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Logic and Foundations I� �
• Part 1. Equational theory

• Part 2. First order theory

• Part 3. Model theory

• Part 4. First order arithmetic and incompleteness theorems� �
Part 2. Schedule� �
• Dec. 07, (1) Peano arithmetic and representation theorems

• Dec. 14, (2) The first incompleteness theorem

• Dec. 21, (3) The second incompleteness theorem

• Dec. 28, (4) Presburger arithmetic� �
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Introduction

• Gödel’s first incompleteness theorem shows the existence of statements that cannot be
proven or disproved for an axiomatic system T such as Peano arithmetic.

• The second incompleteness theorem asserts that a statement with the specific
meaning “T is consistent” cannot be proven with T .

• The second incompleteness theorem is obtained by formalizing the proof of the first
incompleteness theorem within its own system T .

• For the first theorem, we arithmetized several metamathemacal concepts such as
proofs and theorems by using Gödel numbers. For the second theorem, we further
need to analyze more general concepts such as primitive recursiveness and
Σ1-completeness, which are used in the proof of the first theorem.

• In the last lectures, we studied two proofs of the first theorem. The second one is
more robust, or suitable for elevating it to the second theorem.

• In this lecture, we assume IΣ1 from the beginning.

• We prove the second incompleteness theorem by using the derivability conditions.
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Recap
• Peano arithmetic PA is a first-order theory of natural numbers in the language
LOR = {+, ·, 0, 1, <}, consisting of axioms for arithmetical operations and
Induction: φ(0) ∧ ∀x(φ(x) → φ(x+ 1)) → ∀xφ(x).

• The formulas in LOR are classified as Σi and Πi (i ∈ N). In particular, a Σ0 (=Π0)
formula is a bounded formula (only with bounded quantifiers ∀x < t and ∃x < t). If φ
is bounded, ∃x1 · · · ∃xkφ is Σ1, and ∀x1 · · · ∀xkφ is Π1.

• For a class Γ of formulas, IΓ denotes a subsystem of PA obtained by restricting (φ(x)
of) induction to Γ.

• R, Q< and PA− are very weak subsystems with no induction. We have

R ⊂ Q< ⊂ PA− ⊂ IOpen ⊂ IΣ0 ⊂ IΣ1 ⊂ PA.

• The following is the collection principle or bounding principle of φ, denoted (Bφ):

∀x < u∃y1 · · · ∃ykφ(x, y1, . . . , yk) → ∃v∀x < u∃y1 < v · · · ∃yk < vφ(x, y1, . . . , yk).

BΓ := IΣ0 ∪ {(Bφ) : φ ∈ Γ}. IΣn+1 ⊃ BΣn+1 ⊃ IΣn.

• In BΣn(n ≥ 1), Σn and Πn are closed under bounded quantifiers.
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Theorem (Σ1-completeness of R)

R proves all true Σ1 sentences. Therefore, Q<, PA
−, IOpen, etc. are all Σ1-complete.

Definition

Theory T is 1-consistent if, for any Σ1 sentence σ, T ⊢ σ ⇒ N |= σ.

• If a theory holds in the standard model N, it is 1-consistent, and indeed ω-consistent
(i.e., for any formula φ(x), if T ⊢ φ(n̄) for all n ∈ N then T ̸⊢ ∃x¬φ(x)).

Theorem ((Weak) Representation Theorem for CE sets, repeated)

Let T be Σ1-complete and 1-consistent. For a CE set C, there exists a Σ1 formula φ(x) s.t.

n ∈ C ⇔ T ⊢ φ(n).

Theorem ((Strong) Representation Theorem for Computable Sets, repeated)

Let T be Σ1-complete. For a computable set C, there exists a Σ1 formula φ(x) such that

n ∈ C ⇒ T ⊢ φ(n), n ̸∈ C ⇒ T ⊢ ¬φ(n).
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Theorem (Gödel’s first incompleteness theorem, a näıve version)

Let T be a Σ1-complete and 1-consistent Σ1 theory. Then T is incomplete, that is, there is
a sentence σ which T cannot prove or disprove.

