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Logic and Foundations I� �
• Part 1. Equational theory

• Part 2. First order theory

• Part 3. Model theory

• Part 4. First order arithmetic and incompleteness theorems

• Part 5. Models of first-order arithmetic� �
Part 5. Schedule� �
• Jan. 04, (1) Non-standard models and the omitting type theorem

• Jan. 11, (2) Recursively saturated models

• to be continued� �
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Recap
• The order type of a non-standard model of PA− is N+ Z • η, where η is a linear
ordering without a maximal element.

main : 2019/4/16(19:6) K

156 第 5章 1階算術の超準モデル

5.1 超準モデルと過剰原理

本節では，算術の超準モデルの一般的な特徴，とくにその順序構造の性質

について述べる．IΣ0 の超準モデルは，可算であっても再帰的に定義できな

いこと（テンネンバウムの定理（文献 [34]））が知られており，その構造を完璧

に記述することは不可能である．しかし，順序構造だけを取り出して眺めて

みると，比較的単純でわかりやすい形になっている．

LOR 構造 Aを IΣ0 のモデルとする．Aは PA− のモデルにもなっているの

で，<は A上の離散的な線形順序である．Aは，各数項 nに対する元を含

んでいるから，それを標準自然数 nと同一視すれば，Aは標準構造 Nを部

分構造として含んでいると考えられる．しかも，¬∃x (n < x < n+ 1) が

成り立っているので，標準自然数 n以外の元 aを Aが含めば，それは Nの

どの元よりも大きい．このような元 a を超準元（non-standard element）と

か無限大元（infinite element）という．超準元を含む算術のモデルを超準モデ

ル（non-standard model）という．

いま，Aの 2つの元 a, bに対し，|a− b| ∈ Nのとき a ∼ bとして，同値関

係∼を定める．超準元 aの同値類 [a]∼は，a± n (n ∈ N)で表される元の集

合になるから，その中の順序型は整数の順序と同型である．以上から，A全

体の順序型は，次のような形になる（図 4）．

N

0 1 2 ···

Z

· · · · · · · · · · · · · · ·
Z

···b−1 b+1···b···a−1 a+1···a

図 4 算術の超準モデルの順序型

つまり，Aの順序型は，ηをある線形順序として，

N+ Z • η

で表される．ηは (A−N)/∼ の順序型である．ηが最大元をもたないことは，
[a]∼ < [a+a]∼より明らかで，ここまではPA−のモデルにもいえることである．

Figure: The order type of a non-standard model of arithmetic

• The order type of a non-standard model of IΣ0 is N+ Z • η, where η is a dense linear
order. In particular, the order type of a countable non-standard model of IΣ0 is
N+ Z •Q.
• There is no non-standard model of PA− with the order type N+ Z •R.

Theorem (Overspill principle)

Let n > 0 and A be any non-standard model of IΣn, and φ(x) be any Σn formula. If
AA |= φ(i) holds for infinitely many i ∈ N, then there exists a non-standard element a such
that AA |= φ(a) holds.
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Definition

• Let L be any language.

• A set Φ(x⃗) of L formulas that have no free variables other than n variables
x⃗ = (x1, · · · , xn) is called an n-type, or simply a type.

• If n elements a⃗ = (a1, · · · , an) of L structure A satisfies all formulas φ(x⃗) in Φ(x⃗)
(AA |= φ(⃗a)), we say that A realizes Φ(x⃗) by a⃗.

• If A does not realize Φ(x⃗) by any a⃗, we say that A omits Φ(x⃗).

Definition

• Let T be a theory in language L.
• A type Φ(x⃗) is called a type of theory T if T ∪ Φ(⃗c)(⃗c are new constants) is
consistent. That is, there exists a model of T that realizes Φ(x⃗).

• Let A be an L-structure, and let C be a subset of the universe of A. A type on C in
a structure A is a type of theory Th(AC) in language LC . A type on C = ∅ is
simply called a type.
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Definition

• A type Φ(x⃗) in L is called a principal type of theory T , if there exists a formula ψ(x⃗)
in L such that T ∪ {∃x⃗ψ(x⃗)} is consistent, and for any φ(x⃗) ∈ Φ(x⃗),

T ⊢ ∀x⃗(ψ(x⃗)→ φ(x⃗)).

• In this case, we say that ψ(x⃗) generates Φ(x⃗) in T .

• A non-principal type of T is a type of T but not principal.

• A type Φ(x⃗) on C(⊆ A) in L-structure A, i.e., a type of theory Th(AC) in language
LC , is a principal type, if it is a principal type of theory Th(AA) in language LA.

Any L-structure A realizes any principal type Φ(x⃗) of it. (∵) If ψ(x⃗) generates Φ(x⃗), then
by definition Th(AA) ∪ {∃x⃗ψ(x⃗)} is consistent. Since Th(AA) is a complete theory, it
includes ∃x⃗ψ(x⃗) and so AA |= ∃x⃗ψ(x⃗). Therefore, Φ(x⃗) is also realized in A.

