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® Part 1. Equational theory

® Part 2. First order theory

® Part 3. Model theory

® Part 4. First order arithmetic and incompleteness theorems

Part 2. Schedule

® Nov. 16, (1) V-theory and V3-theory
® Nov. 23, (2) Horn theory and reduced products
® Nov. 30, (3) Ultra products and non-standard analysis
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Definition

Let I be a non-empty set. F C P(I) is said to be filter on I if the following are satisfied.
(1) o ¢ F, I eF.

(2 XeF,XCYCI=>Y€F

(3) X,YeF>XNYeF

Let I be an infinite set.
® The collection of co-finite subsets of I is a filter, called a Fréchet filter.
@® Foreachie I, {X CI:i€ X} is a filter, called a principal filter.

Lemma
If S C P(I) has the finite intersection property: for any finite subset {Jy,...J,} C S,

JiN-NJ, # 2,

then there exists a filter F including S.
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Definition
Let 2; = (A, £, ... ,R¥® ...) (i € I) be an L-structure.
Let F be a filter on I. Then, we define the binary relation =~z on [] A; as follows

a~rb & {iel:a(i)=0b(i)}eF.

Lemma

~x Is a congruence relation.
Thus, we can define the quotient structure in the same way as for the algebraic structure.
Definition

Let A; = (A;, £%,... ;R ...) (i € I) be L-structures. Let F be a filter on I. Then, the
following L-structure is called the reduced product of 2(;, denoted by []2;/F.

(HAi/f,fH%/f,...,RH%/?,...)
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K. Tanaka are atomic formulas.
Recap

® A formula constructed from the basic Horn formulas by using only A, V, and T is
called a Horn formula. A set of Horn sentences is called a Horn theory.

For ay,...,an € [T Ai, we set |[p(ar,...,an)|[:={i €l :2; = plai(i),...,a,(i))}.

Lemma
Let o(x1,...,x,) be a Horn formula, then for aq,...,a, €[] Ai,

“(P(ala"'van)||efénmi/]:':(p([al]a“w[an])‘

Theorem (Keisler-Galvin)

The following are equivalent:
(1) Mod(T) is closed under reduced products.
(2) There exists a Horn theory T such that Mod(T) = Mod(T’).

A proof (1) = (2) can be found in Chang-Keisler's classic textbook Model Theory.
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Recap ® A sentence with several V in front of a basic Horn formula is called a V-Horn
sentence (or simply called a Horn sentence in some literature). A collection of such
sentences is called a V-Horn theory (or simply a Horn theory).

® A V-Horn theory is a nice extension of equational theory. The following theorem is a
counter part of Birkhoff's equational class theorem. It can be proven similarly, and we
leave the details to the reader.

Theorem
Let IC be a class of L-structures, then the following are equivalent:

(1) K is closed under direct products, substructures, and isomorphic images.
(2) K is closed under reduced products, substructures, and isomorphic images.

(3) There exists a Y-Horn theory T such that Mod(T) = K.
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Ultraproducts

In the following, we will consider the necessary and sufficient conditions for a class of
structures to be axiomatized by first order logic, that is, be expressed as Mod(T).

Definition
A class IC of L-structures is called an elementary class if there exists a set T of sentences
such that £ = Mod(T). In this case, we write

K € ECAa.
To characterize elementary classes, we use a kind of reduced product called “ultraproduct”.
To define it, we first introduce an ultrafilter.
Definition
The filter F on I is an ultrafilter (maximal filter) if the following properties are satisfied.

VXCI(XeFVI-XE€F).
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Lemma
Every filter F can be expanded to an ultrafilter U.
Proof. Consider the class of all filters including a given filter F.

Since it is closed under the union of chains, by Zorn's lemma, there is a maximal filter U
which is an ultrafilter. O

A principal filter is an ultrafilter. There exists an ultrafilter which is non-principal.

Lemma

There exists a non-principal ultrafilter U on any infinite set I.

Proof.

Let I be an infinite set, and F be a Fréchet filter on it (a subset of I whose complement is
finite). By the above lemma, an ultrafilter U can be obtained by expanding F. Then U is
non-principal, since for each i € I, I — {i} € F C U, so we have {i} £ U.
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Stone’s representation theorem

We prove Stone's representation theorem using an ultrafilter.

Theorem (Stone's representation theorem)

For any Boolean algebra *B, there exists a set X, and B can be embedded in the power set

algebra B (X).
In particular, if B is finite, it is isomorphic to B(X).

