K. Tanaka

[Recap](#page-3-0)

 $I\Sigma_1$ and primitive recursive

[CE sets and the](#page-20-0) first incompleteness

Formalizing [metamathematics](#page-25-0)

The first incompleteness [theorem and its](#page-34-0) variations

Logic and Foundation I

Part 4. First order arithmetic and incompleteness theorems

Kazuyuki Tanaka

BIMSA

December 15, 2023

K. Tanaka

[Recap](#page-3-0)

- IΣ1 and
- [CE sets and the](#page-20-0) incompleteness
- Formalizing
- The first [theorem and its](#page-34-0)

Logic and Foundations I

- Part 1. Equational theory
- Part 2. First order theory
- Part 3. Model theory
- Part 4. First order arithmetic and incompleteness theorems

✒ ✑

✒ ✑

Part 4. Schedule

- Dec. 07, (1) Peano arithmetic and representation theorems
- Dec. 14, (2) The first incompleteness theorem
- Dec. 21, (3) The second incompleteness theorem
- Dec. 28, (4) Presburger arithmetic

K. Tanaka

[Recap](#page-3-0)

 $I\Sigma_1$ and primitive recursive

[CE sets and the](#page-20-0) first incompleteness

1 [Recap](#page-3-0)

Formalizing

The first incompleteness [theorem and its](#page-34-0) variations

- 2 \sum_{i} [and primitive recursive functions](#page-8-0)
- ³ [CE sets and the first incompleteness](#page-20-0)
- **4** [Formalizing metamathematics](#page-25-0)

6 [The first incompleteness theorem and its variations](#page-34-0)

Today's topics

K. Tanaka

[Recap](#page-3-0)

IΣ1 and

[CE sets and the](#page-20-0) first incompleteness

Formalizing

The first incompleteness [theorem and its](#page-34-0) **Peano arithmetic** PA is a first-order theory in the language of ordered rings $\mathcal{L}_{OR} = \{+, \cdot, 0, 1, \langle\}$, consisting of the following mathematical axioms.

Definition

Peano arithmetic (PA) has the following formulas in \mathcal{L}_{OR} as a mathematical axiom.

• Induction is not a single formula, but an axiom schema that collects the formulas for all the $\varphi(x)$ in \mathcal{L}_{OR} . Note that $\varphi(x)$ may include free variables other than x.

Recap

K. Tanaka

[Recap](#page-3-0)

- IΣ1 and
- [CE sets and the](#page-20-0) first
- Formalizing
- The first [theorem and its](#page-34-0)

Arithmetical Hierarchy

• We inductively define hierarchical classes of formulas, Σ_i and Π_i $(i \in \mathbb{N})$.

Definition

- The **bounded** formulas are constructed from atomic formulas by using propositional connectives and bounded quantifiers $\forall x < t$ and $\exists x < t$, where $\forall x < t$ and $\exists x < t$ are abbreviations for $\forall x(x \leq t \rightarrow \cdots)$ and $\exists x(x \leq t \wedge \cdots)$, respectively, and t is a term that does not includes x. A bounded formula is also called a Σ_0 (= Π_0) formula.
- For any $i, k \in \mathbb{N}$:

► if φ is a Σ_i formula, $\forall x_1 \cdots \forall x_k \varphi$ is a Π_{i+1} formula,

- **►** if φ is a Π_i formula, $\exists x_1 \cdots \exists x_k \varphi$ is a Σ_{i+1} formula.
- Σ_i/Π_i also denotes the set of all Σ_i/Π_i formulas.
- Note that $\forall x > t$ or $\forall x(x > t \rightarrow \cdots)$ and $\exists x > t$ or $\exists x(x > t \wedge \cdots)$ are not bounded.

K. Tanaka

[Recap](#page-3-0)

IΣ1 and

[CE sets and the](#page-20-0) first

Formalizing

The first incompleteness [theorem and its](#page-34-0) Let us define subsystems of PA by restricting its induction axiom.

Definition

Let Γ be a class of formulas in \mathcal{L}_{OR} . By IΓ, we denote a subsystem of PA obtained by restricting ($\varphi(x)$ of) induction to the class Γ.

• The main subsystems of PA are $I\Sigma_1 \supset I\Sigma_0 \supset I$ Open, where Open is the set of formulas without quantifiers.

Another system weaker than IOpen is the system Q defined by R. Robinson.

Definition

Robinson's system Q is obtained from PA by removing the axioms of inequality and induction, and instead adding the following axiom:

Predecessor: A10: $\forall x (x \neq 0 \rightarrow \exists y (y + 1 = x)).$ So, it is a theory in the language of ring $\mathcal{L}_{\text{R}} = \{+, \cdot, 0, 1\}.$

Let Q_{\leq} be the system Q plus axiom A7.5 $\forall x \forall y(x \leq y \leftrightarrow \exists z(z + (x + 1) = y)).$

K. Tanaka

[Recap](#page-3-0)

IΣ1 and

[CE sets and the](#page-20-0) first

Formalizing

The first [theorem and its](#page-34-0)

Lemma

In IOpen, the following axioms of theory of discrete ordered semirings PA[−] are provable.

(1) Semiring axioms (excluding the additive inverses from the commutative ring).

- (2) difference axiom $x < y \rightarrow \exists z(z + (x + 1) = y)$.
- (3) a linear order with the minimum element 0 and discrete $(0 < x \leftrightarrow 1 \le x)$.
- (4) Order preservation $x < y \rightarrow x + z < y + z \land (x \cdot z < y \cdot z \lor z = 0)$.

Corollary

$$
Q_{\leq} \subset PA^{-} \subset \text{IOpen} \subset I\Sigma_0 \subset I\Sigma_1 \subset PA.
$$

Definition (Mostowski-Robinson-Tarski's system R)

R is a theory in the language of ordinal rings, consisting of the following axiom schemes. R1. $\overline{m} \neq \overline{n}$ (when $m \neq n$). R2. $\neg(x < \overline{0})$. R3. $x < \overline{n+1} \leftrightarrow x = \overline{0} \vee \cdots \vee x = \overline{n}$. R4. $x < \overline{n} \vee x = \overline{n} \vee \overline{n} < x$. R5. $\overline{m} + \overline{n} = \overline{m + n}$. R6. $\overline{m} \cdot \overline{n} = \overline{m \cdot n}$.

K. Tanaka

[Recap](#page-3-0)

IΣ1 and recursive

[CE sets and the](#page-20-0)

Formalizing

The first [theorem and its](#page-34-0)

Lemma

Q< proves all axioms of R.

Theorem (Σ_1 -completeness of R)

R proves all true Σ_1 sentences. Therefore, Q_{\leq} , PA⁻, IOpen, etc. are all Σ_1 -complete.

