K. Tanaka

[Recap](#page-3-0)

[Ultraproducts](#page-7-0)

[Homework](#page-11-0)

[Non-standard](#page-19-0) analysis

Logic and Foundation I Part 2. First-order logic

Kazuyuki Tanaka

BIMSA

December 1, 2023

K. Tanaka

[Recap](#page-3-0)

- **[Ultraproducts](#page-7-0)**
- [Homework](#page-11-0)
- [Non-standard](#page-19-0) analysis

Logic and Foundations I -

- Part 1. Equational theory
- Part 2. First order theory
- Part 3. Model theory
- Part 4. First order arithmetic and incompleteness theorems

✒ ✑

✒ ✑

Part 2. Schedule

- Nov. 16, (1) ∀-theory and ∀∃-theory
- Nov. 23, (2) Horn theory and reduced products
- Nov. 30, (3) Ultra products and non-standard analysis

K. Tanaka

[Recap](#page-3-0)

[Ultraproducts](#page-7-0) [Homework](#page-11-0)

[Non-standard](#page-19-0) analysis

2 [Ultraproducts](#page-7-0)

3 [Homework](#page-11-0)

4 [Non-standard analysis](#page-19-0)

Today's topics

K. Tanaka

[Recap](#page-3-0)

[Ultraproducts](#page-7-0) [Homework](#page-11-0)

[Non-standard](#page-19-0) analysis

Definition

Let I be a non-empty set. $\mathcal{F} \subseteq \mathcal{P}(I)$ is said to be filter on I if the following are satisfied. $(1) \varnothing \notin \mathcal{F}, I \in \mathcal{F}.$ (2) $X \in \mathcal{F}, X \subseteq Y \subseteq I \Rightarrow Y \in \mathcal{F}.$

(3) $X, Y \in \mathcal{F} \to X \cap Y \in \mathcal{F}$.

Let *I* be an infinite set.

1 The collection of co-finite subsets of I is a filter, called a **Fréchet filter**.

2 For each $i \in I$, $\{X \subseteq I : i \in X\}$ is a filter, called a **principal filter**.

Lemma

If $S \subset \mathcal{P}(I)$ has the finite intersection property: for any finite subset $\{J_1, \ldots, J_n\} \subset S$,

$$
J_1 \cap \cdots \cap J_n \neq \varnothing,
$$

then there exists a filter F including S .

Recap

K. Tanaka

[Recap](#page-3-0)

[Ultraproducts](#page-7-0)

[Homework](#page-11-0)

[Non-standard](#page-19-0) analysis

Definition

Let $\mathfrak{A}_i = (A_i, \mathtt{f}^{\mathfrak{A}_i}, \ldots, \mathtt{R}^{\mathfrak{A}_i}, \ldots)$ $(i \in I)$ be an $\mathcal L$ -structure. Let ${\mathcal F}$ be a filter on $I.$ Then, we define the binary relation $\approx_{\mathcal F}$ on $\prod A_i$ as follows

$$
a \approx_{\mathcal{F}} b \quad \Leftrightarrow \quad \{i \in I : a(i) = b(i)\} \in \mathcal{F}.
$$

Lemma

\approx τ is a congruence relation.

Thus, we can define the quotient structure in the same way as for the algebraic structure.

Definition

Let $\mathfrak{A}_i = (A_i, \mathtt{f}^{\mathfrak{A}_i}, \ldots, \mathtt{R}^{\mathfrak{A}_i}, \ldots)$ $(i \in I)$ be $\mathcal L$ -structures. Let $\mathcal F$ be a filter on I . Then, the following $\mathcal L$ -structure is called the reduced product of \mathfrak{A}_i , denoted by $\prod \mathfrak{A}_i/\mathcal F.$

$$
\left(\prod A_i/\mathcal{F},\mathbf{f}^{\prod \mathfrak{A}_i/\mathcal{F}},\ldots,\mathrm{R}^{\prod \mathfrak{A}_i/\mathcal{F}},\ldots\right)
$$

- Logic and [Foundation](#page-0-0)
- K. Tanaka

[Recap](#page-3-0)

- **[Ultraproducts](#page-7-0)** [Homework](#page-11-0)
- [Non-standard](#page-19-0) analysis
- $\theta_0 \vee \neg \theta_1 \vee \cdots \vee \neg \theta_n$ and $\neg \theta_1 \vee \cdots \vee \neg \theta_n$ are called **basic Horn formulas**, if θ_i ($i < n$) are atomic formulas.
- A formula constructed from the basic Horn formulas by using only ∧, ∀, and ∃ is called a **Horn formula**. A set of Horn sentences is called a **Horn theory**.

