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Logic and Foundations I� �
• Part 1. Equational theory

• Part 2. First order theory

• Part 3. Model theory

• Part 4. First order arithmetic and incompleteness theorems� �
Part 2. Schedule� �
• Dec. 07, (1) Peano arithmetic and representation theorems

• Dec. 14, (2) The first incompleteness theorem

• Dec. 21, (3) The second incompleteness theorem

• Dec. 28, (4) Presburger arithmetic� �
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Peano arithmetic

• So-called “Peano’s postulates” (1889) is famous as an
axiomatic treatment of the natural numbers. However, it is
not a formal system in the sense of modern logic, since its
underlying logic is ambiguous. Moreover, we should also
notice previous advanced studies by C.S. Peirce (1881) and
R. Dedekind (1888).

• It was Hilbert who began to consider natural number
theory as a formal theory in first-order logic.

• In fact, Peano arithmetic PA as a strict formal system were
established through Gödel’s arguments of his
incompleteness theorem.

• Today we will introduce Peano arithmetic PA and its
representative subsystems PA−, IΣn, Q, etc., and
investigate its fundamental properties.

G. Peano

C.S. Peirce

R. Dedekind



Logic and
Foundation

K. Tanaka

Peano arithmetic

Arithmetical
hierarchy

Recap

Representation
theorems

Formal
Representation
theorems

First proof

5

Peano arithmetic is a first-order theory in the language of ordered rings
LOR = {+, ·, 0, 1, <}, consisting of the following mathematical axioms.

Definition

Peano arithmetic (PA) has the following formulas in LOR as a mathematical axiom.

Successor: A1.¬(x+ 1 = 0), A2. x+ 1 = y + 1→ x = y.
Addition: A3. x+ 0 = x, A4. x+ (y + 1) = (x+ y) + 1.
Multiplication: A5. x · 0 = 0, A6. x · (y + 1) = x · y + x.
Inequality A7. ¬(x < 0), A8. x < y + 1↔ x < y ∨ x = y.

Induction: A9. φ(0) ∧ ∀x(φ(x)→ φ(x+ 1))→ ∀xφ(x).

• Induction is not a single formula, but an axiom schema that collects the formulas for
all the φ(x) in LOR. Note that φ(x) may include free variables other than x.

• In “Peano’s postulates”, induction is expressed in terms of sets, but Peano arithmetic
does not presuppose set theory.
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• Peano’s postulates include A1 and A2, but not A3 ∼ A8, since addition, multiplication
and inequality are regarded as definable notions.

• However, from a modern axiomatic perspective, functions (and relations) can be added
by definition, only if the system is extended conservatively. That is, we can add a new
symbol f and ∀x∀y(φ(x, y)↔ f(x) = y) to a theory T if T ⊢ ∀x∃yφ(x, y) holds.
• The primitive recursive definition is not an explicit definition. A system without
multiplication (PA− {A5,A6}), the relation x • y = z cannot be expressed by a
formula φ(x, y, z) such that ∀x∀y∃zφ(x, y, z) is provable. Thus PA− {A5,A6} is a
properly weaker system than PA.

• On the other hand, even if inequality axioms A7 and A8 are removed, < can be
introduced as follow.
A7.5 ∀x∀y(x < y ↔ ∃z(z + (x+ 1) = y)).

However, to classify the formulas of LOR according to their forms, we want to treat <
as a primitive symbol. It would be inappropriate to think it as an abbreviation for the
right-hand side of A7.5.

• If A7.5 is used instead of A7 and A8, it must be assumed as an axiom at the beginning.
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• The structure of natural numbers N = (N,+, • , 0, 1, <) is the standard model of PA.

• There also exist models of Th(N) non-isomorphic to N, called nonstandard models
of arithmetic.

• The structure (ωω,+, • , 0, 1, <), which has ordinal addition and multiplication on
ordinal numbers < ωω, is a model of A1 ∼ A8.

In set theory, a transfinite ordinal is identified with a set of smaller ordinals.
ωω is the next ordinal of ω closed under + and ·.

• Let Z[X] be the ring of polynomials of integer coefficients with X as a variable. For
p ∈ Z[X], define p > 0 when its highest order coefficient is positive, and
p > q ⇔ p− q > 0 defines an order between the two polynomials p, q.

