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Recap

Recap

Peano arithmetic PA is a first-order theory in the language of ordered rings
Lor = {+,+,0,1,<}, consisting of the following mathematical axioms.

Definition

Peano arithmetic (PA) has the following formulas in Logr as a mathematical axiom.
Successor: Al=(z+1=0), A2. z+1l=y+1—-z=y.
Addition: A3. z+0=u=, Ad. z+ (y+1)=(x+y)+ 1
Multiplication: A5. z-0=0, A6. z-(y+1)=z-y+a.
Inequality A7. =(z < 0), AB. z<y+loz<yVa=y.
Induction: A9. ©(0) AVz(p(z) = o(x + 1)) = Vzp(z).

® |nduction is not a single formula, but an axiom schema that collects the formulas for
all the p(z) in Lor. Note that ¢(x) may include free variables other than z.
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Arithmetical Hierarchy

Recap

® We inductively define hierarchical classes of formulas, ¥; and II; (i € N).
Definition

® The bounded formulas are constructed from atomic formulas by using propositional
connectives and bounded quantifiers Vax < ¢ and Jx < ¢, where Vo < ¢t and 3z < t are
abbreviations for Vz(z <t — ---) and Jx(z <t A---), respectively, and ¢ is a term
that does not includes z. A bounded formula is also called a £y (=II) formula.
® For any i,k € N:
» if ¢ is a X; formula, Va; - - -Vagp is a II; 41 formula,

» if ¢ is a II; formula, Jz; - - -z is a X; 41 formula.

e Y, /TI; also denotes the set of all 3;/II; formulas.
® Note that Vz > ¢ or Vz(x >t — ---) and 3z >t or Jx(z >t A---) are not bounded.
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Let us define subsystems of PA by restricting its induction axiom.

Definition
Let T" be a class of formulas in Lor. By IT", we denote a subsystem of PA obtained by
restricting (¢(z) of) induction to the class T'.

® The main subsystems of PA are 1X; D 13y D IOpen, where Open is the set of
formulas without quantifiers.

Another system weaker than 10pen is the system Q defined by R. Robinson.
Definition

Robinson’s system Q is obtained from PA by removing the axioms of inequality and
induction, and instead adding the following axiom:

Predecessor:  A10: Va(x # 0 — Jy(y + 1 = x)).
So, it is a theory in the language of ring Lgr = {+,-,0,1}.

Let Q< be the system Q plus axiom A7.5 VaVy(z < y <> Jz(z + (z + 1) = y)).
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Lemma

In [Open, the following axioms of theory of discrete ordered semirings PA™ are provable.
(1) Semiring axioms ( excluding the additive inverses from the commutative ring ).
(2) difference axiom z <y — Jz(z + (z + 1) = y).
(3) a linear order with the minimum element 0 and discrete (0 < z <> 1 < x).
(4) Order preservation z <y >z +z2<y+zA(x-z2<y-zVz=0).

Corollary
Q. C PA™ C I0pen C 13y C IX; C PA.

Definition (Mostowski-Robinson-Tarski's system R)

R is a theory in the language of ordinal rings, consisting of the following axiom schemes.
Rl. m#m (when m #n).
R2. —(z<0).
R3. z<n+l<az=0V---Vz=n.
R4, zxz<nVz=nVn<uz.
R5. m+m=m+n.
R6. men =men.
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R, Q< proves all axioms of R.

Theorem (X;-completeness of R)

R proves all true X1 sentences. Therefore, Q-, PA™, IOpen, etc. are all ¥;-complete.

Proof
® If a ¥y sentence Jx13xa ... Jxpp(x1, X2, .., Tk) is true, there exist natural numbers
ny,na,...,ny such that p(n7,m3,...,7x) holds.

® By virtue of R3, a bounded quantification 3z < t ¢(z) can be rewritten as
0(0) V(1)) V-V (n—1) if the value of close term t is n. Thus, by induction, a
bounded sentence can be rewritten as a Boolean combination of atomic sentences.
Since an atomic sentence can be proved/disproved in R if it is true/false, also can a

bounded sentence.

® Therefore, ¢(71, g, ..., M%) is provable since it is true. From the rule of first-order
logic, 3x13xs ... Jxkp(x1, 2o, ..., xk) is also provable in R. O
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I>21 and related systems

We investigate some basic properties of 13, especially the definability of primitive recursive
functions.