Proof.

• We know K is CE but not co-CE. By the weak representation theorem for CE sets,
there exists a formula φ(x) such that

n ∈ K ⇔ T ⊢ φ(n).

• On the other hand, since N−K is not a CE, there exists some d such that

d ∈ N−K ̸⇔ T ⊢ ¬φ(d).

Thus, (d ∈ K and T ⊢ ¬φ(d)) or (d ̸∈ K and T ̸⊢ ¬φ(d)).
• In the former case, since d ∈ K implies T ⊢ φ(d), T is inconsistent, contradicting
with the 1-consistency assumption.

• In the latter case, T is incomplete because φ(d) cannot be proved or disproved.
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Formalizing metamathematics
We prepare some useful prim. rec. functions for coding things.

Lemma

For primitive recursive h(x⃗) and A, µy < h(x⃗)A(x⃗, y) is primitive recursive.

• p(x) = “(x+ 1)-th prime number ” is a primitive recursive function defined as follows.

p(0) = 2, p(x+ 1) = µy < p(x)! + 2 (p(x) < y ∧ prime(y)).

• A finite sequence (x0, . . . , xn−1) can be represented by a single number x as follows,

x = p(0)x0+1 · p(1)x1+1 · · · · · p(n− 1)xn−1+1

• For a natural number x, the function c(x, i) takes the ith element xi from x,

xi = c(x, i) = µy < x (¬∃z < x (p(i)y+2 · z = x)).

• The length of the sequence represented by x is

leng(x) = µi < x (¬∃z < x (p(i) · z = x)).

• Finally, Seq(x) denotes that x codes a sequence as follows:

Seq(x) ⇔ ∀i < x∀z < x (p(i) · z = x→ i ≤ leng(x)).
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Gödel numbers

Definition

Let Ω be a finite (or countably infinite) set of symbols, and an injection ϕ : Ω → N. For a
string s = a0 · · · an−1, the following natural number ψ(s) is called the Gödel number of s,
denoted by ⌜s⌝.

ψ(s) = p(0)ϕ(a0)+1 · p(1)ϕ(a1)+1 · · · · · p(n− 1)ϕ(an−1)+1.

The mapping ⌜ ⌝ is an injection from the set of all symbols Ω∗ to N.

Example� �
Let Ω = {0, 1,+, (, )}, ϕ(0) = 0, ϕ(1) = 1, ϕ(+) = 3, ϕ( ( ) = 5 and ϕ( ) ) = 6.
Then,

⌜(1 + 0) + 1⌝ = 26 · 32 · 54 · 71 · 117 · 134 · 172� �
Problem 5� �
Show that Term(x) expressing “x is the Gödel number of a term” is primitive recursive.� �
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Definition

A theory T is CE (= Σ1) or primitive recursive, if the set of Gödel numbers of its axioms
{⌜σ⌝ : σ ∈ T} is Σ1 or primitive recursive, respectively.

• Ordinary theories of arithmetic (PA, IΣ1, etc.) are all primitive recursive.
• From the following theorem, a Σ1 set of axioms can be always be replaced by a
primitive recursive set.

Theorem (Craig’s lemma)

For a CE theory T , there exists a primitive recursive theory T ′ that proves the same
theorems.

Proof. Let T be a theory defined by Σ1 formula φ(x) ≡ ∃yθ(x, y) (θ is Σ0). Then, we
define a primitive recursive theory T ′ as follows:

T ′ = {
n + 1 copies︷ ︸︸ ︷

σ ∧ σ ∧ · · · ∧ σ : θ(⌜σ⌝, n)}.

• Because Gödel numbers are heavily used in T ′, T ′ cannot be easily expressed in Σ0.
• From now on, a Σ1 theory T is automatically transformed and identified with its p.r.
counterpart T ′.
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Definition

• Let T be a Σ1 (= prim. rec.) theory.

• A proof in T is a finite sequence of formulas where each formula is either a logical
axiom or an axiom of T , or obtained by applying MP or quantification rules from
formulas appearing before in the sequence.