Example 4� �
Since Φ(x) = {n < x : n ∈ N} is omitted by the standard model N, it is a non-principal
type in N. On the other hand, in a non-standard model, ψ(x) ≡ x > a generates Φ(x)
if a is any infinite element, so Φ(x) is its principal type.� �
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We now prove that there is a model of T that omits any non-principal type of T .

Theorem (The omitting type theorem)

Let L be a countable language and T be a consistent theory in a language L. Given
countably many non-principal types Φi(x1, · · · , xni) of T (i ∈ N), then there is a
countable model of T that omits all Φi.

Proof. Let T be a consistent theory in a countable language L, and Φi(x1, · · · , xni
)

(i ∈ N) be its non-principal types. By modifying Henkin’s proof of Gödel’s completeness
theorem, we will construct a countable model of T that omits all Φi. That is, we will build
a complete Henkin expansion Tω of T with the following property: for a countable set C of
Henkin constants (new constants not in L),

∀i ∀c⃗i ∈ C ∃φ(x⃗i) ∈ Φi(x⃗i) ¬φ(⃗ci) ∈ Tω. (※)

By the proof of the completeness theorem, if we define a countable structure A from C,

∀i ¬∃a⃗i ∈ A ∀φ(x⃗i) ∈ Φi(x⃗i) AA |= φ(⃗ai),

so A omits all Φi.
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Definition

Let A, B be two structures in a language L with a binary relational symbol < such that B
is a substructure of A. Then, A is an end-extension of B, denoted as B ⊆e A, if

(b ∈ |B| ∧ A |= a < b)⇒ a ∈ |B|.

If B is an elementary substructure of A, and A is an end-extension of B, then A is an
elementary end-extension of B.

Definition

In a language L with a binary relation <, the following schema is called collection
principle:

∀x < u∃y1 · · · ∃ykφ(x, y1, · · · , yk)→ ∃v∀x < u∃y1 < v · · · ∃yk < vφ(x, y1, · · · , yk).

where φ(x, y1, · · · , yk) is any formula in L, and may include variables other than v.

• The collection principle holds in PA as shown in the last part.
• In set theory, when < is interpreted as ∈, it is kind of Fraenkel’s axiom (also called the
“replacement axiom”). Even if we interpret < as ⊊ in set theory, the collection
principle can be proved (in the ZF set theory).
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Theorem

In a countable language L containing a binary relation symbol <, a countably infinite
structure that satisfies the collection principle and the transitivity law has a proper
elementary end-extension.

Proof.

• Let A be a countable infinite structure in a countable language L containing < which
satisfies the collection principle and the transitive law.

• First, consider a special case where A |= ∀x∀y(x ̸< y). Then, construct a proper
elementary extension B of A by the compactness theorem or any other methods.
Since B also satisfies ∀x∀y(x ̸< y), it is an end-extension in a trivial sense.

• Next, we assume that there exist two elements d and e such that AA |= d < e.

• Then, for a finite number of a1, · · · , ak ∈ A, there is a0 ∈ A such that
a1 < a0, · · · , ak < a0. This follows from the collection principle by letting
φ(x, y1, · · · , yk) be y1 = a1 ∧ · · · ∧ yk = ak and u = e, x = d.
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• Let c be a constant that does not belong to LA, and T be the following theory in
LA ∪ {c}.

T = Th(AA) ∪ {a < c : a ∈ A}.
• We can show this theory has a model by the compactness theorem. Any finite subset
of T has a model AA with an appropriate interpretation of c, since for any
a1, · · · , ak ∈ A, there is a0 ∈ A such that a1 < a0, · · · , ak < a0. Therefore, T itself
has a model, which contains an infinite element (an element larger than any a ∈ A)
that is an interpretation of c, and it is also an elementary extension of A.

• However, there is no guarantee that such an expansion becomes an end-extension. To
use the omitting type theorem, for each a ∈ A, define a type Φa of LA as follows

Φa(x) = {x < a} ∪ {x ̸= b : b < a}.

• We want to show that they are non-principal types of T . By way of contradition, we
assume that for some a ∈ A, there is a formula ψ(x, c) in LA ∪ {c} that generates
Φa(x). (Note that T ∪ {∃xψ(x, c)} is considered to be consistent).
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• Take arbitrary b < a. Since
T ⊢ ψ(x, c)→ x ̸= b,

letting x = b, we have
T ⊢ ¬ψ(b, c).

• Since by the definition of T , there exist finitely many a1, · · · , ak ∈ A,
Th(AA) ⊢ (a1 < c ∧ · · · ∧ ak < c)→ ¬ψ(b, c).

