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Logic and Foundations I� �
• Part 1. Equational theory

• Part 2. First order theory

• Part 3. Model theory

• Part 4. First order arithmetic and incompleteness theorems� �
Part 4. Schedule� �
• Dec. 07, (1) Peano arithmetic and representation theorems

• Dec. 14, (2) The first incompleteness theorem

• Dec. 21, (3) The second incompleteness theorem

• Dec. 28, (4) Presburger arithmetic� �
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Recap

Peano arithmetic PA is a first-order theory in the language of ordered rings
LOR = {+, ·, 0, 1, <}, consisting of the following mathematical axioms.

Definition

Peano arithmetic (PA) has the following formulas in LOR as a mathematical axiom.

Successor: A1.¬(x+ 1 = 0), A2. x+ 1 = y + 1→ x = y.
Addition: A3. x+ 0 = x, A4. x+ (y + 1) = (x+ y) + 1.
Multiplication: A5. x · 0 = 0, A6. x · (y + 1) = x · y + x.
Inequality A7. ¬(x < 0), A8. x < y + 1↔ x < y ∨ x = y.

Induction: A9. φ(0) ∧ ∀x(φ(x)→ φ(x+ 1))→ ∀xφ(x).

• Induction is not a single formula, but an axiom schema that collects the formulas for
all the φ(x) in LOR. Note that φ(x) may include free variables other than x.
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Arithmetical Hierarchy

• We inductively define hierarchical classes of formulas, Σi and Πi (i ∈ N).

Definition

• The bounded formulas are constructed from atomic formulas by using propositional
connectives and bounded quantifiers ∀x < t and ∃x < t, where ∀x < t and ∃x < t are
abbreviations for ∀x(x < t→ · · · ) and ∃x(x < t ∧ · · · ), respectively, and t is a term
that does not includes x. A bounded formula is also called a Σ0 (=Π0) formula.

• For any i, k ∈ N:
▶ if φ is a Σi formula, ∀x1 · · · ∀xkφ is a Πi+1 formula,

▶ if φ is a Πi formula, ∃x1 · · · ∃xkφ is a Σi+1 formula.

• Σi/Πi also denotes the set of all Σi/Πi formulas.

• Note that ∀x > t or ∀x(x > t→ · · · ) and ∃x > t or ∃x(x > t ∧ · · · ) are not bounded.
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Let us define subsystems of PA by restricting its induction axiom.

Definition

Let Γ be a class of formulas in LOR. By IΓ, we denote a subsystem of PA obtained by
restricting (φ(x) of) induction to the class Γ.

• The main subsystems of PA are IΣ1 ⊃ IΣ0 ⊃ IOpen, where Open is the set of
formulas without quantifiers.

Another system weaker than IOpen is the system Q defined by R. Robinson.

Definition

Robinson’s system Q is obtained from PA by removing the axioms of inequality and
induction, and instead adding the following axiom:
Predecessor: A10: ∀x(x ̸= 0→ ∃y(y + 1 = x)).

So, it is a theory in the language of ring LR = {+, ·, 0, 1}.

Let Q< be the system Q plus axiom A7.5 ∀x∀y(x < y ↔ ∃z(z + (x+ 1) = y)).
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Lemma

In IOpen, the following axioms of theory of discrete ordered semirings PA− are provable.
(1) Semiring axioms ( excluding the additive inverses from the commutative ring ).
(2) difference axiom x < y → ∃z(z + (x+ 1) = y).
(3) a linear order with the minimum element 0 and discrete (0 < x↔ 1 ≤ x).
(4) Order preservation x < y → x+ z < y + z ∧ (x · z < y · z ∨ z = 0).

Corollary

Q< ⊂ PA− ⊂ IOpen ⊂ IΣ0 ⊂ IΣ1 ⊂ PA.

Definition (Mostowski-Robinson-Tarski’s system R)

R is a theory in the language of ordinal rings, consisting of the following axiom schemes.
R1. m ̸= n (when m ̸= n).
R2. ¬(x < 0).
R3. x < n+ 1↔ x = 0 ∨ · · · ∨ x = n.
R4. x < n ∨ x = n ∨ n < x.
R5. m+ n = m+ n.
R6. m •n = m •n.
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Lemma

Q< proves all axioms of R.

Theorem (Σ1-completeness of R)

R proves all true Σ1 sentences. Therefore, Q<, PA
−, IOpen, etc. are all Σ1-complete.

