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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation
• Part 2. Propositional Logic and Computational Complexity
• Part 3. First Order Logic and Decision Problems
• Part 4. Modal logic� �

Part 1. Schedule� �
• Sep.10, (1) Automata and monoids
• Sep.12, (2) Turing machines
• Sep.19, (3) Computable functions and primitive recursive functions
• Sep.24, (4) Decidability and undecidability
• Sep.26, (5) Partial recursive functions and computable enumerable sets
• Oct. 8, (6) Rice’s theorem and many-one reducibility� �2 / 29
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Recap
• f is computable iff there is a TM such that for an input word 1m10 · · · 01mk ,

it enters an final state with an remaining sequence 1f(m1,...,mk) on the tape iff
{1m10 · · · 01mk01f(m1,...,mk) : m1, . . . ,mk ∈ N} is a type-0 language on {0, 1}.

• The primitive recursive functions are obtained from constant 0, successor
function S(x) = x+ 1, projection Pn

i (x1, x2, . . . , xn) = xi (1 ≤ i ≤ n), by
way of Composition and Primitive recursion:
If g, h are prim. rec. functions, so is f defined by:

f(x1, . . . , xn, 0) = g(x1, . . . , xn),

f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f(x1, . . . , xn, y)).

• An n-ary relation R ⊂ Nn is primitive recursive, if its characteristic function
χR : Nn → {0, 1} is primitive recursive.

• The graph of a primitive recursive function is primitive recursive.
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Examples� �
x+ y, x−̇y, x · y, x/y, xy, x!, max{x, y}, min{x, y} are prim. rec. functions.
x < y, x = y, prime(x) are prim. rec. relations.� �
Example 14� �

Let p(x) = “(x+ 1)-th prime number ”, that is ,

p(0) = 2, p(1) = 3, p(2) = 5, . . .

Then, p(x) is a primitive recursive function since it is defined as follows.

p(0) = 2, p(x+ 1) = µy < p(x)! + 2 (p(x) < y ∧ prime(y)).� �
A finite sequence of natural numbers (x0, . . . , xn−1) can be represented by a
unique natural number x, called a sequence number, defined as follows,

x = p(0)x0+1 · p(1)x1+1 · · · · · p(n− 1)xn−1+1.
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Example 15� �
• Fixing n, a mapping from (x0, . . . , xn−1) ∈ Nn to its sequence number
x ∈ N is a primitive recursive function.
• Conversely, let c(x, i) be a function taking the i-th element xi from x. It

is primitive recursive, since

xi = c(x, i) = µy < x (¬∃z < x (p(i)y+2 · z = x)).

• The length of a sequence x, denote leng(x), is primitive recursive, since

leng(x) = µi < x (¬∃z < x (p(i) · z = x)).

• Finally, we define a relation Seq(x) to mean that x is a sequence number.
Then it is primitive recursive, since

Seq(x)⇔ ∀i < x∀z < x (p(i) · z = x→ i ≤ leng(x)).� �
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Gödel numbers
Definition 1.27
Let Ω be a finite (or countably infinite) set of symbols with an injection ϕ : Ω→ N.
For a string s = a0 · · · an−1 from Ω, the number sequence of (ϕ(a0) · · ·ϕ(an−1)),
i.e.,

p(0)ϕ(a0)+1 · p(1)ϕ(a1)+1 · · · · · p(n− 1)ϕ(an−1)+1

is called the Gödel number of s, denoted by ⌜s⌝.

The mapping ⌜ ⌝ is an injection from the set of all strings Ω∗ to N.
Example 16� �

Let Ω = {0, 1,+, (, )}, ϕ(0) = 0, ϕ(1) = 1, ϕ(+) = 3, ϕ( ( ) = 5 and ϕ( ) ) = 6.
Then,

⌜(1 + 0) + 1⌝ = 26 · 32 · 54 · 71 · 117 · 134 · 172� �
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Exercise 1.3.3� �
The symbol set Ω is the same as the example above. “Terms” are defined as
below
(1) 0, 1 are terms.

(2) if s and t are terms, so is (s+ t).
e.g., ((1 + 0) + 1) is a term, but (1 + 0) + 1 is not a term.

