TPL \mathcal{P} is the language accepted by the associated Turing machine $\mathcal{M}_{\mathcal{P}}$. The partial function $f: \Omega^* \to \Omega^*$ defined by \mathcal{P} is a function defined by $\mathcal{M}_{\mathcal{P}}$.

K. Tanaka

Recap Recursive fur

Programming language TPL

computably computably numerable set - Program $\mathcal{P}_0 \Rightarrow \mathsf{TM} \ \mathcal{M}_{\mathcal{P}_0}$ -

We define a (deterministic) Turing machine $\mathcal{M}_{\mathcal{P}_0} = (Q, \Omega, \delta, q_0, F)$, where $Q = \{0, 1, \ldots, 7\}$, $\Omega = \{0, 1, B\}$, $q_0 = 0$, $F = \{5\}$, and δ is defined as follows: for any $x \in \Omega$,

0: if 1 then goto 2;	$\delta(0,1)=(1,N,2)$, $\delta(0,y)=(y,N,1)$ for $y eq 1$
1: goto 1;	$\delta(1,x) = (x,N,1)$
2: moveright;	$\delta(2,x) = (x,R,3)$
3: if 1 then goto 1;	$\delta(3,1)=(1,N,1)$, $\delta(3,y)=(y,N,4)$ for $y eq B$
4: if 0 then goto 6;	$\delta(4,0)=(0,N,6)$, $\delta(4,y)=(y,N,5)$ for $y eq 1$
5: halt ;	$\delta(5,x) = (x,N,5)$
6: moveright;	$\delta(6, x) = (x, R, 7)$
7: goto 0	$\delta(7,x) = (x,N,0)$

14 / 29
 1

K. Tanaka

Recap Recursive fu

Programming language TPL

> numeration theore computably numerable set

A TPL program \mathcal{P}_1 for $L(\mathcal{M}_1)$

- 0: if 0 then goto 3;
 1: if 1 then goto 16;
 2: halt;
- 3: **write** B;
- 4: moveright;
- 5: if 0 then goto 4;
- 6: if 1 then goto 4;
- 7: moveleft;
- 8: if 0 goto 10;
- 9: **goto** 29;
- 10: **write** B;
- 11: moveleft;
- 12: if 0 then goto 11;
- 13: if 1 then goto 11;
- 14: moveright;
- 15: **goto** 0;

- 16: **write** B;
- 17: moveright;
- 18: if 0 then goto 17;
- 19: **if** 1 **then goto** 17;
- 20: moveleft;
- 21: if 1 goto 23;
- 22: goto 29;
- 23: write B;
- 24: moveleft;
- 25: if 0 then goto 24;
- 26: if 1 then goto 24;

化口下 化间下 化医下不足

- 27: moveright;
- 28: **goto** 0;
- 29: **goto** 29

K. Tanaka

Recap

- Programming language TPL
- Enumeration theorem Computably

enumerable set Computable set

- One step of TM \mathcal{M}_1 is described as two or three instructions in \mathcal{P}_1 .
- For instance, look at (4,5,6) ← (0,1) in the figure of Example 17 where the edge is labeled by 0/BR. Then, this step is expressed in P₁ as 0: if 0 then goto 3:
 - 3: **write** B;
 - 4: moveright;
- \mathcal{P}_1 was made very efficiently. But without consideration of efficiency, it is routine to make a TPL program for a given TM.

Theorem 1.31

For any Turing machine \mathcal{M} , there exists a TPL program \mathcal{P} such that $L(\mathcal{M}) = L(\mathcal{M}_{\mathcal{P}})$.

Proof. (Leave it to the students.)

K. Tanaka

Recap Recursive functions Programming language TPL Enumeration theorem Computably

omputably numerable set

– Example: \mathcal{P}_0 ———	
0: if 1 then goto 2; 1: goto 1; 2: moveright; :	Code $c_0 = 8 + 3 \cdot 2 = 14$ Code $c_1 = 6 + 3 \cdot 1 = 9$ Code $c_2 = 1$

A program \mathcal{P} is a sequence of instructions with codes c_0, c_1, \ldots, c_l .

