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AT ® The order type of a non-standard model of PA™ is N 4 Z « 1, where 7 is a linear
ordering without a maximal element.
N Z 7
01 2-- wa—1aa+1- b—1bb+1--

Figure: The order type of a non-standard model of arithmetic

® The order type of a non-standard model of I3, is N + Z 7, where 7 is a dense linear
order. In particular, the order type of a countable non-standard model of X is
N+Z+Q.

® There is no non-standard model of PA™ with the order type N 4 Z « R.

Theorem (Overspill principle)

Let n > 0 and 2 be any non-standard model of I¥,,, and ¢(z) be any %,, formula. If
A4 | ¢(i) holds for infinitely many i € N, then there exists a non-standard element a such
that 24 = ¢(a) holds.
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Let £ be any language.

® A set ®(&) of L formulas that have no free variables other than n variables
Z=(x1, - ,x,) is called an n-type, or simply a type.
® If n elements @ = (a1, -+ ,a,) of L structure A satisfies all formulas ¢(Z) in ®(Z)

(A4 = p(a)), we say that A realizes ®(Z) by a.
If 2 does not realize ®(Z) by any @, we say that 2 omits ®(Z).

Definition
® Let T be a theory in language L.

® A type ®(Z) is called a type of theory T if T'U ®(<)(< are new constants) is
consistent. That is, there exists a model of T' that realizes ®(Z).

® Let A be an L-structure, and let C' be a subset of the universe of 2. A type on C in
a structure 2 is a type of theory Th(2(¢) in language Lo. A type on C = & is
simply called a type.
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Definition
® A type (&) in L is called a principal type of theory T, if there exists a formula (%)
in £ such that T'U {3#(Z)} is consistent, and for any ¢(Z) € (%),

T FVEW(@) - ¢(@))-

® In this case, we say that ¢(Z) generates ®(Z) in T.
® A non-principal type of T is a type of T" but not principal.

® A type (&) on C(C A) in L-structure 2, i.e., a type of theory Th(2l¢) in language
L¢, is a principal type, if it is a principal type of theory Th(4) in language L 4.

Any L-structure 2 realizes any principal type ®(Z) of it. (*.") If ¥(Z) generates ®(Z), then
by definition Th(2(4) U {324 (Z)} is consistent. Since Th(2(,4) is a complete theory, it
includes 37 (%) and so A4 = ITY(Z). Therefore, &(Z) is also realized in .

Example 4

Since ®(z) = {m < = : n € N} is omitted by the standard model 91, it is a non-principal
type in 91. On the other hand, in a non-standard model, ¥ (z) = = > a generates ®(x)
if a is any infinite element, so ®(z) is its principal type.
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We now prove that there is a model of T" that omits any non-principal type of T.

Theorem (The omitting type theorem)

Let £ be a countable language and 7" be a consistent theory in a language £. Given
countably many non-principal types ®;(z1, -+ ,2p,) of T (i € N), then there is a
countable model of T" that omits all ®;.

Proof. Let T be a consistent theory in a countable language £, and ®;(z1,- - ,zp,)

(i € N) be its non-principal types. By modifying Henkin's proof of Gddel's completeness
theorem, we will construct a countable model of T that omits all ®;. That is, we will build
a complete Henkin expansion T, of T with the following property: for a countable set C' of
Henkin constants (new constants not in £),

Vi Ve, € C Jp(Z;) € ©:(F;) —p(S;) € T, (%)
By the proof of the completeness theorem, if we define a countable structure 2 from C,

so 2 omits all P;.
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Definition
Let A, B be two structures in a language £ with a binary relational symbol < such that B
is a substructure of 2. Then, 2 is an end-extension of B, denoted as B C, A, if

be|BIAAEa<b) =ac|B.

If B is an elementary substructure of 2(, and 2l is an end-extension of 8, then 2 is an
elementary end-extension of 5.