Definition

For a formula ¢(z,y1,...,yx) of Lor, the following formula is called the collection
principle or bounding principle of ¢, denoted (By):

Vo < ’U,E'yl o 'Eykso(xayla 000 7yk) — JuVz < UHyl <v-- Elyk < U@(x,yla 000 7yk)a

where ¢(x,y1, ..., yr) may include undisplayed variables other than w,v. If the collection
principle should be treated as a sentence, we consider its universal closure. For a class I" of
formulas, we let

BT =12, U{(Bp): p eT}.

For any n, the collection principle of a 3,11 formula

90('7;’ Yi,- - ayk)(E Jz1 - Elzle(xvylv e Yk 21 Zl))
can be obtained from the collection principle of a IL,, formula 0(x,y1, ..., Yk, 21,-- ., 21)
with k + [ variables. Therefore, BY,, 11 < BII,.
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ke In BY,,(n > 1), adding bounded quantifiers Vo < ¢, 3z < ¢ in front of a ¥,, formula

produces a formula that is equivalent to a ¥,, formula. Similarly for a II,, formula.

127 and
primitive . .
Proof. By meta-induction on n.

functions

® The case n = 1.
Take any X7 formula Jy; - - - Jypo(x, y1,- .., yk). By BX1, we have

Vo <t3Jyr - yre(T,y1,- -5 yk) — Ve <ty <o 3y <ve(z,y1, -5 Uk),

and obviously the converse < also holds. Thus, adding Vz < t in front of the ¥;
formula is equivalent to a X; formula of the right-hand side. If 3x < ¢ is added before
a Y1 formula, it can be converted into a ¥ formula by shifting 3z < ¢ to the end of
the block of existential quantifiers of the formula.
II; formulas can be treated similarly.

® For n > 1, by the same argument as above, we exchange the order of a bounded
quantifier Yz < t and an existential quantifier in front of a 3,, formula. Then, by
induction hypothesis, we can transform the II,,_; formula preceded by a bounded
quantifier into an equivalent II,,_; formula.
IT,, formulas can be treated similarly. O
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For any n > 1, BY,, is a subsystem of 13,,.
127 and
primitive
Proof. We use meta-induction on n.

functions

® Let 32"1 ' "HZMP(%?JM--~7yk7217-~-a2l) be Zn and So(xvyla"wykazla"'azl) anl-
® Suppose Vo < udyy - IyrIzr - 32T, YLy - oy Yhy 215+ o5 21)- -

® By the induction hypothesis BX,,_; (obvious for n = 1) and the above lemma, the
following formula ¢ (w) is X,,.

Y(w) = (FovVe <wIyy <v--- Ty < vz <v---Fz < vp) Vu < w.

® Now, we want to prove Ywi(w) by induction.

Clearly, ¥(0) holds.

Assume ¥ (w) and we will show ¥(w + 1).

HIn the following, we may treat u as a constant.
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If u <w+1, ¥(w+ 1) is obvious.

So, assume w < u. By the first assumption, there exist 4/,...,y.,2},..., 2 such that
y p yla 7y}<;a 1> s ©l
o(w,yi, ..., YL, 21, .., 2). By the induction hypothesis ¢)(w), there is v such that

Ve <wdyy <ov---Jyp <vzg <ov---3Jzp < v

If we put
v =max{v,y} +1,...,y, + 1,21 +1,...,2 + 1},

then Vo < w+ 13y; < v’ -+ Jyp < v'Izy < v’ -z < ', which implies ¥(w + 1).

So by ¥, induction, ¥(w) holds for all w. In particular, if w = u,
JoVr < udy; <wv---Fyp <vdzp <wv---Jz < v,

which implies JvVz < udy; <v---Jy, < v3z; - Ize. O
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17 and :
iR For any n, I¥,, and IIL,, are equivalent.
s

Proof.
® We show that III,, is provable in 13,,. The other cases can be treated in a similar way.
® Let ¢(z) be a II,, formula and assume ¢(0) A Vz(p(z) — @(z + 1)).

® By way of contradiction, we assume —¢(c). Note that free variables included in ¢(c)
should be replaced with constants.

® Roughly, we use induction on the X, formula —¢(c — x). That is, =¢(c — 0) and
— (e —x) = —p(c— (x+ 1)) imply —p(0).
® More strictly, it is proved by using the following formula.