For $a_1, \ldots, a_n \in \prod A_i$, we set $\|\varphi(a_1, \ldots, a_n)\| := \{i \in I : \mathfrak{A}_i \models \varphi(a_1(i), \ldots, a_n(i))\}.$

Lemma

Let $\varphi(x_1,\ldots,x_n)$ be a Horn formula, then for $a_1,\ldots,a_n\in \prod A_i$,

$$
\|\varphi(a_1,\ldots,a_n)\| \in \mathcal{F} \Rightarrow \prod \mathfrak{A}_i/\mathcal{F} \models \varphi([a_1],\ldots,[a_n]).
$$

Theorem (Keisler-Galvin)

The following are equivalent:

- (1) $Mod(T)$ is closed under reduced products.
- (2) There exists a Horn theory T' such that $Mod(T) = Mod(T')$.

A proof (1) \Rightarrow (2) can be found in Chang-Keisler's classic textbook Model Theory.

K. Tanaka

[Recap](#page-3-0)

- [Ultraproducts](#page-7-0) [Homework](#page-11-0)
- [Non-standard](#page-19-0) analysis
- A sentence with several \forall in front of a basic Horn formula is called a \forall -**Horn** sentence (or simply called a Horn sentence in some literature). A collection of such sentences is called a \forall -**Horn theory** (or simply a Horn theory).
- A ∀-Horn theory is a nice extension of equational theory. The following theorem is a counter part of Birkhoff's equational class theorem. It can be proven similarly, and we leave the details to the reader.

Theorem

Let K be a class of L -structures, then the following are equivalent:

- (1) K is closed under direct products, substructures, and isomorphic images.
- (2) K is closed under reduced products, substructures, and isomorphic images.
- (3) There exists a \forall -Horn theory T such that $Mod(T) = K$.

K. Tanaka

[Recap](#page-3-0) **[Ultraproducts](#page-7-0)**

[Homework](#page-11-0) [Non-standard](#page-19-0) analysis

Ultraproducts In the following, we will consider the necessary and sufficient conditions for a class of structures to be axiomatized by first order logic, that is, be expressed as $Mod(T)$.

Definition

A class K of $\mathcal L$ -structures is called an **elementary class** if there exists a set T of sentences such that $K = Mod(T)$. In this case, we write

 $\mathcal{K} \in EC_{\Delta}$.

To characterize elementary classes, we use a kind of reduced product called "ultraproduct". To define it, we first introduce an ultrafilter.

Definition

The filter F on I is an **ultrafilter** (maximal filter) if the following properties are satisfied.

 $\forall X \subset I(X \in \mathcal{F} \lor I - X \in \mathcal{F}).$

K. Tanaka

[Recap](#page-3-0)

[Ultraproducts](#page-7-0)

[Homework](#page-11-0)

[Non-standard](#page-19-0) analysis

Lemma

Every filter F can be expanded to an ultrafilter U .

Proof. Consider the class of all filters including a given filter \mathcal{F} . Since it is closed under the union of chains, by Zorn's lemma, there is a maximal filter U which is an ultrafilter.

A principal filter is an ultrafilter. There exists an ultrafilter which is non-principal.

Lemma

There exists a non-principal ultrafilter U on any infinite set I .

Proof.

Let I be an infinite set, and F be a Fréchet filter on it (a subset of I whose complement is finite). By the above lemma, an ultrafilter U can be obtained by expanding $\mathcal F$. Then U is non-principal, since for each $i \in I$, $I - \{i\} \in \mathcal{F} \subseteq \mathcal{U}$, so we have $\{i\} \notin \mathcal{U}$.

K. Tanaka

[Recap](#page-3-0)

[Ultraproducts](#page-7-0)

[Homework](#page-11-0)

[Non-standard](#page-19-0) analysis

Stone's representation theorem

We prove Stone's representation theorem using an ultrafilter.