Definition
In a language £ with a binary relation <, the following schema is called collection
principle:

Ve <uldyp - Jyrp(x,y1, -+, yk) = Ve < udyy < ov--- Jye < ve(x, Y1, Yk)-

where ¢(z,y1,- - ,yx) is any formula in £, and may include variables other than v.

® The collection principle holds in PA as shown in the last part.

® In set theory, when < is interpreted as €, it is kind of Fraenkel's axiom (also called the
“replacement axiom”). Even if we interpret < as C in set theory, the collection
principle can be proved (in the ZF set theory).
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Theorem
In a countable language £ containing a binary relation symbol <, a countably infinite

structure that satisfies the collection principle and the transitivity law has a proper
elementary end-extension.

Proof.
® | et A be a countable infinite structure in a countable language £ containing < which
satisfies the collection principle and the transitive law.

® First, consider a special case where 2 = VaVy(z &£ y). Then, construct a proper
elementary extension 25 of 2 by the compactness theorem or any other methods.
Since B also satisfies VaVy(x £ y), it is an end-extension in a trivial sense.

® Next, we assume that there exist two elements d and e such that A4 Ed < e.

® Then, for a finite number of aq,--- ,ax € A, there is ag € A such that
a1 < ag, -+ ,ar < ag. This follows from the collection principle by letting
o(z,y1, - ,yx) beya =a1 A Ayy=ap andu=e, x =d.
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Let c be a constant that does not belong to £ 4, and T be the following theory in
LaU {C}

T=ThRs)U{a<c:ac A}

We can show this theory has a model by the compactness theorem. Any finite subset
of T has a model 214 with an appropriate interpretation of c, since for any

ai, - ,ar € A, there is ag € A such that ay < ag, - ,ar < ag. Therefore, T itself
has a model, which contains an infinite element (an element larger than any a € A)
that is an interpretation of c, and it is also an elementary extension of 2.

However, there is no guarantee that such an expansion becomes an end-extension. To
use the omitting type theorem, for each a € A, define a type ®, of L4 as follows

D(x)={z<a}U{x#b:b<al.

We want to show that they are non-principal types of T'. By way of contradition, we
assume that for some a € A, there is a formula ¢(z,c) in L4 U {c} that generates
®,(x). (Note that T'U {3x¢p(z, c)} is considered to be consistent).
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Take arbitrary b < a. Since
TE(x,c) = x#D,

letting © = b, we have
T+ (b, c).

Since by the definition of T', there exist finitely many a1, - ,ax € A,
Th(As) F (a1 <cA---Aag < c) = (b, c).

Since ¢ does not appear in Th(2(4), it can be treated as a variable, and so

Th(™Aa) FVy((y > a1 A= ANy > ag) — (b, y)).
By collection, take ag € A such that ag > a1, -- ,aq > ag, and then by transitivity,

Th(A4) F Yy > ag—p(b, y).
Therefore,
Aq = T2Vy > z=p(b, y).
Since b < a is taken arbitrarily,
A4 E Ve < adzVy > z-9(z,y).

Note that we cannot write Va < aVy > ag—(x,y) as ag depends on b.
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Rezr
A = Vr < adz < a'Vy > z=)(x,y).
And by transitivity, we have
Ay Vo < aVy > d' p(z,y).
® Since T=Th(4)U{a<c:ac A},
THVx <ap(x,c), ie., TEVz((x,c) = x £ a).
® On the other hand, ¥(x, c) generates ®,(z) and T F Va(¢(z,c) = = < a), so
T+ VYe—(z,c),

which conradicts with the assumption that T'U {3zt(x, c)} is consistent.
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A countable model of Peano arithmetic PA has a proper elementary end-extension.

The above corollary can also be extended to non-countable models, which is called the

MacDowell-Specker Theorem. For more details, see Kaye's book Models of Peano
arithmetic.