YE)=Jy<clr+y=cA-py)) Ve<a.

® [tis a X, formula by the lemma in Page 10.

e Similarly, 12, is provable in ITT,,.
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i Problem?2 )

functions (1) The following formula is called the least number principle for a formula ¢ and
denoted as Ly,
Jwp(x) = Fz(p(z) A VY < z20(y)).

LY, stands for { Ly : ¢ is ¥, }. Then, show that IX,, is equivalent to LY,,.
(2) For any n, show BX,, 11 D 1%,,.

It is also known that the relation 1,1 D BX, 41 D 1%, is strict.? 3.

2Petr Hajek and Pavel Pudldk. Metamathematics of first-order arithmetic. Springer, 1993
3Kaye R. Models of Peano arithmetic, Oxford Univesity Press, 1991.
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Next we discuss the definability of primitive recursive functions in IX;. The following
lemma is a basic tool for uniquely assigning natural numbers to finite sets and finite
sequences in 1X.

Lemma

In 1X;, for a ¥; formula ¢(x) and a II; formula ¢(z), we can prove

Va(o(x) < ¥(z)) = Yudm,n > 0¥z < u(p(z) <> m(x + 1) + 1 is a divisor of n ).

Proof.

® First, fix u. The existence of a number m which divides all i < u can be easily shown
by X7 induction.

® Then, for all i < u, m(i + 1) + 1 are mutually prime. - If m(i +1) 4+ 1 and
m(j+1)+1 (i <j < u) are both multiples of a prime number d,
(m(G+1)+1)— (mGE+1)+1) =m(j — 1) should also be a multiple of d. But d is
never a divisor of m because it devises m(i + 1) + 1. Also, d is not a divisor of
m(j — i) since d > u > j —i.
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Next, let ¢(x) be 31 formula, and 1 (z) be a II; formula. Assume Vz(p(z) < (x)).

Then, by 3; induction on j, we prove the following.

InVe < j|(¢(x) = m(xz+ 1)+ 1 is a divisor of n )

A (m(x + 1)+ 1is a divisor of n. — ()| Vu < j.

It is obvious when j = 0.

Let n; be the minimum 7 that satisfies the above condition for j (See the least
number principle, Problem 3).

Now, if ¢(j), then nj41 =nje(m(j+ 1) + 1), otherwise n; 1 = n;.

Note that for all ¢ < u, m(i + 1) + 1 are mutually prime, and n; does not contain any
factor of m(j + 1) + 1 due to its minimality.

Then, n;4 satisfies the above condition for j + 1 < u, which completes the induction
step.

Thus, the lemma holds as j = u. O
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In the above lemma, the triple (u, m,n) satisfying
Vo <u (go(x) < m(x + 1) + 1 is a divisor of n)

is called a u-piece code of a A; set {z | ¢(z)} defined by a ¥; formula p(z) and a
IT; formula ¥(z).

We will extend the above to n-dimensional sets. First, we code a pair of natural
numbers (z,y) by a natural number (z,y) = w + z. Note that if
u = (uy,us), then (x,y) < u for any & < uy, y < us.

Then, from the lemma in Page 15, for a Ay formula ¢(z,y), there exist u,m,n s.t.
Vo < uVy < ua(p(z,y) <> m({z,y) + 1)+ 1 is a divisor of n )
The triple ¢ = (u,m,n) is called a (u1,us)-piece code of the A; set.

In general, by coding an n-tuple (21,9, - ,x,) by a natural number
((-++{x1,22),...),x,), we can define a (u1,us, - ,u,)-piece code of a A;
n-dimensional set.
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In 124, (the graph of) a primitive recursive function f can be represented by a A; formula
e o(xz1,...,21,y,2), and the following are provable

recursive
functions

Yy - -V Vy3lze(z, ..., z1,Y, 2).

Proof.

® We will prove this by induction on the construction of primitive recursive functions.
The essential step is the definition by primitive recursion.

® For simplicity, we omit parameter variables x1,...,x;, and consider the definition of a
unary function f from a constant ¢ and binary function h as follows:

f0)=¢ fly+1) = hly, f(y))-

® From the induction hypothesis, h can be expressed in both ¥; and II; formulas.