Proof

- If a Σ_1 sentence $\exists x_1 \exists x_2 \ldots \exists x_k \varphi(x_1, x_2, \ldots, x_k)$ is true, there exist natural numbers n_1, n_2, \ldots, n_k such that $\varphi(\overline{n_1}, \overline{n_2}, \ldots, \overline{n_k})$ holds.
- By virtue of R3, a bounded quantification $\exists x < t \varphi(x)$ can be rewritten as $\varphi(\overline{0}) \vee \varphi(\overline{1}) \vee \cdots \vee \varphi(\overline{n-1})$ if the value of close term t is n. Thus, by induction, a bounded sentence can be rewritten as a Boolean combination of atomic sentences. Since an atomic sentence can be proved/disproved in R if it is true/false, also can a bounded sentence.
- Therefore, $\varphi(\overline{n_1}, \overline{n_2}, \ldots, \overline{n_k})$ is provable since it is true. From the rule of first-order logic, $\exists x_1 \exists x_2 \dots \exists x_k \varphi(x_1, x_2, \dots, x_k)$ is also provable in R.

K. Tanaka

[Recap](#page-3-0)

 $I\Sigma_1$ and primitive recursive [functions](#page-8-0)

[CE sets and the](#page-20-0)

Formalizing

The first [theorem and its](#page-34-0) We investigate some basic properties of $|\Sigma_1|$, especially the definability of primitive recursive functions.

 $I\Sigma_1$ and related systems

Definition

For a formula $\varphi(x, y_1, \ldots, y_k)$ of \mathcal{L}_{OR} , the following formula is called the **collection principle** or **bounding principle** of φ , denoted $(B\varphi)$:

 $\forall x < u \exists y_1 \cdots \exists y_k \varphi(x, y_1, \ldots, y_k) \rightarrow \exists v \forall x < u \exists y_1 < v \cdots \exists y_k < v \varphi(x, y_1, \ldots, y_k).$

where $\varphi(x, y_1, \ldots, y_k)$ may include undisplayed variables other than u, v . If the collection principle should be treated as a sentence, we consider its universal closure. For a class Γ of formulas, we let

$$
B\Gamma = I\Sigma_0 \cup \{(B\varphi) : \varphi \in \Gamma\}.
$$

For any n, the collection principle of a Σ_{n+1} formula

 $\varphi(x, y_1, \ldots, y_k) (\equiv \exists z_1 \cdots \exists z_l \theta(x, y_1, \ldots, y_k, z_1, \ldots, z_l))$ can be obtained from the collection principle of a Π_n formula $\theta(x, y_1, \ldots, y_k, z_1, \ldots, z_l)$ with $k + l$ variables. Therefore, $B\Sigma_{n+1} \Leftrightarrow B\Pi_n$.

K. Tanaka

[Recap](#page-3-0)

 $I\Sigma_1$ and primitive recursive [functions](#page-8-0)

[CE sets and the](#page-20-0) first

Formalizing

The first [theorem and its](#page-34-0)

Lemma

In $B\Sigma_n(n \geq 1)$, adding bounded quantifiers $\forall x \leq t$, $\exists x \leq t$ in front of a Σ_n formula produces a formula that is equivalent to a Σ_n formula. Similarly for a Π_n formula.

Proof. By meta-induction on n .

• The case $n = 1$. Take any Σ_1 formula $\exists y_1 \cdots \exists y_k \varphi(x, y_1, \ldots, y_k)$. By $B\Sigma_1$, we have

 $\forall x \leq t \exists y_1 \cdots \exists y_k \varphi(x, y_1, \ldots, y_k) \rightarrow \exists v \forall x \leq t \exists y_1 \leq v \cdots \exists y_k \leq v \varphi(x, y_1, \ldots, y_k),$

and obviously the converse \leftarrow also holds. Thus, adding $\forall x \leq t$ in front of the Σ_1 formula is equivalent to a Σ_1 formula of the right-hand side. If $\exists x < t$ is added before a Σ_1 formula, it can be converted into a Σ_1 formula by shifting $\exists x < t$ to the end of the block of existential quantifiers of the formula. Π_1 formulas can be treated similarly.

• For $n > 1$, by the same argument as above, we exchange the order of a bounded quantifier $\forall x < t$ and an existential quantifier in front of a Σ_n formula. Then, by induction hypothesis, we can transform the Π_{n-1} formula preceded by a bounded quantifier into an equivalent Π_{n-1} formula. Π_n formulas can be treated similarly.

K. Tanaka

[Recap](#page-3-0)

 $I\Sigma_1$ and primitive recursive [functions](#page-8-0)

- [CE sets and the](#page-20-0) first
- **Formalizing** [metamathematics](#page-25-0)

The first incompleteness [theorem and its](#page-34-0)

Lemma

For any $n \geq 1$, $B\Sigma_n$ is a subsystem of $\mathbb{I}\Sigma_n$.

Proof. We use meta-induction on n .

- Let $\exists z_1 \cdots \exists z_l \varphi(x, y_1, \ldots, y_k, z_1, \ldots, z_l)$ be Σ_n and $\varphi(x, y_1, \ldots, y_k, z_1, \ldots, z_l)$ Π_{n-1} .
- Suppose $\forall x < u \exists y_1 \cdots \exists y_k \exists z_1 \cdots \exists z_l \varphi(x, y_1, \ldots, y_k, z_1, \ldots, z_l).$ ¹
- By the induction hypothesis $B\Sigma_{n-1}$ (obvious for $n=1$) and the above lemma, the following formula $\psi(w)$ is Σ_n .

 $\psi(w) := (\exists v \forall x < w \exists y_1 < v \cdots \exists y_k < v \exists z_1 < v \cdots \exists z_l < v \varphi) \vee u < w.$

- Now, we want to prove $\forall w \psi(w)$ by induction.
- Clearly, $\psi(0)$ holds.
- Assume $\psi(w)$ and we will show $\psi(w+1)$.

 1 In the following, we may treat u as a constant.

K. Tanaka

[Recap](#page-3-0)

- $I\Sigma_1$ and primitive recursive [functions](#page-8-0)
- [CE sets and the](#page-20-0) first
- Formalizing

The first [theorem and its](#page-34-0) variations

- If $u < w + 1$, $\psi(w + 1)$ is obvious.
- So, assume $w < u$. By the first assumption, there exist $y'_1, \ldots, y'_k, z'_1, \ldots, z'_l$ such that $\varphi(w,y_1',\ldots,y_k',z_1',\ldots,z_l')$. By the induction hypothesis $\psi(w)$, there is v such that

$$
\forall x < w \exists y_1 < v \cdots \exists y_k < v \exists z_1 < v \cdots \exists z_l < v \varphi.
$$

• If we put

$$
v' = \max\{v, y_1' + 1, \dots, y_k' + 1, z_1' + 1, \dots, z_l' + 1\},\
$$

then $\forall x < w + 1 \exists y_1 < v' \cdots \exists y_k < v' \exists z_1 < v' \cdots \exists z_l < v' \varphi$, which implies $\psi(w+1)$.