 ${\mathcal P}$ can be represented by a sequence $1^{c_0}0\cdots 01^{c_l}{\rm on}~\{0,1\}^*.$

The **Gödel number** of a program $\lceil \mathcal{P} \rceil$ is

$$p(0)^{c_0+1} \cdot p(1)^{c_1+1} \cdot \dots \cdot p(l)^{c_l+1}.$$

According to the previous theorem, for any TM \mathcal{M} , there is a TPL program $\mathcal{P}_{\mathcal{M}}$. The Gödel number $\lceil \mathcal{P}_{\mathcal{M}} \rceil$ is called the index (or code) of TM \mathcal{M} .

K. Tanaka

- Recap Recursive functions Programming language TPL Enumeration theorem
- Computably enumerable set Computable set

The definition of computable functions in Lecture 3 can be applied to partial functions. Namely, a partial function f : N^k → N is computable if {1^{m1}0···01^{mk}01^{f(m1,...,mk)} : m1,...,mk ∈ N} is a 0-type language.

- Then, the partial function f realized by \mathcal{M} with index e is represented by $\{e\}^k$ (or simply $\{e\}$) (called Kleene's bracket notation).
- When e is not a code of TM, $\{e\}$ is regarded as a partial function with empty domain.

Partial computable functions

K. Tanaka

Recap Recursive fund Programming

Enumeration theorem

Computably enumerable set Computable set Each TPL Program \mathcal{P} is executed as a distinct TM $\mathcal{M}_{\mathcal{P}}$. However, we can construct a "Universal Turing Machine" as a interpreter of TPL Programs. More strictly, we have the following theorem.

Theorem 1.32 (Enumeration theorem)

For any $n \ge 0$, there exists a natural number e_n such that for any d, x_1, \ldots, x_n ,

$$\{e_n\}^{n+1}(d, x_1, \dots, x_n) \sim \{d\}^n(x_1, \dots, x_n).$$

 $f(x_1,\ldots,x_n)\sim g(x_1,\ldots,x_n)$ means either both sides are not defined or they are defined with the same value.

This theorem affirms the existence of a universal TM with index e_n that is able to mimic any TM with index d.

K. Tanaka

- Recap Recursive functions Programming language TPL Enumeration theorem
- Computably enumerable set Computable set

Proof. We will construct a universal Turing machine \mathcal{M} with index e_n .

- ${\mathcal M}$ has one input tape and two working tapes.
- Let $1^d 0 1^{x_1} 0 \cdots 0 1^{x_n}$ be an input on the first tape.
- Let the index part 1^d represent the program {the instruction of code c₀; the instruction of code c₁;
 ...;

the instruction of code c_l }.

- Write $1^{c_0}0\cdots 01^{c_l}$ on the 2nd tape and remove 1^d0 on the 1st tape.
- Execute the instructions on the 2nd tape sequentially, rewriting the string on the 1st tape with the help of the 3rd tape.

K. Tanaka

Recap Recursive function Programming language TPL

Enumeration theorem

Computably enumerable set Computable set

Proof.(Continued)

- The 3rd tape will be used to find the next executable operation when the **goto** instruction or **if** ? **then goto** instruction is executed on the 2nd tape.
 - For instance, 1^{6+3l} sandwiched between two 0's means **goto** l, and so the next executable instruction is given by the sequence of 1's between the l-th 0 and the l + 1-th 0. To find it on the 2nd tape, we need to store the number of 0's counted from the left to the end of the string.
- Instructions other than **goto** and **if** ? **then goto** can be easily executed, and finding the next executable instruction is also obvious.
- When **halt** instruction is executed, \mathcal{M} enters a final state.
- At that time, $1^{\{d\}^n(x_1,...,x_n)}$ is written on the 1st tape.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

K. Tanaka

Recursive function Programming language TPL Enumeration theo Computably

Computably enumerable set Computable set

Definition 1.33

A set $X \subset \mathbb{N}^n$ is called computably enumerable, CE for short, if

$$\{1^{x_1}0\cdots 01^{x_n}: (x_1,\ldots,x_n)\in X\}$$

is a type-0 language.

In other words, $X \subset \mathbb{N}^n$ is CE iff it is the domain of some partial computable function. Other equivalent definitions will be given in the next lecture.

