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Logic and Computation I� �
• Part 1. Introduction to Theory of Computation
• Part 2. Propositional Logic and Computational Complexity
• Part 3. First Order Logic and Decision Problems
• Part 4. Modal logic� �

Part 1. Schedule� �
• Sep.10, (1) Automata and monoids
• Sep.12, (2) Turing machines
• Sep.19, (3) Computable functions and primitive recursive functions
• Sep.24, (4) Decidability and undecidability
• Sep.26, (5) Partial recursive functions and computable enumerable sets
• Oct. 8, (6) Rice’s theorem and many-one reducibility� �2 / 32
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Recap: TM and type-0 languages

• A deterministic Turing machine (TM) is almost like a DFA with a
read-write head moving on two-way infinite tape.

• The language accepted by a Turing machine is called a type-0 language.

• A multi-tape Turing machine was introduced and its accepting language is
shown to be type-0.

• A nondeterministic Turing machine was introduced and its accepting
language is shown to be type-0.

• The class of type-0 languages is closed under ∩,∪, · and ∗ (but not
complementation as shown later).
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• A Turing machine defines a (partial) function if for a given input, the
remaining string on the tape in a final state should be regarded as the output.

• This is called a Turing definable function. Such a function is partially defined,
since the TM does not always terminate.

• To make the output unique, we define the output of a (deterministic) TM as
the string on the tape when the TM enters a final state for the first time,
because it might enter a final state more than once.

Remark
• For a multitape TM and a nondeterministic TM, the output should be

considered to be the output of equivalent single tape deterministic ones.
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Theorem 1.16
Let ♯ be a new symbols not included in Ω. The following are equivalent:
(1) A function f : A → Ω∗ (A ⊂ Ω∗) can be defined by a TM with output.
(2) {u♯f(u) : u ∈ A} is a type-0 language.

Proof.
(1) ⇒ (2).
Assume a partial function f : Ω∗ → Ω∗ is defined by a deterministic TM M. We
define a 2-tape M′ which accepts {u♯f(u) : u ∈ A} as follows:
• It checks whether a string on the 1st tape is in the form of u♯v. If not, then it

stops in a non-final state.
• If so, M′ copies u to the 2nd tape and simulates M on the 2nd tape.
• If M enters a final state, M′ checks whether the string on the 2nd tape is the

same as v on the 1st tape. If and only if it is the same, M′ also enters a final
state.
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(2) ⇒ (1).
Assume a TM M′ that accepts {u♯f(u) : u ∈ A}. Next, we consider a
nondeterministic M (with output).
• M has 2 tapes, one for input and the other for a working space.
• M non-deterministically produces a string v ∈ Ω∗ on the 2nd tape.
• Write ♯ after the input string u on the 1st tape, and copy v after ♯. Then,

mimic M′ on the 1st tape.
• When it reaches a final state, it empties the 1st tape, copies the contents of

the 2nd tape onto it, and then M enters a final state.
• The nondeterminism lies in writing an arbitrary string on the 2nd tape, which

is equivalent to enumerating all the possible f(u).
□
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• A Turing definable function is a mapping from strings to strings. But it can be
translated into a (number-theoretic) function f : Nk −→ N.

Definition 1.17
A function f : Nk −→ N is (Turing) computable if there is a TM M accepts

1m101m20 · · · 01mk := 1 · · · 1︸ ︷︷ ︸
m1

0 1 · · · 1︸ ︷︷ ︸
m2

0 · · · 0 1 · · · 1︸ ︷︷ ︸
mk

and outputs
1f(m1,...,mk).

We also say M realizes the function f .

By the last theorem, we have
f is computable ⇔ {1m10 · · · 01mk01f(m1,...,mk) : m1, . . . ,mk ∈ N}

is a type-0 language on {0, 1}.
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Example 4: Addition� �
Addition + : N2 −→ N is computable.

It can be easily realized by a single
tape Turing machine:

• the input is 1m01n,

• replace 0 with 1 and remove the
rightmost 1 on the tape.� �

1  1  1 ⋯ 1  1  1  𝟎 1  1  1 ⋯ 1  1  1 

𝑚 𝑛

1  1  1 ⋯ 1  1  1  𝟏 1  1  1 ⋯ 1  1  𝟏 

𝑚 𝑛

1  1  1 ⋯ 1  1  1  1 1  1  1 ⋯ 1  1  𝐵

𝑚 𝑛 1

𝑚 𝑛
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Example 5: Multiplication� �
Multiplication · : N2 −→ N is computable.
It can be realized by a 3-tape Turing machine:

• On the 1st tape, input is given as 1m01n, while the other tapes are empty.