• So by Σ_n induction, $\psi(w)$ holds for all w. In particular, if $w = u$,

$$
\exists v \forall x < u \exists y_1 < v \cdots \exists y_k < v \exists z_1 < v \cdots \exists z_l < v \varphi,
$$

which implies $\exists v \forall x \leq u \exists u_1 \leq v \cdots \exists u_k \leq v \exists z_1 \cdots \exists z_l \varphi$.

K. Tanaka

[Recap](#page-3-0)

 $I\Sigma_1$ and primitive recursive [functions](#page-8-0)

- [CE sets and the](#page-20-0) first
- Formalizing

The first [theorem and its](#page-34-0) variations

By the above two lemmas, we have

Lemma

For any n, $I\Sigma_n$ and $I\Pi_n$ are equivalent.

Proof.

- We show that Π_n is provable in Σ_n . The other cases can be treated in a similar way.
- Let $\varphi(x)$ be a Π_n formula and assume $\varphi(0) \wedge \forall x (\varphi(x) \rightarrow \varphi(x+1)).$
- By way of contradiction, we assume $\neg \varphi(c)$. Note that free variables included in $\varphi(c)$ should be replaced with constants.
- Roughly, we use induction on the Σ_n formula $\neg \varphi(c-x)$. That is, $\neg \varphi(c-0)$ and $\neg \varphi(c-x) \rightarrow \neg \varphi(c-(x+1))$ imply $\neg \varphi(0)$.
- More strictly, it is proved by using the following formula.

$$
\psi(x) \equiv \exists y \le c(x + y = c \land \neg \varphi(y)) \lor c < x.
$$

- It is a Σ_n formula by the lemma in Page [10.](#page-9-0)
- Similarly, $I\Sigma_n$ is provable in $I\Pi_n$.

K. Tanaka

[Recap](#page-3-0)

 $I\Sigma_1$ and primitive recursive [functions](#page-8-0)

[CE sets and the](#page-20-0) first

Formalizing

The first [theorem and its](#page-34-0) variations

\sim Problem 2 \longrightarrow

(1) The following formula is called the least number principle for a formula φ and denoted as $L\varphi$,

$$
\exists x \varphi(x) \to \exists x (\varphi(x) \land \forall y < x \neg \varphi(y)).
$$

✒ ✑

 $\mathsf{L}\Sigma_n$ stands for $\{\mathsf{L}\varphi:\varphi\text{ is }\Sigma_n\}$. Then, show that $\mathsf{L}\Sigma_n$ is equivalent to $\mathsf{L}\Sigma_n$. (2) For any n, show $B\Sigma_{n+1} \supset \overline{S_n}$.

It is also known that the relation $\mathrm{I}\Sigma_{n+1}\supset \mathrm{B}\Sigma_{n+1}\supset \mathrm{I}\Sigma_n$ is strict.²⁻³.

 2 Petr Hájek and Pavel Pudlák. Metamathematics of first-order arithmetic. Springer, 1993 ³Kaye R. Models of Peano arithmetic, Oxford Univesity Press, 1991.

K. Tanaka

[Recap](#page-3-0)

 $I\Sigma_1$ and primitive recursive [functions](#page-8-0)

[CE sets and the](#page-20-0) first

Formalizing

The first [theorem and its](#page-34-0) Next we discuss the definability of primitive recursive functions in \mathbb{E}_1 . The following lemma is a basic tool for uniquely assigning natural numbers to finite sets and finite sequences in $I\Sigma_1$.

Lemma

In $I\Sigma_1$, for a Σ_1 formula $\varphi(x)$ and a Π_1 formula $\psi(x)$, we can prove

 $\forall x(\varphi(x) \leftrightarrow \psi(x)) \rightarrow \forall u \exists m, n > 0 \forall x < u(\varphi(x) \leftrightarrow m(x+1)+1$ is a divisor of n).

Proof.

- First, fix u. The existence of a number m which divides all $i < u$ can be easily shown by Σ_1 induction.
- Then, for all $i < u$, $m(i+1) + 1$ are mutually prime. \therefore If $m(i+1) + 1$ and $m(j + 1) + 1$ $(i < j < u)$ are both multiples of a prime number d, $(m(i+1)+1) - (m(i+1)+1) = m(i-i)$ should also be a multiple of d. But d is never a divisor of m because it devises $m(i + 1) + 1$. Also, d is not a divisor of $m(j - i)$ since $d > u > j - i$.

K. Tanaka

[Recap](#page-3-0)

 $I\Sigma_1$ and primitive recursive [functions](#page-8-0)

[CE sets and the](#page-20-0) first **incompleteness**

Formalizing

The first [theorem and its](#page-34-0) variations

- Next, let $\varphi(x)$ be Σ_1 formula, and $\psi(x)$ be a Π_1 formula. Assume $\forall x(\varphi(x) \leftrightarrow \psi(x))$.
	- Then, by Σ_1 induction on j, we prove the following.

$$
\exists n \forall x < j \Big[(\psi(x) \to m(x+1) + 1 \text{ is a divisor of } n) \\ \land \left(m(x+1) + 1 \text{ is a divisor of } n \to \varphi(x) \right) \Big] \lor u < j.
$$

- It is obvious when $i = 0$.
- Let n_i be the minimum n that satisfies the above condition for j (See the least number principle, Problem 3).
- Now, if $\varphi(j)$, then $n_{j+1} = n_j \cdot (m(j+1)+1)$, otherwise $n_{j+1} = n_j$.
- Note that for all $i < u$, $m(i + 1) + 1$ are mutually prime, and n_j does not contain any factor of $m(j + 1) + 1$ due to its minimality.
- Then, n_{i+1} satisfies the above condition for $j+1 \leq u$, which completes the induction step.
- Thus, the lemma holds as $i = u$.

K. Tanaka

[Recap](#page-3-0)

 $I\Sigma_1$ and primitive recursive [functions](#page-8-0)

[CE sets and the](#page-20-0) first

Formalizing

The first [theorem and its](#page-34-0) • In the above lemma, the triple (u, m, n) satisfying

$$
\forall x < u \left(\varphi(x) \leftrightarrow m(x+1) + 1 \text{ is a divisor of } n \right)
$$

is called a u-**piece code** of a Δ_1 set $\{x \mid \varphi(x)\}$ defined by a Σ_1 formula $\varphi(x)$ and a Π_1 formula $\psi(x)$.