• The formula that appears at the end of the proof is the theorem of T .

• We can define a primitive recursive predicate ProofT such as

ProofT (⌜P⌝, ⌜σ⌝) ⇔ P is a proof of formula σ in T ′.

By ProofT , we also denote a ∆1 formula expressing the above ProofT in IΣ1.

• A Σ1 formula BewT is defined as

BewT (x) ≡ ∃y ProofT (y, x).

BewT (x) expresses that “x is the Gödel number of a theorem of T”.

“Bew” stands for the German beweisbar (provable).
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Theorem (Representation Theorem for Computable Function)

Let T be Σ1-complete. For any computable function f(x⃗), there exists a Σ1 formula
φ(x⃗, y) which represents f(x⃗) = y and satisfies, for all natural numbers m1, . . . ,ml,

T ⊢ ∀y∀y′(φ(m1, . . . ,ml, y) ∧ φ(m1, . . . ,ml, y
′) → y = y′).

Proof. For simplicity, we assume that l = 1. Suppose f(x) = y is represented by a Σ1

formula φ(x, y) ≡ ∃zθ(x, y, z) with θ(x, y, z) ∈ Σ0. We define a Σ0 formula ψ(x, y, z) as

θ(x, y, z) ∧ ∀y′, z′ ≤ y + z(θ(x, y′, z′) → y + z ≤ y′ + z′).

Then, ∃zψ(x, y, z) also represents f(x) = y. To show, the functional property of this
representation. Take any m and let n = f(m). Then the minimal k such that θ(m,n, k)
satifies ψ(m,n, k). By the definition, no other y, z satisfy ψ. So, we are done.

Corollary (Strong Representation for primitive recursive functions)

For any primitive recursive function f , there is a ∆1 formula χ(x, y) such that

f(m) = n⇒ IΣ1 ⊢ χ(m,n) and IΣ1 ⊢ ∀x∃!yχ(x, y).
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Lemma (Diagonalization lemma)

Let T be Σ1-complete. For any formula ψ(x) in which x is the unique free variable,
there exists a sentence σ such that T ⊢ “σ ↔ ψ(⌜σ⌝)” .

Proof.

• A formula with only x as a free variable is computably enumerated as
φ0(x), φ1(x), . . ., and then f(n) = ⌜φn(n)⌝ is also a computable function.
By the functional representation theorem, there exists a Σ1 formula χ such that

f(m) = n⇒ T ⊢ χ(m,n) ∧ ∀y ̸= n¬χ(m, y).

• The formula ∃y(χ(x, y) ∧ ψ(y)) must be listed as φk(x) for some k.
Now, let σ ≡ φk(k). Since f(k) = ⌜σ⌝, T ⊢ χ(k, ⌜σ⌝).
Thus, in T , ψ(⌜σ⌝) → ∃y(χ(k, y) ∧ ψ(y)) (≡ φk(k) ≡ σ).

• On the other hand, since T ⊢ ∀y ̸= ⌜σ⌝ ¬χ(k, y), in T ,

¬ψ(⌜σ⌝) → ∀y(χ(k, y) → ¬ψ(y)) → ¬∃y(χ(k, y) ∧ ψ(y)) (≡ ¬σ).

• Therefore, T ⊢ σ ↔ ψ(⌜σ⌝), that is, σ is a fixed point of ψ. 2
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The First Incompleteness Theorem

Theorem (Gödel’s first incompleteness theorem)

Any 1-consistent CE theory T including IΣ1 is incomplete.

Proof.
• By the diagonalization lemma, ¬BewT (x) has a fixed point, that is, there exists σ
such that T ⊢ σ ↔ ¬BewT (⌜σ⌝).

• We will show this σ is neither provable nor disprovable in T as follows.
• Let T ⊢ σ. Then BewT (⌜σ⌝) is true. Hence T ⊢ BewT (⌜σ⌝) from Σ1 completeness.
Since σ is the fixed point of ¬BewT (x), we have T ⊢ ¬σ, which means that T is
inconsistent.