Proof

• If a Σ1 sentence ∃x1∃x2 . . . ∃xkφ(x1, x2, . . . , xk) is true, there exist natural numbers
n1, n2, . . . , nk such that φ(n1, n2, . . . , nk) holds.

• By virtue of R3, a bounded quantification ∃x < t φ(x) can be rewritten as
φ(0) ∨ φ(1)) ∨ · · · ∨ φ(n− 1) if the value of close term t is n. Thus, by induction, a
bounded sentence can be rewritten as a Boolean combination of atomic sentences.
Since an atomic sentence can be proved/disproved in R if it is true/false, also can a
bounded sentence.

• Therefore, φ(n1, n2, . . . , nk) is provable since it is true. From the rule of first-order
logic, ∃x1∃x2 . . . ∃xkφ(x1, x2, . . . , xk) is also provable in R. 2
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IΣ1 and related systems
We investigate some basic properties of IΣ1, especially the definability of primitive recursive
functions.

Definition

For a formula φ(x, y1, . . . , yk) of LOR, the following formula is called the collection
principle or bounding principle of φ, denoted (Bφ):

∀x < u∃y1 · · · ∃ykφ(x, y1, . . . , yk)→ ∃v∀x < u∃y1 < v · · · ∃yk < vφ(x, y1, . . . , yk),

where φ(x, y1, . . . , yk) may include undisplayed variables other than u, v. If the collection
principle should be treated as a sentence, we consider its universal closure. For a class Γ of
formulas, we let

BΓ = IΣ0 ∪ {(Bφ) : φ ∈ Γ}.

For any n, the collection principle of a Σn+1 formula
φ(x, y1, . . . , yk)(≡ ∃z1 · · · ∃zlθ(x, y1, . . . , yk, z1, . . . , zl))

can be obtained from the collection principle of a Πn formula θ(x, y1, . . . , yk, z1, . . . , zl)
with k + l variables. Therefore, BΣn+1 ⇔ BΠn.
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Lemma

In BΣn(n ≥ 1), adding bounded quantifiers ∀x < t, ∃x < t in front of a Σn formula
produces a formula that is equivalent to a Σn formula. Similarly for a Πn formula.

Proof. By meta-induction on n.

• The case n = 1.
Take any Σ1 formula ∃y1 · · · ∃ykφ(x, y1, . . . , yk). By BΣ1, we have

∀x < t∃y1 · · · ∃ykφ(x, y1, . . . , yk)→ ∃v∀x < t∃y1 < v · · · ∃yk < vφ(x, y1, . . . , yk),

and obviously the converse ← also holds. Thus, adding ∀x < t in front of the Σ1

formula is equivalent to a Σ1 formula of the right-hand side. If ∃x < t is added before
a Σ1 formula, it can be converted into a Σ1 formula by shifting ∃x < t to the end of
the block of existential quantifiers of the formula.
Π1 formulas can be treated similarly.

• For n > 1, by the same argument as above, we exchange the order of a bounded
quantifier ∀x < t and an existential quantifier in front of a Σn formula. Then, by
induction hypothesis, we can transform the Πn−1 formula preceded by a bounded
quantifier into an equivalent Πn−1 formula.
Πn formulas can be treated similarly.
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Lemma

For any n ≥ 1, BΣn is a subsystem of IΣn.

Proof. We use meta-induction on n.

• Let ∃z1 · · · ∃zlφ(x, y1, . . . , yk, z1, . . . , zl) be Σn and φ(x, y1, . . . , yk, z1, . . . , zl) Πn−1.

• Suppose ∀x < u∃y1 · · · ∃yk∃z1 · · · ∃zlφ(x, y1, . . . , yk, z1, . . . , zl). 1

• By the induction hypothesis BΣn−1 (obvious for n = 1) and the above lemma, the
following formula ψ(w) is Σn.

ψ(w) := (∃v∀x < w∃y1 < v · · · ∃yk < v∃z1 < v · · · ∃zl < vφ) ∨ u < w.

• Now, we want to prove ∀wψ(w) by induction.

• Clearly, ψ(0) holds.

• Assume ψ(w) and we will show ψ(w + 1).

1In the following, we may treat u as a constant.
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• If u < w + 1, ψ(w + 1) is obvious.

• So, assume w < u. By the first assumption, there exist y′1, . . . , y
′
k, z

′
1, . . . , z

′
l such that

φ(w, y′1, . . . , y
′
k, z

′
1, . . . , z

′
l). By the induction hypothesis ψ(w), there is v such that

∀x < w∃y1 < v · · · ∃yk < v∃z1 < v · · · ∃zl < vφ.

