K. Tanaka

Recap

Ultraproduc

Homework

Non-standard analysis

Logic and Foundation I Part 2. First-order logic

Kazuyuki Tanaka

BIMSA

December 1, 2023

K. Tanaka

Recap

- Ultraproduc
- Homework
- Non-standard analysis

- Logic and Foundations I

- Part 1. Equational theory
- Part 2. First order theory
- Part 3. Model theory
- Part 4. First order arithmetic and incompleteness theorems

- Part 2. Schedule

- Nov. 16, (1) \forall -theory and $\forall \exists$ -theory
- Nov. 23, (2) Horn theory and reduced products
- Nov. 30, (3) Ultra products and non-standard analysis

K. Tanaka

Recap

Ultraproduct Homework

Non-standard analysis

2 Ultraproducts

3 Homework

4 Non-standard analysis

Today's topics

K. Tanaka

Recap

Ultraproduc

Homework

Non-standard analysis

Recap

Let I be a non-empty set. $\mathcal{F} \subseteq \mathcal{P}(I)$ is said to be filter on I if the following are satisfied. (1) $\emptyset \notin \mathcal{F}$, $I \in \mathcal{F}$.

(2)
$$X \in \mathcal{F}, X \subseteq Y \subseteq I \Rightarrow Y \in \mathcal{F}.$$

(3) $X, Y \in \mathcal{F} \to X \cap Y \in \mathcal{F}$.

Let I be an infinite set.

① The collection of co-finite subsets of *I* is a filter, called a **Fréchet filter**.

2 For each $i \in I$, $\{X \subseteq I : i \in X\}$ is a filter, called a principal filter.

Lemma

Definition

If $S \subset \mathcal{P}(I)$ has the finite intersection property: for any finite subset $\{J_1, \ldots J_n\} \subset S$,

$$J_1 \cap \cdots \cap J_n \neq \emptyset$$

then there exists a filter \mathcal{F} including S.

K. Tanaka

Recap

Ultraproduc

Homework

Non-standard analysis

Definition

Let $\mathfrak{A}_i = (A_i, \mathfrak{f}^{\mathfrak{A}_i}, \dots, \mathbb{R}^{\mathfrak{A}_i}, \dots)$ $(i \in I)$ be an \mathcal{L} -structure. Let \mathcal{F} be a filter on I. Then, we define the binary relation $\approx_{\mathcal{F}}$ on $\prod A_i$ as follows

$$a \approx_{\mathcal{F}} b \quad \Leftrightarrow \quad \{i \in I : a(i) = b(i)\} \in \mathcal{F}.$$

Lemma

$\approx_{\mathcal{F}}$ is a congruence relation.

Thus, we can define the quotient structure in the same way as for the algebraic structure.

Definition

Let $\mathfrak{A}_i = (A_i, \mathfrak{f}^{\mathfrak{A}_i}, \dots, \mathbb{R}^{\mathfrak{A}_i}, \dots)$ $(i \in I)$ be \mathcal{L} -structures. Let \mathcal{F} be a filter on I. Then, the following \mathcal{L} -structure is called the **reduced product** of \mathfrak{A}_i , denoted by $\prod \mathfrak{A}_i/\mathcal{F}$.

$$\left(\prod A_i/\mathcal{F}, \mathbf{f}^{\prod \mathfrak{A}_i/\mathcal{F}}, \dots, \mathbf{R}^{\prod \mathfrak{A}_i/\mathcal{F}}, \dots\right)$$

- Logic and Foundation
- K. Tanaka
- Recap
- Ultraproduo
- Homework
- Non-standard analysis

- $\theta_0 \vee \neg \theta_1 \vee \cdots \vee \neg \theta_n$ and $\neg \theta_1 \vee \cdots \vee \neg \theta_n$ are called **basic Horn formulas**, if $\theta_i (i < n)$ are atomic formulas.
- A formula constructed from the basic Horn formulas by using only ∧, ∀, and ∃ is called a Horn formula. A set of Horn sentences is called a Horn theory.