Show that the predicate Term(x) expressing “x is the Gödel number of a term”
is primitive recursive.� �
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Recursive functions
Definition 1.28
The recursive functions are defined as follows
1. Constant 0, Successor S(x) = x+ 1, Projections Pn

i (x1, x2, · · · , xn) = xi
are recursive functions.

2. Composition. 3. Primitive recursion.
4. minimalization (or minimization).

Let g : Nn+1 → N be a recursive function such that
∀x1 · · · ∀xn∃y g(x1, · · · , xn, y) = 0. Define a function f : Nn → N by

f(x1, · · · , xn) = µy(g(x1, · · · , xn, y) = 0),

where µy(g(x1, · · · , xn, y) = 0) denotes the smallest y such that
g(x1, · · · ,xn, y) = 0. Then, f is recursive.
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• Recursive functions are (total) computable functions, like primitive recursive
functions.

• However, condition 4 in the above definition (not included in the definition of
primitive recursive functions) is problematic sometimes, since it is often
difficult to guarantee its totality condition ∀x1 · · · ∀xn∃y g(x1, · · · , xn, y) = 0
in a absolutely computable way, or in a rigid formal system.

• For instance, the class of recursive functions allowed in Peano arithmetic does
not match the class of recursive functions allowed in ZF set theory.

• A function defined by removing this totality condition is called a partial
recursive function, and we will discuss it later (in Lecture 5).

9 / 29
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§1.4. Computability and Incomputability

• Today, we will only consider a deterministic single-tape Turing machine on
Ω = {0, 1,B}.

• We will introduce a Programming Language, called TPL, that has an
instruction for each operation of Turing machine.

• Any Turing machine can be emulated by a TPL program on a unique Turing
machine (called a universal Turing machine).

• Finally, we will prove the existence of an incomputable (non-computable) set
K.

10 / 29
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Definition 1.29 (Programming language TPL)
Instructions (code ♯, the corresponding TM operations)bababababababababababababababababab

halt (code 0, enter a final state)
moveright (code 1, move the head to right by one cell)
moveleft (code 2, move the head to left by one cell)
write 0 (code 3, write “0” on the tape)
write 1 (code 4, write “1” on the tape)
write B (code 5, write “B” On the tape)
goto l (code 6 + 3l, jump to the l-th instruction)
if 0 then goto l (code 7 + 3l, if TM reads 0, jump to the l-th

instruction)
if 1 then goto l (code 8 + 3l, if TM reads 1, jump to the l-th

instruction)
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Definition 1.29 (continued)
A program of TPL is a list of instructions separated by “;”.

For readability, a line number is added at each instruction.
In the instruction “goto l”, l corresponds to such a line number.

An example of TPL program P0� �
0: if 1 then goto 2;
1: goto 1;
2: moveright;
3: if 1 then goto 1;
4: if 0 then goto 6;
5: halt;
6: moveright;
7: goto 0

The left program intends to accept
the language 1(01)∗

� �
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Definition 1.30 (TM MP realizes TPL program P)
Let P be be a TPL program. We define a (deterministic) Turing machine
MP = (Q,Ω, δ, q0, F ) which realizes P. Here, Q = {0, 1, . . . , n− 1} is the set of
line numbers of P. Ω = {0, 1,B}. q0 = 0, F = {a line number of halt}. The
transition function δ : Q× Ω→ Ω× {L,R,N} ×Q is defined as follows.

l: halt, δ(l, x) = (x,N, l),
l: moveright, δ(l, x) = (x,R, l + 1),
l: moveleft, δ(l, x) = (x, L, l + 1),
l: write ?, δ(l, x) = (?, N, l + 1), for ? = 0, 1,B,
l: goto k, δ(l, x) = (x,N, k),
l: if ? then goto k, δ(l, ?) = (?, N, k) and

δ(l, y) = (y,N, l + 1) for y ̸=?.

The language accepted by TPL P is the language accepted by the associated
Turing machine MP . The partial function f : Ω∗ → Ω∗ defined by P is a function
defined by MP .

