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Logic and Foundations I� �
• Part 1. Equational theory

• Part 2. First order theory

• Part 3. Model theory

• Part 4. First order arithmetic and incompleteness theorems� �
Part 2. Schedule� �
• Nov. 16, (1) ∀-theory and ∀∃-theory

• Nov. 23, (2) Horn theory and reduced products

• Nov. 30, (3) Ultra products and non-standard analysis� �
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Recap

Definition

Let I be a non-empty set. F ⊆ P(I) is said to be filter on I if the following are satisfied.

(1) ∅ ̸∈ F , I ∈ F .

(2) X ∈ F , X ⊆ Y ⊆ I ⇒ Y ∈ F .

(3) X,Y ∈ F → X ∩ Y ∈ F .

Let I be an infinite set.

1 The collection of co-finite subsets of I is a filter, called a Fréchet filter.

2 For each i ∈ I, {X ⊆ I : i ∈ X} is a filter, called a principal filter.

Lemma

If S ⊂ P(I) has the finite intersection property: for any finite subset {J1, . . . Jn} ⊂ S,

J1 ∩ · · · ∩ Jn ̸= ∅,

then there exists a filter F including S.
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Definition

Let Ai = (Ai, f
Ai , . . . ,RAi , . . .) (i ∈ I) be an L-structure.

Let F be a filter on I. Then, we define the binary relation ≈F on
∏
Ai as follows

a≈Fb ⇔ {i ∈ I : a(i) = b(i)} ∈ F .

Lemma

≈F is a congruence relation.

Thus, we can define the quotient structure in the same way as for the algebraic structure.

Definition

Let Ai = (Ai, f
Ai , . . . ,RAi , . . .) (i ∈ I) be L-structures. Let F be a filter on I. Then, the

following L-structure is called the reduced product of Ai, denoted by
∏

Ai/F .

(∏
Ai/F , f

∏
Ai/F , . . . ,R

∏
Ai/F , . . .

)
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• θ0 ∨¬θ1 ∨ · · · ∨ ¬θn and ¬θ1 ∨ · · · ∨ ¬θn are called basic Horn formulas, if θi (i < n)
are atomic formulas.

• A formula constructed from the basic Horn formulas by using only ∧, ∀, and ∃ is
called a Horn formula. A set of Horn sentences is called a Horn theory.

For a1, . . . , an ∈
∏
Ai, we set ∥φ(a1, . . . , an)∥ := {i ∈ I : Ai |= φ(a1(i), . . . , an(i))}.

Lemma

Let φ(x1, . . . , xn) be a Horn formula, then for a1, . . . , an ∈
∏
Ai,

∥φ(a1, . . . , an)∥ ∈ F ⇒
∏

Ai/F |= φ([a1], . . . , [an]).

Theorem (Keisler-Galvin)

The following are equivalent:

(1) Mod(T) is closed under reduced products.

(2) There exists a Horn theory T ′ such that Mod(T) = Mod(T′).

A proof (1) ⇒ (2) can be found in Chang-Keisler’s classic textbook Model Theory.
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• A sentence with several ∀ in front of a basic Horn formula is called a ∀-Horn
sentence (or simply called a Horn sentence in some literature). A collection of such
sentences is called a ∀-Horn theory (or simply a Horn theory).

• A ∀-Horn theory is a nice extension of equational theory. The following theorem is a
counter part of Birkhoff’s equational class theorem. It can be proven similarly, and we
leave the details to the reader.

Theorem

Let K be a class of L-structures, then the following are equivalent:

(1) K is closed under direct products, substructures, and isomorphic images.

(2) K is closed under reduced products, substructures, and isomorphic images.

(3) There exists a ∀-Horn theory T such that Mod(T) = K.
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Ultraproducts
In the following, we will consider the necessary and sufficient conditions for a class of
structures to be axiomatized by first order logic, that is, be expressed as Mod(T).

Definition

A class K of L-structures is called an elementary class if there exists a set T of sentences
such that K = Mod(T). In this case, we write

K ∈ EC∆.

To characterize elementary classes, we use a kind of reduced product called “ultraproduct”.
To define it, we first introduce an ultrafilter.

Definition

The filter F on I is an ultrafilter (maximal filter) if the following properties are satisfied.