• Then copy 1m to the 2nd tape, copy 1n to the 3rd tape, and make the 1st
tape empty.

• Repeat the following steps until the 3rd tape is empty:
⟳ remove the rightmost 1 on the 3rd tape and copy the content 1m on
the 2nd tape to the 1st tape right after the string already on the tape
(if the 1st tape is empty, copy to any position)

• The output is 1mn.

The 3rd tape works as a counter for computing how many times the TM copies
the content on the 2nd tape to the 1st tape.� �9 / 32
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• Multiplication can be seen as a repetition of addition. In fact, multiplication
can be defined recursively as follows:{

x · 0 = 0,
x · (y + 1) = x · y + x.

• More generally, the computable functions are closed under (primitive) recursive
definition:

Lemma 1.18
If g : N −→ N, h : N2 −→ N are computable, a function f : N2 −→ N defined
recursively as {

f(x, 0) = g(x),
f(x, y + 1) = h(x, f(x, y))

is also computable.
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Proof. To realize f(x, y), we construct a 3-tape Turing machine M as follows.
• The input on the 1st tape is 1x01y.

• Copy 1x to the 2nd tape, 1y to the 3rd and remain 1x on the 1st.

• Carry out the computation of g(x) on the 1st tape.
• Repeat as below:

(1) If the 3rd tape is empty, M enters a final state;
(2) Otherwise, M will remove the rightmost 1 on the 3rd tape,

copy the content 1x on the 2nd tape together with the separator 0 to the
left of the current content 1y on the 1st tape,
carry out the computation of h on the fist tape. Go to (1).

• On the 1st tape, M computes f(x, 0) = g(x), f(x, 1) = h(x, f(x, 0)), . . .,
f(x, y) = h(x, f(x, y − 1)) in this order.

• Finally, M outputs 1f(x,y).
□
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Primitive recursive functions

• The computable functions defined from simple basic functions by primitive
recursion (as in the above lemma) are called primitive recursive functions.

• Most of number-theoretic functions used in ordinary mathematics are primitive
recursive. But there exists a computable function which is not primitive
recursive (ex. the Ackermann function).

• The primitive recursion functions are congenial to Hilbert’s finitistism
(supporting his formalist philosophy). But the exact definition of those
functions were conceived in Gödel’s proof of the incompleteness theorems.

12 / 32



Computation
and Logic

K. Tanaka

Recap: Turing
machines,
type-0
languages, and
Turing
definable
functions
Turing definable
functions
Computable
functions
Primitive recursive
functions
Recursive functions

Definition 1.19
The primitive recursive function is defined as below.
1. Constant 0, successor function S(x) = x+ 1, and projection

Pn
i (x1, x2, . . . , xn) = xi (1 ≤ i ≤ n) are primitive recursive functions.

2. Composition.
If gi : Nn → N, h : Nm → N (1 ≤ i ≤ m) are primitive recursive functions, so
is f = h(g1, . . . , gm) : Nn → N defined as below:

f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

3. Primitive recursion.
If g : Nn → N, h : Nn+2 → N are primitive recursive functions, so is
f : Nn+1 → N defined as below:

f(x1, . . . , xn, 0) = g(x1, . . . , xn),

f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f(x1, . . . , xn, y)).
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The following is obvious from Lemma 1.18 and Definition 1.19.

Lemma 1.20
A primitive recursive function is a computable total function.

The following is also easy from Definition 1.19.

Lemma 1.21
Let f(x1, . . . , xn) be a primitive recursive n-ary function. Select n variable
yi1 , . . . , yin (repetition is allowed) in a proper order from a list of m variables
y1, . . . , ym and define a m-ary function

f ′(y1, . . . , ym) = f(yi1 , . . . , yin).

f ′ is a primitive recursive function.
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Proof.
• First, we treat the case when f is a constant function, using induction on m to
show that m-ary f ′ is primitive recursive.

• The basic case m = 0, f ′ is primitive recursive since f ′() = f().