Let Z[X]+ = {p ∈ Z[X] : p ≥ 0}. Then it is a model of A1 ∼ A8 and more (indeed
PA− as we will explain).
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Arithmetical Hierarchy

• We inductively define hierarchical classes of formulas, Σi and Πi (i ∈ N).

Definition

• The bounded formulas are constructed from atomic formulas by using propositional
connectives and bounded quantifiers ∀x < t and ∃x < t, where ∀x < t and ∃x < t are
abbreviations for ∀x(x < t→ · · · ) and ∃x(x < t ∧ · · · ), respectively, and t is a term
that does not includes x. A bounded formula is also called a Σ0 (=Π0) formula.

• For any i, k ∈ N:
▶ if φ is a Σi formula, ∀x1 · · · ∀xkφ is a Πi+1 formula,

▶ if φ is a Πi formula, ∃x1 · · · ∃xkφ is a Σi+1 formula.

• Σi/Πi also denotes the set of all Σi/Πi formulas.

• Note that ∀x > t or ∀x(x > t→ · · · ) and ∃x > t or ∃x(x > t ∧ · · · ) are not bounded.
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• In the above definition, there are many formulas that do not belong to any class.
However, by De Morgan’s rule, any formula can be transformed to an equivalent
formula that belongs to the above classification. The (lowest) class to which the
equivalent formula belongs is regarded as the class of the formula.

Examples� �
• ¬∃y(y + y = x) does not belong to any of the above class.

• But it is logically equivalent to a Π1 formula ∀y¬(y + y = x).

• So ¬∃y(y + y = x) is a Π1 formula.� �
• If a Πi formula is equivalent to some Σi formula or a Σi formula equivalent to some
Πi formula, such a formula is called a ∆i formula.
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Example� �
• The following Σ0(= Π0)) formula P(x) expresses “x is a prime number”

P(x) ≡ ¬∃d < x∃e < x(d · e = x) ∧ ¬(x = 0) ∧ ¬(x = 1).

• The proposition “every even number greater than or equal to 4 is the sum of two
primes” (the “Goldbach conjecture”) is expressed by the following Π1 formula:

∀x > 1∃p < 2x∃q < 2x (2x = p+ q ∧ P(p) ∧ P(q)).

• “There are infinitely many primes” can be expressed as a Π2 formula

∀x∃y > xP(y).

Also, it can be expressed as a Π1 formula (exercise).� �
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Let us define subsystems of Peano arithmetic PA by restricting its induction axiom.

Definition

Let Γ be a class of formulas in LOR. By IΓ, we denote a subsystem of PA obtained by
restricting (φ(x) of) induction to the class Γ.

• The main subsystems of PA are IΣ1 ⊃ IΣ0 ⊃ IOpen, where Open is the set of
formulas without quantifiers.

Another system weaker than IOpen is the system Q defined by R. Robinson.

Definition

Robinson’s system Q is obtained from PA by removing the axioms of inequality and
induction, and instead adding the following axiom:
Predecessor: A10: ∀x(x ̸= 0→ ∃y(y + 1 = x)).

So, it is a theory in the language of ring LR = {+, ·, 0, 1}.

Let Q< be the system Q plus axiom A7.5.
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Problem 1-1: Show that Q ⊢ 0 + 1 = 1� �
• First, we show Q ⊢ 1 ̸= 0. If 1 = 0, then 0 + 1 = 0 + 0. On the other hand, we

have 0 + 1 ̸= 0 according to the successor axiom, and 0 + 0 = 0 according to the
axiom of addition. So it is a contradiction.

• Then we have y such that y + 1 = 1 by applying the predecessor axiom.

• Next we show y = 0. Assume y ̸= 0. Then, by axiom of addition
0 + 1 = 0 + (y + 1) = (0 + y) + 1, we have 0 = 0 + y. Again by the predecessor
axiom, there is z such that z + 1 = y. Thus 0 = 0 + (z + 1) = (0 + z) + 1, a
contradiction.� �
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Problem 1-2 (Exercise): Show that Q−{A10} ̸⊢ 0 + 1 = 1.� �
• We construct a model of Q-A10 which does not satisfy 0 + 1 = 1.