∀X ⊂ I(X ∈ F ∨ I −X ∈ F).
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Lemma

Every filter F can be expanded to an ultrafilter U .

Proof. Consider the class of all filters including a given filter F .
Since it is closed under the union of chains, by Zorn’s lemma, there is a maximal filter U
which is an ultrafilter.

A principal filter is an ultrafilter. There exists an ultrafilter which is non-principal.

Lemma

There exists a non-principal ultrafilter U on any infinite set I.

Proof.
Let I be an infinite set, and F be a Fréchet filter on it (a subset of I whose complement is
finite). By the above lemma, an ultrafilter U can be obtained by expanding F . Then U is
non-principal, since for each i ∈ I, I − {i} ∈ F ⊆ U , so we have {i} ̸∈ U .
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Stone’s representation theorem

We prove Stone’s representation theorem using an ultrafilter.

Theorem (Stone’s representation theorem)

For any Boolean algebra B, there exists a set X, and B can be embedded in the power set
algebra P(X).
In particular, if B is finite, it is isomorphic to P(X).

Proof.

• Let B = (B,∨,∧,¬, 0, 1) be a Boolean algebra. Filters, Ultrafilters, and others can
naturally be defined for a subset F ⊆ B with the ordering x ≤ y ⇔ x ∧ y = x.
Let X be the set of all ultrafilters of B and P(X) be its power set.

• Define f : B → P(X) as follows: f(b) is the set of ultrafilters containing b.
Then, f : B → P(X) is embedding.

• If B is finite, any ultrafilter must be a principal filter. And its generator is an atom
(non-zero minimal element) in B. So, let X be the set of atoms. It is easy to see that
B and P(X) are isomorphic.
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Ultraproducts

Definition (Ultraproduct)

The reduced product
∏

Ai/U for an ultrafilter U is called an ultraproduct.

Theorem ( Los)

Let U be an ultrafilter. For any formula φ(x1, . . . , xn) and a1, . . . , an ∈
∏
Ai,∏

Ai/U |= φ([a1], . . . , [an])⇔ ∥φ(a1, . . . , an)∥ ∈ U .

Proof. By induction on the construction of formulas. The atomic formulas and formulas
beginning with ∧ and ∃ can be treated in the same way as reduced products.
Then we only need to treat the case of negation ¬φ.

∏
Ai/U |= ¬φ⇔

∏
Ai/U ̸|= φ

⇔ ∥φ∥ ̸∈ U (∵ induction hypothesis)

⇔ ∥¬φ∥ ∈ U (∵ maximality of U).
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Problem 9� �
Use ultraproducts to show that any field F has algebraic closure F .� �

Solution:

• We fix a field F in a language with constants for their elements.

• Let FP be a splitting field of a polynomial P , and for each Q ∈ F [X], we put

JQ = {P ∈ F [X] : Q is splitted into linear factors over FP }.

• Then, {JQ : Q ∈ F [X] and Q is not a constant.} has the finite intersection property
(∵ Q1 · · ·Qn ∈ JQ1 ∩ · · · ∩ JQn) . Therefore, it can be expanded to an ultrafilter U .
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• Now consider the ultraproduct
∏FP /U , which is a field extension of F .

• For any (non-constant) polynomial Q ∈ F [X], the sentence
“Q can be splitted over FP ” is true for all P belonging to JQ ∈ U , and so it holds in∏FP /U .

• Therefore,
∏FP /U is an algebraically closed field.

• Finally, we define F to be the set of elements of
∏FP /U which is a root of some

P ∈ F [X]. Clearly, F is an algebraic extension of F .

• Now, suppose for the contrary that there is a polynomial in F [X] that has no root in
F . Then, the root should be to expressed as a root of the polynomial of F
(“Algebraic extension” is transitive), which contradicts with the definition of F .

• Therefore, F is an algebraic closure of F .
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Theorem (Frayne-Morel-Scott)

A class of structures K is an elementary class (EC∆) iff it is closed under elementary
equivalences and ultraproduct.

Proof.

• (⇒) is clear. To show (⇐), suppose that K is closed under elementary equivalences
and utraproducts. Let T = {σ : ∀A ∈ K,A |= σ} and we claim K = Mod(T ).
K ⊆ Mod(T ) is clear. To show Mod(T ) ⊆ K, we take any B ∈ Mod(T ).
Let I be the set of finite subsets of Th(B).

