K. Tanaka

#### Recap

Homework

Horn formula an reduced product

Ultraproduc

## Logic and Foundation I Part 2. First-order logic

Kazuyuki Tanaka

BIMSA

November 25, 2023



K. Tanaka

## Recap

Homewor

Horn formula and reduced product

Ultraproduct

## - Logic and Foundations I

- Part 1. Equational theory
- Part 2. First order theory
- Part 3. Model theory
- Part 4. First order arithmetic and incompleteness theorems

- Part 2. Schedule

- Nov. 16, (1)  $\forall$ -theory and  $\forall \exists$ -theory
- Nov. 23, (2) Horn theory and reduced products
- Nov. 30, (3) Ultra products and non-standard analysis

## K. Tanaka

## Recap

Homework

Horn formula and reduced product

Ultraproducts



## **2** Homework

**3** Horn formula and reduced product

## **4** Ultraproducts

# Today's topics

## K. Tanaka

## Recap

Homework

Horn formula and reduced product

Ultraproducts

- The theory of a structure  $\mathfrak{A}$ , denoted  $\mathrm{Th}(\mathfrak{A})$ , is the set of sentences true in  $\mathfrak{A}$ .
- The elementary diagram of  $\mathfrak{A}$  is  $Th(\mathfrak{A}_A)$ .
- $Diag(\mathfrak{A}) =$  the set of atomic sentences and negations of atomic sentences in  $Th(\mathfrak{A}_A)$ , is called the **basic diagram**.
- $\mathcal{L}$ -structures  $\mathfrak{A}$  and  $\mathfrak{B}$  are elementary equivalent, denoted  $\mathfrak{A} \equiv \mathfrak{B}$ , if the same  $\mathcal{L}$ -sentences hold in both structures, that is,  $\operatorname{Th}(\mathfrak{A}) = \operatorname{Th}(\mathfrak{B})$
- A structure 𝔅 is an elementary substructure of a structure 𝔅, denoted 𝔅 ≺ 𝔅, if 𝔅 is a substructure of 𝔅 and the same L<sub>A</sub>-sentences hold in both structures, i.e, Th(𝔅<sub>A</sub>) = Th(𝔅<sub>A</sub>).
- Note that the notion of elementary substructure is stronger than that of elementary equivalence:

$$\mathfrak{A}\cong\mathfrak{B}\Rightarrow\mathfrak{A}\prec\mathfrak{B}\Rightarrow\mathfrak{A}\equiv\mathfrak{B}$$

Recap

## K. Tanaka

## Recap

Homework

Horn formula and reduced product

Ultraproducts

## Theorem (Tarski-Vaught's criterion)

 $\mathfrak{A} \prec \mathfrak{B}$  iff  $\mathfrak{A} \subseteq \mathfrak{B}$  and for any formula  $\varphi(x, y_1, \dots, y_m)$  and any  $a_1, \dots, a_m \in A$ ,

 $\mathfrak{B}_A \models \exists x \varphi(x, a_1, \dots, a_m) \Rightarrow \text{ there exists an } a \in |\mathfrak{A}| \text{ s.t. } \mathfrak{B}_A \models \varphi(a, a_1, \dots, a_m).$ 

## Definition

A chain of structures  $\mathfrak{A}_0 \subseteq \mathfrak{A}_1 \subseteq \cdots \subseteq \mathfrak{A}_i \subseteq \cdots (i < \omega)$  is called a **elementary chain** if

$$\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \cdots \prec \mathfrak{A}_i \prec \cdots \quad (i < \omega)$$

And the structure  $\mathfrak{A} = \bigcup_{i < \omega} \mathfrak{A}_i$  is called the **union** of the elementary chain.

## Theorem (Elementary chain theorem)

Let  $\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \cdots$  be an elementary chain. Let  $\mathfrak{A}$  be the union of the elementary chain. Then for each i,  $\mathfrak{A}_i \prec \mathfrak{A}$ .

Recap

K. Tanaka

## Recap

Homework

Horn formula and reduced product

Ultraproducts

# Recap

For an open formula (a formula without quantifiers)  $\varphi$ ,  $\forall x_1 \cdots \forall x_m \varphi$  is called a  $\forall$  formula (or universal,  $\Pi_1$ ), and  $\forall x_1 \cdots \forall x_n \exists y_1 \cdots \exists y_m \varphi$  is called a  $\forall \exists$  formula (or universal-existential,  $\Pi_2$ ).