Theorem (Stone's representation theorem)

For any Boolean algebra \mathfrak{B} , there exists a set X, and \mathfrak{B} can be embedded in the power set algebra $\mathfrak{P}(X)$. In particular, if \mathfrak{B} is finite, it is isomorphic to $\mathfrak{P}(X)$.

Proof.

- Let $\mathfrak{B} = (B, \vee, \wedge, \neg, 0, 1)$ be a Boolean algebra. Filters, Ultrafilters, and others can naturally be defined for a subset $F \subseteq B$ with the ordering $x \le y \Leftrightarrow x \wedge y = x$. Let X be the set of all ultrafilters of B and $\mathcal{P}(X)$ be its power set.
- Define $f : B \to \mathcal{P}(X)$ as follows: $f(b)$ is the set of ultrafilters containing b. Then, $f : B \to \mathcal{P}(X)$ is embedding.
- If $\mathfrak B$ is finite, any ultrafilter must be a principal filter. And its generator is an atom (non-zero minimal element) in \mathfrak{B} . So, let X be the set of atoms. It is easy to see that \mathfrak{B} and $\mathfrak{B}(X)$ are isomorphic.

K. Tanaka

[Recap](#page-3-0)

[Ultraproducts](#page-7-0)

[Homework](#page-11-0)

[Non-standard](#page-19-0) analysis

Ultraproducts

Definition (Ultraproduct)

The reduced product $\prod \mathfrak{A}_i/\mathcal{U}$ for an ultrafilter $\mathcal U$ is called an ultraproduct.

Theorem (Łos)

Let U be an ultrafilter. For any formula $\varphi(x_1,\ldots,x_n)$ and $a_1,\ldots,a_n \in \prod A_i$,
 $\prod \mathfrak{A}_i/\mathcal{U} \models \varphi([a_1],\ldots,[a_n]) \Leftrightarrow \|\varphi(a_1,\ldots,a_n)\| \in \mathcal{U}$. $\prod \mathfrak{A}_i/\mathcal{U} \models \varphi([a_1], \ldots, [a_n]) \Leftrightarrow ||\varphi(a_1, \ldots, a_n)|| \in \mathcal{U}.$

Proof. By induction on the construction of formulas. The atomic formulas and formulas beginning with \wedge and \exists can be treated in the same way as reduced products. Then we only need to treat the case of negation $\neg \varphi$.

$$
\prod \mathfrak{A}_i/\mathcal{U} \models \neg \varphi \Leftrightarrow \prod \mathfrak{A}_i/\mathcal{U} \not\models \varphi
$$

\n
$$
\Leftrightarrow ||\varphi|| \not\in \mathcal{U} \quad (\because \text{ induction hypothesis})
$$

\n
$$
\Leftrightarrow ||\neg \varphi|| \in \mathcal{U} \quad (\because \text{maximality of } \mathcal{U}).
$$

K. Tanaka

[Recap](#page-3-0)

[Ultraproducts](#page-7-0)

- [Homework](#page-11-0)
- [Non-standard](#page-19-0) analysis

 \sim Problem 9 \sim

Use ultraproducts to show that any field $\mathcal F$ has algebraic closure $\overline{\mathcal F}$.

- We fix a field F in a language with constants for their elements.
- Let \mathcal{F}_P be a splitting field of a polynomial P, and for each $Q \in \mathcal{F}[X]$, we put

✒ ✑

• Then, $\{J_{Q}: Q \in \mathcal{F}[X] \}$ and Q is not a constant. I has the finite intersection property

K. Tanaka

[Recap](#page-3-0)

[Ultraproducts](#page-7-0)

- [Homework](#page-11-0)
- [Non-standard](#page-19-0) analysis

\sim Problem 9 \sim

Use ultraproducts to show that any field $\mathcal F$ has algebraic closure $\overline{\mathcal F}$.

Solution:

- We fix a field $\mathcal F$ in a language with constants for their elements.
- Let \mathcal{F}_P be a splitting field of a polynomial P, and for each $Q \in \mathcal{F}[X]$, we put

 $J_Q = \{P \in \mathcal{F}[X] : Q$ is splitted into linear factors over $\mathcal{F}_P\}.$

✒ ✑

• Then, $\{J_Q: Q \in \mathcal{F}[X]$ and Q is not a constant.} has the finite intersection property $(\because Q_1 \cdots Q_n \in J_{Q_1} \cap \cdots \cap J_{Q_n})$. Therefore, it can be expanded to an ultrafilter $\mathcal U$.