• By way of contradiction, assume there is an i ∈ I such that ∀A ∈ K (A ̸|= i). Suppose
i = {φ1, . . . , φn}. Since for any A ∈ K, A |= ¬φ1 ∨ · · · ∨ ¬φn, we have
¬φ1 ∨ · · · ∨ ¬φn ∈ T . Since B |= T , we have B |= ¬φk for some k ∈ i, which
contradicts φk ∈ i ⊆ Th(B). Therefore, for any i ∈ I, there exists Ai ∈ K such that
Ai |= i.

• We can construct a model A of T = Th(B) by ultraproduct as in the proof of
compactness theorem. Then since K is closed under ultraproducts, we have A ∈ K.
Moreover, because K is closed under elementary equivalence, A ≡ B implies
B ∈ K.



Logic and
Foundation

K. Tanaka

Recap

Ultraproducts

Homework

Non-standard
analysis

15

Definition
∏

Ai/U is called an ultrapower of A, denoted by AI/U , if Ai = A for each i ∈ I.

Let λi.a denote a function which always takes the value a. For a ∈ |A|, we put

∗a = [λi.a] ∈ |AI/U|

and define a function d : |A| → |AI/U| by d(a) = ∗a, which is called a canonical
embedding.

Definition

An embedding ϕ : A→ B is said to be elementary if ϕ(A) ≺ B.
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Theorem

Let
∏

AI/U be an ultrapower of A. Then the canonical embedding d : |A| → |AI/U| is
elementary. In particular, A ≡ AI/U .

Proof. For any formula φ(x1, . . . , xn) and a1, . . . , an ∈ |A|, by  Los theorem,

AI/U |= φ(∗a1, . . . ,
∗an)⇔ {i ∈ I : A |= φ(a1, . . . , an)} ∈ U

⇔ A |= φ(a1, . . . , an).

Thus, d is an elementary embedding. Since d(A) ∼= A, A ≡ AI/U .

Theorem (Keisler-Shelah)

A ≡ B⇔ There exist an I and a ultrafilter U such that AI/U ∼= BI/U .

Proof. (⇐) is derived from the last theorem. The proof of (⇒) is omitted since it is too
technically involved. See Model Theory: Third Edition - C.C. Chang, H. Jerome Keisler for
details.
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Assuming the Keisler-Shelah theorem, we obtain the following.

Corollary

The structural class K is the elementary class (EC∆) iff the following two conditions hold.

(1) K is closed under ultraproducts and isomorphisms.

(2) AI/U ∈ K ⇒ A ∈ K. (It is closed under inverses of ultrapower).

Proof. To show the sufficient condition, we prove K is closed by elementary equivalence.

• Let A ≡ B and A ∈ K.

• By the Keisler-Shelah theorem, there is an ultrapower U such that AI/U ∼= BI/U .

• Since K is closed under ultraproduct, AI/U ∈ K.

• Because K is closed under isomorphisms, BI/U ∈ K.

• Moreover, by condition (2), we have B ∈ K.
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• A class K of structures in a language L is called a projective class or
pseudo-elementary class, denoted K ∈ PC∆, if there exists an elementary class
K′ ∈ EC∆ in an extended language L′ ⊇ L such that

K = {A : A is a reduct of a model in K′ to L}.

• For example, the class of orderable groups is a projective class.

• It is easy to see that PC∆ is also closed under ultraproducts and isomorphisms.
Various characterizations are also known for PC∆.

• The following one is particularly interesting, and so important as it allows us to derive
Craig’s interpolation theorem.

Theorem

If K,K′ ∈ PC∆ and K ∩ K′ = ∅, then there exists J ∈ EC such that K ⊆ J and
J ∩ K′ = ∅ where J ∈ EC means that J = Mod({σ}) with a single sentence σ.

Homework Problem� �
Show that K is finitely axiomatizable iff both K and its complement are closed under
ultraproducts and elementary equivalence.� �
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Non-standard analysis

• Using ultrapowers, we can construct a large non-standard structure that properly
includes a common standard structure such as natural numbers, real numbers, and
function spaces as elementary substructures.

• In particular, a non-standard model of real numbers includes infinities and
infinitesimals as elements, and thus provides the first rational model for Leibniz’s style
of infinitesimal analysis.