A set of  $\forall$  sentences is called a  $\forall$ -theory or a universal theory, and a set of  $\forall \exists$  sentences is called a  $\forall \exists$ -theory or an inductive theory.

Let T be a theory of a language  $\mathcal{L}$ . We denote the class of all models of T by Mod(T), i.e.,  $Mod(T) = \{\mathfrak{A} : \mathfrak{A} \models T\}$ 

## Theorem (Łoś-Tarski)

Definition

The following two conditions are equivalent.

- (1) Mod(T) is closed under substructures.
- **2** There exists an  $\forall$ -theory T' such that Mod(T) = Mod(T').

K. Tanaka

## Recap

Homework

Horn formula and reduced product

Ultraproducts

## Theorem (Chang-Łoś-Suszko)

## The followings are equivalent.

(1) Mod(T) is closed under the union of chains. That is, if  $\mathfrak{A}_0 \subseteq \mathfrak{A}_1 \subseteq \cdots$  is a chain of models of T, the union is also a model of T.

(2) There exists a  $\forall \exists$ -theory T' such that Mod(T') = Mod(T).

## Definition

A theory T is said to be **model complete** if for any model  $\mathfrak{A}$ ,  $\mathfrak{B}$  of T,

 $\mathfrak{A}\subseteq\mathfrak{B}\Rightarrow\mathfrak{A}\prec\mathfrak{B}.$ 

## Lemma

A model-complete theory is a  $\forall \exists$ -theory.

**Proof.** In a model-complete theory T, a chain of models is an elementary chain, so by the elementary chain theorem, the union is also a model of T. By the Chang-Łoś-Suszko theorem, this theory is a  $\forall \exists$  theory.

K. Tanaka

#### Recap

Homework

Horn formula and reduced product

Ultraproducts

Let T be a  $\forall \exists$  theory, and  $\varphi_1, \varphi_2$  be  $\forall \exists$  sentences. Now, suppose any model  $\mathfrak{A}$  of T can be extended to a model of  $T \cup \{\varphi_1\}$  and a model of  $T \cup \{\varphi_2\}$ . Then show that any model  $\mathfrak{A}$  of T can be extended to  $T \cup \{\varphi_1, \varphi_2\}$ .

## Solution:

Problem 6

- Construct a chain  $\mathfrak{A} \subseteq \mathfrak{A}_1 \subseteq \mathfrak{A}_2 \subseteq \cdots$  of a  $\forall \exists$  theory T such that  $\mathfrak{A}_{2i+1}$  is a model of  $T \cup \{\varphi_1\}$  and  $\mathfrak{A}_{2i+2}$  is a model of  $T \cup \{\varphi_2\}$ .
- Since  $\bigcup_{i \in \mathbb{N}} \mathfrak{A}_i$  is the union of a chain of models  $\{\mathfrak{A}_{2i+1}\}$  of a  $\forall \exists$  theory  $T \cup \{\varphi_1\}$ , it is also a model of  $T \cup \{\varphi_1\}$ , by the Chang-Łoś-Suszko theorem.
- Similarly, since  $\bigcup_{i \in \mathbb{N}} \mathfrak{A}_i$  is the union of a chain of models  $\{\mathfrak{A}_{2i+2}\}$  of a  $\forall \exists$  theory  $T \cup \{\varphi_2\}$ , it is also a model of  $T \cup \{\varphi_2\}$ .
- Therefore,  $\bigcup_{i\in\mathbb{N}}\mathfrak{A}_i$  is a model of  $T\cup\{\varphi_1,\varphi_2\}$ . So, any model  $\mathfrak{A}$  of T can be extended to  $T\cup\{\varphi_1,\varphi_2\}$ .

K. Tanaka

#### Recap

Homework

Horn formula and reduced product

Ultraproducts

Let T be a  $\forall \exists$  theory, and  $\varphi_1, \varphi_2$  be  $\forall \exists$  sentences. Now, suppose any model  $\mathfrak{A}$  of T can be extended to a model of  $T \cup \{\varphi_1\}$  and a model of  $T \cup \{\varphi_2\}$ . Then show that any model  $\mathfrak{A}$  of T can be extended to  $T \cup \{\varphi_1, \varphi_2\}$ .