® If f can be expressed by a A; formula ¢, it will be easily derived in IX; that
VI VyAlzp(T,y, 2).
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First, let v(z, m,n) be a Xy formula expressing “m(xz + 1) + 1 is a divisor of n”, that
is, dd<n (m(x+1)+1)-d=n.
We define a predicate d(u, m,n) such that

K. Tanaka

IS and
primitive
recursive

functions I((ug,u2), m,n) & Vy <u;dz <wug f(y) =z,
by the following Yo formula: for any u = (u1, us),

(u,m,n) =Yy <uidz <ug vy((y,2),m,n) AVz < ua(v({0,2),m,n) <> z = ¢)
Ay <ur=1Vz <uz(y((y + 1, 2),m,n) < 32" <ua(z = h(y, 2') Av({y, 2),m,n))).

Then, by 131, we can show Vu;JusImInd({ur, us), m, n)

Therefore, we have

fy) =z FudmIn(u; =y + 1A 6(u,m,n) Ay({y, z),m,n))
< YuvmVn(u; =y + 1A d(u,m,n) — v({y, z), m,n))

Thus, f(y) = z is expressed by a A; formula.
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The above theorem shows that adding a symbol for a primitive recursive function and
its definition to 121, we obtain a conservative extension.

Furthermore, even if primitive recursive function symbols are involved, the classes of
%, and II,, formulas (n > 0) do not essentially change. In other words, for a X,
formula containing primitive recursive function symbols, we can construct an
equivalent X, formula that includes no primitive recursive function symbols by
replacing a primitive recursive function symbol with a 33y formula or II; formula that
defines it.

In the lemma in Page 15, we showed the existence of a u-piece code for a A; set.
Also, a finite sequence of natural numbers s = (sq,...,S,—1) can be coded as a
natural number c¢. Then, we identify s and ¢, and write ¢; for s;.

Note that (c,) — ¢; is primitive recursive.
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® |f a partial computable function f : N¥ — N is realized by a TM M with index e,

® The partial recursive functions are the smallest class that contains the constant 0,

Recap: Partial computable functions and CE sets

f is denoted by {e}* (or simply {e¢}). When e is not an index of TM, {e} is regarded

as a partial function with empty domain.

the successor function, projections, and closed under composition, primitive recursion

and minimalization.

Theorem

[A partial recursive function is a partial computable function, and vice versa.

J

® Aset X C N" is said to be computably enumerable or CE if
{1720---01*" : (21,...,2,) € X} is the domain of a partial computable function.

® X is said to be computable if both X and X°¢ are CE.

® A halting program K = {e: {e}(e) |} is CE but not computable.
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Among many conditions equivalent to CE, some basic ones are following.

Lemma

For the relation R C N”, the following conditions are equivalent.
(1) Ris CE.

(5) R is the range of some partial recursive function.

(6) There exists a primitive recursive relation S such that
R(xlv T 71'n) a4 Elys(xla o a':l:ﬂmy)'
Definition

Let 91 = (N, +,-,0,1, <) be the standard model of PA.
e Aset AC N is said to be ; if there exists a &; formula (1,

(my,...,my) € A NE=p(my,..., ).

® Similarly, IT; sets can be defined by II; formulas.
® A set that is both ¥; and II; is called A;.

..., ;) satisfying
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Lemma

The CE sets are exactly the same as the 3, sets. Hence, the computable (recursive) sets
are exactly the same as the A; sets.

Proof.

® Any CE relation R(Z) can be expressed by JyS(Z,y) for some primitive recursive
relation S.

® By the definability theorem of prim. rec. functions, any primitive recursive relation S
can be expressed by a ¥; formula, and so JyS(Z,y) is still X;.

® Conversely, a X7 formula is expressed in the form Jyd(Z, y) with (&, y) € Xy. Since a
Yo formula is a primitive recursive, a X formula is CE.
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From now on, we assume that all theories are given in the language Lor and contain at
least R, so ¥1-complete. We will prove a version of Godel’s first incompleteness theorem

Definition

Theory T is 1-consistent if, for any ¥y sentence o, T FHo = N Eo.

® Ordinary theories T' of arithmetic such as Q and PA have the standard model 91, so
they are naturally 1-consistent, and indeed w-consistent (i.e., for any formula ¢(z),
if TF @(n) for all n € N then Tt/ Jz—p(x).)