• On the other hand, if T ⊢ ¬σ, T ⊢ BewT (⌜σ⌝) because σ is a fixed point. Here, using
the 1-consistency of T , BewT (⌜σ⌝) is true, and so T ⊢ σ, which is a contradiction. 2

The sentence σ in the above proof “asserts its own unprovability” because “σ ⇔ T ̸⊢ σ”
holds. This σ is called the Gödel sentence of T . Since T ̸⊢ σ, N |= ¬BewT (⌜σ⌝) is true.
So, the Gödel sentence is a “true Π1 sentence.”
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To weaken the assumption of incompleteness theorem, Rosser modified BewT (x) as follows

Bew∗
T (x) ≡ ∃y(ProofT (y, x) ∧ ∀z < y¬ProofT (z,¬x)),

where ¬x means the code of ¬φ when x is the code of a formula φ.

Lemma

Let T be a Σ1-complete Σ1 theory. Then, for any sentence σ,
(1) T ⊢ σ ⇒ T ⊢ Bew∗

T (⌜σ⌝),
(2) T ⊢ ¬σ ⇒ T ⊢ ¬Bew∗

T (⌜σ⌝).

Proof. If T is inconsistent, the lemma holds trivially, so we assume T is consistent.
If T ⊢ σ, it is easy to see that Bew∗

T (⌜σ⌝) is true. Then (1) follows from Σ1 completeness.
To show (2), assume T ⊢ ¬σ. There exists n ∈ N such that the following holds in N

ProofT (n, ⌜¬σ⌝) ∧ ∀z ≤ n¬ProofT (z, ⌜σ⌝).

By Σ1 completeness, the above formula is provable in T . So, in T ,
ProofT (y, ⌜σ⌝) → y > n, and thus

∀y(ProofT (y, ⌜σ⌝) → ∃z < yProofT (z, ⌜¬σ⌝))

is provable. Therefore, T ⊢ ¬Bew∗
T (⌜σ⌝).
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The fixed point σ of ¬Bew∗
T (x), i.e., T ⊢ σ ↔ ¬Bew∗

T (⌜σ⌝) is called a Rosser sentence.

Theorem (Gödel-Rosser)

If T is a consistent Σ1-complete Σ1 theory, then there exists a sentence σ such that T ̸⊢ σ
and T ̸⊢ ¬σ.

Proof.

• If T ⊢ σ, then by the last lemma T ⊢ Bew∗
T (⌜σ⌝), and so by the definition of the fixed

point σ, T ⊢ ¬σ, which implies that T is inconsistent.

• If T ⊢ ¬σ, then by the last lemma, T ⊢ ¬Bew∗
T (⌜σ⌝). By definition of the fixed point

σ, we have T ⊢ σ, which implies that T is inconsitent.
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Two applications of the first incomp. theorem

The next theorem is a very important application of the argument of the first
incompleteness theorem.

Lemma

In a consistent Σ1-complete theory T , there exists no formula ψ(x) such that for any
sentence σ, T ⊢ σ ↔ ψ(⌜σ⌝).

Proof. If there were such a ψ(x), then a fixed point σ of ¬ψ(x) clearly does not satisfy
the condition.

In the above lemma, letting T be Th(N), we obtain the following theorem.

Theorem (Tarski’s undefinability of truth)

There is no formula ψ(x) such that N |= σ ↔ ψ(⌜σ⌝) for all sentence σ.
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Lemma

For a consistent Σ1-complete theory T , there is no formula ψ(x) s.t. for any sentence σ,

(1) T ⊢ σ ⇒ T ⊢ ψ(⌜σ⌝),
(2) T ̸⊢ σ ⇒ T ⊢ ¬ψ(⌜σ⌝).

Proof. Suppose there were such a ψ(x), and let σ be a fixed point of ¬ψ(x). Then, if
T ⊢ σ then T ⊢ ¬ψ(⌜σ⌝), which means (1) does not hold. If T ̸⊢ σ then T ̸⊢ ¬ψ(⌜σ⌝),
which means (2) does not hold.