## Solution:

Problem 6

- Construct a chain  $\mathfrak{A} \subseteq \mathfrak{A}_1 \subseteq \mathfrak{A}_2 \subseteq \cdots$  of a  $\forall \exists$  theory T such that  $\mathfrak{A}_{2i+1}$  is a model of  $T \cup \{\varphi_1\}$  and  $\mathfrak{A}_{2i+2}$  is a model of  $T \cup \{\varphi_2\}$ .
- Since  $\bigcup_{i \in \mathbb{N}} \mathfrak{A}_i$  is the union of a chain of models  $\{\mathfrak{A}_{2i+1}\}$  of a  $\forall \exists$  theory  $T \cup \{\varphi_1\}$ , it is also a model of  $T \cup \{\varphi_1\}$ , by the Chang-Łoś-Suszko theorem.
- Similarly, since  $\bigcup_{i \in \mathbb{N}} \mathfrak{A}_i$  is the union of a chain of models  $\{\mathfrak{A}_{2i+2}\}$  of a  $\forall \exists$  theory  $T \cup \{\varphi_2\}$ , it is also a model of  $T \cup \{\varphi_2\}$ .
- Therefore,  $\bigcup_{i\in\mathbb{N}}\mathfrak{A}_i$  is a model of  $T\cup\{\varphi_1,\varphi_2\}$ . So, any model  $\mathfrak{A}$  of T can be extended to  $T\cup\{\varphi_1,\varphi_2\}$ .

K. Tanaka

#### Recap

## Homework

Horn formula and reduced product

Ultraproducts

## - Problem 7 Homework

In a model-complete theory, show that for every formula, there exists an equivalent  $\forall$  formula. (Hint. See the proof of (1) $\Rightarrow$ (2) in the Łoś-Tarski theorem.)

## <u>Solution:</u>

- Let φ be formula. We may assume that φ is a sentence by replacing the free variables contained in φ with new constants. Then, if a ∀ sentence equivalent to that sentence is found, by replacing the new constants in it with the original variables, we will obtain a ∀ formula equivalent to the original formula.
- Furthermore, we may assume that  $T \cup \{\varphi\}$  is consistent. Otherwise, any sentence  $\bot$  expressing a contradiction is equivalent to  $\varphi$  on T.
- Let  $T' = \{ \sigma : \sigma \text{ is a } \forall \text{ statement, and } T \cup \{ \varphi \} \vdash \sigma \}.$
- Now, let 𝔅 be an arbitrary model of T ∪ T'. In the same way as the proof of the Los-Tarski theorem, we can construct a model 𝔅<sub>A</sub> of Diag(𝔅) ∪ T ∪ {φ}. Then by the model completeness of T, we have 𝔅 ≺ 𝔅<sub>A</sub>. Therefore, 𝔅 ⊨ φ.
- By the completeness theorem,  $T \cup T' \vdash \varphi$ . Therefore, there exists a finite subset  $\{\sigma_1, \sigma_2, \ldots, \sigma_n\} \subset T'$  such that  $T \vdash (\sigma_1 \land \cdots \land \sigma_n) \rightarrow \varphi$ . Since  $(\sigma_1 \land \cdots \land \sigma_n)$  can be easily transformed into an equivalent  $\forall$  sentence  $\sigma$ , we have  $T \vdash \sigma \leftrightarrow \varphi$ .

K. Tanaka

#### Recap

#### Homework

Horn formula an reduced product

Ultraproducts

## Problem 7 Homework

Solution:

In a model-complete theory, show that for every formula, there exists an equivalent  $\forall$  formula. (Hint. See the proof of (1) $\Rightarrow$ (2) in the Łoś-Tarski theorem.)

# Let φ be formula. We may assume that φ is a sentence by replacing the free variables contained in φ with new constants. Then, if a ∀ sentence equivalent to that sentence is found, by replacing the new constants in it with the original variables, we will obtain a ∀ formula equivalent to the original formula.

- Furthermore, we may assume that  $T \cup \{\varphi\}$  is consistent. Otherwise, any sentence  $\bot$  expressing a contradiction is equivalent to  $\varphi$  on T.
- Let  $T' = \{ \sigma : \sigma \text{ is a } \forall \text{ statement, and } T \cup \{ \varphi \} \vdash \sigma \}.$
- Now, let  $\mathfrak{A}$  be an arbitrary model of  $T \cup T'$ . In the same way as the proof of the Los-Tarski theorem, we can construct a model  $\mathfrak{B}_A$  of  $\operatorname{Diag}(\mathfrak{A}) \cup T \cup \{\varphi\}$ . Then by the model completeness of T, we have  $\mathfrak{A} \prec \mathfrak{B}_A$ . Therefore,  $\mathfrak{A} \models \varphi$ .
- By the completeness theorem,  $T \cup T' \vdash \varphi$ . Therefore, there exists a finite subset  $\{\sigma_1, \sigma_2, \ldots, \sigma_n\} \subset T'$  such that  $T \vdash (\sigma_1 \land \cdots \land \sigma_n) \rightarrow \varphi$ . Since  $(\sigma_1 \land \cdots \land \sigma_n)$  can be easily transformed into an equivalent  $\forall$  sentence  $\sigma$ , we have  $T \vdash \sigma \leftrightarrow \varphi$ .