• The domain of our model consists of two types of elements ñ and 0 + ñ for each
natural number n ≥ 1. It also contains 0 as a special element of the latter type.

• Addition and multiplication are performed as usual if we ignore types. The type of
the result is defined to be the same as that of the left element. So, for instance,

m̃+ ñ = m̃+ (0 + ñ) = m̃+ n,

(0 + m̃) + ñ = (0 + m̃) + (0 + ñ) = 0 + ˜(m+ n).

Multiplication is defined similarly, but we have ñ • 0 = 0.� �
Problem 1-3 (Homework): Show that Q ̸⊢ ∀x(0 + x = x).� �
• (Hint) Consider a non-standard model of Peano arithmetic PA in which only the
non-standard part is divided into two kinds of numbers in the same way as
Problem 1-2. Show it satisfies Q but does not satisfy ∀x(0 + x = x).� �
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Lemma

In IOpen, the following axioms of theory of discrete ordered semirings PA− are provable.
(1) Semiring axioms ( excluding the additive inverses from the commutative ring ).
(2) difference axiom x < y → ∃z(z + (x+ 1) = y).
(3) a linear order with the minimum element 0 and discrete (0 < x↔ 1 ≤ x).
(4) Order preservation x < y → x+ z < y + z ∧ (x · z < y · z ∨ z = 0).

Proof.▶ (1) is a collection of equations (preceded by the universal symbol ∀). For
instance, the associative law of addition (x+ y) + z = x+ (y + z) can be easily shown by
induction on z. Other equations can also be proven by induction on one variable, leaving
the other variables as free variables.
▶ To show (2), x < y → ∃z < y(z + x+ 1 = y) is a Σ0 formula, which can be proved
easily by Σ0 induction on y. To show it by open induction, we prove it by contradiction.
Consider a model of IOpen in which (2) does not hold. So, there are two elements a < b
such that ∀z(z + a+ 1 ̸= b). Define an open formula φ(z) as z + (a+ 1) > b. Then we
have ¬φ(0) and φ(b). By open induction, there exists c such that ¬φ(c) and φ(c+ 1).
Thus, c+ (a+ 1) < b < c+ (a+ 1) + 1, which contradicts with A8.
▶ (3) and (4) are open formulas (with universal symbol ∀ in front), we can select
appropriate variables and use induction.
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Corollary

Q< is a subsystem of the theory PA−.

Proof. We prove the following axioms by using PA−.

A7.5 ∀x∀y(x < y ↔ ∃z(z + (x+ 1) = y)).

A10: ∀x(x ̸= 0→ ∃y(y + 1 = x)).

For A10, x ̸= 0→ x > 0 is an assertion contained in condition (3) of the last lemma. So, if
we use this and condition (2) of the last lemma, we immediately obtain A10.

For A7.5, since → is condition (2) of the last lemma, we only need to show ←. Assuming
∃z(z + x+ 1 = y), we derive a contradiction by denying x < y. Since the axiom of linear
order holds from condition (3) of the last lemma, x = y or x > y.

• If x = y, z + y + 1 = y, but since z + 1 > 0, z + y + 1 > y, a contradiction.

• If x > y, ∃z′(z′ + y + 1 = x) from →, so z + z′ + y + 1 + 1 = y, which is also a
contradiction.

2
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Corollary

Q< ⊂ PA− ⊂ IOpen ⊂ IΣ0 ⊂ IΣ1 ⊂ PA.

• Since Q< lacks induction, it cannot prove many propositions that something holds for
all x (eg, ∀x(0 + x = x)).

• However, it proves correct equalities and inequalities consisting of only concrete
numbers. In other words, an atomic formula s = t or s < t without variables can be
proved if true, and its negation can be proved if false.

• Furthermore, propositional connectives and bounded quantifiers preserve the
correspondence between truth and provability. That is, a bounded sentence can be
proved/disproved in Q< if it is true/false.

• A system is said to be Σ1-complete if it proves all true Σ1 sentences. This seems to
be very strong condition, but indeed Q< is Σ1-complete.

• There is even a weaker system with Σ1 completeness. The system R of
Mostowski-Robinson-Tarski is one of such. It has an infinite number of axioms and
lacks simplicity as a formal system, but it is important for exploring the essence of the
incompleteness theorem.
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A standard formal representation of a natural number n > 0 in LR is n =

n times︷ ︸︸ ︷
1 + · · ·+ 1.