Proof.

® let B = (B,V,A,—,0,1) be a Boolean algebra. Filters, Ultrafilters, and others can
naturally be defined for a subset F' C B with the ordering x <y < Ay =x.
Let X be the set of all ultrafilters of B and P(X) be its power set.

® Define f: B — P(X) as follows: f(b) is the set of ultrafilters containing b.
Then, f: B — P(X) is embedding.

o If 5B is finite, any ultrafilter must be a principal filter. And its generator is an atom
(non-zero minimal element) in ®B. So, let X be the set of atoms. It is easy to see that
B and P(X) are isomorphic. O
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Ultraproducts

Definition (Ultraproduct)
The reduced product [[2l;/U for an ultrafilter U is called an ultraproduct.

Theorem (Los)

Let U be an ultrafilter. For any formula o(x1,...,x,) and a1, ... ,a, € [[ A;,
[T2%:/U = ¢([aa], - .-, lan]) & llp(ar, ..., an)]| € U.

Proof. By induction on the construction of formulas. The atomic formulas and formulas
beginning with A and 3 can be treated in the same way as reduced products.
Then we only need to treat the case of negation —¢.

[T2u/uE-p e [ Ee
< lell €U (.- induction hypothesis)
< |lmell €U (. maximality of U). O
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Problem 9

Use ultraproducts to show that any field F has algebraic closure F.
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Use ultraproducts to show that any field F has algebraic closure F.

Solution:
® We fix a field F in a language with constants for their elements.
® Let Fp be a splitting field of a polynomial P, and for each @) € F[X], we put

Jg = {P € F[X] : Q is splitted into linear factors over Fp}.

® Then, {Jg: @ € F[X] and @ is not a constant.} has the finite intersection property
(@1 Qnedg,N---NJg,) . Therefore, it can be expanded to an ultrafilter I/.
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® Now consider the ultraproduct [ Fp/U, which is a field extension of F.

p— ® For any (non-constant) polynomial Q € F[X], the sentence
“Q) can be splitted over Fp" is true for all P belonging to Jg € U, and so it holds in
[IFr/U.

® Therefore, [[ Fp/U is an algebraically closed field.

® Finally, we define ?lo be the set of elements of [[ Fp/U which is a root of some
P € F[X]. Clearly, F is an algebraic extension of F.

® Now, suppose for the contrary that there is a polynomial in F[X] that has no root in
JF. Then, the root should be to expressed as a root of the polynomial of 7
(“Algebraic extension” is transitive), which contradicts with the definition of F.

® Therefore, F is an algebraic closure of F.
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Theorem (Frayne-Morel-Scott)

A class of structures K is an elementary class (ECa ) iff it is closed under elementary
equivalences and ultraproduct.

Proof.

® (=) is clear. To show (<), suppose that K is closed under elementary equivalences
and utraproducts. Let T'= {0 : VA € K, |= o} and we claim K = Mod(T).
K C Mod(T) is clear. To show Mod(T) C K, we take any B € Mod(T).
Let I be the set of finite subsets of Th(B).

® By way of contradiction, assume there is an ¢ € I such that V2 € K (2( |~ 7). Suppose
i={¢1,...,0n}. Sinceforany A € K, A= —p1 V- -V g, we have
—p1 V-V, €T. Since B =T, we have B = —py, for some k € i, which
contradicts o € ¢ C Th(2B). Therefore, for any i € I, there exists 2; € K such that
A i

® We can construct a model 2 of 7' = Th(8) by ultraproduct as in the proof of
compactness theorem. Then since K is closed under ultraproducts, we have 2 € K.

Moreover, because K is closed under elementary equivalence, 2l = 95 implies
B e K. ]
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Definition
[12L:/U is called an ultrapower of 2, denoted by 21 /U{, if 2; = 2 for each i € I.

Let Ai.a denote a function which always takes the value a. For a € ||, we put
*a = [Ni.a] € |2 JU|

and define a function d : || — | /U| by d(a) = *a, which is called a canonical
embedding.

Definition

An embedding ¢ : 2l — 9B is said to be elementary if ¢(A) < B.



Logic and
Foundation

K. Tanaka

Homework

Theorem

Let [T /U be an ultrapower of 2. Then the canonical embedding d : 2| — |21f /U| is
elementary. In particular, 2 = AL JU.