K. Tanaka

- [Recap](#page-3-0)
- **[Ultraproducts](#page-7-0)**
- [Homework](#page-11-0)
- [Non-standard](#page-19-0) analysis
- Now consider the ultraproduct $\prod \mathcal{F}_P/\mathcal{U}$, which is a field extension of $\mathcal{F}.$
- For any (non-constant) polynomial $Q \in \mathcal{F}[X]$, the sentence "Q can be splitted over \mathcal{F}_P " is true for all P belonging to $J_Q \in \mathcal{U}$, and so it holds in $\prod \mathcal{F}_P/\mathcal{U}.$
- Therefore, $\prod \mathcal{F}_P/\mathcal{U}$ is an algebraically closed field.
- Finally, we define $\overline{\mathcal{F}}$ to be the set of elements of $\prod \mathcal{F}_P/U$ which is a root of some $P \in \mathcal{F}[X]$. Clearly, $\overline{\mathcal{F}}$ is an algebraic extension of \mathcal{F} .
- Now, suppose for the contrary that there is a polynomial in $\overline{\mathcal{F}}[X]$ that has no root in $\overline{\mathcal{F}}$. Then, the root should be to expressed as a root of the polynomial of $\mathcal F$ ("Algebraic extension" is transitive), which contradicts with the definition of $\overline{\mathcal{F}}$.
- Therefore, $\overline{\mathcal{F}}$ is an algebraic closure of \mathcal{F} .

K. Tanaka

[Recap](#page-3-0)

[Ultraproducts](#page-7-0)

[Homework](#page-11-0)

[Non-standard](#page-19-0) analysis

Theorem (Frayne-Morel-Scott)

A class of structures K is an elementary class (EC_{Δ}) iff it is closed under elementary equivalences and ultraproduct.

Proof.

- (\Rightarrow) is clear. To show (\Leftarrow), suppose that K is closed under elementary equivalences and utraproducts. Let $T = \{\sigma : \forall \mathfrak{A} \in \mathcal{K}, \mathfrak{A} \models \sigma\}$ and we claim $\mathcal{K} = \text{Mod}(T)$. $\mathcal{K} \subseteq Mod(T)$ is clear. To show $Mod(T) \subseteq \mathcal{K}$, we take any $\mathfrak{B} \in Mod(T)$. Let I be the set of finite subsets of $\text{Th}(\mathfrak{B})$.
- By way of contradiction, assume there is an $i \in I$ such that $\forall \mathfrak{A} \in \mathcal{K}(\mathfrak{A} \not\models i)$. Suppose $i = {\varphi_1, \ldots, \varphi_n}$. Since for any $\mathfrak{A} \in \mathcal{K}$, $\mathfrak{A} \models \neg \varphi_1 \vee \cdots \vee \neg \varphi_n$, we have $\neg \varphi_1 \vee \cdots \vee \neg \varphi_n \in T$. Since $\mathfrak{B} \models T$, we have $\mathfrak{B} \models \neg \varphi_k$ for some $k \in i$, which contradicts $\varphi_k \in i \subseteq \text{Th}(\mathfrak{B})$. Therefore, for any $i \in I$, there exists $\mathfrak{A}_i \in \mathcal{K}$ such that $\mathfrak{A}_i \models i.$
- We can construct a model \mathfrak{A} of $T = \text{Th}(\mathfrak{B})$ by ultraproduct as in the proof of compactness theorem. Then since K is closed under ultraproducts, we have $\mathfrak{A} \in \mathcal{K}$. Moreover, because K is closed under elementary equivalence, $\mathfrak{A} \equiv \mathfrak{B}$ implies $\mathfrak{B} \in \mathcal{K}$

K. Tanaka

[Recap](#page-3-0)

[Ultraproducts](#page-7-0)

[Homework](#page-11-0)

[Non-standard](#page-19-0) analysis

Definition

 $\prod \mathfrak{A}_i/\mathcal{U}$ is called an **ultrapower** of \mathfrak{A} , denoted by $\mathfrak{A}^I/\mathcal{U}$, if $\mathfrak{A}_i = \mathfrak{A}$ for each $i \in I$.