• If we put
v′ = max{v, y′1 + 1, . . . , y′k + 1, z′1 + 1, . . . , z′l + 1},

then ∀x < w + 1∃y1 < v′ · · · ∃yk < v′∃z1 < v′ · · · ∃zl < v′φ, which implies ψ(w + 1).

• So by Σn induction, ψ(w) holds for all w. In particular, if w = u,

∃v∀x < u∃y1 < v · · · ∃yk < v∃z1 < v · · · ∃zl < vφ,

which implies ∃v∀x < u∃y1 < v · · · ∃yk < v∃z1 · · · ∃zlφ.
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By the above two lemmas, we have

Lemma

For any n, IΣn and IΠn are equivalent.

Proof.

• We show that IΠn is provable in IΣn. The other cases can be treated in a similar way.

• Let φ(x) be a Πn formula and assume φ(0) ∧ ∀x(φ(x)→ φ(x+ 1)).

• By way of contradiction, we assume ¬φ(c). Note that free variables included in φ(c)
should be replaced with constants.

• Roughly, we use induction on the Σn formula ¬φ(c− x). That is, ¬φ(c− 0) and
¬ φ(c− x)→ ¬φ(c− (x+ 1)) imply ¬φ(0).
• More strictly, it is proved by using the following formula.

ψ(x) ≡ ∃y ≤ c(x+ y = c ∧ ¬φ(y)) ∨ c < x.

• It is a Σn formula by the lemma in Page 10.

• Similarly, IΣn is provable in IΠn.
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Problem 2� �
(1) The following formula is called the least number principle for a formula φ and
denoted as Lφ,

∃xφ(x)→ ∃x(φ(x) ∧ ∀y < x¬φ(y)).

LΣn stands for { Lφ : φ is Σn}. Then, show that IΣn is equivalent to LΣn.
(2) For any n, show BΣn+1 ⊃ IΣn.� �

It is also known that the relation IΣn+1 ⊃ BΣn+1 ⊃ IΣn is strict.2 3.

2Petr Hájek and Pavel Pudlák. Metamathematics of first-order arithmetic. Springer, 1993
3Kaye R. Models of Peano arithmetic, Oxford Univesity Press, 1991.
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Next we discuss the definability of primitive recursive functions in IΣ1. The following
lemma is a basic tool for uniquely assigning natural numbers to finite sets and finite
sequences in IΣ1.

Lemma

In IΣ1, for a Σ1 formula φ(x) and a Π1 formula ψ(x), we can prove

∀x(φ(x)↔ ψ(x))→ ∀u∃m,n > 0∀x < u(φ(x)↔ m(x+ 1) + 1 is a divisor of n ).

Proof.

• First, fix u. The existence of a number m which divides all i < u can be easily shown
by Σ1 induction.

• Then, for all i < u, m(i+ 1) + 1 are mutually prime. ∵ If m(i+ 1) + 1 and
m(j + 1) + 1 (i < j < u) are both multiples of a prime number d,
(m(j + 1) + 1)− (m(i+ 1) + 1) = m(j − i) should also be a multiple of d. But d is
never a divisor of m because it devises m(i+ 1) + 1. Also, d is not a divisor of
m(j − i) since d ≥ u > j − i.
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• Next, let φ(x) be Σ1 formula, and ψ(x) be a Π1 formula. Assume ∀x(φ(x)↔ ψ(x)).

• Then, by Σ1 induction on j, we prove the following.

∃n∀x < j
[
(ψ(x)→ m(x+ 1) + 1 is a divisor of n )

∧ (m(x+ 1) + 1 is a divisor of n → φ(x))
]
∨ u < j.

• It is obvious when j = 0.

• Let nj be the minimum n that satisfies the above condition for j (See the least
number principle, Problem 3).

• Now, if φ(j), then nj+1 = nj • (m(j + 1) + 1), otherwise nj+1 = nj .

• Note that for all i < u, m(i+ 1) + 1 are mutually prime, and nj does not contain any
factor of m(j + 1) + 1 due to its minimality.

• Then, nj+1 satisfies the above condition for j + 1 ≤ u, which completes the induction
step.

• Thus, the lemma holds as j = u.
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• In the above lemma, the triple (u,m, n) satisfying

∀x < u
(
φ(x)↔ m(x+ 1) + 1 is a divisor of n

)
is called a u-piece code of a ∆1 set {x | φ(x)} defined by a Σ1 formula φ(x) and a
Π1 formula ψ(x).