- We will extend the above to n -dimensional sets. First, we code a pair of natural numbers (x, y) by a natural number $\langle x, y \rangle = \frac{(x+y)(x+y+1)}{2} + x$. Note that if $u = \langle u_1, u_2 \rangle$, then $\langle x, y \rangle < u$ for any $x < u_1, y < u_2$.
- Then, from the lemma in Page [15,](#page-14-0) for a Δ_1 formula $\varphi(x, y)$, there exist u, m, n s.t.

 $\forall x \leq u_1 \forall y \leq u_2(\varphi(x, y) \leftrightarrow m(\langle x, y \rangle + 1) + 1$ is a divisor of n)

The triple $c = (u, m, n)$ is called a (u_1, u_2) -piece code of the Δ_1 set.

• In general, by coding an *n*-tuple (x_1, x_2, \dots, x_n) by a natural number $\langle\langle\cdots \langle x_1,x_2\rangle,\ldots\rangle,x_n\rangle$, we can define a (u_1,u_2,\cdots,u_n) -piece code of a Δ_1 n -dimensional set.

K. Tanaka

[Recap](#page-3-0)

 $I\Sigma_1$ and primitive recursive [functions](#page-8-0)

[CE sets and the](#page-20-0) first

Formalizing

The first [theorem and its](#page-34-0)

Theorem (Definability of primitive recursive functions)

In $| \Sigma_1|$, (the graph of) a primitive recursive function f can be represented by a Δ_1 formula $\varphi(x_1,\ldots,x_l,y,z)$, and the following are provable

 $\forall x_1 \cdots \forall x_l \forall y \exists ! z \varphi(x_1, \ldots, x_l, y, z).$

Proof.

- We will prove this by induction on the construction of primitive recursive functions. The essential step is the definition by primitive recursion.
- For simplicity, we omit parameter variables x_1, \ldots, x_l , and consider the definition of a unary function f from a constant c and binary function h as follows:

$$
f(0) = c, \quad f(y+1) = h(y, f(y)).
$$

- From the induction hypothesis, h can be expressed in both Σ_1 and Π_1 formulas.
- If f can be expressed by a Δ_1 formula φ , it will be easily derived in \mathbb{E}_1 that $\forall \vec{x} \forall y \exists ! z \varphi(\vec{x}, y, z).$

K. Tanaka

[Recap](#page-3-0)

 $I\Sigma_1$ and primitive recursive [functions](#page-8-0)

[CE sets and the](#page-20-0)

Formalizing

The first [theorem and its](#page-34-0)

- First, let $\gamma(x, m, n)$ be a Σ_0 formula expressing " $m(x + 1) + 1$ is a divisor of n", that is, $∃d < n$ $(m(x+1)+1) \cdot d = n$.
- We define a predicate $\delta(u, m, n)$ such that

$$
\delta(\langle u_1, u_2 \rangle, m, n) \Leftrightarrow \forall y < u_1 \exists z < u_2 \ f(y) = z,
$$

by the following Σ_0 formula: for any $u = \langle u_1, u_2 \rangle$,

 $\delta(u, m, n) \equiv \forall u < u_1 \exists z < u_2 \; \gamma(\langle u, z \rangle, m, n) \wedge \forall z < u_2(\gamma(\langle 0, z \rangle, m, n) \leftrightarrow z = c)$ $\wedge \forall y \lt u_1 - 1 \forall z \lt u_2(\gamma(\langle y+1, z \rangle, m, n) \leftrightarrow \exists z' \lt u_2(z = h(y, z') \land \gamma(\langle y, z' \rangle, m, n))).$

- Then, by $I\Sigma_1$, we can show $\forall u_1 \exists u_2 \exists m \exists n \delta(\langle u_1, u_2 \rangle, m, n)$
- Therefore, we have

$$
f(y) = z \Leftrightarrow \exists u \exists m \exists n (u_1 = y + 1 \land \delta(u, m, n) \land \gamma(\langle y, z \rangle, m, n))
$$

$$
\Leftrightarrow \forall u \forall m \forall n (u_1 = y + 1 \land \delta(u, m, n) \to \gamma(\langle y, z \rangle, m, n))
$$

• Thus, $f(y) = z$ is expressed by a Δ_1 formula.

K. Tanaka

[Recap](#page-3-0)

- $I\Sigma_1$ and primitive recursive [functions](#page-8-0)
- [CE sets and the](#page-20-0)
- Formalizing
- The first [theorem and its](#page-34-0)
- The above theorem shows that adding a symbol for a primitive recursive function and its definition to $I\Sigma_1$, we obtain a conservative extension.
- Furthermore, even if primitive recursive function symbols are involved, the classes of Σ_n and Π_n formulas $(n > 0)$ do not essentially change. In other words, for a Σ_n formula containing primitive recursive function symbols, we can construct an equivalent Σ_n formula that includes no primitive recursive function symbols by replacing a primitive recursive function symbol with a Σ_1 formula or Π_1 formula that defines it.
- In the lemma in Page [15,](#page-14-0) we showed the existence of a u-piece code for a Δ_1 set. Also, a finite sequence of natural numbers $s = (s_0, \ldots, s_{n-1})$ can be coded as a natural number c . Then, we identify s and c , and write c_i for s_i . Note that $(c, i) \mapsto c_i$ is primitive recursive.

K. Tanaka

[Recap](#page-3-0)

IΣ1 and recursive

[CE sets and the](#page-20-0) first incompleteness

Formalizing

The first [theorem and its](#page-34-0)

Recap: Partial computable functions and CE sets

- • If a partial computable function $f:\mathbb{N}^k\longrightarrow \mathbb{N}$ is realized by a TM $\mathcal M$ with index $e,$ f is denoted by $\{e\}^k$ (or simply $\{e\}$). When e is not an index of TM, $\{e\}$ is regarded as a partial function with empty domain.
- The **partial recursive functions** are the smallest class that contains the constant 0, the successor function, projections, and closed under composition, primitive recursion and minimalization.

 $\sqrt{ }$ Theorem $\overline{\phantom{h_{\mathrm{max}}}}$

A partial recursive function is a partial computable function, and vice versa.

• A set $X \subset \mathbb{N}^n$ is said to be computably enumerable or CE if $\{1^{x_1}0\cdots01^{x_n}:(x_1,\ldots,x_n)\in X\}$ is the domain of a partial computable function.

✒ ✑

- X is said to be computable if both X and X^c are CE.
- A halting program $K = \{e : \{e\}(e) \downarrow\}$ is CE but not computable.

K. Tanaka

[Recap](#page-3-0)

IΣ1 and

[CE sets and the](#page-20-0) first incompleteness

Formalizing

The first [theorem and its](#page-34-0) Among many conditions equivalent to CE, some basic ones are following.