The proof of elementary end-extension for ZF set theory can be found in Chang and

Keisler's book Model theory. It is also known that the results of set theory cannot be
extended to non-countable cases.

Problem 2

Show that if a model 2 of IX( has a proper elementary end-extension, 2l is a model of
PA
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Introduction to recursively saturated models

Next, we want to construct countable structures that realize as many types ®(Z) as
possible.

Even if the language is countable (and so the set of formulas is countable), there can
be uncountable many types ® (&), and then it is impossible to realize all of them in
countable structures.

This brings us to the notion of “recursive saturated model”, which realizes only the
recursive types. Using this model, we prove “Friedman’s self-embedding theorem,” a
groundbreaking discovery on countable non-standard models of arithmetic.

In a countable language, the type ®(Z) is said to be recursive if the set of Godel
numbers of its formulas is recursive (computable).

By an argument similar to Craig’'s Lemma in last part, the class of types is essentially
the same whether they are CE, recursive, or primitive recursive.
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Definition

Let £ be a countable language. An L-structure 2l is recursively saturated if any recursive
1-type on a finite set {a1, - ,a,} C A is realized in 2, that is, any recursive type

D(zg, 21, ,2n) = {@i(zo, 21, ,2,) | ¢ € N} and for any ay,--- ,a, € A4,

vjzla € AVi <]Q(A ': gpi(aﬂll?"' aan) = da € AVZQ’[A ':wi(avalv"' 7an)'

Problem 3

Show that any finite structure is recursively saturated.

® The standard structure of arithmetic 91 is clearly not recursively saturated. However,
by the next lemma, there exists a recursively saturated countable non-standard model

that is elementary equivalent to 91.



Logic and
Foundation

K. Tanaka Lemma
A countable structure in a countable language has a countable elementary extension which
Reurey w. s recursively saturated.
Proof.

® | et 2 be a countable structure in a countable language. For each recursive type
® = {p;(x0, 21, - ,xpn) | i € N} and for each a1,--- ,a, € A, we add a new
constant g ,q, ... .o, to the language, and let

Ty = Th(A4)U{FaVi < jpi(z, a1, ,an) = Vi < joi(Coay, o ans A1y 1 Gn)

j€Nand cgq,,.. a,iS a new constant}.

® By the compactness theorem and the downward Lowenheim—Skolem Theorem, T} has
a countable model 2.

® Then A < 24 and A, realizes all recursive 1-types on any finite subset of A (in ;).

® Next, we construct a countable model 2[5 > 2(; that realizes all recursive 1-types on a
finite subset of A;.
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Similarly, we create 2y < 23 < 4 < ---, and denote Ao = |J, A

By the elementary chain theorem in part 3, 2, is an elementary extension of 2 and is
also countable.

Elementary chain theorem, revisit

Let Ay < Ay < --- be an elementary chain. Let 2 be the union of the elementary
chain. Then for each i, A; < 2.

To see that 2, is recursively saturated, we arbitrarily select a finite number of
elements from 2, and consider a recursive type on them.

It is a type on Ay for a sufficiently large k, and is realized by 21, and also by its
elementary extension 2. |
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Now we will consider models of arithmetic IX,,. Although these models are not necessarily
recursively saturated, they have a certain kind of saturation for a restricted class of
formulas, and their properties are deeply related with the relations.

Lemma, revisit, lec04-03

In a consistent ¥;-complete theory T, there exists no formula ¢ (x) such that for any
sentence o, T F o + (To7).

First, let us rephrase the above lemma as follows.

Lemma (Tarski's “undefinability of truth”)

Let T be a consistent extension of Q.. There is no formula Sat(z,y) such that: for any
Lor formula p(vy, -+ ,vx) (with only free variables vy, - -, vg),

T Vs(Sat("p ', s) <> (s1, -+, Sk)),
where s is the code of a sequence (sy,- -, sk).