• We will extend the above to n-dimensional sets. First, we code a pair of natural

numbers (x, y) by a natural number ⟨x, y⟩ = (x+y)(x+y+1)
2 + x. Note that if

u = ⟨u1, u2⟩, then ⟨x, y⟩ < u for any x < u1, y < u2.

• Then, from the lemma in Page 15, for a ∆1 formula φ(x, y), there exist u,m, n s.t.

∀x < u1∀y < u2(φ(x, y)↔ m(⟨x, y⟩+ 1) + 1 is a divisor of n )

The triple c = (u,m, n) is called a (u1, u2)-piece code of the ∆1 set.

• In general, by coding an n-tuple (x1, x2, · · · , xn) by a natural number
⟨⟨· · · ⟨x1, x2⟩, . . .⟩, xn⟩, we can define a (u1, u2, · · · , un)-piece code of a ∆1

n-dimensional set.
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Theorem (Definability of primitive recursive functions)

In IΣ1, (the graph of) a primitive recursive function f can be represented by a ∆1 formula
φ(x1, . . . , xl, y, z), and the following are provable

∀x1 · · · ∀xl∀y∃!zφ(x1, . . . , xl, y, z).

Proof.

• We will prove this by induction on the construction of primitive recursive functions.
The essential step is the definition by primitive recursion.

• For simplicity, we omit parameter variables x1, . . . , xl, and consider the definition of a
unary function f from a constant c and binary function h as follows:

f(0) = c, f(y + 1) = h(y, f(y)).

• From the induction hypothesis, h can be expressed in both Σ1 and Π1 formulas.

• If f can be expressed by a ∆1 formula φ, it will be easily derived in IΣ1 that
∀−→x ∀y∃!zφ(−→x , y, z).
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• First, let γ(x,m, n) be a Σ0 formula expressing “m(x+ 1) + 1 is a divisor of n”, that
is, ∃d < n (m(x+ 1) + 1) · d = n.

• We define a predicate δ(u,m, n) such that

δ(⟨u1, u2⟩,m, n)⇔ ∀y < u1∃z < u2 f(y) = z,

by the following Σ0 formula: for any u = ⟨u1, u2⟩,

δ(u,m, n) ≡ ∀y < u1∃z < u2 γ(⟨y, z⟩,m, n) ∧ ∀z < u2(γ(⟨0, z⟩,m, n)↔ z = c)

∧ ∀y < u1−1∀z < u2(γ(⟨y + 1, z⟩,m, n)↔ ∃z′ < u2(z = h(y, z′) ∧ γ(⟨y, z′⟩,m, n))).

• Then, by IΣ1, we can show ∀u1∃u2∃m∃nδ(⟨u1, u2⟩,m, n)
• Therefore, we have

f(y) = z ⇔ ∃u∃m∃n(u1 = y + 1 ∧ δ(u,m, n) ∧ γ(⟨y, z⟩,m, n))
⇔ ∀u∀m∀n(u1 = y + 1 ∧ δ(u,m, n)→ γ(⟨y, z⟩,m, n))

• Thus, f(y) = z is expressed by a ∆1 formula.
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• The above theorem shows that adding a symbol for a primitive recursive function and
its definition to IΣ1, we obtain a conservative extension.

• Furthermore, even if primitive recursive function symbols are involved, the classes of
Σn and Πn formulas (n > 0) do not essentially change. In other words, for a Σn

formula containing primitive recursive function symbols, we can construct an
equivalent Σn formula that includes no primitive recursive function symbols by
replacing a primitive recursive function symbol with a Σ1 formula or Π1 formula that
defines it.

• In the lemma in Page 15, we showed the existence of a u-piece code for a ∆1 set.
Also, a finite sequence of natural numbers s = (s0, . . . , sn−1) can be coded as a
natural number c. Then, we identify s and c, and write ci for si.
Note that (c, i) 7→ ci is primitive recursive.
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Recap: Partial computable functions and CE sets

• If a partial computable function f : Nk −→ N is realized by a TMM with index e,
f is denoted by {e}k (or simply {e}). When e is not an index of TM, {e} is regarded
as a partial function with empty domain.

• The partial recursive functions are the smallest class that contains the constant 0,
the successor function, projections, and closed under composition, primitive recursion
and minimalization.

Theorem� �
A partial recursive function is a partial computable function, and vice versa.� �
• A set X ⊂ Nn is said to be computably enumerable or CE if
{1x10 · · · 01xn : (x1, . . . , xn) ∈ X} is the domain of a partial computable function.