Lemma

For the relation $R \subset \mathbb{N}^n$, the following conditions are equivalent. (1) R is CE.

 (5) R is the range of some partial recursive function.

 (6) There exists a primitive recursive relation S such that

 $R(x_1, \dots, x_n) \Leftrightarrow \exists y S(x_1, \dots, x_n, y).$

Definition

Let $\mathfrak{N} = (\mathbb{N}, +, \cdot, 0, 1, <)$ be the standard model of PA.

• A set $A\subseteq \mathbb{N}^l$ is said to be Σ_i if there exists a Σ_i formula $\varphi(x_1,\ldots,x_l)$ satisfying

 $(m_1, \ldots, m_l) \in A \Leftrightarrow \mathfrak{N} \models \varphi(\overline{m_1}, \ldots, \overline{m_l}).$

- Similarly, Π_i sets can be defined by Π_i formulas.
- A set that is both Σ_i and Π_i is called Δ_i .

K. Tanaka

[Recap](#page-3-0)

IΣ1 and

[CE sets and the](#page-20-0) first incompleteness

Formalizing

The first incompleteness [theorem and its](#page-34-0)

Lemma

The CE sets are exactly the same as the Σ_1 sets. Hence, the computable (recursive) sets are exactly the same as the Δ_1 sets.

Proof.

- Any CE relation $R(\vec{x})$ can be expressed by $\exists y S(\vec{x}, y)$ for some primitive recursive relation S.
- By the definability theorem of prim. rec. functions, any primitive recursive relation S can be expressed by a Σ_1 formula, and so $\exists y S(\vec{x}, y)$ is still Σ_1 .
- Conversely, a Σ_1 formula is expressed in the form $\exists u \theta(\vec{x}, u)$ with $\theta(\vec{x}, u) \in \Sigma_0$. Since a Σ_0 formula is a primitive recursive, a Σ_1 formula is CE.

K. Tanaka

[Recap](#page-3-0)

IΣ1 and

[CE sets and the](#page-20-0) first incompleteness

Formalizing

The first [theorem and its](#page-34-0) From now on, we assume that all theories are given in the language \mathcal{L}_{OR} and contain at least R, so Σ_1 -complete. We will prove a version of Gödel's first incompleteness theorem

Definition

Theory T is 1-consistent if, for any Σ_1 sentence σ , $T \vdash \sigma \Rightarrow \mathfrak{N} \models \sigma$.

- Ordinary theories T of arithmetic such as Q and PA have the standard model \mathfrak{N} , so they are naturally 1-consistent, and indeed ω -consistent (i.e., for any formula $\varphi(x)$, if $T \vdash \varphi(\bar{n})$ for all $n \in \mathbb{N}$ then $T \not\vdash \exists x \neg \varphi(x)$.)
- 1-consistency is properly stronger than consistency. E.g., $Q + \exists x(0 + x \neq x)$ is consistent but not 1-consistent.

Theorem ((Weak) Representation Theorem for CE sets, reposted)

Suppose that a theory T is Σ_1 -complete and 1-consistent. Then, for any CE set C, there exists a Σ_1 formula $\varphi(x)$ such that for any n,

$$
n \in C \quad \Leftrightarrow \quad T \vdash \varphi(\overline{n}).
$$

K. Tanaka

[Recap](#page-3-0)

IΣ1 and recursive

[CE sets and the](#page-20-0) first incompleteness

Formalizing

The first [theorem and its](#page-34-0)

Theorem (Gödel's first incompleteness theorem, a naïve version)

Let T be a Σ_1 -complete and 1-consistent Σ_1 theory. Then T is incomplete, that is, there is a sentence σ such that T cannot prove or disprove.

Proof.

• We know K is CE but not co-CE. By the weak representation theorem for CE sets, there exists a formula $\varphi(x)$ such that

$$
n \in \mathcal{K} \Leftrightarrow T \vdash \varphi(\overline{n}).
$$

• On the other hand, since $N - K$ is not a CE, there exists some d such that

$$
d\in\mathbb{N}-\mathrm{K}\not\Leftrightarrow T\vdash\neg\varphi(\overline{d}).
$$

Thus, $(d \in K$ and $T \vdash \neg \varphi(\overline{d}))$ or $(d \notin K$ and $T \not\vdash \neg \varphi(\overline{d}))$.

- In the former case, since $d \in K$ implies $T \vdash \varphi(\overline{d})$, T is inconsistent, contradicting with the 1-consistency assumption.
- In the latter case, T is incomplete because $\varphi(\overline{d})$ cannot be proved or disproved.

K. Tanaka

[Recap](#page-3-0)

IΣ1 and

[CE sets and the](#page-20-0) first incompleteness

Formalizing [metamathematics](#page-25-0)

The first incompleteness [theorem and its](#page-34-0) variations

Formalizing metamathematics

We prepare some useful prim. rec. functions for coding things.

Lemma

For a primitive recursive function $h(\vec{x})$, $\mu y < h(\vec{x})A(\vec{x}, y)$ is primitive recursive.

 \sim Example \sim

Let $p(x) = "(x + 1)$ th prime number", that is,

$$
p(0) = 2, p(1) = 3, p(2) = 5, \dots
$$

Then, $p(x)$ is a primitive recursive function since it is defined as follows.

 $p(0) = 2, \quad p(x+1) = \mu y < p(x)! + 2 \ (p(x) < y \land \text{prime}(y)).$

✒ ✑

K. Tanaka

[Recap](#page-3-0)

IΣ1 and recursive

[CE sets and the](#page-20-0) incompleteness

Formalizing [metamathematics](#page-25-0)

The first [theorem and its](#page-34-0) • A finite sequence of natural numbers (x_0, \ldots, x_{n-1}) can be represented by a single natural number x as follows.

$$
x = p(0)^{x_0+1} \cdot p(1)^{x_1+1} \cdot \dots \cdot p(n-1)^{x_{n-1}+1}
$$

- Fixing n, such a mapping from \mathbb{N}^n to $\mathbb N$ is a primitive recursive function.
- Conversely, for a natural number x, the function $c(x, i)$ takes the *i*th element x_i from x ,

$$
x_i = c(x, i) = \mu y < x \ (\neg \exists z < x \ (p(i)^{y+2} \cdot z = x)).
$$

• The length of the sequence represented by x is

$$
leng(x) = \mu i < x \ (\neg \exists z < x \ (p(i) \cdot z = x)).
$$

• Furthermore, we define a primitive recursive relation $Seq(x)$ to denote that a natural number x is the code of such a sequence as follows:

$$
Seq(x) \Leftrightarrow \forall i < x \forall z < x \ (p(i) \cdot z = x \to i \leq \text{leng}(x)).
$$

K. Tanaka

[Recap](#page-3-0)

IΣ1 and

[CE sets and the](#page-20-0) first

Formalizing [metamathematics](#page-25-0)

The first [theorem and its](#page-34-0)

Gödel numbers

.