• Since c does not appear in Th(AA), it can be treated as a variable, and so

Th(AA) ⊢ ∀y((y > a1 ∧ · · · ∧ y > ak)→ ¬ψ(b, y)).
• By collection, take a0 ∈ A such that a0 > a1, · · · , a0 > ak, and then by transitivity,

Th(AA) ⊢ ∀y > a0¬ψ(b, y).
Therefore,

AA |= ∃z∀y > z¬ψ(b, y).
Since b < a is taken arbitrarily,

AA |= ∀x < a∃z∀y > z¬ψ(x, y).
Note that we cannot write ∀x < a∀y > a0¬ψ(x, y) as a0 depends on b.
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• Again by collection, we obtain a′ ∈ A such that

AA |= ∀x < a∃z < a′∀y > z¬ψ(x, y).

And by transitivity, we have

AA |= ∀x < a∀y > a′¬ψ(x, y).

• Since T = Th(AA) ∪ {a < c : a ∈ A},

T ⊢ ∀x < a¬ψ(x, c), i.e., T ⊢ ∀x(ψ(x, c)→ x ̸< a).

• On the other hand, ψ(x, c) generates Φa(x) and T ⊢ ∀x(ψ(x, c)→ x < a), so

T ⊢ ∀x¬ψ(x, c),

which conradicts with the assumption that T ∪ {∃xψ(x, c)} is consistent.
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Corollary

A countable model of Peano arithmetic PA has a proper elementary end-extension.

• The above corollary can also be extended to non-countable models, which is called the
MacDowell-Specker Theorem. For more details, see Kaye’s book Models of Peano
arithmetic.

• The proof of elementary end-extension for ZF set theory can be found in Chang and
Keisler’s book Model theory. It is also known that the results of set theory cannot be
extended to non-countable cases.

Problem 2� �
Show that if a model A of IΣ0 has a proper elementary end-extension, A is a model of
PA� �
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Introduction to recursively saturated models

• Next, we want to construct countable structures that realize as many types Φ(x⃗) as
possible.

• Even if the language is countable (and so the set of formulas is countable), there can
be uncountable many types Φ(x⃗), and then it is impossible to realize all of them in
countable structures.

• This brings us to the notion of “recursive saturated model”, which realizes only the
recursive types. Using this model, we prove “Friedman’s self-embedding theorem,” a
groundbreaking discovery on countable non-standard models of arithmetic.

• In a countable language, the type Φ(x⃗) is said to be recursive if the set of Gödel
numbers of its formulas is recursive (computable).

• By an argument similar to Craig’s Lemma in last part, the class of types is essentially
the same whether they are CE, recursive, or primitive recursive.
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Definition

Let L be a countable language. An L-structure A is recursively saturated if any recursive
1-type on a finite set {a1, · · · , an} ⊆ A is realized in A, that is, any recursive type
Φ(x0, x1, · · · , xn) = {φi(x0, x1, · · · , xn) | i ∈ N} and for any a1, · · · , an ∈ A,

∀j∃a ∈ A∀i < j AA |= φi(a, a1, · · · , an)⇒ ∃a ∈ A∀iAA |= φi(a, a1, · · · , an).

Problem 3� �
Show that any finite structure is recursively saturated.� �
• The standard structure of arithmetic N is clearly not recursively saturated. However,
by the next lemma, there exists a recursively saturated countable non-standard model
that is elementary equivalent to N.
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Lemma

A countable structure in a countable language has a countable elementary extension which
is recursively saturated.

Proof.

• Let A be a countable structure in a countable language. For each recursive type
Φ = {φi(x0, x1, · · · , xn) | i ∈ N} and for each a1, · · · , an ∈ A, we add a new
constant cΦ,a1,··· ,an

to the language, and let

T1 = Th(AA)∪{∃x∀i < jφi(x, a1, · · · , an)→ ∀i < jφi(cΦ,a1,··· ,an , a1, · · · , an) :
j ∈ N and cΦ,a1,··· ,an is a new constant}.

• By the compactness theorem and the downward Löwenheim–Skolem Theorem, T1 has
a countable model A1.

• Then A ≺ A1 and A1 realizes all recursive 1-types on any finite subset of A (in A1).

• Next, we construct a countable model A2 ≻ A1 that realizes all recursive 1-types on a
finite subset of A1.
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• Similarly, we create A2 ≺ A3 ≺ A4 ≺ · · · , and denote A∞ =
⋃

k Ak.

• By the elementary chain theorem in part 3, A∞ is an elementary extension of A and is
also countable.

Elementary chain theorem, revisit� �
Let A0 ≺ A1 ≺ · · · be an elementary chain. Let A be the union of the elementary
chain. Then for each i, Ai ≺ A.� �

• To see that A∞ is recursively saturated, we arbitrarily select a finite number of
elements from A∞ and consider a recursive type on them.

• It is a type on Ak for a sufficiently large k, and is realized by Ak+1, and also by its
elementary extension A∞.