• X is said to be computable if both X and Xc are CE.

• A halting program K = {e : {e}(e) ↓} is CE but not computable.
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Among many conditions equivalent to CE, some basic ones are following.

Lemma

For the relation R ⊂ Nn, the following conditions are equivalent.

(1) R is CE.

(5) R is the range of some partial recursive function.

(6) There exists a primitive recursive relation S such that

R(x1, · · · , xn)⇔ ∃yS(x1, · · · , xn, y).

Definition

Let N = (N,+, ·, 0, 1, <) be the standard model of PA.

• A set A ⊆ Nl is said to be Σi if there exists a Σi formula φ(x1, . . . , xl) satisfying

(m1, . . . ,ml) ∈ A⇔ N |= φ(m1, . . . ,ml).

• Similarly, Πi sets can be defined by Πi formulas.

• A set that is both Σi and Πi is called ∆i.
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Lemma

The CE sets are exactly the same as the Σ1 sets. Hence, the computable (recursive) sets
are exactly the same as the ∆1 sets.

Proof.

• Any CE relation R(x⃗) can be expressed by ∃yS(x⃗, y) for some primitive recursive
relation S.

• By the definability theorem of prim. rec. functions, any primitive recursive relation S
can be expressed by a Σ1 formula, and so ∃yS(x⃗, y) is still Σ1.

• Conversely, a Σ1 formula is expressed in the form ∃yθ(x⃗, y) with θ(x⃗, y) ∈ Σ0. Since a
Σ0 formula is a primitive recursive, a Σ1 formula is CE.
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From now on, we assume that all theories are given in the language LOR and contain at
least R, so Σ1-complete. We will prove a version of Gödel’s first incompleteness theorem

Definition

Theory T is 1-consistent if, for any Σ1 sentence σ, T ⊢ σ ⇒ N |= σ.

• Ordinary theories T of arithmetic such as Q and PA have the standard model N, so
they are naturally 1-consistent, and indeed ω-consistent (i.e., for any formula φ(x),
if T ⊢ φ(n̄) for all n ∈ N then T ̸⊢ ∃x¬φ(x).)

• 1-consistency is properly stronger than consistency.
E.g., Q+∃x(0 + x ̸= x) is consistent but not 1-consistent.

Theorem ((Weak) Representation Theorem for CE sets, reposted)

Suppose that a theory T is Σ1-complete and 1-consistent. Then, for any CE set C, there
exists a Σ1 formula φ(x) such that for any n,

n ∈ C ⇔ T ⊢ φ(n).
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Theorem (Gödel’s first incompleteness theorem, a näıve version)

Let T be a Σ1-complete and 1-consistent Σ1 theory. Then T is incomplete, that is, there is
a sentence σ such that T cannot prove or disprove.

Proof.

• We know K is CE but not co-CE. By the weak representation theorem for CE sets,
there exists a formula φ(x) such that

n ∈ K⇔ T ⊢ φ(n).

• On the other hand, since N−K is not a CE, there exists some d such that

d ∈ N−K ̸⇔ T ⊢ ¬φ(d).

Thus, (d ∈ K and T ⊢ ¬φ(d)) or (d ̸∈ K and T ̸⊢ ¬φ(d)).
• In the former case, since d ∈ K implies T ⊢ φ(d), T is inconsistent, contradicting
with the 1-consistency assumption.

• In the latter case, T is incomplete because φ(d) cannot be proved or disproved.
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Formalizing metamathematics

We prepare some useful prim. rec. functions for coding things.

Lemma

For a primitive recursive function h(x⃗), µy < h(x⃗)A(x⃗, y) is primitive recursive.

Example� �
Let p(x) = “(x+ 1)th prime number ”, that is ,

p(0) = 2, p(1) = 3, p(2) = 5, . . .

Then, p(x) is a primitive recursive function since it is defined as follows.

p(0) = 2, p(x+ 1) = µy < p(x)! + 2 (p(x) < y ∧ prime(y)).� �
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• A finite sequence of natural numbers (x0, . . . , xn−1) can be represented by a single
natural number x as follows,

x = p(0)x0+1 · p(1)x1+1 · · · · · p(n− 1)xn−1+1

• Fixing n, such a mapping from Nn to N is a primitive recursive function.

• Conversely, for a natural number x, the function c(x, i) takes the ith element xi from
x,

xi = c(x, i) = µy < x (¬∃z < x (p(i)y+2 · z = x)).

