Computation
and Logic

K. Tanaka

Computation and Logic |

Chapter 1 Introduction to theory of computation

Kazuyuki Tanaka

BIMSA

September 19, 2024

1/32

Computation
and Logic

K. Tanaka

~ Logic and Computation | ~

e Part 1. Introduction to Theory of Computation
® Part 2. Propositional Logic and Computational Complexity

® Part 3. First Order Logic and Decision Problems

* Part 4. Modal logic

- J
~ Part 1. Schedule ~

® Sep.10, (1) Automata and monoids

® Sep.12, (2) Turing machines

® Sep.19, (3) Computable functions and primitive recursive functions

® Sep.24, (4) Decidability and undecidability

® Sep.26, (5) Partial recursive functions and computable enumerable sets

® Oct. 8, (6) Rice's theorem and many-one reducibility

Computation
and Logic

K. Tanaka

Recap: Turing
machines,
type-0
languages, and
Turing
definable
functions

Recap: TM and type-0 languages

A deterministic Turing machine (TM) is almost like a DFA with a
read-write head moving on two-way infinite tape.

The language accepted by a Turing machine is called a type-0 language.

A multi-tape Turing machine was introduced and its accepting language is

shown to be type-0.

A nondeterministic Turing machine was introduced and its accepting
language is shown to be type-0.

The class of type-0 languages is closed under N, U, - and * (but not
complementation as shown later).

3/32

Computation
and Logic

K. Tanaka

Turing definable
functions

® A Turing machine defines a (partial) function if for a given input, the
remaining string on the tape in a final state should be regarded as the output.

® This is called a Turing definable function. Such a function is partially defined,
since the TM does not always terminate.

® To make the output unique, we define the output of a (deterministic) TM as
the string on the tape when the TM enters a final state for the first time,
because it might enter a final state more than once.

Remark

® For a multitape TM and a nondeterministic TM, the output should be
considered to be the output of equivalent single tape deterministic ones.

432

Computation
and Logic

K. Tanaka

Turing definable
functions

Theorem 1.16

Let £ be a new symbols not included in 2. The following are equivalent:
(1) A function f: A — Q* (A C Q) can be defined by a TM with output.
(2) {utf(u) : u e A} is a type-0 language.

Proof.
(1) = (2).
Assume a partial function f : Q* — QF is defined by a deterministic TM M. We
define a 2-tape M’ which accepts {ufif(u) : u € A} as follows:
® |t checks whether a string on the 1st tape is in the form of ufv. If not, then it
stops in a non-final state.

® |f so, M’ copies u to the 2nd tape and simulates M on the 2nd tape.

e |f M enters a final state, M’ checks whether the string on the 2nd tape is the
same as v on the 1st tape. If and only if it is the same, M’ also enters a final
state.

5/32

Computation
and Logic

K. Tanaka (2) = (1)
Assume a TM M’ that accepts {ufif(u) : u € A}. Next, we consider a
nondeterministic M (with output).

® M has 2 tapes, one for input and the other for a working space.
® M non-deterministically produces a string v € 2* on the 2nd tape.

e Write ff after the input string u on the 1st tape, and copy v after . Then,
mimic M’ on the 1st tape.

® When it reaches a final state, it empties the 1st tape, copies the contents of
the 2nd tape onto it, and then M enters a final state.

® The nondeterminism lies in writing an arbitrary string on the 2nd tape, which
is equivalent to enumerating all the possible f(u).

g

6/32

e e A Turing definable function is a mapping from strings to strings. But it can be
) translated into a (number-theoretic) function f : N¥ — N.

Definition 1.17
A function f : N¥ — N is (Turing) computable if there is a TM M accepts

K. Tanaka

1™01™20...01™ :=1---101---10---01---1
—_— —— —

mi ma mg

and outputs

1 (ma,..omp)

We also say M realizes the function f.

By the last theorem, we have
f is computable < {1"”0---01m’€01f(m1 """) g, ... My € N}
is a type-0 language on {0,1}.

7/32

Computation
and Logic

K. Tanaka

functions

r Example 4: Addition

Addition + : N> — N is computable.

It can be easily realized by a single

tape Turing machine:

® the input is 101",

® replace 0 with 1 and remove the

rightmost 1 on the tape.

m n

11111 1‘\9,‘1 11111

m n

1111111111111

m n—1
111111111111
Y J
m+n

8/32

Computation /‘ EX3mp|e 5: Mult|p||cat|0n \

and Logic

K. Tanaka Multiplication - : N> — N is computable.
It can be realized by a 3-tape Turing machine:

® On the 1st tape, input is given as 101", while the other tapes are empty.