Logic and
Foundation

K. Tanaka

Recap

Recursively
saturated models

Friedman’s
self-embedding
theorem

17

Now we will consider models of arithmetic IΣn. Although these models are not necessarily
recursively saturated, they have a certain kind of saturation for a restricted class of
formulas, and their properties are deeply related with the relations.

Lemma, revisit, lec04-03� �
In a consistent Σ1-complete theory T , there exists no formula ψ(x) such that for any
sentence σ, T ⊢ σ ↔ ψ(⌜σ⌝).� �

First, let us rephrase the above lemma as follows.

Lemma (Tarski’s “undefinability of truth”)

Let T be a consistent extension of Q<. There is no formula Sat(x, y) such that: for any
LOR formula φ(v1, · · · , vk) (with only free variables v1, · · · , vk),

T ⊢ ∀s(Sat(⌜φ⌝, s)↔ φ(s1, · · · , sk)),

where s is the code of a sequence (s1, · · · , sk).

Since the revisited lemma states that Sat(x,∅) does not exist, the above lemma can be
derived immediately. But if we restrict φ(v1, · · · , vk) to Σn, a kind of Sat(x, y) exists.
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Lemma

For each n ∈ N, there exist formulas SatΣn
(x, y) and SatΠn

(x, y) in language LOR such
that for any Σn formula φ(v1, · · · , vk) and Πn formula ψ(v1, · · · , vk) (neither includes free
variables other than v1, · · · , vk),

IΣ1 ⊢ ∀s(SatΣn
(⌜φ⌝, s)↔ φ(s1, · · · , sk)),

IΣ1 ⊢ ∀s(SatΠn
(⌜ψ⌝, s)↔ ψ(s1, · · · , sk)),

where s is the code of (s1, · · · , sk). When n > 0, SatΣn ∈ Σn and SatΠn ∈ Πn.

Note that considering BewT (x) in the proof of the second incompleteness theorem in part
4 of this course, it can be shown that for Σ1 formula φ(v),

φ(v)→ BewT (⌜v̇⌝),

but the inverse ← does not hold. In particular, if φ is 0 = 1, BewT (⌜0 = 1⌝)→ 0 = 1 is
nothing but Con(T).
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Proof.

• To start with, consider the case where n = 0. Roughly speaking, the truth of a Σ0

sentence is defined primitive-recursively, and so by the following theorem, SatΣ0
can

be expressed by either Σ1 or Π1 in IΣ1.

Definability theorem of primitive recursive functions, revisit, lec04-02� �
In IΣ1, the graph of a primitive recursive function f(x1, · · · , xl, y) = z can be
represented by a ∆1 formula φ(x1, . . . , xl, y, z), and the following is provable

∀x1 · · · ∀xl∀y∃!zφ(x1, . . . , xl, y, z).� �
• We will check more details in its construction.

• First we consider the atomic formula in the form of u = t(v1, · · · , vk), where t is a
term that does not include free variables other than v1, · · · , vk, and u is a variable.
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• List all the subterms of t appropriately as t0, t1, · · · , tlt . We may assume that the
relation between ⌜t⌝ and the sequence (⌜t0⌝, · · · , ⌜tlt⌝) is primitive recursive. Then,

SatΣ0
(⌜u = t(v1, · · · , vk)⌝, (y, x1, · · · , xk))
↔∃z(z = (z0, z1, · · · , zlt) ∧ ∀i, i′, i′′ ≤ lt

((⌜ti⌝ = ⌜0⌝→ zi = 0) ∧ (⌜ti⌝ = ⌜1⌝→ zi = 1)

∧ (⌜ti⌝ = ⌜vi′⌝→ zi = xi′)

∧ (⌜ti⌝ = ⌜ti′ + ti′′⌝→ zi = zi′ + zi′′)

∧ (⌜ti⌝ = ⌜ti′ • ti′′⌝→ zi = zi′ • zi′′)

∧ (⌜ti⌝ = ⌜t⌝→ zi = y)))

• For a Σ0 formula in the form of u = t(v1, · · · , vk), it is obvious that
SatΣ0

(⌜u = t(v1, · · · , vk)⌝, (y, x1, . . . , xk)) and y = t(x1, · · · , xk)) are equivalent.

• In addition, the above formula is expressed as a Σ1 formula, which can be expressed as
an equivalent Π1 formula in the form of (∀z(z = (z0, z1, · · · , zlt)→ · · · )).
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• For a general Σ0 formula, we can decomposed it into subformulas so that each part
satisfies the conditions (Tarski’s truth clause). For more details, please refer to Kaye’s
book Models of Peano arithmetic. In the following, assume that SatΠ0

is Π1 which is
indeed equivalent to SatΣ0

.