• The length of the sequence represented by x is

leng(x) = µi < x (¬∃z < x (p(i) · z = x)).

• Furthermore, we define a primitive recursive relation Seq(x) to denote that a natural
number x is the code of such a sequence as follows:

Seq(x)⇔ ∀i < x∀z < x (p(i) · z = x→ i ≤ leng(x)).
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Gödel numbers

Definition

Let Ω be a finite (or countably infinite) set of symbols, and an injection ϕ : Ω→ N. For a
string s = a0 · · · an−1, the following natural number ψ(s) is called the Gödel number of s,
denoted by ⌜s⌝.

ψ(s) = p(0)ϕ(a0)+1 · p(1)ϕ(a1)+1 · · · · · p(n− 1)ϕ(an−1)+1.

The mapping ⌜ ⌝ is an injection from the set of all symbols Ω∗ to N.

Example� �
Let Ω = {0, 1,+, (, )}, ϕ(0) = 0, ϕ(1) = 1, ϕ(+) = 3, ϕ( ( ) = 5 and ϕ( ) ) = 6.
Then,

⌜(1 + 0) + 1⌝ = 26 · 32 · 54 · 71 · 117 · 134 · 172� �
Problem 5� �
Show that Term(x) expressing “x is the Gödel number of a term” is primitive recursive.� �
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Definition

A theory T is Σi (Πi/∆i/primitive recursive, etc.) if the set of Gödel numbers of its
axioms {⌜σ⌝ : σ ∈ T} is Σi (Πi/∆i/primitive recursive, etc.).

• Ordinary theories in mathematics are finite or at most primitive recursive.

• The theories of arithmetic introduced so far (PA, IΣ1, etc.) are all primitive recursive.

• To derive the incompleteness theorem, we need to assume that a theory is CE.

• Without this condition, for example, if we take all true arithmetic formulas as axioms,
we would have a complete theory, but it would not be a formal system.

• From the following theorem, the Σ1 set of axioms can be always be replaced by a
primitive recursive set.
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Theorem (Craig’s lemma)

For any CE theory T , there exists a primitive recursive theory T ′ that proves the same
theorems.

Proof. Let T be a theory defined by Σ1 formula φ(x) ≡ ∃yθ(x, y) (θ is Σ0).
That is, σ ∈ T ⇔ N |= φ(⌜σ⌝). ⌜σ⌝ is the Gödel number of a sentence σ.
Then, we define a primitive recursive theory T ′ as follows:

T ′ = {
n + 1 copies︷ ︸︸ ︷

σ ∧ σ ∧ · · · ∧ σ : θ(⌜σ⌝, n)}.

Then, T and T ′ are equivalent, since ⊢ σ ↔ σ ∧ σ ∧ · · · ∧ σ. Thus T ′ is primitive
recursive.

Because Gödel numbers and their decodings are heavily used in T ′, T ′ cannot be easily
expressed in Σ0.
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Based on Craig’s lemma, a Σ1 theory is primitive recursively axiomatizable. Then, “a finite
sequence (or finite tree) P of formulas is a proof in T” can be defined in a primitive
recursive way (with T as a parameter).

Definition

• Let T be a Σ1 theory and T ′ its p.r. counterpart. A proof in T ′ is a finite sequence of
formulas where each formula is either a logical axiom, an equality axiom, or an axiom
of T ′, or obtained by applying MP or quantification rules from formulas appearing
before. The formula that appears at the end of the proof is the theorem of T .

• Now, we define the primitive recursive predicate ProofT as follows.

ProofT (⌜P⌝, ⌜σ⌝)⇔ P is a proof of formula σ in T ′.

• By ProofT , we also denote a ∆1 formula expressing the above ProofT in IΣ1. A Σ1

formula BewT is defined as

BewT (x) ≡ ∃y ProofT (y, x).

The formula BewT (x) expresses that “x is the Gödel number of a theorem of T”. “Bew”
stands for the German beweisbar (provable).
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Theorem ((Strong) Representation Theorem for Computable Sets, reposted)

Assume a theory T is Σ1-complete. For any computable set C, there exists a Σ1 formula
φ(x) such that

n ∈ C ⇒ T ⊢ φ(n), n ̸∈ C ⇒ T ⊢ ¬φ(n).

Theorem (Representation Theorem for Computable Function)

Let T be Σ1-complete. For any computable function f(x⃗), there exists a Σ1 formula
φ(x⃗, y) which represents f(x⃗) = y and satisfies, for all natural numbers m1, . . . ,ml,

T ⊢ ∀y∀y′(φ(m1, . . . ,ml, y) ∧ φ(m1, . . . ,ml, y
′)→ y = y′).