Let $\lambda i.a$ denote a function which always takes the value a. For $a \in |\mathfrak{A}|$, we put

$$
^*a = [\lambda i.a] \in |{\mathfrak A}^I/{\mathcal U}|
$$

and define a function $d:|\mathfrak{A}|\to|\mathfrak{A}^I/\mathcal{U}|$ by $d(a)=\text{*}a$, which is called a canonical embedding.

Definition

An embedding $\phi : \mathfrak{A} \to \mathfrak{B}$ is said to be **elementary** if $\phi(\mathfrak{A}) \prec \mathfrak{B}$.

K. Tanaka

[Recap](#page-3-0)

[Ultraproducts](#page-7-0)

[Homework](#page-11-0)

[Non-standard](#page-19-0) analysis

Theorem

Let $\prod \mathfrak{A}^I/\mathcal{U}$ be an ultrapower of \mathfrak{A} . Then the canonical embedding $d: |\mathfrak{A}| \to |\mathfrak{A}^I/\mathcal{U}|$ is elementary. In particular, $\mathfrak{A}\equiv \mathfrak{A}^{I}/\mathcal{U}$.

Proof. For any formula $\varphi(x_1, \ldots, x_n)$ and $a_1, \ldots, a_n \in |\mathfrak{A}|$, by Los theorem,

$$
\mathfrak{A}^{I}/\mathcal{U} \models \varphi({}^{\ast}a_{1}, \ldots, {}^{\ast}a_{n}) \Leftrightarrow \{i \in I : \mathfrak{A} \models \varphi(a_{1}, \ldots, a_{n})\} \in \mathcal{U}
$$

$$
\Leftrightarrow \mathfrak{A} \models \varphi(a_{1}, \ldots, a_{n}).
$$

Thus, d is an elementary embedding. Since $d(\mathfrak{A}) \cong \mathfrak{A}, \, \mathfrak{A} \equiv \mathfrak{A}^I/\mathcal{U}.$

Theorem (Keisler-Shelah)

 $\mathfrak{A}\equiv\mathfrak{B} \Leftrightarrow$ There exist an I and a ultrafilter $\mathcal U$ such that $\mathfrak{A}^I/\mathcal U\cong\mathfrak{B}^I/\mathcal U.$

Proof. (\Leftarrow) is derived from the last theorem. The proof of (\Rightarrow) is omitted since it is too technically involved. See Model Theory: Third Edition - C.C. Chang, H. Jerome Keisler for details.

K. Tanaka

[Recap](#page-3-0)

[Ultraproducts](#page-7-0)

[Homework](#page-11-0)

[Non-standard](#page-19-0) analysis

Assuming the Keisler-Shelah theorem, we obtain the following.

Corollary

The structural class K is the elementary class (EC_{Δ}) iff the following two conditions hold.

- (1) K is closed under ultraproducts and isomorphisms.
- $(2) \mathfrak{A}^{I}/U \in \mathcal{K} \Rightarrow \mathfrak{A} \in \mathcal{K}$. (It is closed under inverses of ultrapower).

Proof. To show the sufficient condition, we prove $\mathcal K$ is closed by elementary equivalence.

- Let $\mathfrak{A} \equiv \mathfrak{B}$ and $\mathfrak{A} \in \mathcal{K}$.
- By the Keisler-Shelah theorem, there is an ultrapower $\cal U$ such that $\mathfrak{A}^{I}/\cal U\cong \mathfrak{B}^{I}/\cal U.$
- Since K is closed under ultraproduct, $\mathfrak{A}^{I}/\mathcal{U} \in \mathcal{K}$.
- Because K is closed under isomorphisms, $\mathfrak{B}^{I}/U \in \mathcal{K}$.
- Moreover, by condition (2), we have $\mathfrak{B} \in \mathcal{K}$.