For $a_1, \ldots, a_n \in \prod A_i$, we set $\|\varphi(a_1, \ldots, a_n)\| := \{i \in I : \mathfrak{A}_i \models \varphi(a_1(i), \ldots, a_n(i))\}.$

Lemma

Let $\varphi(x_1,\ldots,x_n)$ be a Horn formula, then for $a_1,\ldots,a_n\in\prod A_i$,

$$\|\varphi(a_1,\ldots,a_n)\| \in \mathcal{F} \Rightarrow \prod \mathfrak{A}_i/\mathcal{F} \models \varphi([a_1],\ldots,[a_n]).$$

Theorem (Keisler-Galvin)

The following are equivalent:

- $(1) \ \operatorname{Mod}(T)$ is closed under reduced products.
- (2) There exists a Horn theory T' such that Mod(T) = Mod(T').

A proof (1) \Rightarrow (2) can be found in Chang-Keisler's classic textbook *Model Theory*.

K. Tanaka

Recap

- Ultraprodu
- Homework
- Non-standard analysis

- A sentence with several ∀ in front of a basic Horn formula is called a ∀-Horn sentence (or simply called a Horn sentence in some literature). A collection of such sentences is called a ∀-Horn theory (or simply a Horn theory).
- A ∀-Horn theory is a nice extension of equational theory. The following theorem is a counter part of Birkhoff's equational class theorem. It can be proven similarly, and we leave the details to the reader.

Theorem

Let ${\mathcal K}$ be a class of L-structures, then the following are equivalent:

- $(1)\ {\cal K}$ is closed under direct products, substructures, and isomorphic images.
- $(2)\ {\cal K}$ is closed under reduced products, substructures, and isomorphic images.
- (3) There exists a \forall -Horn theory T such that $Mod(T) = \mathcal{K}$.

K. Tanaka

Recap Ultraproducts

Ultraproducts

In the following, we will consider the necessary and sufficient conditions for a class of structures to be axiomatized by first order logic, that is, be expressed as Mod(T).

Definition

A class \mathcal{K} of \mathcal{L} -structures is called an **elementary class** if there exists a set T of sentences such that $\mathcal{K} = Mod(T)$. In this case, we write

 $\mathcal{K} \in EC_{\Delta}.$

To characterize elementary classes, we use a kind of reduced product called "ultraproduct". To define it, we first introduce an ultrafilter.

Definition

The filter \mathcal{F} on I is an **ultrafilter** (maximal filter) if the following properties are satisfied.

 $\forall X \subset I(X \in \mathcal{F} \lor I - X \in \mathcal{F}).$

K. Tanaka

Recap

Ultraproducts

Homework

Non-standard analysis

Lemma

Every filter \mathcal{F} can be expanded to an ultrafilter \mathcal{U} .

Proof. Consider the class of all filters including a given filter \mathcal{F} . Since it is closed under the union of chains, by Zorn's lemma, there is a maximal filter \mathcal{U} which is an ultrafilter.

A principal filter is an ultrafilter. There exists an ultrafilter which is non-principal.

Lemma

There exists a non-principal ultrafilter \mathcal{U} on any infinite set I.

Proof.

Let I be an infinite set, and \mathcal{F} be a Fréchet filter on it (a subset of I whose complement is finite). By the above lemma, an ultrafilter \mathcal{U} can be obtained by expanding \mathcal{F} . Then \mathcal{U} is non-principal, since for each $i \in I$, $I - \{i\} \in \mathcal{F} \subseteq \mathcal{U}$, so we have $\{i\} \notin \mathcal{U}$.

K. Tanaka

Recap

Ultraproducts

Homework

Non-standard analysis

Stone's representation theorem

We prove Stone's representation theorem using an ultrafilter.