• Non-standard methods have been applied to various fields of mathematics. In
particular, its application to analysis is called non-standard analysis.

• From now on, we fix a non-principal ultrafilter U on the natural numbers ω (= N) and
denote the ultrapower

∏
AI/U of a structure A by ∗A.

• As shown before, there is a natural embedding d(a) = ∗a from A to ∗A. Identifying A
and its image d(A), A can be regarded as an elementary substructure of ∗A.

• The structures like N = (N,+, • , 0, 1, <) and R = (R,+, • , 0, 1, <) etc. are called
standard models. ∗N, ∗R, etc. are called their non-standard models.
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• A standard model and its non-standard counterpart can not be distinguished in terms
of elementary (first-order) propositions. But, there might be fundamental properties
that cannot be expressed in an elementary manner, e.g., the Archimedean property.

• An ordered field A is Archimedian if for any positive elements a, b ∈ A there exists a
sufficiently large natural number n ∈ N such that b < a+ a+ · · ·+ a (n times).

Theorem
∗R is a non-Archimedean ordered field.

Proof.

• Since R is an ordered field and such a property can be described in elementary way,
∗R is also an ordered field.

Claim: ∗R is non-Archimedean

• Let s = ⟨1, 2, 3, . . .⟩ ∈ |Rω| and N = [s] ∈ |∗R|.
• Then, for any natural number n ∈ N, we have

N > ∗1 + ∗1 + · · ·+ ∗1︸ ︷︷ ︸
n times

,

since {i : s(i) > n} ∈ U .
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Definition

• An element a of |∗R| is infinite if ∀b ∈ R b < |a|. An element that is not infinite is
said to be finite.

• The element a of |∗R| is infinitesimal if ∀b (> 0) ∈ R, |a| < b.

main : 2019/4/16(19:6) K

3.5 超準解析入門 105

s = 〈1, 2, 3, . . .〉 ∈ |Rω|とし，N = [s] ∈ |∗R|とおく．このとき，任意の自

然数 n ∈ Nに対して，N >

n 個︷ ︸︸ ︷
∗1 + ∗1 + · · ·+ ∗1となる．なぜなら，{i | a(i) >

n} ∈ U だからである．

定義 3.5.2 |∗R|の元 aが無限大（infinite）であるとは，∀b ∈ R b < |a|と
なることをいう．また，無限大でない元は有限（finite）であるという．|∗R|の
元 aが無限小（infinitesimal）であるとは，∀b (> 0) ∈ R |a| < bとなることを

いう（図 3）．

0

0

0

+∞−∞

（minus）infinity infinity

Standard 
real numbers 

zoom in 

Standard 
real numbers 

infinitesimal          infinitesimal

R

∗
R

図 3 実数の超準モデル ∗R

例 4 N = [〈1, 2, 3, . . .〉]は無限大であり，1/N = [〈1/1, 1/2, 1/3, . . .〉]は無限小で
ある．

［問題 10］ (1) 無限小全体が+と • の演算で閉じていることを示せ．

(2) aが無限大であることと，1/aが無限小であることは同値であることを示せ．

定義 3.5.3 a, b ∈ |∗R|に対し，

a ≈ b ⇐⇒ a− bは無限小．

≈は同値関係であり，さらに+と • の演算を保存していることも容易にわ

かる．
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Example� �
N = [⟨1, 2, 3, . . .⟩] is infinite, 1/N = [⟨1/1, 1/2, 1/3, . . .⟩] is infinitesimal.� �
Problem� �

(1) Show that the set of all infinitesimals is closed under the operations + and ·.
(2) Show that a is infinite and 1/a is infinitesimal.� �
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Definition

For a, b ∈ |∗R|, a ≈ b⇔ a− b is infinitesimal.

• It is easy to see that ≈ is an equivalence relation and also preserves the operations of
+ and • .

Lemma

For a finite real number a ∈ |∗R|, there exists a unique b ∈ R such that a ≈ b.

Proof. Set b = inf{x ∈ R : a < x}. Uniqueness is obvious.

• Such a b in the above lemma is called the standard part of a and is denoted by st(a).
Thus, a− st(a) is infinitesimal.

• Every finite non-standard real number a can be uniquely represented by the sum of the
standard real number st(a) and an infinitesimal.