K. Tanaka

[Recap](#page-3-0)

[Ultraproducts](#page-7-0)

[Homework](#page-11-0)

[Non-standard](#page-19-0)

• A class K of structures in a language L is called a **projective class** or **pseudo-elementary class**, denoted $K \in \text{PC}_{\Delta}$, if there exists an elementary class $\mathcal{K}'\in\mathrm{EC}_{\Delta}$ in an extended language $\mathcal{L}'\supseteq\mathcal{L}$ such that

 $\mathcal{K} = \{ \mathfrak{A} : \mathfrak{A}$ is a reduct of a model in \mathcal{K}' to $\mathcal{L} \}.$

- For example, the class of orderable groups is a projective class.
- It is easy to see that PC_{Δ} is also closed under ultraproducts and isomorphisms. Various characterizations are also known for PC∆.
- The following one is particularly interesting, and so important as it allows us to derive Craig's interpolation theorem.

Theorem

If K, $K' \in PC_\Lambda$ and $K \cap K' = \emptyset$, then there exists $\mathcal{J} \in EC$ such that $K \subseteq \mathcal{J}$ and $\mathcal{J} \cap \mathcal{K}' = \emptyset$ where $\mathcal{J} \in EC$ means that $\mathcal{J} = Mod(\{\sigma\})$ with a single sentence σ .

Homework Problem

Show that K is finitely axiomatizable iff both K and its complement are closed under ultraproducts and elementary equivalence.

K. Tanaka

[Recap](#page-3-0)

- **[Ultraproducts](#page-7-0)** [Homework](#page-11-0)
- [Non-standard](#page-19-0) analysis

Non-standard analysis

- • Using ultrapowers, we can construct a large non-standard structure that properly includes a common standard structure such as natural numbers, real numbers, and function spaces as elementary substructures.
- In particular, a non-standard model of real numbers includes infinities and infinitesimals as elements, and thus provides the first rational model for Leibniz's style of infinitesimal analysis.
- Non-standard methods have been applied to various fields of mathematics. In particular, its application to analysis is called non-standard analysis.
- From now on, we fix a non-principal ultrafilter U on the natural numbers ω (= N) and denote the ultrapower $\prod \mathfrak{A}^I/\mathcal{U}$ of a structure $\mathfrak A$ by ${}^*\mathfrak{A}.$
- As shown before, there is a natural embedding $d(a) = *a$ from $\mathfrak A$ to * $\mathfrak A$. Identifying $\mathfrak A$ and its image $d(\mathfrak{A})$, $\mathfrak A$ can be regarded as an elementary substructure of $^* \mathfrak A$.
- The structures like $\mathfrak{N} = (\mathbb{N}, +, \cdot, 0, 1, <)$ and $\mathfrak{R} = (\mathbb{R}, +, \cdot, 0, 1, <)$ etc. are called standard models. * $\mathfrak{N},$ * $\mathfrak{R},$ etc. are called their non-standard models.

K. Tanaka

- [Recap](#page-3-0)
- [Ultraproducts](#page-7-0) [Homework](#page-11-0)
- [Non-standard](#page-19-0) analysis
- A standard model and its non-standard counterpart can not be distinguished in terms of elementary (first-order) propositions. But, there might be fundamental properties that cannot be expressed in an elementary manner, e.g., the Archimedean property.
- An ordered field $\mathfrak A$ is **Archimedian** if for any positive elements $a, b \in A$ there exists a sufficiently large natural number $n \in \mathbb{N}$ such that $b < a + a + \cdots + a$ (n times).

Theorem

[∗]R is a non-Archimedean ordered field.

Proof.

• Since \Re is an ordered field and such a property can be described in elementary way, [∗]R is also an ordered field.

Claim: [∗]R is non-Archimedean

- Let $s = \langle 1, 2, 3, \ldots \rangle \in |\Re^{\omega}|$ and $N = [s] \in |{}^*\Re|$.
- Then, for any natural number $n \in \mathbb{N}$, we have

$$
N > \underbrace{1 + {^*}1 + \cdots + {^*}1}_{n \text{ times}},
$$

since $\{i : s(i) > n\} \in \mathcal{U}$.

K. Tanaka

[Recap](#page-3-0)

- [Ultraproducts](#page-7-0)
- [Homework](#page-11-0)
- [Non-standard](#page-19-0) analysis

Definition

• An element a of $|{}^*\mathfrak{R}|$ is infinite if $\forall b \in \mathbb{R}$ $b < |a|$. An element that is not infinite is said to be finite. 元 a が**無限小**(infinitesimal)であるとは,∀b (> 0) ∈ R |a| < b となることを \n oloment a of [|]*®}| is **infinite** if ∀ሌ∈ ₪ ሌ < lal. An oloment that is not infinite i

[∗]R| の元 a が**無限大**(infinite)であるとは,∀b ∈ R b < |a| と

• The element a of $|{}^*\mathfrak{R}|$ is **infinitesimal** if $\forall b (> 0) \in \mathbb{R}, |a| < b$.