Theorem (Stone's representation theorem)

For any Boolean algebra \mathfrak{B} , there exists a set X, and \mathfrak{B} can be embedded in the power set algebra $\mathfrak{P}(X)$. In particular, if \mathfrak{B} is finite, it is isomorphic to $\mathfrak{P}(X)$.

Proof.

- Let $\mathfrak{B} = (B, \lor, \land, \neg, 0, 1)$ be a Boolean algebra. Filters, Ultrafilters, and others can naturally be defined for a subset $F \subseteq B$ with the ordering $x \leq y \Leftrightarrow x \land y = x$. Let X be the set of all ultrafilters of B and $\mathcal{P}(X)$ be its power set.
- Define $f: B \to \mathcal{P}(X)$ as follows: f(b) is the set of ultrafilters containing b. Then, $f: B \to \mathcal{P}(X)$ is embedding.
- If 𝔅 is finite, any ultrafilter must be a principal filter. And its generator is an atom (non-zero minimal element) in 𝔅. So, let X be the set of atoms. It is easy to see that 𝔅 and 𝔅(X) are isomorphic.

K. Tanaka

Recap

Ultraproducts

Homework

Non-standard analysis

Ultraproducts

Definition (Ultraproduct)

The reduced product $\prod \mathfrak{A}_i/\mathcal{U}$ for an ultrafilter \mathcal{U} is called an **ultraproduct**.

Theorem (Los)

Let \mathcal{U} be an ultrafilter. For any formula $\varphi(x_1, \ldots, x_n)$ and $a_1, \ldots, a_n \in \prod A_i$, $\prod \mathfrak{A}_i / \mathcal{U} \models \varphi([a_1], \ldots, [a_n]) \Leftrightarrow \|\varphi(a_1, \ldots, a_n)\| \in \mathcal{U}.$

Proof. By induction on the construction of formulas. The atomic formulas and formulas beginning with \land and \exists can be treated in the same way as reduced products. Then we only need to treat the case of negation $\neg \varphi$.

$$\begin{split} \prod \mathfrak{A}_i/\mathcal{U} \models \neg \varphi \Leftrightarrow \prod \mathfrak{A}_i/\mathcal{U} \not\models \varphi \\ \Leftrightarrow \|\varphi\| \not\in \mathcal{U} \quad (\because \text{ induction hypothesis}) \\ \Leftrightarrow \|\neg \varphi\| \in \mathcal{U} \quad (\because \text{ maximality of } \mathcal{U}). \end{split}$$

K. Tanaka

Recap

Ultraproduc

Homework

Non-standard analysis

- Problem 9 ·

Use ultraproducts to show that any field \mathcal{F} has algebraic closure $\overline{\mathcal{F}}$.

Solution:

- We fix a field ${\cal F}$ in a language with constants for their elements.
- Let \mathcal{F}_P be a splitting field of a polynomial P, and for each $Q \in \mathcal{F}[X]$, we put

 $J_Q = \{ P \in \mathcal{F}[X] : Q \text{ is splitted into linear factors over } \mathcal{F}_P \}.$

• Then, $\{J_Q : Q \in \mathcal{F}[X] \text{ and } Q \text{ is not a constant.}\}$ has the finite intersection property $(\because Q_1 \cdots Q_n \in J_{Q_1} \cap \cdots \cap J_{Q_n})$. Therefore, it can be expanded to an ultrafilter \mathcal{U} .

K. Tanaka

Recap

Ultraproduc

Homework

Non-standard analysis

- Problem 9 -

Use ultraproducts to show that any field \mathcal{F} has algebraic closure $\overline{\mathcal{F}}$.

Solution:

- We fix a field ${\mathcal F}$ in a language with constants for their elements.
- Let \mathcal{F}_P be a splitting field of a polynomial P, and for each $Q \in \mathcal{F}[X]$, we put

 $J_Q = \{ P \in \mathcal{F}[X] : Q \text{ is splitted into linear factors over } \mathcal{F}_P \}.$

• Then, $\{J_Q : Q \in \mathcal{F}[X] \text{ and } Q \text{ is not a constant.}\}$ has the finite intersection property $(\because Q_1 \cdots Q_n \in J_{Q_1} \cap \cdots \cap J_{Q_n})$. Therefore, it can be expanded to an ultrafilter \mathcal{U} .