If n = 0, we also set 0 = 0. Then, a term n is called the numeral of number n.

Definition (Mostowski-Robinson-Tarski’s system R)

R is a theory in the language of ordinal rings, consisting of the following axiom schemes.
R1. m ̸= n (when m ̸= n).
R2. ¬(x < 0).
R3. x < n+ 1↔ x = 0 ∨ · · · ∨ x = n.
R4. x < n ∨ x = n ∨ n < x.
R5. m+ n = m+ n.
R6. m •n = m •n.

Lemma

Q< proves all axioms of R.

Proof Most of the axioms of R can be easily proved in Q< by meta-induction. We only
show R3. The base n = 0 is obvious from A8. For induction step, assume it for n.
Consider x < n+ 2. If x = 0, we are done. Otherwise, use A10 to find y such that
y + 1 = x. So, since y < n+ 1, we can use the induction hypothesis for y and finish the
induction step.
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Theorem (Σ1-completeness of R)

R proves all true Σ1 sentences. Therefore, Q<, PA
−, IOpen, etc. are all Σ1-complete.

Proof

• If a Σ1 sentence ∃x1∃x2 . . . ∃xkφ(x1, x2, . . . , xk) is true, there exist natural numbers
n1, n2, . . . , nk such that φ(n1, n2, . . . , nk) holds.

• By virtue of R3, a bounded quantification ∃x < t φ(x) can be rewritten as
φ(0) ∨ φ(1)) ∨ · · · ∨ φ(n− 1) if the value of close term t is n. Thus, by induction, a
bounded sentence can be rewritten as a Boolean combination of atomic sentences.
Since an atomic sentence can be proved/disproved in R if it is true/false, also can a
bounded sentence.

• Therefore, φ(n1, n2, . . . , nk) is provable since it is true. From the rule of first-order
logic, ∃x1∃x2 . . . ∃xkφ(x1, x2, . . . , xk) is also provable in R. 2

• All the arithmetic systems we will discuss are extensions of R, and thus Σ1-complete.

• Another condition for a theory to be needed for the first incompleteness theorem is
1-consistency, also known as Σ1-soundness. A theory is said to be Σn-sound if all
provable Σn statements are true.
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• We first look at the first incompleteness theorem from the viewpoint of computability
theory. Then, we will reexamine the proof more syntactically.

• The most important class in computability theory is CE (computably enumerable).

• X ⊆ Nn is called CE if it is the domain (or range) of some partial recursive function.
Also, any CE relation R(x⃗) can be expressed by ∃yS(x⃗, y) for some primitive recursive
relation S.

• So, we first review the basics of primitive recursive functions and relations.
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Recap: Primitive recursive functions

Definition

The primitive recursive functions are defined as below.

1. Constant 0, successor function S(x) = x+ 1,
projection Pn

i (x1, x2, . . . , xn) = xi (1 ≤ i ≤ n) are prim. rec. functions.

2. Composition.
If gi(1 ≤ i ≤ m), h are prim. rec. functions, so is f = h(g1, . . . , gm) defined by:

f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

3. Primitive recursion.
If g, h are prim. rec. functions, so is f defined by:

f(x1, . . . , xn, 0) = g(x1, . . . , xn),

f(x1, . . . , xn, y + 1) = h(x1, . . . , xn, y, f(x1, . . . , xn, y)).

A primitive recursive function is a computable total function.



Logic and
Foundation

K. Tanaka

Peano arithmetic

Arithmetical
hierarchy

Recap

Representation
theorems

Formal
Representation
theorems

First proof

20

Example� �
x+ y, x−̇y, x · y, x/y, xy, x!, max{x, y}, min{x, y} are primitive recursive functions.� �
Example� �
Let p(x) = “(x+ 1)-th prime number ”, that is ,

p(0) = 2, p(1) = 3, p(2) = 5, . . .

Then, p(x) is a primitive recursive function since it is defined as follows.

p(0) = 2, p(x+ 1) = µy < p(x)! + 2 (p(x) < y ∧ prime(y)).� �
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Definition

An n-ary relation R ⊂ Nn is called primitive recursive, if its characteristic function
χR : Nn → {0, 1} is primitive recursive

χR(x1, . . . , xn) =

{
1 if R(x1, . . . , xn)
0 otherwise

Primitive recursive relations are closed under Boolean operations and bounded quantifiers.