• Assume m-ary function fm(y1, · · · , ym) = f() is primitive recursive.
An (m+ 1)-ary function fm+1(y1, · · · , ym, ym+1) = f() is defined as below:

fm+1(y1, · · · , ym, 0) = fm(y1, · · · , ym)

fm+1(y1, · · · , ym, z + 1) = Pm+2
m+2(y1, · · · , ym, z, fm+1(y1, · · · , ym, z)).

Therefore fm+1(y1, · · · , ym, ym+1) is also primitive recursive.
• Let n denote the arity of f and n > 0. f ′ is defined as:

f ′(y1, · · · , ym) = f(Pm
i1 (y1, · · · , ym), · · · ,Pm

in(y1, · · · , ym)).

Thus f ′ is primitive recursive. □
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Example 6� �
A constant function f(x) = n is a primitive recursive function, e.g., if n = 3,

f(x) = S(S(S(Z()))).� �
Example 7� �

The predecessor function M(x) = x − 1 (x > 0), with M(x) = 0 (x = 0), is a
primitive recursive function, since{

M(0) = 0,
M(x+ 1) = x = P2

1(x,M(x)).� �
16 / 32
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Example 8� �
Addition plus(x, y) = x+ y is primitive recursive, since{

plus(x, 0) = x,
plus(x, y + 1) = S(plus(x, y)),

or rewritten as {
x+ 0 = x,
x+ (y + 1) = S(x+ y).� �

Example 9� �
Subtraction x−̇y is primitive recursive, since{

x−̇0 = x,
x−̇(y + 1) = M(x−̇y).� �
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Exercise 1.3.1� �
Show x · y, xy, x!, max{x, y}, min{x, y} are primitive recursive functions.� �
Exercise 1.3.2� �

Let f(x1, . . . , xn, y) be a primitive recursive function. Prove the following func-
tions are also primitive recursive.

F (x1, . . . , xn, z) = Σy<zf(x1, . . . , xn, y),

G(x1, . . . , xn, z) = Πy<zf(x1, . . . , xn, y).� �
18 / 32
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Definition 1.22
An n-ary relation R ⊂ Nn is called primitive recursive, if its characteristic function
χR : Nn → {0, 1} is primitive recursive, where

χR(x1, . . . , xn) =

{
1 if R(x1, . . . , xn)
0 otherwise

Example 10� �
x < y is primitive recursive. In fact,

χ<(x, y) = (y−̇x)−̇M(y−̇x).� �
19 / 32
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Lemma 1.23
Given primitive recursive n-ary relation A, B, then

¬A, A ∧B, A ∨B

are also primitive recursive.

Proof.

χ¬A = 1−̇χA,

χA∧B = χA · χB,

χA∨B = 1−̇{(1−̇χA) · (1−̇χB)}. □
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Definition by cases

Lemma 1.24
Given two primitive recursive n-ary functions g and h, and a primitive recursive
n-ary relation R, then f defined as follows is also primitive recursive,

f(x1, . . . , xn) =

{
g(x1, . . . , xn) if R(x1, . . . , xn)
h(x1, . . . , xn) otherwise

Proof.

f = g · χR + h · χ¬R. □
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Example 11� �
x = y is primitive recursive. Because x = y ⇔ ¬(x < y) ∧ ¬(y < x).� �

Then, the following is obvious.

Lemma 1.25
The graph of a primitive recursive function is primitive recursive.
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Exercise 1.3.3� �
Prove that if A(x1, . . . , xn, y) is primitive recursive, ∀y<z A(x1, . . . , xn, y) and
∃y<z A(x1, . . . , xn, y) are also primitive recursive.� �
Example 12� �
prime(x) = “x is a prime number” is a primitive recursive relation. Actually,

prime(x) ⇔ x > 1 ∧ ¬∃y < x∃z < x(y · z = x).� �
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Lemma 1.26
If A(x1, . . . , xn, y) is primitive recursive, the function µy < zA defined by the
following condition is primitive recursive,

µy < zA(x1, . . . , xn, y) = min({y < z : A(x1, . . . , xn, y)} ∪ {z}).

Proof.
µy < zA = Σw<zΠy≤wχ¬A. □

We can also prove that for a primitive recursive function h(x⃗), µy < h(x⃗)A(x⃗, y) is
primitive recursive.
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Example 13� �
Division x/y = µz < x(x < y · (z + 1)) is primitive recursive.� �
Example 14� �

Let p(x) = “(x+ 1)th prime number ”, that is ,

p(0) = 2, p(1) = 3, p(2) = 5, . . .