K. Tanaka

[Recap](#page-3-0)

[Ultraproducts](#page-7-0)

[Homework](#page-11-0)

[Non-standard](#page-19-0) analysis

$$
N = \left[\langle 1, 2, 3, \ldots \rangle\right]
$$
 is infinite, $1/N = \left[\langle 1/1, 1/2, 1/3, \ldots \rangle\right]$ is infinitesimal.

$\sqrt{ }$ Problem $\sqrt{ }$

(1) Show that the set of all infinitesimals is closed under the operations $+$ and \cdot .

 \sim Example \sim

✒ ✑

✒ ✑

(2) Show that a is infinite and $1/a$ is infinitesimal.

K. Tanaka

[Recap](#page-3-0) **[Ultraproducts](#page-7-0)**

[Homework](#page-11-0) [Non-standard](#page-19-0) analysis

• It is easy to see that \approx is an equivalence relation and also preserves the operations of $+$ and \cdot .

Lemma

Definition

For a finite real number $a \in |{}^*\mathfrak{R}|$, there exists a unique $b \in \mathbb{R}$ such that $a \approx b$.

Proof. Set $b = \inf\{x \in \mathbb{R} : a < x\}$. Uniqueness is obvious.

- Such a b in the above lemma is called the **standard part** of a and is denoted by $st(a)$. Thus, $a - st(a)$ is infinitesimal.
- Every finite non-standard real number a can be uniquely represented by the sum of the standard real number $st(a)$ and an infinitesimal.

 \Box 23

Lemma

If $s = \langle a_i \rangle \in \mathbb{R}^{\omega}$ and $\lim a_i = a$, then $[s] \approx {}^*a$.

For $a, b \in |{}^*\mathfrak{R}|$, $a \approx b \Leftrightarrow a - b$ is infinitesimal.

Proof. For any positive number $\varepsilon \in \mathbb{R}$, $\{i : |a_i - a| < \varepsilon\} \in \mathcal{U}$. Therefore, $[s] - *a$ is infinitesimal.

K. Tanaka

[Recap](#page-3-0)

[Ultraproducts](#page-7-0) [Homework](#page-11-0)

[Non-standard](#page-19-0) analysis

Definition

For
$$
f : \mathbb{R} \to \mathbb{R}
$$
, we define ${}^*f : |{}^*\mathfrak{R}| \to |{}^*\mathfrak{R}|$ as follows: for $s \in |\mathfrak{R}^{\omega}|$,
 ${}^*f([s]) = [\lambda i.f(s(i))]$.

The well-definedness of $*f$ follows from

$$
||s = s'|| \in \mathcal{U} \Rightarrow ||\lambda i.f(s(i)) = \lambda i.f(s'(i))|| \in \mathcal{U}.
$$

Also, * f can be obtained from the ultrapower * $\Re \cup \{ * f \}$ of

$$
\mathfrak{R}\cup\{f\}=(\mathbb{R},f,+,\,\bullet\,,0,1,<).
$$

Theorem

$$
f: \mathbb{R} \to \mathbb{R} \text{ is continuous at } a \in \mathbb{R} \Leftrightarrow \text{ for any } x \approx a, \;^* f(x) \approx f(a).
$$

K. Tanaka

[Recap](#page-3-0)

- **[Ultraproducts](#page-7-0)** [Homework](#page-11-0)
- [Non-standard](#page-19-0) analysis

• Let $f : \mathbb{R} \to \mathbb{R}$ is continuous at $a \in \mathbb{R}$, and $x = |\langle x_i \rangle| \approx a$. Take any positive number $\varepsilon \in \mathbb{R}$. By the continuity of f, there exists a positive number $\delta \in \mathbb{R}$ such that

$$
\forall y \in \mathbb{R}(|y - a| < \delta \to |f(y) - f(a)| < \varepsilon).
$$