• Next, by induction on the meta-variable n, we construct SatΣn+1
assuming SatΣn

is
already obtained. For a Σn+1 formula ∃u1 · · · ∃ujφ(u1, · · · , uj , v1, · · · , vk) (where,
φ ∈ Πn ), SatΣn+1 is defined as follows.

SatΣn+1
(⌜∃u1 · · · ∃ujφ(u1, · · · , uj , v1, · · · , vk)⌝, (s1, · · · , sk))

↔ ∃ySatΠn
(⌜φ(u1, · · · , uj , v1, · · · , vk)⌝, (y1, · · · , yj , s1, · · · , sk)).

• Then the following is provable in IΣ1.

SatΣn+1
(⌜∃u1 · · · ∃ujφ(u1, · · · , uj , v1, · · · , vk)⌝, (s1, · · · , sk))

↔ ∃ySatΠn
(⌜φ(u1, · · · , uj , v1, · · · , vk)⌝, (y1, · · · , yj , s1, · · · , sk))

↔ ∃yφ(y1, · · · , yj , s1, · · · , sk)
↔ ∃u1 · · · ∃ujφ(u1, · · · , uj , s1, · · · , sk).

• Finally, SatΠn+1
can be defined in the same way.
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There is a close relation between the existence of a satisfaction relation and the saturation
of a model.

Lemma

For each n > 0, a non-standard model A of IΣn realizes any finitely satisfiable recursive
1-type on a finite subset of A consisting of only Σn formulas. Then A is called
Σn-recursively saturated.

Proof. Let Φ(x0, x1, · · · , xk) be a recursive type consisting only of Σn formulas. By
Craig’s lemma, assume Φ is primitively recursive.

Craig’s lemma, revisit� �
For a CE theory T , there exists a primitive recursive theory T ′ that proves the same
theorems.� �
• By the definability theorem of primitive recursive functions, the Gödel number of
formulas in Φ(x0, x1, · · · , xk) can be expressed by a Σ1 formula φ(x) and a Π1

formula φ′(x), whose equivalence can be proved in IΣ1.
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• The finite satisfiability of Φ(x0, a1, · · · , ak) is expressed as: for each natural number j,

∃x∀i < j(φ′(i)→ SatΣn
(i, (x, a1, · · · , ak))),

which is proved to be Σn in BΣn(⊆ IΣn).

• Let A be a non-standard model of IΣn. Since the above formula holds for each j ∈ N,
by the overspill principle, it also holds for some infinite element j′. Let x = a that
satisfies the above formulas for this j′.

• For any natural number i, we have φ′(i)→ SatΣn
(i, (a, a1, · · · , ak)).

• Now, if i is the Gödel number of a formula in Φ(x0, x1, · · · , xk), the Σ1 formula φ(i)
holds. So AA |= SatΣn

(i, (a, a1, · · · , ak)). That is, Φ(a, a1, · · · , ak) holds.
• Therefore, a finitely satisfiable recursive 1-type of Σn formulas is realized in A.

By the above lemma, any non-standard model of PA is Σn-recursively saturated for each
n > 0, but in the next problem, we show there is a non-standard model of PA which is not
recursively saturated.
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If the satisfaction relation Sat(x, y) were defined in PA, any non-standard model of PA
would be recursively saturated in the same way as in the above lemmma. So, this is
another proof that the satisfaction relation is not definable in PA.

Problem 4� �
Let A be a non-standard model of PA, and a ∈ A be an arbitrary non-standard element.
Then, in A, let K(A ; a) denote the set of all element b ∈ A that can be defined by the
formula φ(x, a) (does not include parameters other than a). That is, K(A ; a) denote
the set of b’s such that A{a,b} |= ∀x(x = b↔ φ(x, a)). Then prove the following.
(1) By restricting functions and relations of A to that of K(A ; a), K(A ; a) can be seen
as a substructure of A. K(A ; a) is an elementary substructure of A.
(2) Φ(x, a) = {∃vφ(v, a) → ∃v < x φ(v, a) : φ(v, u) contains no free variables
or parameters other than u, v} is recursive and finitely satisfiable, but it cannot be
realized by K(A ; a).� �
Problem 5� �
Let A = (A,+, • , 0, 1, <) be a non-standard model of IΣ1. Show that A′ =
(A,+, 0, 1, <) is recursively saturated.� �
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In the above lemma, we will extend a recursive type to a little more general class. To this
end, we introduce the following concept.

Definition

Let A be a model of IΣ1, and a ∈ A. The set

{n ∈ N : A |= p(n)|a}

is called the set coded by a in A, where p(n) is a primitive recursive function representing
the n+ 1-th prime number, and u|v ≡ ∃w ≤ v(u •w = v) . The collection of all the sets
encoded by an element in A is called the standard system of A, denoted as SSy(A).
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Lemma (D. Scott)

Let A be a non-standard model of IΣ1. Given two disjoint Σ1 sets, there exists a set in
SSy(A) which separates them. In particular, any recursive set belongs to SSy(A).