Since the revisited lemma states that Sat(xz, @) does not exist, the above lemma can be
derived immediately. But if we restrict ¢(v1,--- ,vg) to X, a kind of Sat(z,y) exists.
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Lemma

For each n € N, there exist formulas Saty,_ (x,y) and Satr, (z,y) in language Logr such
that for any X,, formula @(vy,--- ,v) and II,, formula 1 (v1,- - ,vx) (neither includes free
variables other than vy, -, vg),

IS FVs(Sats, (To T, s) < o(s1,- - ,8k)),

IX, FVs(Satm, ("7, 8) <> ¥(s1,- -, 8k)),
where s is the code of (s1,---,sx). When n > 0, Saty_ € ¥,, and Saty, € II,,.

Note that considering Bewr(z) in the proof of the second incompleteness theorem in part
4 of this course, it can be shown that for 3 formula ¢(v),
o(v) = Bewp(T07),

but the inverse +— does not hold. In particular, if pis0 =1, Bewyr("f0=1") = 0=1s
nothing but Con(T).
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Proof.
® To start with, consider the case where n = 0. Roughly speaking, the truth of a ¥
sentence is defined primitive-recursively, and so by the following theorem, Saty, can
be expressed by either 37 or II; in I3;.

Recursively
saturated models

Definability theorem of primitive recursive functions, revisit, lec04-02

In X1, the graph of a primitive recursive function f(z1,---,2;,y) = z can be
represented by a Ay formula ¢(z1,...,2,y, 2), and the following is provable

le . vleyH'zga(xl, e XL Y, Z)

® \We will check more details in its construction.

® First we consider the atomic formula in the form of w = t(vq,- - ,vk), where t is a
term that does not include free variables other than vy, --- , vk, and w is a variable.
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® List all the subterms of ¢ appropriately as tg,t1,--- ,t;,. We may assume that the
relation between "¢ and the sequence ("to ", - -, ¢, ™) is primitive recursive. Then,
Rty
T Saty, ("u =t(v1, -+ ,0r) Y (Y, 21, ,Zk))
32(z = (20,21, -, 21,) AV i7" <y
(7 ="0"=> 2 =0)A (Tt ="1"— 2z =1)
AT ="vp " =z =xy)
A (rti—' ="ty +tin ' — 2z = 2y + Ziu)
AT ="ty ety T — 2y =z e zir)
AT =T"= 2z =v)))
® For a ¥ formula in the form of u = t(v1,- -+, vx), it is obvious that
Saty, ("u =t(v1, -+ ,vk) " (Y, 21,...,2x)) and y = t(x1,--- , %)) are equivalent.

® |n addition, the above formula is expressed as a ¥; formula, which can be expressed as
an equivalent II; formula in the form of (Vz(z = (20,21, - ,21,) = --+))-
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For a general X formula, we can decomposed it into subformulas so that each part
satisfies the conditions (Tarski's truth clause). For more details, please refer to Kaye's
book Models of Peano arithmetic. In the following, assume that Saty, is II; which is
indeed equivalent to Sats,,.

Next, by induction on the meta-variable n, we construct Sats, ,, assuming Sats, is
already obtained. For a ¥, formula Juy - - - Ju;p(u, - -+ ,u;,v1,- - ,vx) (where,

¢ €11, ), Saty, ,, is defined as follows.

Satzn+1(r3u1 EUJQO(’LLl, y Uiy U1yttt ﬂvk’)—lv (517"' 75k))

<~ Elysa‘tnn(’_(p(ula"' s Uiy Uy ot 7’Uk:)—l7(y1a"' s YjyS1, 78k))'

Then the following is provable in IX;.

SatEn_H(l—Elul Elu]so(ula s Ujy V1, 7Uk)—|7(51a' o ask))
< JySatq, (Tp(ur, - ug, v, v6) S (Y1, Y5581, 000, 8k))
< Jyp(yi, - Yy S1, 0 5 Sk)
<~ 3ul HUJSO(Ula y Ujy ST, ask)'
Finally, Satry, ., can be defined in the same way. O
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There is a close relation between the existence of a satisfaction relation and the saturation
of a model.