# Horn formula

K. Tanaka

#### Recap

- Homework
- Horn formula and reduced product
- Ultraproducts

- The Horn formula was introduced by A. Horn in the early 1950s for mathematical interest (related with direct product) as we will introduce today.
- However, in the 1970s, R. Kowalski discovered an efficient procedure for proving Horn formulas. Based on this idea, the theory and applications of logic programming rapidly developed.<sup>a</sup>
- Horn formulas have become widely known as the logic of artificial intelligence.



A. Horn



R. Kowalski

<sup>&</sup>lt;sup>a</sup>Robert Kowalski: A Short Story of My Life and Work https://www.doc.ic.ac.uk/ rak/history.pdf

K. Tanaka

## Recap

Homework

Horn formula and reduced product

Ultraproducts

## We fix a language $\mathcal{L}$ .

## Definition

- For atomic formulas  $\theta_i$  (i < n),  $\theta_0 \lor \neg \theta_1 \lor \cdots \lor \neg \theta_n$  or  $\neg \theta_1 \lor \cdots \lor \neg \theta_n$  is called a **basic Horn formula**.
- A formula constructed from the basic Horn formulas by using only  $\land$ ,  $\forall$ , and  $\exists$  is called a Horn formula.
- The set of Horn sentences is called a Horn theory.

A basic Horn formula can be expressed as follows, which is easier to use in applications:

$$\theta_1 \wedge \cdots \wedge \theta_n \to \theta_0$$

or

$$\theta_1 \wedge \cdots \wedge \theta_n \to \bot,$$

where  $\perp$  denotes a contradiction.

K. Tanaka

#### Recap

Homework

Horn formula and reduced product

Ultraproduct

## – Example

- The theory of regular rings, which adds the axiom ∀x∀y(xyx = x) to ring theory, is a Horn theory.
- The theory of integral domain (commutative ring theory +  $\forall x \forall y (x \bullet y = 0 \rightarrow x = 0 \lor y = 0)$ ) and field theory (commutative ring theory +  $\forall x \exists y (x \neq 0 \rightarrow xy = 1)$ ) is not Horn theory.

The models of a Horn theory is closed under "reduced products", which is a generalization of direct product.

Before introducing reduced products, we begins with some preliminary definitions.

K. Tanaka

#### Recap

Homewo

Horn formula and reduced product

Ultraproducts

## Definition

Let I be a non-empty set.  $\mathcal{F} \subseteq \mathcal{P}(I)$  is said to be **filter** on I if the following are satisfied. (1)  $\emptyset \notin \mathcal{F}, I \in \mathcal{F}$ . (2)  $X \in \mathcal{F}, X \subseteq Y \subseteq I \Rightarrow Y \in \mathcal{F}$ .

## Problem 8

(3)  $X, Y \in \mathcal{F} \to X \cap Y \in \mathcal{F}$ .

Let I be an infinite set. Show the following.

- I The collection of all finite subsets of <math>I is not a filter.
- **2** The collection of all infinite subset of I is not a filter.
- The collection of subsets of I whose complement is finite is a filter, which is called a Fréchet filter.
- **@** For each  $i \in I$ , the collection of all subsets of I containing i,  $\{X \subseteq I : i \in X\}$  is a filter, which is called a **principal filter**.

K. Tanaka

## Recap

Homeworl

Horn formula and reduced product

Ultraproducts

## Lemma

If  $S \subset \mathcal{P}(I)$  has the finite intersection property: for any finite subset  $\{J_1, \ldots J_n\} \subset S$ ,

 $J_1 \cap \cdots \cap J_n \neq \emptyset$ ,

then there exists a filter  $\mathcal{F}$  including S.