K. Tanaka

- Recap
- Ultraproduc
- Homework
- Non-standard analysis

- Now consider the ultraproduct $\prod \mathcal{F}_P/\mathcal{U}$, which is a field extension of \mathcal{F} .
- For any (non-constant) polynomial $Q \in \mathcal{F}[X]$, the sentence "Q can be splitted over \mathcal{F}_P " is true for all P belonging to $J_Q \in \mathcal{U}$, and so it holds in $\prod \mathcal{F}_P/\mathcal{U}$.
- Therefore, $\prod \mathcal{F}_P/\mathcal{U}$ is an algebraically closed field.
- Finally, we define $\overline{\mathcal{F}}$ to be the set of elements of $\prod \mathcal{F}_P / \mathcal{U}$ which is a root of some $P \in \mathcal{F}[X]$. Clearly, $\overline{\mathcal{F}}$ is an algebraic extension of \mathcal{F} .
- Now, suppose for the contrary that there is a polynomial in $\overline{\mathcal{F}}[X]$ that has no root in $\overline{\mathcal{F}}$. Then, the root should be to expressed as a root of the polynomial of \mathcal{F} ("Algebraic extension" is transitive), which contradicts with the definition of $\overline{\mathcal{F}}$.
- Therefore, $\overline{\mathcal{F}}$ is an algebraic closure of $\mathcal{F}.$

K. Tanaka

Recap

Jltraproduc

Homework

Non-standard Inalysis

Theorem (Frayne-Morel-Scott)

A class of structures \mathcal{K} is an elementary class (EC_{Δ}) iff it is closed under elementary equivalences and ultraproduct.

Proof.

- (\Rightarrow) is clear. To show (\Leftarrow), suppose that \mathcal{K} is closed under elementary equivalences and utraproducts. Let $T = \{\sigma : \forall \mathfrak{A} \in \mathcal{K}, \mathfrak{A} \models \sigma\}$ and we claim $\mathcal{K} = \operatorname{Mod}(T)$. $\mathcal{K} \subseteq \operatorname{Mod}(T)$ is clear. To show $\operatorname{Mod}(T) \subseteq \mathcal{K}$, we take any $\mathfrak{B} \in \operatorname{Mod}(T)$. Let I be the set of finite subsets of $\operatorname{Th}(\mathfrak{B})$.
- By way of contradiction, assume there is an $i \in I$ such that $\forall \mathfrak{A} \in \mathcal{K} \ (\mathfrak{A} \not\models i)$. Suppose $i = \{\varphi_1, \ldots, \varphi_n\}$. Since for any $\mathfrak{A} \in \mathcal{K}, \ \mathfrak{A} \models \neg \varphi_1 \lor \cdots \lor \neg \varphi_n$, we have $\neg \varphi_1 \lor \cdots \lor \neg \varphi_n \in T$. Since $\mathfrak{B} \models T$, we have $\mathfrak{B} \models \neg \varphi_k$ for some $k \in i$, which contradicts $\varphi_k \in i \subseteq \operatorname{Th}(\mathfrak{B})$. Therefore, for any $i \in I$, there exists $\mathfrak{A}_i \in \mathcal{K}$ such that $\mathfrak{A}_i \models i$.
- We can construct a model \mathfrak{A} of $T = \operatorname{Th}(\mathfrak{B})$ by ultraproduct as in the proof of compactness theorem. Then since \mathcal{K} is closed under ultraproducts, we have $\mathfrak{A} \in \mathcal{K}$. Moreover, because \mathcal{K} is closed under elementary equivalence, $\mathfrak{A} \equiv \mathfrak{B}$ implies $\mathfrak{B} \in \mathcal{K}$.