Proof.

• Let ∃yθi(x, y) (θi is a Σ0 formula, i = 0, 1) represent two disjoint Σ1 sets.

• Let A be a non-standard model of IΣ1. Then consider the following Σ1 formula:

∃v∀x, y < j((θ0(x, y)→ p(x)|v) ∧ (θ1(x, y)→ p(x) ̸ |v)).

This holds for any standard natural number j in A. Then by the overspill principle, it
also holds for a non-standard element j = b.

• Let c be such that v = c satisfies the above formula with j = b. Then, the set coded
by c separates the two initially given Σ1 sets as follows.

N |= ∃y θ0(n, y)⇒ A{b} |= ∃y < b θ0(n, y)⇒ A{c} |= p(n)|c,
N |= ∃y θ1(n, y)⇒ A{b} |= ∃y < b θ1(n, y)⇒ A{c} |= p(n) ̸ |c.

Note that in general, a set that separates two Σ1 sets cannot be obtained recursively. That
is, SSy(A) is properly larger than the class of recursive sets.
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Lemma

Let n > 0 and A be a non-standard model of IΣn. If a type Φ(x⃗) of Σn formulas on a
finite subset of A is coded in A, then A realizes Φ(x⃗).

The proof is exactly the same as that of lemma in Page 22. The converse holds as follows.

Lemma

Let n > 0 and A be a non-standard model of IΣn. Fix a⃗ ∈ A<ω arbitrarily. Then the
following k types can be coded.

Φ(x⃗) = {φ(x⃗) : φ(x⃗) ∈ Σn ∧ A |= φ(⃗a)},
Ψ(x⃗) = {ψ(x⃗) : ψ(x⃗) ∈ Πn ∧ A |= ψ(⃗a)}

Proof. In IΣ1, SatΣn(x, y) and SatΠn(x, y) can be defined. So, there exist Σn formula
φ1(k, a⃗) and Πn formula ψ1(k, a⃗) s.t. φ ∈ Φ↔ φ1(⌈φ⌉, a⃗) and ψ ∈ Ψ↔ ψ1(⌈ψ⌉, a⃗) hold.
Then, letting c be a non-standard element of A, by Σn induction, we can define a code
Πb∈Up(b) for U = {b < c : φ1(b, a⃗)} and a code Πb∈V p(b) for V = {b < c : ψ1(b, a⃗)}.
It is clear that these code Φ(x⃗) and Ψ(x⃗), respectively.
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With the above preparations, we will prove Friedman’s self-embedding theorem. The
following lemma is a key point, and also used in several variations of the theorem.

Lemma

Assuming n > 0, let A, B be countable non-standard models of IΣn. Take a0 ∈ A and
b0, c ∈ B arbitrarily. Then the following two conditions are equivalent.

(1) There exists B′ ⊆e B such that c ̸∈ B′. There is an isomorphism h between A and

B′ such that h(a0) = b0. For any Πn−1 formula φ(x⃗) and any b⃗ ∈ B′<ω,

B′
{⃗b} |= φ(⃗b)⇔ B{⃗b} |= φ(⃗b).

(2) SSy(A) = SSy(B), and for any Πn−1 formula φ(v⃗, u),

AA |= ∃v⃗φ(v⃗, a0)⇒ BB |= ∃v⃗ < cφ(v⃗, b0),

where v⃗ = (v1, . . . , vk) and ∃v⃗ < c means ∃v1 < c · · · ∃vk < c.



Logic and
Foundation

K. Tanaka

Recap

Recursively
saturated models

Friedman’s
self-embedding
theorem

29

Proof. Assume (1) and we show the first half of (2).

• By A ∼= B′, SSy(A) = SSy(B′) is obvious.

• Since B′ ⊆e B, it is also clear that SSy(B′) ⊆ SSy(B).

• Assume that R ∈ SSy(B) and R is coded by r in B. We will show that R is also
coded in B′.

• Take any non-standard element l of B′. Since B′ is also a model of IΣn (n > 0), the
l + 1-th prime p(l) belongs to B′, and p(l)! ∈ B′.

• Therefore, letting m be the greatest common divisor of r and p(l)! in B, we have
m ∈ B′ since B′ is an initial segment of B. Then, it is clear that m also encodes R.

• From the above, we obtain SSy(A) = SSy(B).

Next we show the second half of (2).

• Let φ(v⃗, u) be a Πn−1 formula, and AA |= ∃v⃗φ(v⃗, a0).
• By the isomorphism between A and B′, B′

B′ |= ∃v⃗φ(v⃗, b0).
• Then, since there exists d⃗ ∈ B′ such that B′

B′ |= φ(d⃗, b0), from the assumption (1),

BB |= φ(d⃗, b0). Therefore, BB |= ∃v⃗ < cφ(v⃗, b0).
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Next, assuming (2), we show (1).