**Proof.** Let 
$$\mathcal{F} = \{X \subseteq I : J_1 \cap \cdots \cap J_n \subset X \text{ for some } \{J_1, \ldots, J_n\} \subset S\}.$$

## Definition

F

Let  $\mathfrak{A}_i = (A_i, \mathfrak{f}^{\mathfrak{A}_i}, \dots, \mathbb{R}^{\mathfrak{A}_i}, \dots)$   $(i \in I)$  be an  $\mathcal{L}$ -structure. Let  $\mathcal{F}$  be a filter on I. Then, we define the binary relation  $\approx_{\mathcal{F}}$  on  $\prod A_i$  as follows

$$a \approx_{\mathcal{F}} b \quad \Leftrightarrow \quad \{i \in I : a(i) = b(i)\} \in \mathcal{F}.$$

## Lemma

 $\approx_{\mathcal{F}}$  is an equivalence relation.

## K. Tanaka

## Recap

Homework

- Horn formula and reduced product
- Ultraproducts

## Proof.

- The laws of reflection and symmetry are clear from the definitions.
- To show the transitive law, we assume  $a \approx_{\mathcal{F}} b$ ,  $b \approx_{\mathcal{F}} c$ .
- By definition,

$$\{i \in I : a(i) = b(i)\} \in \mathcal{F} \text{ and } \{i \in I : b(i) = c(i)\} \in \mathcal{F}.$$

• On the other hand,

$$\{i \in I : a(i) = c(i)\} \supseteq \{i \in I : a(i) = b(i)\} \cap \{i \in I : b(i) = c(i)\}$$

• By conditions (2)  $X \in \mathcal{F}, X \subseteq Y \subseteq I \Rightarrow Y \in \mathcal{F}$  and (3)  $X, Y \in \mathcal{F} \to X \cap Y \in \mathcal{F}$  of the definition of filter, we have

$$\{i \in I : a(i) = c(i)\} \in \mathcal{F}.$$

Therefore,  $a \approx_{\mathcal{F}} c$ .

K. Tanaka

## Recap

Homewor

Horn formula and reduced product

Ultraproducts

## For $a_1, \ldots, a_n \in \prod A_i$ , we set $\|\varphi(a_1, \ldots, a_n)\| := \{i \in I : \mathfrak{A}_i \models \varphi(a_1(i), \ldots, a_n(i))\}$ . $\mathfrak{A}_i$ here is strictly $\mathfrak{A}_{iA_i}$ . But for simplicity, we write $\mathfrak{A}$ for $\mathfrak{A}_A$ if it is clear from the context.

## Lemma

If  $a_1 \approx_{\mathcal{F}} b_1, \ldots, a_n \approx_{\mathcal{F}} b_n$ , we have

$$\|\mathbf{f}(a_1,\ldots,a_n) = \mathbf{f}(b_1,\ldots,b_n)\| \in \mathcal{F},$$
$$\|\mathbf{R}(a_1,\ldots,a_n)\| \in \mathcal{F} \Leftrightarrow \|\mathbf{R}(b_1,\ldots,b_n)\| \in \mathcal{F}.$$

## Proof.

This can be derived from the following and the definition of filter.

$$\bigcap_{k \le n} \{i \in I : a_k(i) = b_k(i)\} \subseteq \|\mathbf{f}(a_1, \dots, a_n) = \mathbf{f}(b_1, \dots, b_n)\|,$$
$$\bigcap_{k \le n} \{i \in I : a_k(i) = b_k(i)\} \cap \|\mathbf{R}(a_1, \dots, a_n)\| \subseteq \|\mathbf{R}(b_1, \dots, b_n)\|.$$

Therefore,  $\approx_{\mathcal{F}}$  is a congruence relation on  $\prod A_i$ .

K. Tanaka

## Recap

- Homework
- Horn formula and reduced product
- Ultraproducts

- We can define the quotient structure in the same way as for the algebraic structure.
- That is, its domain is the set of equivalence classes denoted  $\prod A_i \approx_{\mathcal{F}} \text{ or } \prod A_i / \mathcal{F}$ , and the value of a function f and the truth value of a relation R is uniquely determined on the equivalence classes regardless of choice of representative elements.

## Definition

Let  $\mathfrak{A}_i = (A_i, \mathfrak{f}^{\mathfrak{A}_i}, \dots, \mathbb{R}^{\mathfrak{A}_i}, \dots)$   $(i \in I)$  be  $\mathcal{L}$ -structures. Let  $\mathcal{F}$  be a filter on I. Then, the following  $\mathcal{L}$ -structure is called the **reduced product** of  $\mathfrak{A}_i$ , denoted by  $\prod \mathfrak{A}_i / \mathcal{F}$ .

$$\left(\prod A_i/\mathcal{F}, \mathtt{f}^{\prod \mathfrak{A}_i/\mathcal{F}}, \dots, \mathrm{R}^{\prod \mathfrak{A}_i/\mathcal{F}}, \dots\right)$$

- For a non-empty set I,  $\mathcal{F} = \{I\}$  is a filter and  $\prod \mathfrak{A}_i / \mathcal{F} \cong \prod \mathfrak{A}_i$ . In other words, the direct product is also one kind of the reduced products.
- For the principal filter  $\mathcal{F} = \{X \subseteq I : k \in X\}$ ,  $\prod \mathfrak{A}_i / \mathcal{F} \cong \mathfrak{A}_k$ .