Lemma

For each n > 0, a non-standard model 2 of I3, realizes any finitely satisfiable recursive
1-type on a finite subset of A consisting of only 3,, formulas. Then 2l is called
Y.,-recursively saturated.

Proof. Let ®(xg, 21, ,x)) be a recursive type consisting only of ¥,, formulas. By
Craig's lemma, assume @ is primitively recursive.

Craig's lemma, revisit

For a CE theory T, there exists a primitive recursive theory T" that proves the same
theorems.

® By the definability theorem of primitive recursive functions, the Godel number of
formulas in ®(zg, 1, -, k) can be expressed by a ¥; formula ¢(z) and a II;
formula ¢'(x), whose equivalence can be proved in I%;.
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Javi < (o' (1) = Satx, (i, (z.a1,--- i),

saturated models

which is proved to be ¥, in BX,,(C IX,).

® | et 2 be a non-standard model of IX,,. Since the above formula holds for each j € N,
by the overspill principle, it also holds for some infinite element j'. Let x = a that
satisfies the above formulas for this j'.

® For any natural number i, we have ¢'(i) — Sats, (7, (a,a1, -, ax)).

® Now, if 7 is the Godel number of a formula in ®(zg, 21, ,x)), the ¥ formula (7)
holds. So 24 = Sats, (4, (a,a1,--- ,a)). Thatis, ®(a,ay,- - ,ax) holds.

® Therefore, a finitely satisfiable recursive 1-type of 3J,, formulas is realized in L. O

By the above lemma, any non-standard model of PA is X,,-recursively saturated for each
n > 0, but in the next problem, we show there is a non-standard model of PA which is not
recursively saturated.
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K Tenaka would be recursively saturated in the same way as in the above lemmma. So, this is
another proof that the satisfaction relation is not definable in PA.
Recursively

saturated models /‘ Problem 4 \

Let 2 be a non-standard model of PA, and a € A be an arbitrary non-standard element.
Then, in 2, let K(2;a) denote the set of all element b € A that can be defined by the
formula ¢(z,a) (does not include parameters other than a). That is, K(2;a) denote
the set of b's such that 2, ;) = Va(z = b <> ¢(z,a)). Then prove the following.

(1) By restricting functions and relations of 2 to that of K(2[;a), K(2;a) can be seen
as a substructure of 2. K(2;a) is an elementary substructure of 2.

(2) ®(xz,a) = {Fvp(v,a) — Fv < = p(v,a) : p(v,u) contains no free variables
or parameters other than u,v} is recursive and finitely satisfiable, but it cannot be
realized by K(;a).

~ Problem 5 ~

Let A = (A,+, +,0,1,<) be a non-standard model of IX;. Show that A =
(A,4+,0,1, <) is recursively saturated.
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In the above lemma, we will extend a recursive type to a little more general class. To this
end, we introduce the following concept.

Definition
Let A be a model of IX{, and a € A. The set

{n eN: 2k p(n)a}

is called the set coded by a in 2, where p(n) is a primitive recursive function representing
the n + 1-th prime number, and u|v = Jw < v(u+w = v) . The collection of all the sets
encoded by an element in 2 is called the standard system of 2, denoted as SSy ().
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Let 2 be a non-standard model of I3;. Given two disjoint ¥; sets, there exists a set in
SSy(2() which separates them. In particular, any recursive set belongs to SSy ().

Recursively
saturated models

Proof.
® Let Jyb;(x,y) (0; is a Lo formula, ¢ =0, 1) represent two disjoint ¥; sets.
® |et 2 be a non-standard model of I3;. Then consider the following 3; formula:

Fvz,y < j((0o(z,y) = p(@)|v) A (01 (2, y) — p(z) o).