- Therefore, $\{i : |x_i a| < \delta\} \subseteq \{i : |f(x_i) f(a)| < \varepsilon\}.$
- Since $x \approx a$, we have $\{i : |x_i a| < \delta\} \in \mathcal{U}$.
- Hence, $\{i : |f(x_i) f(a)| < \varepsilon\} \in \mathcal{U}$. That is, $*f(x) \approx f(a)$.
- (\Leftarrow)

Proof. (\Rightarrow)

- Suppose that f is not continuous at $a \in \mathbb{R}$.
- That is, there exists a positive number $\varepsilon \in \mathbb{R}$ such that for any $i \in \omega$, there exists x_i such that

$$
|x_i - a| < \frac{1}{i+1} \land |f(x_i) - f(a)| \ge \varepsilon
$$

• Let $x = \langle x_i \rangle$. Then $x \approx a$, $|f(x) - f(a)| \ge \varepsilon$. In other words, $f(x) \not\approx f(a)$. \Box

K. Tanaka

- [Recap](#page-3-0)
- **[Ultraproducts](#page-7-0)** [Homework](#page-11-0)

[Non-standard](#page-19-0) analysis

• Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. By the theorem, for any finite $a \in |{}^* \mathfrak{R}|$,

$$
st(*f(a)) = f(st(a)).
$$

- The relationship $S \subseteq \mathbb{R}^n$ of $\mathfrak R$ can be naturally extended to the relation *S of $^*\mathfrak R$. In particular, [∗]N and [∗]Q can be viewed as subsets of | [∗]R|. Moreover, notice that $(\mathfrak{R}, \mathbb{N}, \mathbb{Q})$ is an elementary substructure of $({}^*\mathfrak{R}, {}^*\mathbb{N}, {}^*\mathbb{Q}).$
- Let $N = \{(1, 2, 3, ...) \} \in {^*}\mathbb{N}$. We consider an N -partition of $[0, 1]$ in ${}^* \mathfrak{R}$ as $\{0, 1/N, \ldots, (N-1)/N, N/N\}.$
- Given a standard real number a of $[0,1]$, take $i \in {}^*\mathbb{N}$ with $i/N \leq a \leq (i+1)/N$, and then we have $a = st(i/N)$. In other words, any standard real number can be expressed as a non-standard fraction.
- Based on the above observations, many theorems in analysis can be proven by using the non-standard method. Here we will give two examples.

K. Tanaka

Theorem

[Recap](#page-3-0)

[Ultraproducts](#page-7-0)

[Homework](#page-11-0)

[Non-standard](#page-19-0) analysis

A continuous function $f : [0, 1] \rightarrow \mathbb{R}$ has the maximum value.

Proof. In $*$ R, consider the following $*$ finite set

 $\{^*f(0),^*f(1/N),\ldots,^*f((N-1)/N),^*f(N/N)\}.$

If its maximum value is * $f(i/N)$, f has the maximum value st(* $f(i/N)$) at $x = st(i/N)$.

 $\sf Remark.\; Since\: ({\mathfrak R},{\mathbb N})$ is an elementary substructure of $({}^*{\mathfrak R},{}^*{\mathbb N}),$ one can use mathematical induction on $*N$. For instance, it is provable that any $*$ finite set has the maximal element.

 \Box

K. Tanaka

[Recap](#page-3-0)

[Ultraproducts](#page-7-0)

[Non-standard](#page-19-0) analysis

Theorem (Peano)

Let $f : [0, 1]^2 \to \mathbb{R}$ be a continuous function. The following differential equation has a solution

$$
dy/dx = f(x, y), y(0) = 0.
$$

Idea of the proof¹ We define $Y : \{0, 1/N, \ldots, N/N\} \rightarrow \mathbb{R}$ inductively as follows: $Y(k/N) =$ $\sum_{i=1}^{k-1} \varepsilon^* f(Y(i/N), i/N) \cdot 1/N.$

Then, $y : [0, 1] \to \mathbb{R}$ is defined as follows: given a standard real number a of $[0, 1]$, take $k \in {}^*\mathbb{N}$ with $k/N \le a \le (k+1)/N$ and set $y(a) = \text{st}(Y(k/N)).$ П

Thank you for your attention!

 1 V. Benci and M. Di Nasso, How to Measure the Infinite: Mathematics with Infinite and Infinitesimal Numbers, World Scientific Publishing, 2019.