13 / 29
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Program P0 ⇒ TM MP0
� �

We define a (deterministic) Turing machineMP0 = (Q,Ω, δ, q0, F ), where Q =
{0, 1, . . . , 7}, Ω = {0, 1,B}, q0 = 0, F = {5}, and
δ is defined as follows: for any x ∈ Ω,

0: if 1 then goto 2;
1: goto 1;
2: moveright;
3: if 1 then goto 1;
4: if 0 then goto 6;
5: halt;
6: moveright;
7: goto 0

δ(0, 1) = (1, N, 2), δ(0, y) = (y,N, 1) for y ̸= 1
δ(1, x) = (x,N, 1)
δ(2, x) = (x,R, 3)
δ(3, 1) = (1, N, 1), δ(3, y) = (y,N, 4) for y ̸= B
δ(4, 0) = (0, N, 6), δ(4, y) = (y,N, 5) for y ̸= 1
δ(5, x) = (x,N, 5)
δ(6, x) = (x,R, 7)
δ(7, x) = (x,N, 0)� �

14 / 29
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Example 17. TM M1 such that L(M1) = {wwR : w ∈ {0, 1}∗}� �
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� �
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A TPL program P1 for L(M1)� �
0: if 0 then goto 3;
1: if 1 then goto 16;
2: halt;

3: write B;
4: moveright;
5: if 0 then goto 4;
6: if 1 then goto 4;
7: moveleft;
8: if 0 goto 10;
9: goto 29;
10: write B;
11: moveleft;
12: if 0 then goto 11;
13: if 1 then goto 11;
14: moveright;
15: goto 0;

16: write B;
17: moveright;
18: if 0 then goto 17;
19: if 1 then goto 17;
20: moveleft;
21: if 1 goto 23;
22: goto 29;
23: write B;
24: moveleft;
25: if 0 then goto 24;
26: if 1 then goto 24;
27: moveright;
28: goto 0;

29: goto 29

� �16 / 29
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• One step of TM M1 is described as two or three instructions in P1.

• For instance, look at (4, 5, 6)← (0, 1) in the figure of Example 17 where the
edge is labeled by 0/BR. Then, this step is expressed in P1 as
0: if 0 then goto 3;
3: write B;
4: moveright;

• P1 was made very efficiently. But without consideration of efficiency, it is
routine to make a TPL program for a given TM.

Theorem 1.31
For any Turing machine M, there exists a TPL program P such that
L(M) = L(MP).

Proof. (Leave it to the students.)

17 / 29
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A program P is a sequence of instructions with codes c0, c1, . . . , cl.

Example: P0� �
0: if 1 then goto 2;
1: goto 1;
2: moveright;
...

Code c0 = 8 + 3 · 2 = 14
Code c1 = 6 + 3 · 1 = 9
Code c2 = 1
...� �

P can be represented by a sequence 1c00 · · · 01clon {0, 1}∗.
The Gödel number of a program ⌜P⌝ is

p(0)c0+1 · p(1)c1+1 · · · · · p(l)cl+1.

According to the previous theorem, for any TM M, there is a TPL program PM.
The Gödel number ⌜PM⌝ is called the index (or code) of TM M.

18 / 29
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Partial computable functions

• The definition of computable functions in Lecture 3 can be applied to partial
functions. Namely, a partial function f : Nk −→ N is computable if
{1m10 · · · 01mk01f(m1,...,mk) : m1, . . . ,mk ∈ N} is a 0-type language.

• Then, the partial function f realized by M with index e is represented by {e}k
(or simply {e}) (called Kleene’s bracket notation).

• When e is not a code of TM, {e} is regarded as a partial function with empty
domain.

19 / 29
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Each TPL Program P is executed as a distinct TM MP . However, we can
construct a “Universal Turing Machine” as a interpreter of TPL Programs. More
strictly, we have the following theorem.

Theorem 1.32 (Enumeration theorem)
For any n ≥ 0, there exists a natural number en such that for any d, x1, . . . , xn,

{en}n+1(d, x1, . . . , xn) ∼ {d}n(x1, . . . , xn).

f(x1, . . . , xn) ∼ g(x1, . . . , xn) means either both sides are not defined or they are
defined with the same value.

This theorem affirms the existence of a universal TM with index en that is able to
mimic any TM with index d.