Proof. For any formula ¢(x1,...,2,) and a1,...,a, € |2

, by tos theorem,

WU o(far,...."apn) S {icT: A= play,...,a,)} €U
S AEplar,. .. a,).

Thus, d is an elementary embedding. Since d(2) = 2, A = AL /U. O
Theorem (Keisler-Shelah)
2l =B < There exist an I and a ultrafilter U such that 2! /U = B /Y.

Proof. (<) is derived from the last theorem. The proof of (=) is omitted since it is too
technically involved. See Model Theory: Third Edition - C.C. Chang, H. Jerome Keisler for
details. O
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Assuming the Keisler-Shelah theorem, we obtain the following.
Corollary

The structural class K is the elementary class (ECa ) iff the following two conditions hold.
(1) K is closed under ultraproducts and isomorphisms.

(2) A /U € K = A € K. (It is closed under inverses of ultrapower).

Proof. To show the sufficient condition, we prove /C is closed by elementary equivalence.
® letA=Band 2A € K.

By the Keisler-Shelah theorem, there is an ultrapower U/ such that 2! /U = B /U.
® Since K is closed under ultraproduct, 2! /U € K.

Because K is closed under isomorphisms, B /U € K.

Moreover, by condition (2), we have B € K. O



fegnam) A class K of structures in a language L is called a projective class or

% e pseudo-elementary class, denoted IC € PCp, if there exists an elementary class
K’ € ECA in an extended language £’ D L such that

K ={2:2is a reduct of a model in K’ to L}

Homework

® For example, the class of orderable groups is a projective class.

® |t is easy to see that PCx is also closed under ultraproducts and isomorphisms.
Various characterizations are also known for PCx.

The following one is particularly interesting, and so important as it allows us to derive
Craig's interpolation theorem.

Theorem

IfFKC,K' € PCa and KN K' = @, then there exists J € EC such that K C J and
JNK' =@ where J € EC means that J = Mod({c}) with a single sentence o.

Homework Problem

Show that /C is finitely axiomatizable iff both K and its complement are closed under
ultraproducts and elementary equivalence.




Logic and
Foundation

K. Tanaka

Non-standard
analysis

Non-standard analysis

Using ultrapowers, we can construct a large non-standard structure that properly
includes a common standard structure such as natural numbers, real numbers, and
function spaces as elementary substructures.

In particular, a non-standard model of real numbers includes infinities and
infinitesimals as elements, and thus provides the first rational model for Leibniz's style
of infinitesimal analysis.

Non-standard methods have been applied to various fields of mathematics. In
particular, its application to analysis is called non-standard analysis.

From now on, we fix a non-principal ultrafilter ¢/ on the natural numbers w (= N) and
denote the ultrapower [] 2! /U of a structure A by *2L.

As shown before, there is a natural embedding d(a) = *a from 2 to *2. ldentifying 2
and its image d(21), 2 can be regarded as an elementary substructure of *2L.

The structures like M1 = (N, 4+, +,0,1,<) and R = (R, +, +,0,1, <) etc. are called
standard models. *91, *{R, etc. are called their non-standard models.
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® A standard model and its non-standard counterpart can not be distinguished in terms
of elementary (first-order) propositions. But, there might be fundamental properties
that cannot be expressed in an elementary manner, e.g., the Archimedean property.

® An ordered field 2 is Archimedian if for any positive elements a,b € A there exists a
sufficiently large natural number n € N such that b < a+a+ -+ a (n times).

Theorem
*R is a non-Archimedean ordered field.

Proof.

® Since R is an ordered field and such a property can be described in elementary way,
*$R is also an ordered field.

Claim: *fR is non-Archimedean
® let s=(1,2,3,...) € |R¥| and N = [s] € [*R|.
® Then, for any natural number n € N, we have

N>*1+"14--- 471,

n times

since {i: s(i) > n} eU. O
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Definition

® An element a of |*] is infinite if Vb € R b < |a|. An element that is not infinite is
said to be finite.

® The element a of [*R] is infinitesimal if Vb (> 0) € R, |a| <b.

—00 0 +00
R ® © 0 000000000000 00 00 0 0 00
(minus) infinity 0 infinity
*R __________________
Standard Standard
real numbers 0 real numbers

—
infinitesimal  infinitesimal
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Example

N =[(1,2,3,...)] is infinite, 1/N = [(1/1,1/2,1/3,...)] is infinitesimal.