Lemma

For a consistent Σ1-complete theory T , the set {⌜σ⌝ : T ⊢ σ, σ is a sentence} is not
computable.

Proof. If the set of theorems of T is computable, by the strong representation theorem,
there would be such a ψ(x) that satisfies the above lemma.
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The following theorem was due to Church. Turing also obtained a similar result by
expressing the halting problem as a satisfaction problem of first-order logic.

Theorem (Undecidability of first-order logic)

The set {⌜σ⌝ : σ is a valid sentence in the languageLOR} is not computable. Therefore,
the satisfiability of first order logic is not decidable.

Proof.

• First note that IΣ1 is finitely axiomatizable, because the Σ1-induction schema can be
expressed as a single induction axiom for a universal Σ1-formula (a universal CE set).
Or, instead of IΣ1, you may take Q< or any other finitely axiomatized theory for which
the first incompleteness theorem can be shown.

• Let ξ be a sentence obtained by connecting all the axioms of IΣ1 by ∧.
• Then, from the deduction theorem, IΣ1 ⊢ σ ⇔⊢ ξ → σ. If {⌜σ⌝ : ⊢ σ} is computable,
{⌜σ⌝ : ⊢ ξ → σ} = {⌜σ⌝ : IΣ1 ⊢ σ} is also computable. By the representation
theorem, there exists a which contradicts with the above lemma.

• Finally, note that the satisfiability of first order logic can be expressed as {⌜σ⌝ : ̸|= ¬σ}
and that if it were computable then {⌜σ⌝ : ⊢ ¬σ} would be computable.

2
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Intoducing the second incompleteness theorem

• The first incompleteness theorem says that a consitent CE theory T including R is
neither prove nor disprove the Gödel sentence.

• The second incompleteness theorem says that a consistent CE theory T including IΣ1

does not prove its consistency.

• To obtain the second theorem, it is sufficient to show that the consistency implies the
Gödel sentence, or equivalently the consistency implies the unprovability of the Gödel
sentence.

• Thus, the main part of the proof of the second theorem is to formalize the proof of
the first theorem in the system T .

• Although this requires extremely elaborate arguments, the main points are summarized
as the three properties of the derivability predicate BewT (x) as shown in the next slide.
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Lemma (Hilbert-Bernays-Löb’s derivability condition)

Let T be a consistent CE theory containing IΣ1. For any φ,ψ,
D1. T ⊢ φ⇒ T ⊢ BewT (⌜φ⌝).
D2. T ⊢ BewT (⌜φ⌝) ∧ BewT (⌜φ→ ψ⌝) → BewT (⌜ψ⌝).

D3. T ⊢ BewT (⌜φ⌝) → BewT (⌜BewT ( ⌜φ⌝)⌝).

Proof.

• D1 is obtained from the Σ1 completeness of T , since BewT (⌜φ⌝) is a Σ1 formula.

• For D2, it is clear that the proof of ψ is obtained by applying MP to the proof of φ
and the proof of φ→ ψ.

• D3 formalizes D1 in T . This is the most difficult, since we can not find a simple
machinery to transform a proof of φ in T to a proof of BewT (⌜φ⌝). There are several
known ways to deal with this problem, but below we will briefly explain how to deal
with the representability of primitive recursive functions within the system.
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• Since the function from a number n to the Gödel number of its numeral ⌜n̄⌝ is
primitive recursive, we denote the function by ẋ.

• For an expression φ(x), φ(ẏ) denotes the expression obtained by substituting the term
with the Gödel number ẏ to every free occurrence of the variable x. If the value of y is
a standard natural number n, this is nothing but a substitution of the numeral n, but
φ(ẏ) is just an expression with the variable y, which can be formulated within BewT .

• With this notation, our goal is to prove

T ⊢ ProofT (x, y) → BewT (⌜ProofT (ẋ, ẏ)⌝). (1)

• In general, we prove that for any primitive recursive function f ,

T ⊢ f(x1, . . . , xk) = y → BewT (⌜f(ẋ1, . . . , ẋk) = ẏ)⌝). (2)

• The above formula can be proved by meta-induction on the construction of the
primitive recursive function f .