Example: x < y is primitive recursive� �
χ<(x, y) = (y−̇x)−̇M(y−̇x).� �

Example: x = y, prime(x) are primitive recursive� �
x = y ⇔ ¬(x < y) ∧ ¬(y < x).

prime(x)⇔ x > 1 ∧ ¬∃y < x∃z < x(y · z = x).� �
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Recap: Recursive functions

Definition

The set of recursive functions is the smallest class that contains the constant 0, successor
function, projection, and closed under composition, primitive recursion and minimalization.

Minimalization (minimization).
Let g : Nn+1 → N be a recursive function satisfying that
∀x1 · · · ∀xn∃y g(x1, · · · , xn, y) = 0. Then, the function f : Nn → N defined by

f(x1, · · · , xn) = µy(g(x1, · · · , xn, y) = 0)

is recursive, where µy(g(x1, · · · , xn, y) = 0) denotes the smallest y such that
g(x1, · · · ,xn, y) = 0.

Theorem� �
A recursive function is a computable total function, and vice versa.� �
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Recap: Partial computable function

• If a partial computable function f : Nk −→ N is realized by a TMM with index e,
f is denoted by {e}k (or simply {e}). When e is not an index of TM, {e} is regarded
as a partial function with empty domain.

• Enumeration theorem: For any n ≥ 0, there exists a natural number en such that

{en}n+1(d, x1, . . . , xn) ∼ {d}n(x1, . . . , xn), for any d, x1, . . . , xn.

f(x1, . . . , xn) ∼ g(x1, . . . , xn) means either both sides are not defined or they are
defined with the same value.

• A set X ⊂ Nn is said to be computably enumerable or CE if
{1x10 · · · 01xn : (x1, . . . , xn) ∈ X} is the domain of a partial computable function.

• X is said to be computable if both X and Xc are CE.

• A halting program K = {e : {e}(e) ↓} is CE but not computable.
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Recap: Partial recursive function

• The partial recursive functions are the smallest class that contains the constant 0,
the successor function, projections, and closed under composition, primitive recursion
and minimalization.

• Kleene normal form theorem: There are a primitive recursive function U(y) and a
primitive recursive relation Tn(e, x1, · · · , xn, y) such that for any e, there exists d s.t.

{e}(x1, · · · , xn) ∼ U(µyTn(d, x1, · · · , xn, y)).

Theorem� �
A partial recursive function is a partial computable function, and vice versa.� �
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Among many conditions equivalent to CE, some basic ones are summarized as follows.

Lemma

For the relation R ⊂ Nn, the following conditions are equivalent.

(1) R is CE.

(2) R is an empty set or the range of some primitive recursive function.

(3) R is a finite set or the range of a some recursive injection (1-to-1 function).

(4) R is an empty set or the range of some recursive function.

(5) R is the range of some partial recursive function.

(6) There exists a primitive recursive relation S such that

R(x1, · · · , xn)⇔ ∃yS(x1, · · · , xn, y).

(7) There exists a recursive relation S such that

R(x1, · · · , xn)⇔ ∃yS(x1, · · · , xn, y).
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Definition

Let N = (N,+, ·, 0, 1, <) be a standard model of PA.

• A set A ⊆ Nl is said to be Σi if there exists a Σi formula φ(x1, . . . , xl) satisfying

(m1, . . . ,ml) ∈ A⇔ N |= φ(m1, . . . ,ml).

• Here, m is a term expressing number m, that is, m =

m︷ ︸︸ ︷
(1 + 1 + · · ·+ 1)(m > 0),

0 = 0.

• Similarly, Πi sets can be defined by Πi formulas.

• A set that is both Σi and Πi is called ∆i.

• By Lemma (2) later, we will show that the Σ1 sets are the CE sets.
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Lemma (1)

The graph {(x⃗, y) : f(x⃗) = y} of a primitive recursive function f is a ∆1 set.

Proof

• By induction on the construction of primitive recursive functions. The main part is to
treat the definition by primitive recursion.