20 / 29
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Proof. We will construct a universal Turing machine M with index en.
• M has one input tape and two working tapes.

• Let 1d01x10 · · · 01xn be an input on the first tape.

• Let the index part 1d represent the program
{the instruction of code c0;
the instruction of code c1;
· · · ;
the instruction of code cl}.

• Write 1c00 · · · 01cl on the 2nd tape and remove 1d0 on the 1st tape.

• Execute the instructions on the 2nd tape sequentially, rewriting the string on
the 1st tape with the help of the 3rd tape.

21 / 29
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Proof.(Continued)
• The 3rd tape will be used to find the next executable operation when the goto

instruction or if ? then goto instruction is executed on the 2nd tape.
• For instance, 16+3l sandwiched between two 0’s means goto l, and so the

next executable instruction is given by the sequence of 1’s between the
l-th 0 and the l+ 1-th 0. To find it on the 2nd tape, we need to store the
number of 0’s counted from the left to the end of the string.

• Instructions other than goto and if ? then goto can be easily executed, and
finding the next executable instruction is also obvious.

• When halt instruction is executed, M enters a final state.

• At that time, 1{d}n(x1,...,xn) is written on the 1st tape.

22 / 29
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Definition 1.33
A set X ⊂ Nn is called computably enumerable, CE for short, if

{1x10 · · · 01xn : (x1, . . . , xn) ∈ X}

is a type-0 language.

In other words, X ⊂ Nn is CE iff it is the domain of some partial computable
function. Other equivalent definitions will be given in the next lecture.

23 / 29
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Now, let K be a set of natural numbers defined as

K := {e : e ∈ dom({e}1)} = {e : (e, e) ∈ dom({e1}2)}.

where e1 is the code of the universal TM in the previous theorem. We call K the
halting problem. Strictly speaking, this is a special kind of halting problem, and
the general case K0 will be given later.

Theorem 1.34 (Turing)
K is CE but its complement N−K is not CE.

24 / 29
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Proof.
• To show K is CE.

We construct a TM M accepting {1e : e ∈ K} as follows.
• For input 1e, it rewrites as 1e01e on the tape.

• Then, M mimics the universal TM that realizes {e1}2.

• This TM enters a final state, if (e, e) ∈ dom({e1}2), i.e., e ∈ K.

• By contradiction, assume that N−K is a CE set.
Assume a TM with code d that accepts {1e : e ̸∈ K}. At this time,

d ∈ K⇔ d ∈ dom({d}1)⇔ d ∈ {e : e ̸∈ K} ⇔ d ̸∈ K

Therefore, either d ∈ K or d ̸∈ K leads to a contradiction.

25 / 29
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Definition 1.35
A set X ⊂ Nn is computable (or recursive, decidable) if both X and its

complement are CE.

• K is an incomputable CE set.
• A set X ⊂ Nn is computable iff its characteristic function χR is computable.
• (⇒) If we have partial computable functions f and g with dom(f) = X

and dom(g) = Nn −X, then for any input 1x10 · · · 01xn , execute the
computations for f , g in parallel and decide the output (1 or 0)
depending on which one stops first. Such computation always terminates.

• If a function f(x) has a finite value at x = n, we write f(n) ↓. That is

f(n) ↓⇔ n ∈ dom(f).

Then we also write K as
K = {e : {e}(e) ↓}

26 / 29
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Exercise 1.4.1� �
Show that the following two sets are incomputable CE set.

K0 = {(x, e) : {e}(x) ↓},

K1 = {e : dom({e}) ̸= ∅}.

� �
• K0 is the original halting problem: given a program and input, decide when

the machine will halt.

• Since we use the special halting problem K more frequently, we refer K0 as the
“membership decision problem (MEM)”.

27 / 29
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Summary

• Enumeration theorem: Any Turing machine can be emulated by a TPL
program on a universal Turing machine.

• A set X ⊂ Nn is CE if {1x10 · · · 01xn : (x1, . . . , xn) ∈ X} is a type-0 language.

• X is computable if both X and Xc are CE.

• K is CE but not computable.
Further readings� �

N. Cutland. Computability: An Introduction to Recursive Function Theory,
Cambridge University Press, 1st edition, 1980.� �
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