• As a exmaple, we will prove for addition x+ y = z, the above formula (2) holds.
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• By Σ1 induction on variable y (assuming other variables are constants), we prove that

x+ y = z → BewT (⌜ẋ+ ẏ = ż)⌝). (3)

• First, if y = 0, then x+0 = z and so x = z. By A3 of PA, BewT (⌜ẋ+ 0 = ẋ)⌝). Thus

x+ 0 = z → BewT (⌜ẋ+ 0 = ż)⌝).

• Next assuming x+ y = w → BewT (⌜ẋ+ ẏ = ẇ)⌝), we want to show

x+ (y + 1) = z → BewT (⌜ẋ+ (ẏ + 1) = ż)⌝).

• Suppose x+ (y + 1) = z. Let w = x+ y. Then, we have z = w + 1, since
x+ (y + 1) = (x+ y) + 1 by A4. Hence, By the definition of ẋ, BewT (⌜ż = ẇ + 1⌝).

• From BewT (⌜ẋ+ ẏ = ẇ⌝), by using A4 in BewT , BewT (⌜ẋ+ (ẏ + 1) = ẇ + 1)⌝).
Then from BewT (⌜ż = ẇ + 1⌝), we obtain BewT (⌜ẋ+ (ẏ + 1) = ż)⌝).

• Thus, we have shown (3) by IΣ1.

• As for other p.r. functions, their defining formulas are given as axioms in the theory T,
so (2) can be proved using a similar argument.
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• To prove D3, assume BewT (⌜φ⌝) in addition to T. Then, there is a numeral c that
satisfies ProofT (c, ⌜φ⌝).

• Now by (1), we have BewT (⌜ProofT (ċ, ˙⌜φ⌝)⌝). Here, ˙⌜φ⌝ is a standard natural
number, so it is nothing but ⌜φ⌝.

• Since T ⊢ ProofT (ċ, ⌜φ⌝) → ∃xProofT (x, ⌜φ⌝) can be deduced from a quantification
axiom of first-order logic, we have

T ⊢ ProofT (ċ, ⌜φ⌝) → BewT (⌜φ⌝).

• Then, by D1,

T ⊢ BewT

(
⌜ProofT (ċ, ⌜φ⌝) → BewT (⌜φ⌝)⌝

)
.

By D2,

T ⊢ BewT

(
⌜ProofT (ċ, ⌜φ⌝))⌝

)
→ BewT

(
⌜BewT (⌜φ⌝)⌝

)
.

• Finally, BewT (⌜BewT (⌜φ⌝)⌝) is obtained with the first assumption by MP.
Thus, D3 is proven.

2



Logic and
Foundation

K. Tanaka

Introduction

Recap

Formalizing
metamathematics

Alternative proof

Two applications
of the first
theorem

Intoducing the
second theorem

Commentaries

Summary

Appendix

24

In the following, let πG denote a Gödel sentence in the proof of the first incompleteness
theorem. That is,

T ⊢ πG ↔ ¬BewT (⌜πG⌝).

By Con(T ), we denote the sentence meaning “T is consistent”, formally defined as

Con(T ) ≡ ¬BewT (⌜0 = 1⌝).

Then we have the following.

Lemma

T ⊢ Con(T ) ↔ πG.

Proof. • To show πG → Con(T ).

Obviously, T ⊢ 0 = 1 → πG. So, by D1 and D2,

T ⊢ BewT (⌜0 = 1⌝) → BewT (⌜πG⌝).

Taking the contraposition, we have T ⊢ πG → Con(T ).
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• To show Con(T ) → πG.

First, from T ⊢ πG ↔ ¬BewT (⌜πG⌝) and D1,

T ⊢ BewT (⌜BewT (⌜πG⌝) → ¬πG⌝).

Using D2, we have

T ⊢ BewT (⌜BewT (⌜πG⌝)⌝) → BewT (⌜¬πG⌝).