Proof. For simplicity, we assume that l = 1. Suppose f(x) = y is represented by a Σ1

formula φ(x, y) ≡ ∃zθ(x, y, z) with θ(x, y, z) ∈ Σ0. We define a Σ0 formula ψ(x, y, z) as

θ(x, y, z) ∧ ∀y′, z′ ≤ y + z(θ(x, y′, z′)→ y + z ≤ y′ + z′).

Then, ∃zψ(x, y, z) also represents f(x) = y. To show, the functional property of this
representation. Take any m and let n = f(m). Then the minimal k such that θ(m,n, k)
satifies ψ(m,n, k). By the definition, no other y, z satisfy ψ. So, we are done.
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Lemma (Diagonalization lemma)

Let T be Σ1-complete. For any formula ψ(x) in which x is the unique free variable,
there exists a sentence σ such that T ⊢ “σ ↔ ψ(⌜σ⌝)” .

Proof.

• A formula with only x as a free variable is computably enumerated as
φ0(x), φ1(x), . . ., and then f(n) = ⌜φn(n)⌝ is also a computable function.
By the functional representation theorem, there exists a Σ1 formula χ such that

f(m) = n⇒ T ⊢ χ(m,n) ∧ ∀y ̸= n χ(m, y).

• The formula ∃y(χ(x, y) ∧ ψ(y)) must be listed as φk(x) for some k.
Now, let σ ≡ φk(k). Since f(k) = ⌜σ⌝, T ⊢ χ(k, ⌜σ⌝).
Thus, in T , ψ(⌜σ⌝)→ ∃y(χ(k, y) ∧ ψ(y)) (≡ φk(k) ≡ σ).
• On the other hand, since T ⊢ ∀y ̸= ⌜σ⌝ ¬χ(k, y), in T ,

¬ψ(⌜σ⌝)→ ∀y(χ(k, y)→ ¬ψ(y))→ ¬∃y(χ(k, y) ∧ ψ(y)) (≡ ¬σ).

• Therefore, T ⊢ σ ↔ ψ(⌜σ⌝), that is, σ is a fixed point of ψ. 2
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Homework� �
(1) T is called ω-consistent if for any formula φ(x), if T ⊢ φ(n̄) for all n ∈ N then
T ̸⊢ ∃x¬φ(x).

Show that a Σ1-complete theory T is 1-consistent iff it is ω-consistent with respect to
the Σ0 formulas φ(x).

(2) T is called Σn-consistent if any Σn theorem of T is true. Similarly for Πn-
consistency.

Show that if a Σ1-complete theory T is ω-consistent, then it is Π3-consistent, but not
necessarily Σ3-consistent.� �
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Theorem (Gödel’s first incompleteness theorem, a formal version)

Let T be a Σ1-complete and 1-consistent Σ1 theory. Then T is incomplete, that is, there is
a sentence σ such that T ⊬ σ and T ⊬ ¬σ.

Proof. By the diagonalization lemma, there exists a fixed point σ of ¬BewT (x). In other
words, T ⊢ σ ↔ ¬BewT (⌜σ⌝). We show that σ is such a sentence that T cannot prove or
disprove as follows.

• Suppose T ⊢ σ. Then BewT (⌜σ⌝) holds, that is, N |= BewT (⌜σ⌝). Therefore, by Σ1

completeness, T ⊢ BewT (⌜σ⌝). Since σ is a fixed point of ¬BewT (x), we have
T ⊢ ¬σ which implies the inconsistency of T , a contradiction.

• On the other hand, suppose T ⊢ ¬σ. Since σ is a fixed point, T ⊢ BewT (⌜σ⌝). By
1-consistency of T , N |= BewT (⌜σ⌝), that is, T ⊢ σ, which also implies the
inconsistency of T .
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• The sentence σ in the above proof “asserts its own unprovability” because
“σ ⇔ T ̸⊢ σ” holds. This σ is called the Gödel sentence of T .

• Since T ̸⊢ σ, N |= ¬BewT (⌜σ⌝), and so N |= σ if N |= T . That is, a Gödel sentence
of a theory which has N as a model is a “true Π1 sentence.”

• As we will see later (if T contains IΣ1), such a Gödel sentence is equivalent to the
statement expressing the consistency of T .