Problem

(1) Show that the set of all infinitesimals is closed under the operations + and -.
(2) Show that a is infinite and 1/a is infinitesimal.
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Definition
For a,b € [*R|, a = b < a — b is infinitesimal.

® |t is easy to see that ~ is an equivalence relation and also preserves the operations of
+ and «.

Lemma

For a finite real number a € |*R|, there exists a unique b € R such that a ~ b.

Proof. Set b = inf{z € R: a < z}. Uniqueness is obvious. O

® Such a b in the above lemma is called the standard part of a and is denoted by st(a).
Thus, a —st(a) is infinitesimal.

® Every finite non-standard real number a can be uniquely represented by the sum of the
standard real number st(a) and an infinitesimal.

Lemma

If s = (a;) € R and lima; = a, then [s] = *a.

Proof. For any positive number ¢ € R, {i: |a; — a| < e} € U. Therefore, [s] — *a is
infinitesimal. O
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For f: R — R, we define *f : |*R| — |*R| as follows: for s € |R¥],

Non-standard “f([s]) = [Xi.f (s(8)]-

analysis
The well-definedness of * f follows from
Is = 'l € U = [|Xi-f(s(i)) = Ni.f(s'(D)]| € U.
Also, * f can be obtained from the ultrapower *RU {* f} of
RU{f} =R, f,+,+,0,1,<).

Theorem
f:R — R is continuous at a € R & for any x =~ a, *f(x) = f(a).
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® let f: R — Ris continuous at a € R, and = = [(z;)] ~ a. Take any positive number
¢ € R. By the continuity of f, there exists a positive number ¢ € R such that

Non-standard

anay Vy eR(ly —al <6 = [f(y) — fla)] <e).
® Therefore, {i:|z; —al <0} C{i:|f(z:) — fla)|] <e}.
® Since z & a, we have {i: |z; —a| < §} € U.
® Hence, {i:|f(z;) — f(a)] <e} €U. Thatis, *f(x) = f(a).
(<)
® Suppose that f is not continuous at a € R.

® That is, there exists a positive number £ € R such that for any i € w, there exists x;
such that

03— al < 5 ALT@) — f0)] 2 2

® let v = [(x;)]. Then z = a, |*f(x) — f(a)| > €. In other words, *f(x) % f(a). O



Logic and
Foundation

K. Tanaka

Non-standard
analysis

Let f: R — R be a continuous function. By the theorem, for any finite a € |*A],

st("f(a)) = f(st(a)).

The relationship S C R™ of R can be naturally extended to the relation *S of *$R.
In particular, *N and *Q can be viewed as subsets of |*R|. Moreover, notice that
(R, N, Q) is an elementary substructure of (*R,*N,*Q).

Let N =[(1,2,3,...)] € *N. We consider an N-partition of [0,1] in *R as
{0,1/N,...,(N — 1)/N,N/N}.

Given a standard real number a of [0, 1], take ¢ € *N with ¢/N < a < (i+1)/N, and
then we have a = st(i/N). In other words, any standard real number can be expressed
as a non-standard fraction.

Based on the above observations, many theorems in analysis can be proven by using
the non-standard method. Here we will give two examples.
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Theorem

A continuous function f : [0,1] — R has the maximum value.

Non-standard
analysis

Proof. In *0R, consider the following * finite set

{"f(0),"f(A/N), ... " f((N = 1)/N)," f(N/N)}.

If its maximum value is *f(i/N), f has the maximum value st(*f(¢/N)) at
x =st(i/N).

Remark. Since (R, N) is an elementary substructure of (*9%, *N), one can use
mathematical induction on *N. For instance, it is provable that any * finite set has the
maximal element.
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Theorem (Peano)

Let f:[0,1]> — R be a continuous function. The following differential equation has a
solution

dy/dz = f(x,y), y(0)=0.
Idea of the proof' We define Y {0,1/N,...,N/N} — *R inductively as follows:

Y (k/N) = Z f(Y(i/N),i/N)+1/N.

Then, y: [0,1] = R is deflned as follows: given a standard real number a of [0, 1], take
k € *N with /N < a < (k+1)/N and set y(a) = st(Y (k/N)).

Thank you for your attention!

1V. Benci and M. Di Nasso, How to Measure the Infinite: Mathematics with Infinite and Infinitesimal
Numbers, World Scientific Publishing, 2019.
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