K. Tanaka

Recap

Ultraprodu

Homework

Non-standard analysis

Definition

 $\prod \mathfrak{A}_i/\mathcal{U}$ is called an **ultrapower** of \mathfrak{A} , denoted by $\mathfrak{A}^I/\mathcal{U}$, if $\mathfrak{A}_i = \mathfrak{A}$ for each $i \in I$.

Let $\lambda i.a$ denote a function which always takes the value a. For $a \in |\mathfrak{A}|$, we put

$$^*a = [\lambda i.a] \in |\mathfrak{A}^I/\mathcal{U}|$$

and define a function $d : |\mathfrak{A}| \to |\mathfrak{A}^I/\mathcal{U}|$ by $d(a) = {}^*a$, which is called a canonical embedding.

Definition

An embedding $\phi : \mathfrak{A} \to \mathfrak{B}$ is said to be **elementary** if $\phi(\mathfrak{A}) \prec \mathfrak{B}$.

K. Tanaka

Recap

Homework

Non-standard analysis

Theorem

Let $\prod \mathfrak{A}^I / \mathcal{U}$ be an ultrapower of \mathfrak{A} . Then the canonical embedding $d : |\mathfrak{A}| \to |\mathfrak{A}^I / \mathcal{U}|$ is elementary. In particular, $\mathfrak{A} \equiv \mathfrak{A}^I / \mathcal{U}$.

Proof. For any formula $\varphi(x_1,\ldots,x_n)$ and $a_1,\ldots,a_n\in|\mathfrak{A}|$, by Łos theorem,

$$\mathfrak{A}^{I}/\mathcal{U} \models \varphi(^{*}a_{1}, \dots, ^{*}a_{n}) \Leftrightarrow \{i \in I : \mathfrak{A} \models \varphi(a_{1}, \dots, a_{n})\} \in \mathcal{U}$$
$$\Leftrightarrow \mathfrak{A} \models \varphi(a_{1}, \dots, a_{n}).$$

Thus, d is an elementary embedding. Since $d(\mathfrak{A}) \cong \mathfrak{A}$, $\mathfrak{A} \equiv \mathfrak{A}^I / \mathcal{U}$.

Theorem (Keisler-Shelah)

 $\mathfrak{A} \equiv \mathfrak{B} \Leftrightarrow$ There exist an I and a ultrafilter \mathcal{U} such that $\mathfrak{A}^I / \mathcal{U} \cong \mathfrak{B}^I / \mathcal{U}$.

Proof. (\Leftarrow) is derived from the last theorem. The proof of (\Rightarrow) is omitted since it is too technically involved. See *Model Theory: Third Edition - C.C. Chang, H. Jerome Keisler* for details.

K. Tanaka

Recap

Ultraprod

Homework

Non-standard analysis

Assuming the Keisler-Shelah theorem, we obtain the following.

Corollary

The structural class \mathcal{K} is the elementary class (EC_{Δ}) iff the following two conditions hold.

- (1) \mathcal{K} is closed under ultraproducts and isomorphisms.
- (2) $\mathfrak{A}^{I}/\mathcal{U} \in \mathcal{K} \Rightarrow \mathfrak{A} \in \mathcal{K}$. (It is closed under inverses of ultrapower).

Proof. To show the sufficient condition, we prove \mathcal{K} is closed by elementary equivalence.

- Let $\mathfrak{A} \equiv \mathfrak{B}$ and $\mathfrak{A} \in \mathcal{K}$.
- By the Keisler-Shelah theorem, there is an ultrapower \mathcal{U} such that $\mathfrak{A}^I/\mathcal{U} \cong \mathfrak{B}^I/\mathcal{U}$.
- Since \mathcal{K} is closed under ultraproduct, $\mathfrak{A}^{I}/\mathcal{U} \in \mathcal{K}$.
- Because \mathcal{K} is closed under isomorphisms, $\mathfrak{B}^I/\mathcal{U} \in \mathcal{K}$.
- Moreover, by condition (2), we have $\mathfrak{B} \in \mathcal{K}$.