® 1-consistency is properly stronger than consistency.
E.g., Q+3z(0 + = # x) is consistent but not 1-consistent.

Theorem ((Weak) Representation Theorem for CE sets, reposted)

Suppose that a theory T is Y;-complete and 1-consistent. Then, for any CE set C, there
exists a 3y formula ¢(x) such that for any n,

neC < TF o).
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Let T be a Y;-complete and 1-consistent X theory. Then T is incomplete, that is, there is
a sentence o such that 7" cannot prove or disprove.

Proof.

CE sets and the

first ® We know K is CE but not co-CE. By the weak representation theorem for CE sets,
neempletensss there exists a formula ¢(z) such that

neKe Tk pm).

® On the other hand, since N — K is not a CE, there exists some d such that

deN—K & T+ —p(d).

Thus, (d € K and T+ —¢(d)) or (d € K and T I/ —p(d)).

® In the former case, since d € K implies T'F ¢(d), T is inconsistent, contradicting
with the 1-consistency assumption.

® In the latter case, T is incomplete because ¢(d) cannot be proved or disproved.
O
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Formalizing metamathematics

We prepare some useful prim. rec. functions for coding things.

Lemma

For a primitive recursive function h(Z), py < h(Z)A(Z,y) is primitive recursive.

-~ Example
Let p(z) = “(z + 1)th prime number ", that is ,
p(0) =2,p(1) =3,p(2) =5,...

Then, p(z) is a primitive recursive function since it is defined as follows.

L p(0) =2, plz+1)=py <p()+2 (p(x) <yAprime(y)).
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A finite sequence of natural numbers (xg,...,2,_1) can be represented by a single
natural number x as follows,

€T = p(0)$0+1 .p(l)fbﬁ-l ..... p(n _ l)mn_1+1

Fixing n, such a mapping from N™ to N is a primitive recursive function.

Conversely, for a natural number z, the function c(x,¢) takes the ith element z; from
x,
x; = c(x,i) = py <z (-3z <2 (p(i)?"? . 2 = 2)).

The length of the sequence represented by x is
leng(z) = pi < z (—3z <z (p(i) - z = x)).

Furthermore, we define a primitive recursive relation Seq(z) to denote that a natural
number z is the code of such a sequence as follows:

Seq(z) & Vi < aVz <z (p(i) - z =2 — i <leng(z)).
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Godel numbers
Definition
Let 2 be a finite (or countably infinite) set of symbols, and an injection ¢ : Q& — N. For a

string s = ag - - - a1, the following natural number ¥ (s) is called the Godel number of s,
denoted by "s™.

T/J(S) = p(0)¢(a0)+1 . p<1)¢(a1)+1 ..... p(n . 1)¢(an71)+1'

The mapping ™ s an injection from the set of all symbols 2* to N.

~ Example ~

Let @ ={0,1,+,(,)}, (0) =0, ¢(1) =1, ¢(+) =3, ¢(() =5 and ¢() ) = 6.
Then,

T(14+0)+17=20.32. 5.7 117 13" L 172
N J

s Problem 5 ~

Show that Term(x) expressing “z is the Godel number of a term” is primitive recursive.
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Definition
A theory T is 3; (IL;/A; /primitive recursive, etc.) if the set of Gédel numbers of its
axioms {"o: 0 € T} is B; (II;/A;/primitive recursive, etc.).

® Ordinary theories in mathematics are finite or at most primitive recursive.
® The theories of arithmetic introduced so far (PA, 1X;, etc.) are all primitive recursive.
® To derive the incompleteness theorem, we need to assume that a theory is CE.

e Without this condition, for example, if we take all true arithmetic formulas as axioms,
we would have a complete theory, but it would not be a formal system.

® From the following theorem, the ¥; set of axioms can be always be replaced by a
primitive recursive set.
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Theorem (Craig’s lemma)

For any CE theory T, there exists a primitive recursive theory T” that proves the same
theorems.

Proof. Let T be a theory defined by 3; formula ¢(z) = 3ybd(z,y) (0 is o).
Formalising Thatis,c € T &N = p(To ). "o is the Godel number of a sentence o.
metamathematics  Then, we define a primitive recursive theory T as follows:

n + 1 copies

—_— _
T'={cANoN---No:0(Tc",m)}

Then, T and T” are equivalent, since o <> o Ao A---Ao. Thus T’ is primitive
recursive.