This holds for any standard natural number j in 2(. Then by the overspill principle, it
also holds for a non-standard element j = b.

® |et ¢ be such that v = ¢ satisfies the above formula with j = b. Then, the set coded
by c separates the two initially given 3, sets as follows.

Ny 0o(m,y) = Ay F Iy < b bo(,y) = Ay = p(n)le,

NETy 0(m,y) = Apy E3y <boi(m,y) = Ay Ep(n) fe. O

Note that in general, a set that separates two X sets cannot be obtained recursively. That
is, SSy(2() is properly larger than the class of recursive sets.
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Lemma

Let n > 0 and 2 be a non-standard model of IX,,. If a type ®(&) of 3,, formulas on a
finite subset of A is coded in 2, then 2 realizes ®(Z).

The proof is exactly the same as that of lemma in Page 22. The converse holds as follows.

Lemma

Let n > 0 and %A be a non-standard model of I¥,,. Fix @ € A<% arbitrarily. Then the
following k types can be coded.

o(
U(

(7) : p(T) € Zn AR = p(@)},
(@) : p(Z) € T A A = (@)}

53
Il

{»
{v

Proof. In IX;, Saty, (z,y) and Saty,, (x,y) can be defined. So, there exist ¥,, formula
1(k, @) and II,, formula 91 (k, @) s.t. ¢ € ® <> 1([¢],d) and ¢ € ¥ <> 1 ([¢], @) hold.
Then, letting ¢ be a non-standard element of 2, by ¥,, induction, we can define a code
Myeup(d) for U = {b < c: p1(b,@)} and a code Iyeyp(b) for V = {b < c¢: ¢1(b,a)}.

It is clear that these code ®(&) and ¥ (&), respectively. O
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With the above preparations, we will prove Friedman's self-embedding theorem. The
following lemma is a key point, and also used in several variations of the theorem.

Lemma

Assuming n > 0, let 2, 9B be countable non-standard models of I%,,. Take ag € A and
bo, ¢ € B arbitrarily. Then the following two conditions are equivalent.

(1) There exists B’ C. B such that ¢ & B’. There is an isomorphism h between 2( and
B’ such that h(ag) = bg. For any II,,_; formula ¢(%) and any b € B’<%,

B o) & By o).
2 y = SSy(B), and for any II,,_; formula ¢(v,u),
SSy (A SS d f fi |

A4 | (U, ap) = Bp = IV < cp(d,by),

where ¥ = (v1,...,vg) and 3T < ¢ means Jv; < ¢--- Jyg < c.
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Proof. Assume (1) and we show the first half of (2).
e By A B, SSy(2) = SSy(®B’) is obvious.
® Since B’ C, B, it is also clear that SSy(B’) C SSy(B).
Fredmns ® Assume that R € SSy(B) and R is coded by r in 9. We will show that R is also
e coded in B’
® Take any non-standard element [ of B’. Since B’ is also a model of I¥,, (n > 0), the
I + 1-th prime p(l) belongs to B’, and p(l)! € B’.
® Therefore, letting m be the greatest common divisor of r and p(1)! in B, we have
m € B’ since B’ is an initial segment of 9B. Then, it is clear that m also encodes R.

® From the above, we obtain SSy(2) = SSy(B).

Next we show the second half of (2).

K. Tanaka

® Let (U, u) be a II,,_1 formula, and 24 = V() ag).

® By the isomorphism between 2 and B’, B, = Ivp(V, by).

® Then, since there exists d € B’ such that B',, = o(d, by), from the assumption (1),
B = (d, by). Therefore, B |= 37 < c (T, by).
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Next, assuming (2), we show (1).