K. Tanaka

Recap

JItraproduct

Homework

Non-standard analysis A class K of structures in a language L is called a projective class or pseudo-elementary class, denoted K ∈ PC_Δ, if there exists an elementary class K' ∈ EC_Δ in an extended language L' ⊇ L such that

 $\mathcal{K} = \{\mathfrak{A} : \mathfrak{A} \text{ is a reduct of a model in } \mathcal{K}' \text{ to } \mathcal{L}\}.$

- For example, the class of orderable groups is a projective class.
- It is easy to see that PC_{Δ} is also closed under ultraproducts and isomorphisms. Various characterizations are also known for PC_{Δ} .
- The following one is particularly interesting, and so important as it allows us to derive Craig's interpolation theorem.

Theorem

If $\mathcal{K}, \mathcal{K}' \in PC_{\Delta}$ and $\mathcal{K} \cap \mathcal{K}' = \emptyset$, then there exists $\mathcal{J} \in EC$ such that $\mathcal{K} \subseteq \mathcal{J}$ and $\mathcal{J} \cap \mathcal{K}' = \emptyset$ where $\mathcal{J} \in EC$ means that $\mathcal{J} = Mod(\{\sigma\})$ with a single sentence σ .

Homework Problem

Show that ${\cal K}$ is finitely axiomatizable iff both ${\cal K}$ and its complement are closed under ultraproducts and elementary equivalence.

K. Tanaka

- Recap
- Ultraprod
- Homework
- Non-standard analysis

Non-standard analysis

- Using ultrapowers, we can construct a large non-standard structure that properly includes a common standard structure such as natural numbers, real numbers, and function spaces as elementary substructures.
- In particular, a non-standard model of real numbers includes infinities and infinitesimals as elements, and thus provides the first rational model for Leibniz's style of infinitesimal analysis.
- Non-standard methods have been applied to various fields of mathematics. In particular, its application to analysis is called **non-standard analysis**.
- From now on, we fix a non-principal ultrafilter \mathcal{U} on the natural numbers $\omega (= \mathbb{N})$ and denote the ultrapower $\prod \mathfrak{A}^I / \mathcal{U}$ of a structure \mathfrak{A} by * \mathfrak{A} .
- As shown before, there is a natural embedding d(a) = *a from \mathfrak{A} to $*\mathfrak{A}$. Identifying \mathfrak{A} and its image $d(\mathfrak{A})$, \mathfrak{A} can be regarded as an elementary substructure of $*\mathfrak{A}$.
- The structures like $\mathfrak{N} = (\mathbb{N}, +, \bullet, 0, 1, <)$ and $\mathfrak{R} = (\mathbb{R}, +, \bullet, 0, 1, <)$ etc. are called standard models. * \mathfrak{N} , * \mathfrak{R} , etc. are called their non-standard models.

K. Tanaka

Recap

- Ultraproduc
- Homework

Non-standard analysis

- A standard model and its non-standard counterpart can not be distinguished in terms of elementary (first-order) propositions. But, there might be fundamental properties that cannot be expressed in an elementary manner, e.g., the Archimedean property.
- An ordered field A is Archimedian if for any positive elements a, b ∈ A there exists a sufficiently large natural number n ∈ N such that b < a + a + ··· + a (n times).

Theorem

 $*\mathfrak{R}$ is a non-Archimedean ordered field.

Proof.

- Since $\mathfrak R$ is an ordered field and such a property can be described in elementary way, ${}^*\mathfrak R$ is also an ordered field.

Claim: * \mathfrak{R} is non-Archimedean

- Let $s = \langle 1, 2, 3, \ldots \rangle \in |\Re^{\omega}|$ and $N = [s] \in |{}^*\Re|.$
- Then, for any natural number $n \in \mathbb{N}$, we have

$$N > \underbrace{*1 + *1 + \dots + *1}_{n \text{ times}},$$

since $\{i: s(i) > n\} \in \mathcal{U}$.