Because Gddel numbers and their decodings are heavily used in 77, T” cannot be easily
expressed in Y.



Logic and
Foundation

K. Tanaka

Formalizing
metamathematics

Based on Craig's lemma, a X7 theory is primitive recursively axiomatizable. Then, “a finite
sequence (or finite tree) P of formulas is a proof in 7" can be defined in a primitive
recursive way (with T" as a parameter).

Definition

® et T be a X7 theory and T" its p.r. counterpart. A proof in T” is a finite sequence of
formulas where each formula is either a logical axiom, an equality axiom, or an axiom
of T", or obtained by applying MP or quantification rules from formulas appearing
before. The formula that appears at the end of the proof is the theorem of T'.

® Now, we define the primitive recursive predicate Proofr as follows.
Proof("P7,"0™) < P is a proof of formula o in T".

® By Proof7, we also denote a A; formula expressing the above Proofr in 1X;. A X4
formula Bew is defined as

Bewrp(z) = Jy Proofr(y, x).

The formula Bewr(z) expresses that “z is the Godel number of a theorem of T". “Bew"
stands for the German beweisbar (provable).
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Assume a theory 7" is ¥1-complete. For any computable set C, there exists a ¥; formula

(z) such that
neC=TkFeMm), ngC=TF-pm).

Theorem (Representation Theorem for Computable Function)

Formalizing

metamathematis. ~ Let 7' be Xj-complete. For any computable function f(Z), there exists a ¥; formula
©(Z, y) which represents f(Z) = y and satisfies, for all natural numbers my, ..., my,

T =Vyvy' (e(mr, ..., my,y) Ae(mr, ..., m,y') = y=19).

Proof. For simplicity, we assume that [ = 1. Suppose f(z) =y is represented by a ¥
formula (x,y) = 320(x,y, z) with 0(x,y, z) € Eg. We define a Xy formula ¢(x,y, z) as
O(z,y,2) AVY 2" <y+2(0(x,y,2") »y+2<y +2).

Then, 32¢)(x,y, z) also represents f(z) = y. To show, the functional property of this
representation. Take any m and let n = f(m). Then the minimal k such that 6(m,7, k)
satifies (7,7, k). By the definition, no other y, 2 satisfy ¥. So, we are done.
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Let T be X1-complete. For any formula ¢(z) in which z is the unique free variable,
there exists a sentence o such that T+ “o <> ("o )7 .

Proof.
® A formula with only x as a free variable is computably enumerated as
S vo(x),p1(x),..., and then f(n) = "¢, ()" is also a computable function.
metamathematics By the functional representation theorem, there exists a 1 formula x such that

f(m) =n="TF x(m,n) \Vy #n x(M,y).

® The formula Jy(x(z,y) A ¥ (y)) must be listed as @y (x) for some k.
Now, let o = (k). Since f(k) =To™, T+ x(k,"c7).
Thus, in T, (o) = Fy(x(k, ) A ¥(y) (= on(R) = ).

® On the other hand, since T+ Vy # "o ' =x(k,y), in T,

“Y(To) = Vy(x(k,y) = ¢ (y)) = -Fy(x(k, ) A(y)) (= -0).

® Therefore, T o <+ ("o ), that is, o is a fixed point of .
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-~ Homework

(1) T is called w-consistent if for any formula ¢(z), if T F (@) for all n € N then
Tt/ Jx—p(x).

Show that a ¥;-complete theory T' is 1-consistent iff it is w-consistent with respect to
the 3¢ formulas ¢(x).

(2) T is called X,,-consistent if any X,, theorem of T is true. Similarly for II,-
consistency.

Show that if a 3;-complete theory T is w-consistent, then it is II3-consistent, but not
necessarily Ys-consistent.
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Theorem (Godel’s first incompleteness theorem, a formal version)

Let T be a ¥;1-complete and 1-consistent 31 theory. Then T is incomplete, that is, there is
a sentence o such that T ¥ o and T ¥ —o.

Proof. By the diagonalization lemma, there exists a fixed point o of =Bewr(z). In other

words, T+ o <> =Bewy ("0 ). We show that ¢ is such a sentence that T cannot prove or

The fre disprove as follows.

incompleteness

v ® Suppose T - o. Then Bewr("07) holds, that is, 9 = Bewr(To ). Therefore, by ¥,
completeness, T+ Bewr ("o ). Since o is a fixed point of ~Bewr(z), we have
T F =0 which implies the inconsistency of T, a contradiction.