® Then copy 1™ to the 2nd tape, copy 1" to the 3rd tape, and make the 1st
tape empty.

® Repeat the following steps until the 3rd tape is empty:
O remove the rightmost 1 on the 3rd tape and copy the content 1™ on
the 2nd tape to the 1st tape right after the string already on the tape
(if the 1st tape is empty, copy to any position)

® The output is 1",

The 3rd tape works as a counter for computing how many times the TM copies
the content on the 2nd tape to the 1st tape.

- 9//3é

Computation

and bogie e Multiplication can be seen as a repetition of addition. In fact, multiplication

can be defined recursively as follows:

K. Tanaka

x-0=0,
z-(y+1)=z-y+ux.

® More generally, the computable functions are closed under (primitive) recursive
definition:

S Lemma 1.18
If g: N— N, h: N2 — N are computable, a function f : N> — N defined

recursively as
{ f(x,0) = g(x),
flz,y+1) = h(z, f(z,y))

is also computable.

10 /32

computation Proof. To realize f(z,y), we construct a 3-tape Turing machine M as follows.
and Logic
¢ ® The input on the 1st tape is 1¥01Y.

K. Tanaka

® Copy 17 to the 2nd tape, 1Y to the 3rd and remain 1% on the 1st.

® Carry out the computation of g(x) on the 1st tape.

® Repeat as below:
(1) If the 3rd tape is empty, M enters a final state;

(2) Otherwise, M will remove the rightmost 1 on the 3rd tape,

copy the content 1% on the 2nd tape together with the separator 0 to the
left of the current content 1¥ on the 1st tape,

carry out the computation of h on the fist tape. Go to (1).

® On the 1st tape, M computes f(z,0) = g(z), f(z,1) = h(z, f(z,0)), ...,
f(x,y) = h(z, f(x,y — 1)) in this order.

® Finally, M outputs 1/(@¥),

]
11/32

Computation
and Logic

K. Tanaka

Primitive recursive
functions

Recursive functions

Primitive recursive functions

® The computable functions defined from simple basic functions by primitive
recursion (as in the above lemma) are called primitive recursive functions.

® Most of number-theoretic functions used in ordinary mathematics are primitive
recursive. But there exists a computable function which is not primitive
recursive (ex. the Ackermann function).

® The primitive recursion functions are congenial to Hilbert's finitistism
(supporting his formalist philosophy). But the exact definition of those
functions were conceived in Gédel's proof of the incompleteness theorems.

12/32

Camputetian Definition 1.19

and Logic

K. Tanaka The primitive recursive function is defined as below.
1. Constant 0, successor function S(z) = x + 1, and projection
P(z1,x2,...,2,) = x; (1 <i<mn) are primitive recursive functions.
2. Composition.
o If g; : N" - N, h: N — N (1 < ¢ <m) are primitive recursive functions, so
is f =h(g1,...,9m) : N” — N defined as below:

e flxy, ... xn) =h(gi(z1, ..o Zn), - ooy gm (X1, ooy Tp))-

3. Primitive recursion.
If g: N® — N, h: N**2 — N are primitive recursive functions, so is
f: N1 — N defined as below:

f(ﬂfl,...,fL‘n,O) :g(xlv"')xn)v
f($1,...,xn,y+1) :h(‘rlw"7xn7y7f(x17"‘7xn7y))'

13 /32

Computation
e beeie The following is obvious from Lemma 1.18 and Definition 1.19.

Lemma 1.20

A primitive recursive function is a computable total function.

K. Tanaka

The following is also easy from Definition 1.19.

Lemma 1.21

L Let f(z1,...,x,) be a primitive recursive n-ary function. Select n variable
Yiys- - -+ Yi, (repetition is allowed) in a proper order from a list of m variables
Y1,---,Ym and define a m-ary function

f/(yl7-~~aym) :f(yilv"'7yin)'

f! is a primitive recursive function.

14 /32

Computation
and Logic PrOOf'
K Tanaka e First, we treat the case when f is a constant function, using induction on m to

show that m-ary f’ is primitive recursive.

® The basic case m = 0, f’ is primitive recursive since f/() = f().