Definition

Let Ω be a finite (or countably infinite) set of symbols, and an injection $\phi : \Omega \to \mathbb{N}$. For a string $s = a_0 \cdots a_{n-1}$, the following natural number $\psi(s)$ is called the **Gödel number** of s, denoted by $\lceil s \rceil$.

$$
\psi(s) = p(0)^{\phi(a_0)+1} \cdot p(1)^{\phi(a_1)+1} \cdot \dots \cdot p(n-1)^{\phi(a_{n-1})+1}
$$

The mapping

$$
\ulcorner
$$
 \urcorner is an injection from the set of all symbols Ω^* to $\mathbb N$.

Example
\nLet
$$
\Omega = \{0, 1, +, (,)\}, \ \phi(0) = 0, \ \phi(1) = 1, \ \phi(+) = 3, \ \phi((-) = 5 \text{ and } \phi((-)) = 6.
$$

\nThen,
\n
$$
\Gamma(1+0) + 1 = 2^6 \cdot 3^2 \cdot 5^4 \cdot 7^1 \cdot 11^7 \cdot 13^4 \cdot 17^2
$$

 \sim Problem 5 \sim

Show that $Term(x)$ expressing "x is the Gödel number of a term" is primitive recursive.

✒ ✑

K. Tanaka

[Recap](#page-3-0)

IΣ1 and

[CE sets and the](#page-20-0) first

Formalizing [metamathematics](#page-25-0)

The first [theorem and its](#page-34-0)

Definition

A theory T is Σ_i (Π_i/Δ_i /primitive recursive, etc.) if the set of Gödel numbers of its axioms $\{\ulcorner \sigma \urcorner : \sigma \in T\}$ is Σ_i $(\Pi_i/\Delta_i/\text{primitive}$ recursive, etc.).

- Ordinary theories in mathematics are finite or at most primitive recursive.
- The theories of arithmetic introduced so far (PA, $|\Sigma_1|$, etc.) are all primitive recursive.
- To derive the incompleteness theorem, we need to assume that a theory is CE.
- Without this condition, for example, if we take all true arithmetic formulas as axioms, we would have a complete theory, but it would not be a formal system.
- From the following theorem, the Σ_1 set of axioms can be always be replaced by a primitive recursive set.

K. Tanaka

[Recap](#page-3-0)

IΣ1 and

[CE sets and the](#page-20-0) first incompleteness

Formalizing [metamathematics](#page-25-0)

The first incompleteness [theorem and its](#page-34-0)

Theorem (Craig's lemma)

For any CE theory T , there exists a primitive recursive theory T^\prime that proves the same theorems.

Proof. Let T be a theory defined by Σ_1 formula $\varphi(x) \equiv \exists y \theta(x, y)$ (θ is Σ_0). That is, $\sigma \in T \Leftrightarrow \mathfrak{N} \models \varphi(\overline{\ulcorner \sigma \urcorner})$. $\ulcorner \sigma \urcorner$ is the Gödel number of a sentence σ . Then, we define a primitive recursive theory T^\prime as follows:

$$
T' = \{ \overbrace{\sigma \wedge \sigma \wedge \cdots \wedge \sigma}^{n+1 \text{ copies}} : \theta(\overline{\ulcorner \sigma \urcorner}, \overline{n}) \}.
$$

Then, T and T' are equivalent, since $\vdash \sigma \leftrightarrow \sigma \wedge \sigma \wedge \cdots \wedge \sigma$. Thus T' is primitive recursive.

Because Gödel numbers and their decodings are heavily used in T' , T' cannot be easily expressed in Σ_0 .

K. Tanaka

[Recap](#page-3-0)

IΣ1 and

[CE sets and the](#page-20-0)

Formalizing [metamathematics](#page-25-0)

The first [theorem and its](#page-34-0) Based on Craig's lemma, a Σ_1 theory is primitive recursively axiomatizable. Then, "a finite sequence (or finite tree) P of formulas is a proof in T'' can be defined in a primitive recursive way (with T as a parameter).

Definition

- Let T be a Σ_1 theory and T' its p.r. counterpart. A proof in T' is a finite sequence of formulas where each formula is either a logical axiom, an equality axiom, or an axiom of T^{\prime} , or obtained by applying MP or quantification rules from formulas appearing before. The formula that appears at the end of the proof is the theorem of T .
- Now, we define the primitive recursive predicate $Proof_{T}$ as follows.

 $Proof_T(\ulcorner P \urcorner, \ulcorner \sigma \urcorner) \Leftrightarrow P$ is a proof of formula σ in $T'.$

• By $Proof_T$, we also denote a Δ_1 formula expressing the above $Proof_T$ in Σ_1 . A Σ_1 formula Bew_T is defined as

$$
Bew_T(x) \equiv \exists y \; Proof_T(y, x).
$$

The formula $\text{Bew}_T(x)$ expresses that "x is the Gödel number of a theorem of T". "Bew" stands for the German beweisbar (provable).

K. Tanaka

[Recap](#page-3-0)

IΣ1 and recursive

[CE sets and the](#page-20-0) incompleteness

Formalizing [metamathematics](#page-25-0)

The first [theorem and its](#page-34-0)

Theorem ((Strong) Representation Theorem for Computable Sets, reposted)

Assume a theory T is Σ_1 -complete. For any computable set C, there exists a Σ_1 formula $\varphi(x)$ such that

$$
n \in C \Rightarrow T \vdash \varphi(\overline{n}), \quad n \notin C \Rightarrow T \vdash \neg \varphi(\overline{n}).
$$

Theorem (Representation Theorem for Computable Function)

Let T be Σ_1 -complete. For any computable function $f(\vec{x})$, there exists a Σ_1 formula $\varphi(\vec{x},y)$ which represents $f(\vec{x})=y$ and satisfies, for all natural numbers $m_1,\ldots,m_l,$

$$
T \vdash \forall y \forall y' (\varphi(\overline{m_1}, \ldots, \overline{m_l}, y) \land \varphi(\overline{m_1}, \ldots, \overline{m_l}, y') \rightarrow y = y').
$$

Proof. For simplicity, we assume that $l = 1$. Suppose $f(x) = y$ is represented by a Σ_1 formula $\varphi(x, y) \equiv \exists z \theta(x, y, z)$ with $\theta(x, y, z) \in \Sigma_0$. We define a Σ_0 formula $\psi(x, y, z)$ as

$$
\theta(x,y,z) \wedge \forall y',z' \leq y+z (\theta(x,y',z') \rightarrow y+z \leq y'+z').
$$

Then, $\exists z\psi(x,y,z)$ also represents $f(x) = y$. To show, the functional property of this representation. Take any m and let $n = f(m)$. Then the minimal k such that $\theta(\overline{m}, \overline{n}, \overline{k})$ satifies $\psi(\overline{m}, \overline{n}, \overline{k})$. By the definition, no other y, z satisfy ψ . So, we are done.