Rosser weakened the assumption of incompleteness theorem from 1-consistency to
consistency. He modified BewT (x) as follows.

Bew∗
T (x) ≡ ∃y(ProofT (y, x) ∧ ∀z < y¬ProofT (z,¬x)).

Here, ¬x means the code of ¬φ when x is the code of a formula φ.
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Bew∗
T (x) ≡ ∃y(ProofT (y, x) ∧ ∀z < y¬ProofT (z,¬x)).

Lemma

Let T be a Σ1-complete Σ1 theory. Then, for any sentence σ,
(1) T ⊢ σ ⇒ T ⊢ Bew∗

T (⌜σ⌝),
(2) T ⊢ ¬σ ⇒ T ⊢ ¬Bew∗

T (⌜σ⌝).

Proof. If T is inconsistent, the lemma holds trivially, so we assume T is consistent.
If T ⊢ σ, it is easy to see that Bew∗

T (⌜σ⌝) is true. Then (1) follows from Σ1 completeness.
To show (2), assume T ⊢ ¬σ. There exists n ∈ N such that the following holds in N

ProofT (n, ⌜¬σ⌝) ∧ ∀z ≤ n¬ProofT (z, ⌜σ⌝).

By Σ1 completeness, the above formula is provable in T . So, in T ,
ProofT (y, ⌜σ⌝)→ y > n, and thus

∀y(ProofT (y, ⌜σ⌝)→ ∃z < yProofT (z, ⌜¬σ⌝))

is provable. Therefore, T ⊢ ¬Bew∗
T (⌜σ⌝).
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The fixed point σ of ¬Bew∗
T (x), i.e., T ⊢ σ ↔ ¬Bew

∗
T (⌜σ⌝) is called a Rosser sentence.

Theorem (Gödel-Rosser)

If T is a consistent Σ1-complete Σ1 theory, then there exists a sentence σ such that T ̸⊢ σ
and T ̸⊢ ¬σ.

Proof.

• If T ⊢ σ, then by the last lemma T ⊢ Bew∗
T (⌜σ⌝), and so by the definition of the fixed

point σ, T ⊢ ¬σ, which implies that T is inconsistent.

• If T ⊢ ¬σ, then by the last lemma, T ⊢ ¬Bew∗
T (⌜σ⌝). By definition of the fixed point

σ, we have T ⊢ σ, which implies that T is inconsitent.
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Let’s look at more applications of the diagonalization lemma.

Lemma

In a consistent Σ1-complete theory T , there exists no formula ψ(x) such that for any
sentence σ, T ⊢ σ ↔ ψ(⌜σ⌝).

Proof. If there were such a ψ(x), then a fixed point σ of ¬ψ(x) clearly does not satisfy
the condition.

In the above lemma, letting T be Th(N), we obtain the following theorem.

Theorem (Tarski’s undefinability of truth)

There is no formula ψ(x) such that N |= σ ↔ ψ(⌜σ⌝) for all sentence σ.
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Lemma

For a consistent Σ1-complete theory T , there is no formula ψ(x) s.t. for any sentence σ,

(1) T ⊢ σ ⇒ T ⊢ ψ(⌜σ⌝),
(2) T ̸⊢ σ ⇒ T ⊢ ¬ψ(⌜σ⌝).

Proof. Suppose there were such a ψ(x), and let σ be a fixed point of ¬ψ(x). Then, if
T ⊢ σ then T ⊢ ¬ψ(⌜σ⌝), which means (1) does not hold. If T ̸⊢ σ then T ̸⊢ ¬ψ(⌜σ⌝),
which means (2) does not hold.

Lemma

For a consistent Σ1-complete theory T , the set {⌜σ⌝ : T ⊢ σ, σ is a sentence} is not
computable.

Proof. If the set of theorems of T is computable, by the strong representation theorem,
there would be such a ψ(x) that satisfies the above lemma.
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Theorem (Church’s undecidability of predicate calculus)

In the language LAR (or LOR), the set of Gödel numbers of sentences provable in
first-order logic {⌜σ⌝ : ⊢ σ, σ is a statement} is not computable.

Proof. Since Q consists of finitely many axioms, we can connect them all by ∧ and denote
it as ξ. By the deduction theorem,

Q ⊢ σ ⇔ ⊢ ξ → σ.

So if {⌜σ⌝ : ⊢ σ} is computable,

{⌜σ⌝ : ⊢ ξ → σ} = {⌜σ⌝ : Q ⊢ σ}

is also computable, which contradicts with the last lemma.
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Thank you for your attention!
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