® Assume m-ary function f,(y1, - ,ym) = f() is primitive recursive.
An (m + 1)-ary function fi41(y1, , Ym, Ym+1) = f() is defined as below:

fm+1(y17"' 7ym70) = fm(yh Jym)

Recumieiftnctions fm+1(y17 oy Yms R + 1) = Pmi%(yh o 7ym727fm+1(y17 T 7ym72))-

Therefore fr+1(y1, -+, Ym, Ym+1) is also primitive recursive.
e Let n denote the arity of f and n > 0. f’ is defined as:

f/(y17"' Jym) = f(P:?(yh ,ym)7"' 7PZ(y17”' 7ym))
Thus f’ is primitive recursive. O

15 /32

Computation
and Logic

Example 6

K. Tanaka

A constant function f(x) = n is a primitive recursive function, e.g., if n = 3,

~ Example 7 ~

The predecessor function M(z) =z — 1 (z > 0), with M(z) =0 (z =0), is a
primitive recursive function, since

{ M(0) = 0,
M(z + 1) = x = P3(z, M(x)).

16 / 32

Computation
and Logic

K. Tanaka

~ Example 8 ~
Addition plus(z,y) = = + y is primitive recursive, since
plus(z,0) = =z,
plus(z,y + 1) = S(plus(z,y)),
or rewritten as
z+0=r,
r+(y+1)=S(x+y).
- J
Example 9

Subtraction x—y is primitive recursive, since

{ z—0 =z,
r—(y +1) = M(z—y).

17732

Computation
and Logic

IS Venete Exercise 1.3.1
Show z -y, 2¥, z!, max{z,y}, min{x,y} are primitive recursive functions.

[~ Exercise 1.3.2 ~N
fm Let f(z1,...,Zn,y) be a primitive recursive function. Prove the following func-
Recursive funcions tions are also primitive recursive.
F(xi,...,2p,2) = Sy f(21, ..., Tn,Y),
G(x1,...,2n, 2) =y f(21,..., 20, Y).
. J

18 /32

Computation
and Logic

K. Tanaka Definition 122

An n-ary relation R C N" is called primitive recursive, if its characteristic function
Xr : N" — {0,1} is primitive recursive, where

(CC z)_ 1 ifR(xl,...,acn)
XRWTL -5 %) =19 otherwise

Example 10

x < y is primitive recursive. In fact,

x<(z,y) = (y—z)—M(y—x).

19/32

Computation
and Logic

K. Tanaka

Primitive recursive

functions

Recursive functions

Lemma 1.23

Given primitive recursive n-ary relation A, B, then
-A,, ANB, AV B

are also primitive recursive.

Proof.
X-4 = 1—xa,
XAAB = XA * XB»

xave = 1—{(1=xa) - (1=xB)}.

20 /32

Computation
and Logic

K. Tanaka

Definition by cases

Lemma 1.24

Given two primitive recursive n-ary functions g and h, and a primitive recursive
n-ary relation R, then f defined as follows is also primitive recursive,

gz,) if R(z1,...,xy)
f(@1,...,%0) = { h(z1,...,o5) otherwise

Proof.

f=9+Xr+h-X-R. 0

21/32

Computation
and Logic

K. Tanaka

Primitive recursive
functions

Recursive f

Example 11
x = y is primitive recursive. Because z =y < —(z < y) A = (y < x).

Then, the following is obvious.

Lemma 1.25
The graph of a primitive recursive function is primitive recursive.

22 /32

Computation
and Logic

K. Tanaka

Exercise 1.3.3

Prove that if A(z1,...,xy,,y) is primitive recursive, Yy <z A(z1,...,Ty,,y) and
Jy<z A(x1,...,Ty,y) are also primitive recursive.

: Example 12
prime(xz) = "z is a prime number” is a primitive recursive relation. Actually,

prime(z) &z > 1A-Jy <zdz < z(y-z = x).

23 /32

Computation
and Logic

K. Tanaka

Lemma 1.26

If A(x1,...,2y,y) is primitive recursive, the function py < zA defined by the
following condition is primitive recursive,

wy < zA(x1, ..., Tn,y) =min({y < z : A(z1,...,z5,y)} U{z}).
Proof.
py < zA = 2w<zHy§wXﬁA- 0

We can also prove that for a primitive recursive function h(Z), py < h(Z)A(Z,y) is
primitive recursive.

24 /32

Computation
and Logic

K. Tanaka

Example 13
[Division z/y =pz < x(x <y-(z+1)) is primitive recursive.

~ Example 14

Let p(x) = “(x + 1)th prime number ", that is ,
p(0) =2,p(1) =3,p(2) =5,...

Then, p(z) is a primitive recursive function since it is defined as follows.

L p(0) =2, p(z+1)=py <p(@)!+2 (p(z) <yAprime(y)).