® This is an application of the so-called back-and-forth argument. We alternately

produce a list ag, ay,--- of the elements of A and a list by, by, -- of the elements of
B’, and an isomorphism h between 2f and 9’ defiend by h(a;) = b;.
Now, suppose ag, a1, -+ ,az, and by, by, - - , bog have been chosen, and for any IT,, 4

formula o(7, @),

Ay = (v, a0, -+ ,ak) = Bp = I < cp(v,bg, - -, bax) (1)

holds.

We next choose ag 11, aak+2 and bagy1, bak4o such that this condition is preserved.
We will explain later that (1) can be obtained by this.

Since A is countable, each member can be assigned by a natural number uniquely.
Then choose one with the smallest number among the elements that do not appear in
ap,ai,- -+ ,as, and denote it as aggy1. This process guarantees that {a; : ¢ € N} lists
all the members of A.
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® |et O(ZF) be the set of X, formulas ITp(V, g, - -+ , Tag+1) (¢ € IL,,—1 ) which holds
for ag,- - , Gk, agk+1 in A. By the second lemma in page 27, ®(&) is coded in 2.

Fredmere Since SSy () = SSy(B), so it is also coded in B.
self-embedding
pessr ® Furthermore, we let

(20, , Tokt1, Tokt2)

= {3V < Dopt2 (¥, 0, - -+ Tagt1) 1 FVP(T, T, , T2p41) € P}

Since there is a primitive recursive transformation between ® and ®', ®’ is also coded
in 3.

® Then, if ®'(by,- - ,bog,x,c) is shown to be finitely satisfiable in 98, then by the
lemma in page 22, we can find an element = = b that realizes ®'(by, - - , bog, x, ¢),
and letting baj41 be such a b, (§) holds.

® Now, let 37 < c;(¥, bo, -+ ,ba,x) (i < j) be any finite set of formulas from
(b/(b()v e 7b2ka x, C)-
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From the definition of @', for each i < j, 30p;(¥, ag, - - - , ask, ask41) holds in 2, so

Q[A ': 3170 e 317]333 /\ (pi(l_fi, apg, - - ,CLQk,Jﬁ).

i<j
On the other hand, using (f),

Bp =Ty < ¢+ 30 < 3w < ¢\ i@, b, , bok, ).
1<j

Therefore, by simple transformation,

Bp = 3o /\ I < cpi(@,bo, -, bk, ).

i<j

In other words, (b, - - - , bog, x, ¢) is finitely satisfiable, and bog41 is obtained.
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UGG ® Next, we first select bop o and we search for a corresponding asg1o. If
K Tenaka {b(), s ,ka, b2k+1} is an initial segment of %, then b2k+2 = b2k+1, A2k+2 = A2k+1,
and () holds.
® Otherwise, there exists a b < max{bg, - - , bak, bar+1} such that b does not appear in
Fredman by, -+ ,bak,bar+1. Then among such, let bogto be one with the minimal number
theorem assigned in advance to the members of B. This finally produces {b; : i € N} as an

initial segment of 8.
® Then we will find agj42 corresponding to bogo.

® Let U(Z) be the set of X, formulas V¥ < zak43 (¥, o, -+ , Tak42) holds for
bo7 s ,b2k+17b2k+2,0 in B. This can be coded in B.

® Therefore, if we define

W' (20, -+, Tokt1, Takt2)
= {V0(0, w0, - -+ , Tory2) : VU < Topy3 (T, %0, -+ , Topy2) € Y}

then ¥’ is coded in 2 by the same argument as above.

e All that remains is to show ¥/ (aq, - - ,agx+1,) is finitely satisfiable in 2. So, let
Vo (U, ag, - -+ asky1, ) (1 < 7) be a finite subset of ¥/ (aq,- -, ask11,).
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We will show that these formulas are realized by x = a such that
a < max{ag, - , a2k, A2k+1} -
By way of contradiction, assume

A4 = Vo < max{ag, - - ,a2k,a2k+1}5|17\/ =i (U, ag, -+ -, G2k41, ).
i<J
By the X, collection principle that follows from 3,, induction,
Ap )Z dyvr < max{ao, s, A2k, a2k+1}377 <y \/ ﬂ/h‘(ﬁ, ag, -« - ,azk+1,$)~

i<j

On the other hand, using (f),

Bp k= Ty < Vo <max{by, -, bok, bors1}30 < y \/ i, b, -, baxr1, 7).
1<jg
Therefore, by simple transformation,
B = Vo < max{b, - ,ba, bar1} 30 < ¢ \/ 20hi(,bo, -+, ok, )

1<j

This is contradicts with the assumption that by, - - - , bog+1, bogt2, ¢ realize U(Z).