Combining this with D3: T ⊢ BewT (⌜πG⌝) → BewT (⌜BewT (⌜πG⌝)⌝), we obtain

T ⊢ BewT (⌜πG⌝) → BewT (⌜¬πG⌝).

Then, by using T ⊢ πG → (¬πG → 0 = 1) and D2, we get

T ⊢ BewT (⌜πG⌝) → BewT (⌜0 = 1⌝)

Taking the contraposition,

T ⊢ ¬BewT (⌜0 = 1⌝) → ¬BewT (⌜πG⌝).

That is, T ⊢ Con(T ) → πG. 2
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Theorem (Gödel’s second incompleteness theorem)

Let T be a consistent CE theory, which contains IΣ1. Then T ̸⊢ Con(T ).
In other words, T cannot prove its own consistency Con(T ).

Proof
By the proof of the first incompleteness theorem, T ̸⊢ πG.
By the above lemma, T ⊢ Con(T ) ↔ πG. So, T ̸⊢ Con(T ). 2

Remark� �
• The first incompleteness theorem is a negative result in the sense that it shows
the limit of provability, whereas the second incompleteness theorem shows that
the concrete proposition Con(T ) is not provable in T , which provides a positive
tool from an application perspective.

• In mathematical logic, the second incompleteness theorem is often used to
separate two axiomatic theories by showing the consistency of one over the other.
E.g. IΣ1 is a proper subsystem of PA, since the consistency of the former can be
proved in the latter.� �
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Homework� �
(1) Show that there is a consistent theory T that proves its own contradiction

¬Con(T ).
(2) Let Bew#

T (x) ≡ (BewT (x) ∧ x ̸= ⌜0 = 1⌝). For any true proposition σ,

Bew#
T (⌜σ⌝) ↔ BewT (⌜σ⌝)

and
T ⊢ ¬Bew#

T (⌜0 = 1⌝).

Does it contradict with the second incompleteness theorem?� �
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• As a variant of the Gödel sentence, a sentence meaning “this sentence is provable” is
known as a Henkin sentence. That is, H is a Henkin sentence if

H ↔ BewT (⌜H⌝).

If H is provable and true, then both sides are true and there is no problem.
On the other hand, if H is false and unprovable, both sides are also equivalent. So,
there does not seem to be any clue to determine whether or not H is provable or true.
Yet, we can show it is actually provable.

• To this end, first let C denote the sentence “this sentence is consistent with T”, i.e.,
C ↔ ¬BewT (⌜¬C⌝).

• Since the theory T+C proves its own consistency, it is inconsistent by the second
incompleteness theorem. Thus, T proves ¬C.

• On the other hand, since ¬C ↔ BewT (⌜¬C⌝), ¬C is the same as H, and therefore H
is provable.



Logic and
Foundation

K. Tanaka

Introduction

Recap

Formalizing
metamathematics

Alternative proof

Two applications
of the first
theorem

Intoducing the
second theorem

Commentaries

Summary

Appendix

29

The above fact can be also stated as follows.

Theorem (Löb’s theorem)

Let T be a consistent Σ1 theory containing IΣ1. If T proves “if T proves σ, then σ”, then
T proves σ.

Proof.
Suppose that T proves that ”if T proves σ, then σ”, which means that “If ¬σ, then T
does not prove σ, that is, T + ¬σ is consistent.” That is, since T + ¬σ proves the
consistency of T + ¬σ, by the second incompleteness theorem, T + ¬σ is inconsistent.
Therefore, T proves σ.

The Henkin sentence H satisfies that T proves “if T proves H, then H”. So by the
theorem, T proves H.
A paradoxical fact derived from this theorem is that any proposition σ can be proven by
assuming that there is a proof of σ.



Logic and
Foundation

K. Tanaka

Introduction

Recap

Formalizing
metamathematics

Alternative proof

Two applications
of the first
theorem

Intoducing the
second theorem

Commentaries

Summary

Appendix

30

Alternative proof of D3

• For simplicity, let T be PA. We also identify a formula φ(x) with the set {n : φ(n)}.
• In T , we can prove a countable version of the completeness theorem of first-order
logic. A countable model M can be treated as its coded diagram, i.e., the set of the
Gödel numbers of LM -sentences true in M . The arithmetized completeness theorem
says that if T ′ is consistent then there exists (a formula expressing the diagram of) a
model of T ′.