K. Tanaka

Recap

- Ultraproduc
- Homework
- Non-standard analysis

Definition

- An element a of $|*\mathfrak{R}|$ is infinite if $\forall b \in \mathbb{R}$ b < |a|. An element that is not infinite is said to be finite.
- The element a of $|*\mathfrak{R}|$ is infinitesimal if $\forall b \ (> 0) \in \mathbb{R}, |a| < b$.

K. Tanaka

Recap

Ultraproducts

Homework

Non-standard analysis

$$N=[\langle 1,2,3,\ldots
angle]$$
 is infinite, $1/N=[\langle 1/1,1/2,1/3,\ldots
angle]$ is infinitesimal.

Problem

Example

(1) Show that the set of all infinitesimals is closed under the operations + and $\boldsymbol{\cdot}.$

(2) Show that a is infinite and 1/a is infinitesimal.

K. Tanaka

Recap

- Iltraprodu
- Homework
- Non-standard analysis

Definition

For $a, b \in |*\Re|$, $a \approx b \Leftrightarrow a - b$ is infinitesimal.

- It is easy to see that \approx is an equivalence relation and also preserves the operations of + and -.

Lemma

For a finite real number $a \in |*\mathfrak{R}|$, there exists a unique $b \in \mathbb{R}$ such that $a \approx b$.

Proof. Set $b = \inf\{x \in \mathbb{R} : a < x\}$. Uniqueness is obvious.

- Such a b in the above lemma is called the standard part of a and is denoted by st(a). Thus, a - st(a) is infinitesimal.
- Every finite non-standard real number a can be uniquely represented by the sum of the standard real number st(a) and an infinitesimal.

 \square_{23}

Lemma

If $s = \langle a_i \rangle \in \mathbb{R}^{\omega}$ and $\lim a_i = a$, then $[s] \approx *a$.

Proof. For any positive number $\varepsilon \in \mathbb{R}$, $\{i : |a_i - a| < \varepsilon\} \in \mathcal{U}$. Therefore, [s] - *a is infinitesimal.

K. Tanaka

Recap

Ultraproc

Homework

Non-standard analysis

Definition For $f : \mathbb{R} \to \mathbb{R}$, we define $*f : |*\mathfrak{R}| \to |*\mathfrak{R}|$ as follows: for $s \in |\mathfrak{R}^{\omega}|$, $*f([s]) = [\lambda i. f(s(i))].$

The well-definedness of *f follows from

$$||s = s'|| \in \mathcal{U} \Rightarrow ||\lambda i.f(s(i)) = \lambda i.f(s'(i))|| \in \mathcal{U}.$$

Also, ${}^{*}f$ can be obtained from the ultrapower ${}^{*}\mathfrak{R} \cup \{{}^{*}f\}$ of

$$\mathfrak{R} \cup \{f\} = (\mathbb{R}, f, +, \bullet, 0, 1, <).$$

Theorem

$$f : \mathbb{R} \to \mathbb{R}$$
 is continuous at $a \in \mathbb{R} \Leftrightarrow$ for any $x \approx a$, $*f(x) \approx f(a)$

K. Tanaka

Recap

- . .
- Non-standard analysis

• Let $f : \mathbb{R} \to \mathbb{R}$ is continuous at $a \in \mathbb{R}$, and $x = [\langle x_i \rangle] \approx a$. Take any positive number $\varepsilon \in \mathbb{R}$. By the continuity of f, there exists a positive number $\delta \in \mathbb{R}$ such that

$$\forall y \in \mathbb{R}(|y-a| < \delta \to |f(y) - f(a)| < \varepsilon).$$

- Therefore, $\{i: |x_i a| < \delta\} \subseteq \{i: |f(x_i) f(a)| < \varepsilon\}.$
- Since $x \approx a$, we have $\{i : |x_i a| < \delta\} \in \mathcal{U}$.
- Hence, $\{i: |f(x_i) f(a)| < \varepsilon\} \in \mathcal{U}$. That is, $*f(x) \approx f(a)$.