J

A finite sequence of natural numbers (xq,...,z,—1) can be represented by a
unique natural number z, called a sequence number, defined as follows,

€T = p(O)zo-‘rl . p(1)1‘1+1 p(’I’L _ 1)$n,1+1'

25 /32

Computation
and Logic

K. Tanaka

~ Example 15 ~

® Fixing n, a mapping from (zq,...,x,—1) € N” to its sequence number
x € N is a primitive recursive function.

e Conversely, let ¢(z,7) be a function taking the i-th element z; from z. It
is primitive recursive, since

z;=c(z,i) = py <z (-3z <z (p(i)? 2 - 2z = x)).
® The length of a sequence x, denote leng(z), is primitive recursive, since
leng(z) = pi < x (-3z <z (p(i) - z = x)).

® Finally, we define a relation Seq(x) to mean that x is a sequence number.
Then it is primitive recursive, since

Seq(z) & Vi< aVz <z (p(i) - z =z — i < leng(x)).

26 /32

Computation
and Logic

Godel numbers

K. Tanaka

Definition 1.27

Let 2 be a finite (or countably infinite) set of symbols with an injection ¢ : © — N.
For a string s = ag - - - ap—1 from Q, the number sequence of (¢(ap) - - - d(an—1)),

i.e.,
p(0)¢(a0)+1 o p(1)¢(a1)+1 p(n — 1)¢(an—1)+1

is called the Godel number of s, denoted by "s™.

The mapping ™ 7 is an injection from the set of all symbols 2* to N.

Example 16
Let @ ={0,1,+,(,)}, ¢(0) =0, ¢(1) =1, ¢(+) =3, ¢(() =5 and ¢()) = 6.
Then,

T14+0)+17=20.32.50. 70 117 134 . 172

27 /32

Computation
and Logic

K. Tanaka

~ Exercise 1.3.3 ™~

The symbol set € is the same as the example above. “Terms" are defined as
below

(1) 0, 1 are terms.
(2) if s and ¢ are terms, so is (s +t).
e.g., ((14+0)+1)is aterm, but (14 0)+ 1 is not a term.

Show that the predicate Term(x) expressing “x is the Godel number of a term”
is primitive recursive.

_ J

28 /32

Computation
and Logic

K. Tanaka

Recursive functions

Definition 1.28
The recursive functions are defined as follows

. Constant 0, Successor S(z) = x + 1, Projections P (z1,x2, -+ ,z) = z;

are recursive functions. (These basic functions are also primitive recursive.)

. Composition. The same as a primitive recursive function.
. Primitive recursion. The same as a primitive recursive function.

. minimalization (or minimization).

Let g : N"*1 — N be a recursive function such that
Vay---Ve,Jy gz, -+, 2n,y) = 0. Define a function f: N” — N by

f(xh' e 7xn) = :U'y(g(xlv' e 7xn7y) - O)a

where py(g(z1,-- -, n,y) = 0) denotes the smallest y such that
g(z1,- -+ ;xn,y) = 0. Then, f is recursive. 29 /32

Computation
and Logic

K. Tanaka
® Recursive functions are (total) computable functions, like primitive recursive

functions.

® However, condition 4 in the above definition (not included in the definition of
primitive recursive functions) is problematic sometimes, since it is often
difficult to guarantee its totality condition Vz1 - - -V, 3y g(x1, -+ ,2n,y) =0
in a absolutely computable way, or in a rigid formal system.

ecursive fnctors ® For instance, the class of recursive functions allowed in Peano arithmetic does
not match the class of recursive functions allowed in ZF set theory.

e A function defined by removing this totality condition is called a partial
recursive function, and we will discuss it later (in Lecture 5).

30/32

Computation
and Logic

K. Tanaka Summary

* fis computable iff {1™10--- 01701/ ("1mk) : . my, € N} is a type-0
language on {0, 1}.

® Primitive recursive functions (0, sucessor function, projections, closed under
composition and primitive recursion) are computable.

® Recursive functions (0, sucessor function, projections, closed under
composition, primitive recursion and minimalization) are computable.

Recursive functions

Further readings

N. Cutland. Computability: An Introduction to Recursive Function Theory,
Cambridge University Press, 1st edition, 1980.

31/32

Computation
and Logic

K. Tanaka

Thank you for your attention!

32/32

	Recap: Turing machines, type-0 languages, and Turing definable functions
	Turing definable functions
	Computable functions
	Primitive recursive functions
	Recursive functions