• Now, we going to prove Con(T ) → πG in T . By the completeness theorem, it is
sufficient to show that any model M of T +Con(T ) satisfies πG. First, note that πG
is equivalet to ¬BewT (⌜πG⌝), which is also equivalet to Con(T + ¬πG). Since M
satisfies Con(T ), we can make a model M1 of T over M . So, if M1 satisfies ¬πG,
then M shows Con(T + ¬πG). If M1 satisfies πG, M also satisfies πG since πG is Π1

and M is a submodel of M1. (This proof is due to Kikuchi-Tanaka.)
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Some commentaries on Gödel’s theorem

• D. Hilbert and P. Bernays, Grundlagen der Mathematik I-II, Springer-Verlag,
1934-1939, 1968-1970 (2nd ed.). This gives the first complete proof of the second
incompleteness theorem by analyzing the provability predicate.

• R.M. Smullyan, Theory of Formal Systems, revised edition, Princeton Univ. 1961.
A classic masterpiece introducing recursive inseparability, etc.

• Handbook of Mathematical Logic (1977), edited by J. Barwise
Smoryński’s chapter on incompleteness theorems includes various unpublished results
(particularly by Kreisel) and a wide range of mathematical viewpoints.

• P. Lindström, Aspects of Incompleteness, Lecture Notes in Logic 10, Second edition,
Assoc. for Symbolic Logic, A K Peters, 2003.
A technically advanced book. It has detailed information on Pour-El and Kripke’s
theorem (1967) that between any two recursive theories (including PA) there exists a
recursive isomorphism that preserves propositional connectives and provability.
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• R.M. Solovay (1976) studied modal propositional logic GL with BewT (x) as modality 2,
which is described by

(1) ⊢ A ⇒⊢ 2A,

(2) (2A ∧ 2(A → B)) → 2B,

(3) 2A → 22A,

(4) 2(2A → A) → 2A

• The following two books are good on this topic.

Smoryński, Self-Reference and Modal Logic, Springer 1977.

G. Boolos, The Logic of Provability, Cambridge 1993.
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The following are excellent introductory books.

• T. Franzen, Gödel’s Theorem: An Incomplete Guide to Its Use and Abuse(2005).

On the use and misuse of the incompleteness theorem as a broader understanding of
Godel’s theorem. A Janpanse translation (with added explanations) by Tanaka (2011).

• P. Smith, Gödel’s Without (Too Many) Tears, Second Edition 2022.
https://www.logicmatters.net/resources/pdfs/GWT2edn.pdf

Easy to read. The best reference to this lecture.
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Math classroom:
https://www.asahi.com/ads/math2022/

https://www.asahi.com/ads/math2022/
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Summary

Theorem (Gödel’s first incompleteness theorem)

Any Σ1-complete and 1-consistent CE theory is incomplete, that is, there is a sentence that
cannot be proved or disproved.

Theorem (Gödel-Rosser incompleteness theorem)

Any Σ1-complete and consistent CE theory is incomplete.

Theorem (Gödel’s second incompleteness theorem)

Let T be a consistent CE theory, which contains IΣ1. Then Con(T ) cannot be proved in T .
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Appendix

• Since Gödel, many researchers were looking for a
proposition that has a natural mathematical meaning and
is independent of Peano arithmetic, etc.

• Paris and Harrington found the first example in 1977. This
is a slight modification of Ramsey’s theorem in finite form.

Jeff Paris

Leo Harrington

• Following their findings, Kirby and Paris (1982) showed that the propositions on the
Goodstein sequence and the Hydra game are independent of PA.

• H. Friedman showed that Kruskal’s theorem (1982) and the Robertson-Seimor theorem in
graph theory (1987) are independent of a stronger subsystem of second-order arithmetic,
and also discovered various independent propositions for set theory.
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Thank you for your attention!
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