(日)

K. Tanaka

Recap Recursive functions Programming language TPL Enumeration theore Computably enumerable set

enumerable set

Now, let ${\rm K}$ be a set of natural numbers defined as

$$\mathbf{K} := \{ e : e \in \operatorname{dom}(\{e\}^1) \} = \{ e : (e, e) \in \operatorname{dom}(\{e_1\}^2) \}.$$

where e_1 is the code of the universal TM in the previous theorem. We call K the **halting problem**. Strictly speaking, this is a special kind of halting problem, and the general case K_0 will be given later.

イロト 不得下 イヨト イヨト 一日

Theorem 1.34 (Turing)

K is CE but its complement $\mathbb{N}-K$ is not CE.

K. Tanaka

Recap Recursive function Programming language TPL Enumeration the

Computably enumerable set Computable set

• To show K is CE.

Proof.

We construct a TM ${\mathcal M}$ accepting $\{1^e:e\in {\rm K}\}$ as follows.

- For input 1^e, it rewrites as 1^e01^e on the tape.
- Then, \mathcal{M} mimics the universal TM that realizes $\{e_1\}^2$.
- This TM enters a final state, if $(e, e) \in \text{dom}(\{e_1\}^2)$, i.e., $e \in K$.
- By contradiction, assume that $\mathbb{N} K$ is a CE set. Assume a TM with code d that accepts $\{1^e : e \notin K\}$. At this time,

 $d \in \mathbf{K} \Leftrightarrow d \in \operatorname{dom}(\{d\}^1) \Leftrightarrow d \in \{e : e \not\in \mathbf{K}\} \Leftrightarrow d \not\in \mathbf{K}$

Therefore, either $d \in K$ or $d \notin K$ leads to a contradiction.

K. Tanaka

Recap Recursive functi Programming language TPL Enumeration the Computably enumerable set Computable set

Definition 1.35

A set $X \subset \mathbb{N}^n$ is **computable** (or **recursive**, **decidable**) if both X and its complement are CE.

- K is an incomputable CE set.
- A set $X \subset \mathbb{N}^n$ is computable iff its characteristic function χ_R is computable.
 - (⇒) If we have partial computable functions f and g with dom(f) = X and dom(g) = Nⁿ - X, then for any input 1^{x1}0···01^{xn}, execute the computations for f, g in parallel and decide the output (1 or 0) depending on which one stops first. Such computation always terminates.
- If a function f(x) has a finite value at x = n, we write $f(n) \downarrow$. That is

 $f(n) \downarrow \Leftrightarrow n \in \operatorname{dom}(f).$

Then we also write ${\rm K}$ as

$$\mathbf{K} = \{e : \{e\}(e) \downarrow\}$$

K. Tanaka

Exercise 1.4.1

Recap Recursive function Programming language TPL Enumeration theor Computably enumerable set Computable set Show that the following two sets are incomputable CE set.

 $\mathbf{K}_0 = \{(x, e) : \{e\}(x) \downarrow\},\$

 $\mathbf{K}_1 = \{ e : \operatorname{dom}(\{e\}) \neq \emptyset \}.$

- K_0 is the original **halting problem**: given a program and input, decide when the machine will halt.
- Since we use the special halting problem K more frequently, we refer K_0 as the "membership decision problem (MEM)".

27 / 29

化口压 化固定 化医压化医压

K. Tanaka

Recap Recursive functions Programming language TPL Enumeration theorer Computably enumerable set Computable set

• Enumeration theorem: Any Turing machine can be emulated by a TPL program on a universal Turing machine.

- A set $X \subset \mathbb{N}^n$ is CE if $\{1^{x_1}0\cdots 01^{x_n} : (x_1,\ldots,x_n) \in X\}$ is a type-0 language.
- X is computable if both X and X^c are CE.
- K is CE but not computable.
- Further readings

N. Cutland. *Computability: An Introduction to Recursive Function Theory*, Cambridge University Press, 1st edition, 1980.

イロト イポト イヨト イヨト

K. Tanaka

Recap

Programming

language TPL

numeration theorem

Computably

enumerable s

Computable set

Thank you for your attention!