32

K. Tanaka

[Recap](#page-3-0)

IΣ1 and recursive

[CE sets and the](#page-20-0)

Formalizing [metamathematics](#page-25-0)

The first [theorem and its](#page-34-0)

Lemma (Diagonalization lemma)

Let T be Σ_1 -complete. For any formula $\psi(x)$ in which x is the unique free variable, there exists a sentence σ such that $T \vdash$ " $\sigma \leftrightarrow \psi(\overline{\ulcorner \sigma \urcorner})$ ".

Proof.

• A formula with only x as a free variable is computably enumerated as $\varphi_0(x), \varphi_1(x), \ldots$ and then $f(n) = \lceil \varphi_n(\overline{n}) \rceil$ is also a computable function. By the functional representation theorem, there exists a Σ_1 formula χ such that

$$
f(m) = n \Rightarrow T \vdash \chi(\overline{m}, \overline{n}) \land \forall y \neq \overline{n} \ \chi(\overline{m}, y).
$$

- The formula $\exists y(\chi(x,y) \land \psi(y))$ must be listed as $\varphi_k(x)$ for some k. Now, let $\sigma \equiv \varphi_k(\overline{k})$. Since $f(k) = \lceil \sigma \rceil$, $T \vdash \chi(\overline{k}, \lceil \overline{\sigma} \rceil)$. Thus, in T, $\psi(\overline{\lceil \sigma \rceil}) \to \exists y(\chi(\overline{k}, y) \land \psi(y)) \ (\equiv \varphi_k(\overline{k}) \equiv \sigma).$
- On the other hand, since $T \vdash \forall y \neq \lceil \overline{\sigma} \rceil \neg \chi(\overline{k}, y)$, in T,

$$
\neg \psi(\overline{\ulcorner \sigma \urcorner}) \rightarrow \forall y (\chi(\overline{k}, y) \rightarrow \neg \psi(y)) \rightarrow \neg \exists y (\chi(\overline{k}, y) \land \psi(y)) \ (\equiv \neg \sigma).
$$

• Therefore, $T \vdash \sigma \leftrightarrow \psi(\overline{\ulcorner \sigma \urcorner})$, that is, σ is a fixed point of ψ .

K. Tanaka

[Recap](#page-3-0)

IΣ1 and

[CE sets and the](#page-20-0) first incompleteness

Formalizing [metamathematics](#page-25-0)

The first incompleteness [theorem and its](#page-34-0) variations

\leftarrow Homework \longrightarrow

(1) T is called ω -consistent if for any formula $\varphi(x)$, if $T \vdash \varphi(\bar{n})$ for all $n \in \mathbb{N}$ then $T \not\vdash \exists x \neg \varphi(x)$.

Show that a Σ_1 -complete theory T is 1-consistent iff it is ω -consistent with respect to the Σ_0 formulas $\varphi(x)$.

(2) T is called Σ_n -consistent if any Σ_n theorem of T is true. Similarly for Π_n consistency.

Show that if a Σ_1 -complete theory T is ω -consistent, then it is Π_3 -consistent, but not necessarily Σ_3 -consistent.

✒ ✑

K. Tanaka

[Recap](#page-3-0)

IΣ1 and

[CE sets and the](#page-20-0) first incompleteness

Formalizing

The first incompleteness [theorem and its](#page-34-0) variations

Theorem (Gödel's first incompleteness theorem, a formal version)

Let T be a Σ_1 -complete and 1-consistent Σ_1 theory. Then T is incomplete, that is, there is a sentence σ such that $T \nvdash \sigma$ and $T \nvdash \neg \sigma$.

Proof. By the diagonalization lemma, there exists a fixed point σ of \neg Bew $_T(x)$. In other words, $T \vdash \sigma \leftrightarrow \neg \text{Bew}_{T}(\overline{\ulcorner \sigma \urcorner})$. We show that σ is such a sentence that T cannot prove or disprove as follows.

- Suppose $T \vdash \sigma$. Then $\text{Bew}_{T}(\ulcorner \sigma \urcorner)$ holds, that is, $\mathfrak{N} \models \text{Bew}_{T}(\ulcorner \sigma \urcorner)$. Therefore, by Σ_1 completeness, $T \vdash \text{Bew}_T(\overline{\ulcorner \sigma \urcorner})$. Since σ is a fixed point of $\neg \text{Bew}_T(x)$, we have $T \vdash \neg \sigma$ which implies the inconsistency of T, a contradiction.
- On the other hand, suppose $T \vdash \neg \sigma$. Since σ is a fixed point, $T \vdash \text{Bew}_{T}(\ulcorner \sigma \urcorner)$. By 1-consistency of T, $\mathfrak{N} \models \text{Bew}_T(\overline{\ulcorner \sigma \urcorner})$, that is, $T \vdash \sigma$, which also implies the inconsistency of T.

K. Tanaka

[Recap](#page-3-0)

IΣ1 and

[CE sets and the](#page-20-0)

Formalizing

The first incompleteness [theorem and its](#page-34-0) variations

- The sentence σ in the above proof "asserts its own unprovability" because " $\sigma \Leftrightarrow T \not\vdash \sigma$ " holds. This σ is called the **Gödel sentence** of T.
- Since $T \nvDash \sigma$, $\mathfrak{N} \models \neg \text{Bew}_{T}(\overline{\ulcorner \sigma \urcorner})$, and so $\mathfrak{N} \models \sigma$ if $\mathfrak{N} \models T$. That is, a Gödel sentence of a theory which has \mathfrak{N} as a model is a "true Π_1 sentence."
- As we will see later (if T contains $|\Sigma_1\rangle$, such a Gödel sentence is equivalent to the statement expressing the consistency of T .

Rosser weakened the assumption of incompleteness theorem from 1-consistency to consistency. He modified $Bew_T(x)$ as follows.

 $\text{Bew}_{T}^{*}(x) \equiv \exists y (\text{Proof}_{T}(y,x) \land \forall z < y \neg \text{Proof}_{T}(z, \neg x)).$

Here, $\neg x$ means the code of $\neg \varphi$ when x is the code of a formula φ .