Thus, ¥'(ag,- - ,aak+1, ) is finitely satisfiable, and so the desired asy o exists.
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Suppose that we have completed the construction of a list ag, a1, -+, and a list
b, b1, --. As described above, A = {a; : i € N} and B’ = {b; : i € N} is an initial
segment of B. It is also obvious that ¢ ¢ B’.

Next, we define a function h between 2 and B’ by h(a;) = b;. Then, h is an
isomorphism, since by (#), for an atomic formula p(zo, -, zx),

QLA ):(}9(&0,"' aak‘):>%B ':(p(b07 7bk7)a

which implies h preserves operations and <.

Moreover, by (#), we can show that for any IT,,_; formula p(zo, -, zx),

Ag = @(ao, - ,ar) © Bp = plbo, -, by).
= is clear. For <, let A4 [~ p(ao, - ,axr). Then A4 = —p(aog, -+ ,ax), and
ﬁ(,D(CLOf H ,ak) is anl, SO by (ﬂ), %B |: ﬁ@<b0,~ s ,bk), and %B % (p(bo, s ,bk)
On the other hand, since h is isomorphic, for any formula ¢(zg,- -, x),

Q[A ': SD(G’Ov e 7ak) < %IB/ ': @(bo, e 7bk‘)
So for any II,,_; formula @(xq,- - ,zk),

SBIB/ ): QD(bO; e abk) ~ SBB’ ': SD(bOa e ;bk)a
and thus (1) is obtained.
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Theorem (Friedman's self-embedding theorem)

Let n» > 0, 2 be a countable non-standard model of IX,,, and take a € A arbitrarily. Then
there exists an initial segment 2" of 2 such that a € A" but A’ G A, and any II,,_;

formula ¢(Z) and any o’ € A'<%,
W b o(d) & A (@),

Proof.

® In last lemma, we consider the case 2l = B. In order to satisfy the condition (2) of the
last lemma, for any II,,_; formula ¢(¥,w), it is sufficient to find ¢ such that

Wiay | I00(T,0) = Agaey = IV < co(T,a).
® Now, let
O(z) = {Fp(V,a) = IV < x (T, a) : o(U,u) € U1}
This is a recursive type consisting only of II,, formulas, and is clearly finitely satisfiable.

® Therefore, there exists ¢ that realizes ®(x). Therefore, by the last lemma, there exists
an initial segment A’ of 2 which satisfies the conditions of the theorem. O
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The essence of this theorem is that a countable non-standard model of I¥X; has an
initial segment that is isomorphic to itself.

Friedman first proved this theorem for a countable non-standard model of Peano
arithmetic, and several researchers sophisticated it to the above form.

The same theorem does not hold for non-countable models, and also it does not hold
in general for countable non-standard models of 1.

Furthermore, an important result related to this is McAloon's theorem, which states
that a countable non-standard model of I3y has an initial segment that is a model of
Peano arithmetic PA.
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During the semester break, we will accept homeworks as well as questions and comments
via WeChat. If you are interested in moving on to the research level with us, feel free to
contact us.
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Part 5. Models of first-order arithmetic (continued)

Part 6. Real-closed ordered fields: completeness and decidability

Part 7. Theory of reals and reverse mathematics

Part 8. Second order arithmetic and non-standard methods
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Thank you for your attention!
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