Lemma

If s = ⟨ai⟩ ∈ Rω and lim ai = a, then [s] ≈ ∗a.

Proof. For any positive number ε ∈ R, {i : |ai − a| < ε} ∈ U . Therefore, [s]− ∗a is
infinitesimal.
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Definition

For f : R→ R, we define ∗f : |∗R| → |∗R| as follows: for s ∈ |Rω|,
∗f([s]) = [λi.f(s(i))].

The well-definedness of ∗f follows from

∥s = s′∥ ∈ U ⇒ ∥λi.f(s(i)) = λi.f(s′(i))∥ ∈ U .
Also, ∗f can be obtained from the ultrapower ∗R ∪ {∗f} of

R ∪ {f} = (R, f,+, • , 0, 1, <).

Theorem

f : R→ R is continuous at a ∈ R ⇔ for any x ≈ a, ∗f(x) ≈ f(a).
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Proof.
(⇒)

• Let f : R→ R is continuous at a ∈ R, and x = [⟨xi⟩] ≈ a. Take any positive number
ε ∈ R. By the continuity of f , there exists a positive number δ ∈ R such that

∀y ∈ R(|y − a| < δ → |f(y)− f(a)| < ε).

• Therefore, {i : |xi − a| < δ} ⊆ {i : |f(xi)− f(a)| < ε}.
• Since x ≈ a, we have {i : |xi − a| < δ} ∈ U .
• Hence, {i : |f(xi)− f(a)| < ε} ∈ U . That is, ∗f(x) ≈ f(a).

(⇐)

• Suppose that f is not continuous at a ∈ R.

• That is, there exists a positive number ε ∈ R such that for any i ∈ ω, there exists xi
such that

|xi − a| <
1

i+ 1
∧ |f(xi)− f(a)| ≥ ε

• Let x = [⟨xi⟩]. Then x ≈ a, |∗f(x)− f(a)| ≥ ε. In other words, ∗f(x) ̸≈ f(a).



Logic and
Foundation

K. Tanaka

Recap

Ultraproducts

Homework

Non-standard
analysis

26

• Let f : R→ R be a continuous function. By the theorem, for any finite a ∈ |∗R|,

st(∗f(a)) = f(st(a)).

• The relationship S ⊆ Rn of R can be naturally extended to the relation ∗S of ∗R.
In particular, ∗N and ∗Q can be viewed as subsets of |∗R|. Moreover, notice that
(R,N,Q) is an elementary substructure of (∗R, ∗N, ∗Q).

• Let N = [⟨1, 2, 3, . . .⟩] ∈ ∗N. We consider an N -partition of [0, 1] in ∗R as
{0, 1/N, . . . , (N − 1)/N,N/N}.

• Given a standard real number a of [0, 1], take i ∈ ∗N with i/N ≤ a ≤ (i+ 1)/N , and
then we have a = st(i/N). In other words, any standard real number can be expressed
as a non-standard fraction.

• Based on the above observations, many theorems in analysis can be proven by using
the non-standard method. Here we will give two examples.
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Theorem

A continuous function f : [0, 1]→ R has the maximum value.

Proof. In ∗R, consider the following ∗ finite set

{∗f(0), ∗f(1/N), . . . , ∗f((N − 1)/N), ∗f(N/N)}.

If its maximum value is ∗f(i/N), f has the maximum value st(∗f(i/N)) at
x = st(i/N).

Remark. Since (R,N) is an elementary substructure of (∗R, ∗N), one can use
mathematical induction on ∗N. For instance, it is provable that any ∗ finite set has the
maximal element.
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Theorem (Peano)

Let f : [0, 1]2 → R be a continuous function. The following differential equation has a
solution

dy/dx = f(x, y), y(0) = 0.

Idea of the proof1 We define Y : {0, 1/N, . . . , N/N} → ∗R inductively as follows:

Y (k/N) =

k−1∑

i=0

∗f(Y (i/N), i/N) • 1/N.

Then, y : [0, 1]→ R is defined as follows: given a standard real number a of [0, 1], take
k ∈ ∗N with k/N ≤ a ≤ (k + 1)/N and set y(a) = st(Y (k/N)).

Thank you for your attention!

1V. Benci and M. Di Nasso, How to Measure the Infinite: Mathematics with Infinite and Infinitesimal
Numbers, World Scientific Publishing, 2019.
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