K. Tanaka

[Recap](#page-3-0)

IΣ1 and recursive

[CE sets and the](#page-20-0) first

Formalizing

The first incompleteness [theorem and its](#page-34-0) variations

$\text{Bew}_{T}^{*}(x) \equiv \exists y (\text{Proof}_{T}(y,x) \land \forall z < y \neg \text{Proof}_{T}(z, \neg x)).$

Lemma

Let T be a Σ_1 -complete Σ_1 theory. Then, for any sentence σ , (1) $T \vdash \sigma \Rightarrow T \vdash \text{Bew}_{T}^{*}(\overline{\ulcorner \sigma \urcorner}),$ (2) $T \vdash \neg \sigma \Rightarrow T \vdash \neg \text{Bew}_{T}^{*}(\overline{\ulcorner \sigma \urcorner}).$

Proof. If T is inconsistent, the lemma holds trivially, so we assume T is consistent. If $T\vdash \sigma$, it is easy to see that $\mathrm{Bew}_T^*(\overline{\ulcorner \sigma \urcorner})$ is true. Then (1) follows from Σ_1 completeness. To show (2), assume $T \vdash \neg \sigma$. There exists $n \in \mathbb{N}$ such that the following holds in $\mathfrak N$

$$
\text{Proof}_T(\overline{n}, \overline{\ulcorner \neg \sigma \urcorner}) \wedge \forall z \leq \overline{n} \neg \text{Proof}_T(z, \overline{\ulcorner \sigma \urcorner}).
$$

By Σ_1 completeness, the above formula is provable in T. So, in T. $Proof_{T}(y,\overline{\lceil \sigma \rceil}) \rightarrow y > \overline{n}$, and thus

$$
\forall y (\text{Proof}_T(y, \overline{\ulcorner \sigma \urcorner}) \rightarrow \exists z < y \text{Proof}_T(z, \overline{\ulcorner \neg \sigma \urcorner}))
$$

is provable. Therefore, $T \vdash \neg \text{Bew}_T^*(\overline{\ulcorner \sigma \urcorner}).$

K. Tanaka

[Recap](#page-3-0)

IΣ1 and recursive

[CE sets and the](#page-20-0) first

Formalizing

The first incompleteness [theorem and its](#page-34-0) variations

The fixed point σ of $\neg\text{Bew}^*_T(x)$, i.e., $T \vdash \sigma \leftrightarrow \neg\text{Bew}^*_T(\overline{\ulcorner \sigma \urcorner})$ is called a \textbf{Rosser} sentence.

Theorem (Gödel-Rosser)

If T is a consistent Σ_1 -complete Σ_1 theory, then there exists a sentence σ such that $T \not\vdash \sigma$ and $T \not\vdash \neg \sigma$.

Proof.

- \bullet If $T\vdash \sigma$, then by the last lemma $T\vdash \mathrm{Bew}_T^*(\overline{\ulcorner \sigma\urcorner})$, and so by the definition of the fixed point σ , $T \vdash \neg \sigma$, which implies that T is inconsistent.
- If $T\vdash\neg\sigma$, then by the last lemma, $T\vdash\neg\text{Bew}_T^*(\overline{\ulcorner\sigma\urcorner}).$ By definition of the fixed point σ, we have $T \vdash σ$, which implies that T is inconsitent.

K. Tanaka

[Recap](#page-3-0)

IΣ1 and recursive

[CE sets and the](#page-20-0) first

Formalizing

The first incompleteness [theorem and its](#page-34-0) variations

Let's look at more applications of the diagonalization lemma.

Lemma

In a consistent Σ_1 -complete theory T, there exists no formula $\psi(x)$ such that for any sentence σ , $T \vdash \sigma \leftrightarrow \psi(\overline{\ulcorner \sigma \urcorner}).$

Proof. If there were such a $\psi(x)$, then a fixed point σ of $\neg \psi(x)$ clearly does not satisfy the condition.

In the above lemma, letting T be $\text{Th}(\mathfrak{N})$, we obtain the following theorem.

Theorem (Tarski's undefinability of truth)

There is no formula $\psi(x)$ such that $\mathfrak{N} \models \sigma \leftrightarrow \psi(\overline{\ulcorner \sigma \urcorner})$ for all sentence σ .

K. Tanaka

[Recap](#page-3-0)

IΣ1 and recursive

[CE sets and the](#page-20-0)

Formalizing

The first incompleteness [theorem and its](#page-34-0) variations

Lemma

For a consistent Σ_1 -complete theory T, there is no formula $\psi(x)$ s.t. for any sentence σ .

(1) $T \vdash \sigma \Rightarrow T \vdash \psi(\overline{\ulcorner \sigma \urcorner}),$ (2) $T \not\vdash \sigma \Rightarrow T \vdash \neg \psi(\overline{\ulcorner \sigma \urcorner})$

Proof. Suppose there were such a $\psi(x)$, and let σ be a fixed point of $\neg \psi(x)$. Then, if $T \vdash \sigma$ then $T \vdash \neg \psi(\overline{\ulcorner \sigma \urcorner})$, which means (1) does not hold. If $T \not\vdash \sigma$ then $T \not\vdash \neg \psi(\overline{\ulcorner \sigma \urcorner})$, which means (2) does not hold.

Lemma

For a consistent Σ_1 -complete theory T, the set $\{\ulcorner \sigma \urcorner : T \vdash \sigma, \sigma \urcorner$ is a sentence} is not computable.

Proof. If the set of theorems of T is computable, by the strong representation theorem, there would be such a $\psi(x)$ that satisfies the above lemma.

K. Tanaka

[Recap](#page-3-0)

IΣ1 and

[CE sets and the](#page-20-0) first

Formalizing

The first incompleteness [theorem and its](#page-34-0) variations

Theorem (Church's undecidability of predicate calculus)

In the language \mathcal{L}_{AR} (or \mathcal{L}_{OR}), the set of Gödel numbers of sentences provable in first-order logic $\{\lceil \sigma \rceil : \lceil \sigma, \sigma \rceil \}$ is a statement} is not computable.

Proof. Since Q consists of finitely many axioms, we can connect them all by \wedge and denote it as ξ . By the deduction theorem.

$$
Q \vdash \sigma \; \Leftrightarrow \; \vdash \xi \to \sigma.
$$

So if $\{\lceil \sigma \rceil : \lceil \sigma \rceil \}$ is computable,

$$
\{\ulcorner \sigma \urcorner: \, \vdash \xi \rightarrow \sigma\} = \{\ulcorner \sigma \urcorner: \mathsf{Q} \vdash \sigma\}
$$

is also computable, which contradicts with the last lemma.

K. Tanaka

[Recap](#page-3-0)

 $I\Sigma_1$ and primitive recursive

[CE sets and the](#page-20-0) first incompleteness

Formalizing [metamathematics](#page-25-0)

The first incompleteness [theorem and its](#page-34-0) variations

Thank you for your attention!