Then, p(x) is a primitive recursive function since it is defined as follows.

p(0) = 2, p(x+ 1) = µy < p(x)! + 2 (p(x) < y ∧ prime(y)).� �
A finite sequence of natural numbers (x0, . . . , xn−1) can be represented by a
unique natural number x, called a sequence number, defined as follows,

x = p(0)x0+1 · p(1)x1+1 · · · · · p(n− 1)xn−1+1.
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Example 15� �
• Fixing n, a mapping from (x0, . . . , xn−1) ∈ Nn to its sequence number
x ∈ N is a primitive recursive function.

• Conversely, let c(x, i) be a function taking the i-th element xi from x. It
is primitive recursive, since

xi = c(x, i) = µy < x (¬∃z < x (p(i)y+2 · z = x)).

• The length of a sequence x, denote leng(x), is primitive recursive, since

leng(x) = µi < x (¬∃z < x (p(i) · z = x)).

• Finally, we define a relation Seq(x) to mean that x is a sequence number.
Then it is primitive recursive, since

Seq(x) ⇔ ∀i < x∀z < x (p(i) · z = x → i ≤ leng(x)).� �
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Gödel numbers
Definition 1.27
Let Ω be a finite (or countably infinite) set of symbols with an injection ϕ : Ω → N.
For a string s = a0 · · · an−1 from Ω, the number sequence of (ϕ(a0) · · ·ϕ(an−1)),
i.e.,

p(0)ϕ(a0)+1 · p(1)ϕ(a1)+1 · · · · · p(n− 1)ϕ(an−1)+1

is called the Gödel number of s, denoted by ⌜s⌝.

The mapping ⌜ ⌝ is an injection from the set of all symbols Ω∗ to N.
Example 16� �

Let Ω = {0, 1,+, (, )}, ϕ(0) = 0, ϕ(1) = 1, ϕ(+) = 3, ϕ( ( ) = 5 and ϕ( ) ) = 6.
Then,

⌜(1 + 0) + 1⌝ = 26 · 32 · 54 · 71 · 117 · 134 · 172� �
27 / 32
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Exercise 1.3.3� �
The symbol set Ω is the same as the example above. “Terms” are defined as
below
(1) 0, 1 are terms.

(2) if s and t are terms, so is (s+ t).
e.g., ((1 + 0) + 1) is a term, but (1 + 0) + 1 is not a term.

Show that the predicate Term(x) expressing “x is the Gödel number of a term”
is primitive recursive.� �
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Recursive functions
Definition 1.28
The recursive functions are defined as follows
1. Constant 0, Successor S(x) = x+ 1, Projections Pn

i (x1, x2, · · · , xn) = xi
are recursive functions. (These basic functions are also primitive recursive.)

2. Composition. The same as a primitive recursive function.
3. Primitive recursion. The same as a primitive recursive function.
4. minimalization (or minimization).

Let g : Nn+1 → N be a recursive function such that
∀x1 · · · ∀xn∃y g(x1, · · · , xn, y) = 0. Define a function f : Nn → N by

f(x1, · · · , xn) = µy(g(x1, · · · , xn, y) = 0),

where µy(g(x1, · · · , xn, y) = 0) denotes the smallest y such that
g(x1, · · · ,xn, y) = 0. Then, f is recursive. 29 / 32
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• Recursive functions are (total) computable functions, like primitive recursive
functions.

• However, condition 4 in the above definition (not included in the definition of
primitive recursive functions) is problematic sometimes, since it is often
difficult to guarantee its totality condition ∀x1 · · · ∀xn∃y g(x1, · · · , xn, y) = 0
in a absolutely computable way, or in a rigid formal system.

• For instance, the class of recursive functions allowed in Peano arithmetic does
not match the class of recursive functions allowed in ZF set theory.

• A function defined by removing this totality condition is called a partial
recursive function, and we will discuss it later (in Lecture 5).
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Summary

• f is computable iff {1m10 · · · 01mk01f(m1,...,mk) : m1, . . . ,mk ∈ N} is a type-0
language on {0, 1}.

• Primitive recursive functions (0, sucessor function, projections, closed under
composition and primitive recursion) are computable.

• Recursive functions (0, sucessor function, projections, closed under
composition, primitive recursion and minimalization) are computable.

Further readings� �
N. Cutland. Computability: An Introduction to Recursive Function Theory,
Cambridge University Press, 1st edition, 1980.� �
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Thank you for your attention!
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