® On the other hand, suppose T'F —¢. Since o is a fixed point, T - Bewr ("o ). By

1-consistency of T, Mt = Bewr ("o, that is, T'F o, which also implies the
inconsistency of T'. O
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® The sentence o in the above proof “asserts its own unprovability” because
"o < T H ¢" holds. This o is called the Godel sentence of T'.

® Since Tt/ o, M| -Bewr("0), and so N = o if N =T. That is, a Godel sentence
of a theory which has 91 as a model is a “true II; sentence.”

® As we will see later (if T contains 1), such a Gddel sentence is equivalent to the
statement expressing the consistency of 7.

Rosser weakened the assumption of incompleteness theorem from 1-consistency to
consistency. He modified Bew(z) as follows.

Bewr(x) = Jy(Proofr(y, x) A Vz < y—Proofr(z, ~x)).

Here, =z means the code of = when z is the code of a formula ¢.
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Bewr(x) = Jy(Proofr(y, x) A Vz < y—Proofr(z, ~z)).

Lemma

Let 7" be a X;-complete ¥; theory. Then, for any sentence o,
(1)TFHo=TFBewyp(To7),

(2) TF-0=TF-Bewp(To7).

Proof. If T is inconsistent, the lemma holds trivially, so we assume T is consistent.

If T+ o, it is easy to see that Bew ("¢ ) is true. Then (1) follows from ¥; completeness.
To show (2), assume T'F —o. There exists n € N such that the following holds in 91

Proofr(m, "0 ) AVz < m—Proofr(z,7 o).

By ¥; completeness, the above formula is provable in T'. So, in T,
Proofr(y,"o ) = y >, and thus

Vy(Proofr(y, o ") — 3z < yProofr(z," =0 )

is provable. Therefore, T+ —Bew ("¢ 7). O
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The fixed point o of =Bew.(z), i.e., T F o <> =Bew ("0 7) is called a Rosser sentence.

Theorem (Godel-Rosser)

If T is a consistent ¥;-complete 3 theory, then there exists a sentence o such that 7't/ o
and Tt/ —o.
Proof.
® If T I o, then by the last lemma T' - Bew: ("¢ ), and so by the definition of the fixed
point o, T F —o, which implies that T is inconsistent.

® If T —o, then by the last lemma, T = —Bew’-("o ). By definition of the fixed point
o, we have T'F o, which implies that T is inconsitent. [
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Let's look at more applications of the diagonalization lemma.

Lemma

In a consistent X1-complete theory T, there exists no formula v (z) such that for any
sentence o, T F o + (To7).

Proof. If there were such a ¥(z), then a fixed point o of —¢(z) clearly does not satisfy
the condition.

In the above lemma, letting T' be Th(1), we obtain the following theorem.

Theorem (Tarski's undefinability of truth)

There is no formula 1 (x) such that M |= o <> ("o ™) for all sentence o.

O
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Lemma
For a consistent Y;-complete theory T', there is no formula ¥ (x) s.t. for any sentence o,

W)TrFo = TrFy(o)),
2)TWHo = TkF-y(a)).

Proof. Suppose there were such a ¥(z), and let o be a fixed point of =¢)(z). Then, if
T+ o then T F —¢("¢ ), which means (1) does not hold. If T't/ o then T I/ =¢)(To ™),
which means (2) does not hold.

Lemma
For a consistent Y;-complete theory T, the set {"¢': T'F o, o is a sentence} is not
computable.

Proof. If the set of theorems of T" is computable, by the strong representation theorem,
there would be such a ¢ () that satisfies the above lemma.

O

O
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Theorem (Church’s undecidability of predicate calculus)

In the language Lar (or Lor), the set of Godel numbers of sentences provable in
first-order logic {"¢: k- 0, 0 is a statement} is not computable.

Proof. Since Q consists of finitely many axioms, we can connect them all by A and denote
it as £. By the deduction theorem,

QFoc & F&—o.
Soif {To7:F o} is computable,
{fo":F&—ot={"0":QF o}

is also computable, which contradicts with the last lemma. O



Thank you for your attention!
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