• This is an application of the so-called back-and-forth argument. We alternately
produce a list a0, a1, · · · of the elements of A and a list b0, b1, · · · of the elements of
B′, and an isomorphism h between A and B′ defiend by h(ai) = bi.

• Now, suppose a0, a1, · · · , a2k and b0, b1, · · · , b2k have been chosen, and for any Πn−1

formula φ(v⃗, u⃗),

AA |= ∃v⃗φ(v⃗, a0, · · · , a2k)⇒ BB |= ∃v⃗ < cφ(v⃗, b0, · · · , b2k) (♯)

holds.

• We next choose a2k+1, a2k+2 and b2k+1, b2k+2 such that this condition is preserved.
We will explain later that (1) can be obtained by this.

• Since A is countable, each member can be assigned by a natural number uniquely.
Then choose one with the smallest number among the elements that do not appear in
a0, a1, · · · , a2k and denote it as a2k+1. This process guarantees that {ai : i ∈ N} lists
all the members of A.
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• Now we will search for b2k+1 such that (♯) holds.

• Let Φ(x⃗) be the set of Σn formulas ∃v⃗φ(v⃗, x0, · · · , x2k+1) (φ ∈ Πn−1 ) which holds
for a0, · · · , a2k, a2k+1 in A. By the second lemma in page 27, Φ(x⃗) is coded in A.
Since SSy(A) = SSy(B), so it is also coded in B.

• Furthermore, we let

Φ′(x0, · · · , x2k+1, x2k+2)

= {∃v⃗ < x2k+2 φ(v⃗, x0, · · · , x2k+1) : ∃v⃗φ(v⃗, x0, · · · , x2k+1) ∈ Φ}.

Since there is a primitive recursive transformation between Φ and Φ′, Φ′ is also coded
in B.

• Then, if Φ′(b0, · · · , b2k, x, c) is shown to be finitely satisfiable in B, then by the
lemma in page 22, we can find an element x = b that realizes Φ′(b0, · · · , b2k, x, c),
and letting b2k+1 be such a b, (♯) holds.

• Now, let ∃v⃗ < cφi(v⃗, b0, · · · , b2k, x) (i ≤ j) be any finite set of formulas from
Φ′(b0, · · · , b2k, x, c).
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• From the definition of Φ′, for each i ≤ j, ∃v⃗φi(v⃗, a0, · · · , a2k, a2k+1) holds in A, so

AA |= ∃v⃗0 · · · ∃v⃗j∃x
∧
i≤j

φi(v⃗i, a0, · · · , a2k, x).

• On the other hand, using (♯),

BB |= ∃v⃗0 < c · · · ∃v⃗j < c∃x < c
∧
i≤j

φi(v⃗i, b0, · · · , b2k, x).

• Therefore, by simple transformation,

BB |= ∃x
∧
i≤j

∃v⃗ < cφi(v⃗, b0, · · · , b2k, x).

• In other words, Φ′(b0, · · · , b2k, x, c) is finitely satisfiable, and b2k+1 is obtained.
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• Next, we first select b2k+2 and we search for a corresponding a2k+2. If
{b0, · · · , b2k, b2k+1} is an initial segment of B, then b2k+2 = b2k+1, a2k+2 = a2k+1,
and (♯) holds.

• Otherwise, there exists a b < max{b0, · · · , b2k, b2k+1} such that b does not appear in
b0, · · · , b2k, b2k+1. Then among such, let b2k+2 be one with the minimal number
assigned in advance to the members of B. This finally produces {bi : i ∈ N} as an
initial segment of B.

• Then we will find a2k+2 corresponding to b2k+2.

• Let Ψ(x⃗) be the set of Σn formulas ∀v⃗ < x2k+3 ψ(v⃗, x0, · · · , x2k+2) holds for
b0, · · · , b2k+1, b2k+2, c in B. This can be coded in B.

• Therefore, if we define

Ψ′(x0, · · · , x2k+1, x2k+2)

= {∀v⃗ψ(v⃗, x0, · · · , x2k+2) : ∀v⃗ < x2k+3 ψ(v⃗, x0, · · · , x2k+2) ∈ Ψ}

then Ψ′ is coded in A by the same argument as above.

• All that remains is to show Ψ′(a0, · · · , a2k+1, x) is finitely satisfiable in A. So, let
∀v⃗ψi(v⃗, a0, · · · , a2k+1, x) (i ≤ j) be a finite subset of Ψ′(a0, · · · , a2k+1, x).
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• We will show that these formulas are realized by x = a such that
a < max{a0, · · · , a2k, a2k+1} .
• By way of contradiction, assume

AA |= ∀x < max{a0, · · · , a2k, a2k+1}∃v⃗
∨
i≤j

¬ψi(v⃗, a0, · · · , a2k+1, x).