• For simplicity, we omit parameter variables x1, . . . , xl, and consider the definition of a
unary function f from a constant c and binary function h as follows:

f(0) = c, f(y + 1) = h(y, f(y)).

• From the induction hypothesis, h can be expressed in both Σ1 and Π1 formulas.

• First, let γ(x,m, n) be a Σ0 formula expressing “m(x+ 1) + 1 is a divisor of n”, that
is, ∃d < n (m(x+ 1) + 1) · d = n. Then, for any finite set A (with maxA < u), there
exist m,n such that ∀x < u(x ∈ A⇔ γ(x,m, n)).

• In fact, assume (u− 1)! | m. Then, (m(i+ 1) + 1) and (m(j + 1) + 1) are mutually
prime for any i < j < u. Thus, n = Πi∈A(m(i+ 1) + 1) works.
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• We define a Σ0 formula δ(u,m, n) such that

δ(⟨u1, u2⟩,m, n)⇔ ∀y < u1∃z < u2 f(y) = z.

• The formula δ(u,m, n) is formally constructed as follows: for any u = ⟨u1, u2⟩,

δ(u,m, n) ≡ ∀y < u1∃z < u2 γ(⟨y, z⟩,m, n) ∧ ∀z < u2(γ(⟨0, z⟩,m, n)↔ z = c)

∧ ∀y < u1−1∀z < u2(γ(⟨y + 1, z⟩,m, n)↔ ∃z′ < u2(z = h(y, z′) ∧ γ(⟨y, z′⟩,m, n))).

• Then ∀u1∃u2∃m∃nδ(⟨u1, u2⟩,m, n) holds. Thus, we obtain

f(y) = z ⇔ ∃u∃m∃n(u1 = y + 1 ∧ δ(u,m, n) ∧ γ(⟨y, z⟩,m, n))
⇔ ∀u∀m∀n(u1 = y + 1 ∧ δ(u,m, n)→ γ(⟨y, z⟩,m, n)).

• That is, f(y) = z is a ∆1 set. 2
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• As we saw in the revisited lemma on Slides p.25, any CE relation R(x⃗) can be
expressed by ∃yS(x⃗, y) for some primitive recursive relation S.

• By the above lemma, the primitive recursive relation S can be expressed by a Σ1

formula, and ∃yS(x⃗, y) is still Σ1. Thus, any CE relation can be expressed by a Σ1

formula.

• Therefore, we have the following.

Lemma (2)

The CE sets are exactly the same as the Σ1 sets. Hence, the computable (recursive) sets
are exactly the same as the ∆1 sets.
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Then, the following two formal representation theorems hold.

Theorem ((Weak) Representation Theorem for CE sets)

Suppose that a theory T is Σ1-complete and 1-consistent. Then, for any CE set C, there
exists a Σ1 formula φ(x) such that for any n,

n ∈ C ⇔ T ⊢ φ(n).

Proof.

• From the Lemma (2), for any CE set C, there exists a Σ1 formula φ(x) such that
n ∈ C ⇔ N |= φ(n).

• Since T is Σ1-complete, N |= φ(n)⇒ T ⊢ φ(n).

• Also because T is 1-consistent, T ⊢ φ(n)⇒ N |= φ(n).

2
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Theorem ((Strong) Representation Theorem for Computable Sets)

Assume a theory T is Σ1-complete. For any computable set C, there exists a Σ1 formula
φ(x) such that

n ∈ C ⇒ T ⊢ φ(n), n ̸∈ C ⇒ T ⊢ ¬φ(n).

Proof.

• For a computable set C, from the Lemma (2) there exist Σ0 formulas
θ1(x, y), θ2(x, y) such that

n ∈ C ⇔ N |= ∃yθ1(n, y), n ̸∈ C ⇔ N |= ∃yθ2(n, y).