(⇔)

Proof.

 (\Rightarrow)

- Suppose that f is not continuous at $a \in \mathbb{R}$.
- That is, there exists a positive number $\varepsilon \in \mathbb{R}$ such that for any $i \in \omega$, there exists x_i such that

$$|x_i - a| < \frac{1}{i+1} \land |f(x_i) - f(a)| \ge \varepsilon$$

• Let $x = [\langle x_i \rangle]$. Then $x \approx a$, $|*f(x) - f(a)| \ge \varepsilon$. In other words, $*f(x) \not\approx f(a)$.

K. Tanaka

- Recap
- Ultraproduc
- Homework
- Non-standard analysis

• Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. By the theorem, for any finite $a \in |*\mathfrak{R}|$,

$$\operatorname{st}(^*f(a)) = f(\operatorname{st}(a)).$$

- The relationship $S \subseteq \mathbb{R}^n$ of \mathfrak{R} can be naturally extended to the relation *S of $*\mathfrak{R}$. In particular, $*\mathbb{N}$ and $*\mathbb{Q}$ can be viewed as subsets of $|*\mathfrak{R}|$. Moreover, notice that $(\mathfrak{R}, \mathbb{N}, \mathbb{Q})$ is an elementary substructure of $(*\mathfrak{R}, *\mathbb{N}, *\mathbb{Q})$.
- Let $N = [\langle 1, 2, 3, \ldots \rangle] \in \mathbb{N}$. We consider an N-partition of [0, 1] in \mathbb{R} as $\{0, 1/N, \ldots, (N-1)/N, N/N\}$.
- Given a standard real number a of [0, 1], take $i \in *\mathbb{N}$ with $i/N \le a \le (i + 1)/N$, and then we have $a = \operatorname{st}(i/N)$. In other words, any standard real number can be expressed as a non-standard fraction.
- Based on the above observations, many theorems in analysis can be proven by using the non-standard method. Here we will give two examples.

K. Tanaka

Recap

Ultraprodu

Homework

Non-standard analysis

Theorem

A continuous function $f:[0,1] \rightarrow \mathbb{R}$ has the maximum value.

Proof. In $*\mathfrak{R}$, consider the following * finite set

 $\{*f(0), *f(1/N), \dots, *f((N-1)/N), *f(N/N)\}.$

If its maximum value is ${}^*f(i/N),\,f$ has the maximum value ${\rm st}({}^*f(i/N))$ at $x={\rm st}(i/N).$

Remark. Since $(\mathfrak{R}, \mathbb{N})$ is an elementary substructure of $(*\mathfrak{R}, *\mathbb{N})$, one can use mathematical induction on $*\mathbb{N}$. For instance, it is provable that any * finite set has the maximal element.

K. Tanaka

Recap

onraprout

Homework

Non-standard analysis

Theorem (Peano)

Let $f:[0,1]^2\to\mathbb{R}$ be a continuous function. The following differential equation has a solution

$$\mathrm{d}y/\mathrm{d}x = f(x, y), \quad y(0) = 0.$$

Idea of the proof¹ We define $Y : \{0, 1/N, \dots, N/N\} \to {}^*\mathfrak{R}$ inductively as follows: $Y(k/N) = \sum_{i=0}^{k-1} {}^*f(Y(i/N), i/N) \bullet 1/N.$

Then, $y:[0,1] \to \mathbb{R}$ is defined as follows: given a standard real number a of [0,1], take $k \in {}^*\mathbb{N}$ with $k/N \le a \le (k+1)/N$ and set $y(a) = \operatorname{st}(Y(k/N))$.

Thank you for your attention!

¹V. Benci and M. Di Nasso, How to Measure the Infinite: Mathematics with Infinite and Infinitesimal Numbers, World Scientific Publishing, 2019.