• By the Σn collection principle that follows from Σn induction,

AA |= ∃y∀x < max{a0, · · · , a2k, a2k+1}∃v⃗ < y
∨
i≤j

¬ψi(v⃗, a0, · · · , a2k+1, x).

• On the other hand, using (♯),

BB |= ∃y < c∀x < max{b0, · · · , b2k, b2k+1}∃v⃗ < y
∨
i≤j

¬ψi(v⃗, b0, · · · , b2k+1, x).

• Therefore, by simple transformation,

BB |= ∀x < max{b0, · · · , b2k, b2k+1}∃v⃗ < c
∨
i≤j

¬ψi(v⃗, b0, · · · , b2k+1, x)

This is contradicts with the assumption that b0, · · · , b2k+1, b2k+2, c realize Ψ(x⃗).
• Thus, Ψ′(a0, · · · , a2k+1, x) is finitely satisfiable, and so the desired a2k+2 exists.
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• Suppose that we have completed the construction of a list a0, a1, · · · , and a list
b0, b1, · · · . As described above, A = {ai : i ∈ N} and B′ = {bi : i ∈ N} is an initial
segment of B. It is also obvious that c ̸∈ B′.
• Next, we define a function h between A and B′ by h(ai) = bi. Then, h is an
isomorphism, since by (♯), for an atomic formula φ(x0, · · · , xk),

AA |= φ(a0, · · · , ak)⇒ BB |= φ(b0, · · · , bk),
which implies h preserves operations and <.

• Moreover, by (♯), we can show that for any Πn−1 formula φ(x0, · · · , xk),
AA |= φ(a0, · · · , ak)⇔ BB |= φ(b0, · · · , bk).

⇒ is clear. For ⇐, let AA ̸|= φ(a0, · · · , ak). Then AA |= ¬φ(a0, · · · , ak), and
¬φ(a0, · · · , ak) is Σn−1, so by (♯), BB |= ¬φ(b0, · · · , bk), and BB ̸|= φ(b0, · · · , bk).

• On the other hand, since h is isomorphic, for any formula φ(x0, · · · , xk),
AA |= φ(a0, · · · , ak)⇔ B′

B′ |= φ(b0, · · · , bk).
So for any Πn−1 formula φ(x0, · · · , xk),

B′
B′ |= φ(b0, · · · , bk)⇔ BB′ |= φ(b0, · · · , bk),

and thus (1) is obtained.
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Theorem (Friedman’s self-embedding theorem)

Let n > 0, A be a countable non-standard model of IΣn, and take a ∈ A arbitrarily. Then
there exists an initial segment A′ of A such that a ∈ A′ but A′ ⫋ A, and any Πn−1

formula φ(x⃗) and any a⃗′ ∈ A′<ω,

A′
A′ |= φ(a⃗′)⇔ AA′ |= φ(a⃗′).

Proof.

• In last lemma, we consider the case A = B. In order to satisfy the condition (2) of the
last lemma, for any Πn−1 formula φ(v⃗, u), it is sufficient to find c such that

A{a} |= ∃v⃗φ(v⃗, a)⇒ A{a,c} |= ∃v⃗ < cφ(v⃗, a).

• Now, let
Φ(x) = {∃v⃗φ(v⃗, a)→ ∃v⃗ < xφ(v⃗, a) : φ(v⃗, u) ∈ Πn−1}.

This is a recursive type consisting only of Πn formulas, and is clearly finitely satisfiable.

• Therefore, there exists c that realizes Φ(x). Therefore, by the last lemma, there exists
an initial segment A′ of A which satisfies the conditions of the theorem.
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• The essence of this theorem is that a countable non-standard model of IΣ1 has an
initial segment that is isomorphic to itself.

• Friedman first proved this theorem for a countable non-standard model of Peano
arithmetic, and several researchers sophisticated it to the above form.

• The same theorem does not hold for non-countable models, and also it does not hold
in general for countable non-standard models of IΣ0.

• Furthermore, an important result related to this is McAloon’s theorem, which states
that a countable non-standard model of IΣ0 has an initial segment that is a model of
Peano arithmetic PA.
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Logic and Foundations I� �
• Part 1. Equational theory

• Part 2. First order theory

• Part 3. Model theory

• Part 4. First order arithmetic and incompleteness theorems

• Part 5. Models of first-order arithmetic� �
During the semester break, we will accept homeworks as well as questions and comments
via WeChat. If you are interested in moving on to the research level with us, feel free to
contact us.

Logic and Foundations II� �
• Part 5. Models of first-order arithmetic (continued)

• Part 6. Real-closed ordered fields: completeness and decidability

• Part 7. Theory of reals and reverse mathematics

• Part 8. Second order arithmetic and non-standard methods� �



Logic and
Foundation

K. Tanaka

Recap

Recursively
saturated models

Friedman’s
self-embedding
theorem

39

Thank you for your attention!
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