Now, let φ(x) be a Σ1 formula ∃y(θ1(n, y) ∧ ∀z ≤ y¬θ2(n, z)). By the
Σ1-completeness of T , n ∈ C ⇒ T ⊢ φ(n).
• To show n ̸∈ C ⇒ T ⊢ ¬φ(n), let n ̸∈ C.
Then, since N |= ∃yθ2(n, y), some m exists and N |= θ2(n,m). From the Σ1

completeness of T , T ⊢ θ2(n,m).
Also, since N ̸|= ∃yθ1(n, y), for all l, N |= ¬θ1(n, l), i.e., T ⊢ ¬θ1(n, l).
Therefore, if θ1(n, a) in some model of T , then a is not a standard natural number l.
Thus, T ⊢ ∀y(θ1(n, y)→ ∃z≤y θ2(n, z)), that is, T ⊢ ¬φ(n). 2
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• To derive the incompleteness theorem, we need one more condition on a formal
system, that is, the set of axioms is CE.

• Without this condition, for example, if we take all true arithmetic formulas as axioms,
we would have a complete theory, but it would not be a formal system.

• From the following theorem, the CE set of axioms can be also expressed as a primitive
recursive set.

Theorem (Craig’s lemma)

For any CE theory T , there exists an equivalent (proving the same theorem) primitive
recursive theory T ′.

Proof. Let T be a CE theory, defined by Σ1 formula φ(x) ≡ ∃yθ(x, y) (θ is Σ0).
That is, σ ∈ T ⇔ N |= φ(⌜σ⌝). ⌜σ⌝ is the Gödel number of a sentence σ.
Then, we define a primitive recursive theory T ′ as follows:

T ′ = {
n + 1 copies︷ ︸︸ ︷

σ ∧ σ ∧ · · · ∧ σ : θ(⌜σ⌝, n)}.

Then, T and T ′ are equivalent, since ⊢ σ ↔ σ ∧ σ ∧ · · · ∧ σ. 2
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In the proof above, the definition of T ′ is not Σ0 since it includes the Gödel numbers, etc.
The following can be shown about the CE theory.

Theorem

For any CE theory T , the set of its theorems {⌜σ⌝ : T ⊢ σ} is also CE.

Proof

• Recall that a proof in a formal system of first-order logic is a finite sequence of
formulas, each formula being either a logical axiom, an equality axiom, or a
mathematical axiom of a theory T , or obtained from previous formulas by applying
MP or a quantification rule.

• From the Craig’s Lemma, a CE theory T can be transformed into a primitive recursive
theory. Thus, it is also a primitive recursive relation that (the Gödel number of) a
finite sequence of formulas is a proof of T .

• The set of theorems of T is CE. Because a sentence σ is a theorem of T iff there
exists a proof (i.e., a sequence that satisfies the primitive recursive relation) such that
σ is the last formula of the proof. 2
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The halting problem K is CE, but its complement N−K is not (part 1 of this course).
Gödel’s first incompleteness theorem easily follows from this fact.

Theorem (Gödel’s first incompleteness theorem)

Let T be a Σ1-complete and 1-consistent CE theory. Then T is incomplete, that is, there is
a sentence that cannot be proved or disproved.

Proof.
• Suppose K is CE but not co-CE. By the weak representation theorem for CE sets,
there exists a formula φ(x) such that

n ∈ K⇔ T ⊢ φ(n).

• On the other hand, since N−K is not a CE, there exists some d such that

d ∈ N−K ̸⇔ T ⊢ ¬φ(d).

Thus, (d ∈ K and T ⊢ ¬φ(d)) or (d ̸∈ K and T ̸⊢ ¬φ(d)).
• In the former case, since d ∈ K implies T ⊢ φ(d), T is inconsistent, contradicting
with the 1-consistency assumption.

• In the latter case, T is incomplete because φ(d) cannot be proved or disproved.

2
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Old Homework� �
(1) In a Σ1 complete theory T , show that 1-consistency (Σ1-soundness) of T is

equivalent to the following: for any Σ0 formula φ(x), if φ(n) is provable in T for
all n, then ∃x¬φ(x) is not provable in T .

(2) Let A,B be two disjoint CE sets. Assume a theory T is Σ1-complete. Show that
there exists a Σ1 formula ψ(x) such that

n ∈ A⇒ T ⊢ ψ(n), n ∈ B ⇒ T ⊢ ¬ψ(n).

From this, deduce that {⌜σ⌝ : T ⊢ σ} and {⌜σ⌝ : T ⊢ ¬σ} are computably
inseparable. In particular, {⌜σ⌝ : T ⊢ σ} is not computable.� �
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Thank you for your attention!
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