K. Tanaka

## Recap

Homework

Horn formula and reduced product

Ultraproducts

## Lemma

If  $\varphi$  is a formula obtained from the atomic formula with  $\wedge$  and  $\exists$ , then for  $a_1, \ldots, a_n \in \prod A_i$ ,

$$\prod \mathfrak{A}_i/\mathcal{F} \models \varphi([a_1], \dots, [a_n]) \Leftrightarrow \|\varphi(a_1, \dots, a_n)\| \in \mathcal{F}.$$

**Proof.** By induction on the construction of formulas.

- If  $\varphi$  is an atomic formula, it is clear by the definition.
- If  $\varphi = \psi_1 \wedge \psi_2$ , it follows from the induction hypo. and the closedness of filter under  $\cap$ .
- Let  $\varphi = \exists x \psi(x)$ . For simplicity, we do not display parameters  $a_1, \ldots, a_n$  in  $\varphi$ .

$$\begin{split} \prod \mathfrak{A}_i/\mathcal{F} \models \exists x \psi(x) \Leftrightarrow \text{ for some } a \in \prod \mathfrak{A}_i \text{ , } \prod \mathfrak{A}_i/\mathcal{F} \models \psi([a]) \\ \Leftrightarrow \text{ for some } a \in \prod \mathfrak{A}_i \text{ , } \|\psi(a)\| \in \mathcal{F} \text{ (induction hypothesis)} \\ \Rightarrow \|\exists x \psi(x)\| \in \mathcal{F} \quad (\because \|\psi(a)\| \subseteq \|\exists x \psi(x)\|). \end{split}$$

• Conversely, let  $\|\exists x\psi(x)\| \in \mathcal{F}$ . By the axiom of choice, we take  $a \in \prod A_i$  such that for each  $i \in \|\exists x\psi(x)\|$ ,  $\mathfrak{A}_i \models \psi(a(i))$ . Then,  $\|\psi(a)\| \in \mathcal{F}$ . By the induction hypothesis,  $\prod \mathfrak{A}_i/\mathcal{F} \models \psi([a])$ . Therefore,  $\prod \mathfrak{A}_i/\mathcal{F} \models \exists x\psi(x)$ .

K. Tanaka

## Recap

Homewo

Horn formula and reduced product

Ultraproducts

# Let $\varphi(x_1,\ldots,x_n)$ be a basic Horn formula, then for $a_1,\ldots,a_n\in\prod A_i$ , we have

$$\|\varphi(a_1,\ldots,a_n)\| \in \mathcal{F} \Rightarrow \prod \mathfrak{A}_i/\mathcal{F} \models \varphi([a_1],\ldots,[a_n]).$$

## Proof.

Lemma

- For simplicity, we do not display parameters  $a_1, \ldots, a_n \in \prod A_i$  in the formula.
- Let  $\varphi$  be a basic horn sentence  $(\theta_0 \lor) \neg \theta_1 \lor \cdots \lor \neg \theta_n$ , where  $\theta_i \ (i < n)$  are atomic sentences. We show a contradiction by assuming  $(\mathbb{D} \| \varphi \| \in \mathcal{F}$  and  $(\mathbb{D} \prod \mathfrak{A}_i / \mathcal{F} \not\models \varphi)$ .
- By ②, since Π 𝔄<sub>i</sub>/𝔅 ⊨ θ<sub>1</sub> ∧ · · · ∧ θ<sub>n</sub>, by the last lemma, we have ||θ<sub>1</sub> ∧ · · · ∧ θ<sub>n</sub>|| ∈ 𝔅.
  If φ does not contain θ<sub>0</sub>, we have Ø = ||φ|| ∩ ||θ<sub>1</sub> ∧ · · · ∧ θ<sub>n</sub>|| ∈ 𝔅, which violates the condition of a filter.

- If  $\varphi$  contains  $\theta_0$ , we have  $\|\theta_0\| = \|\varphi\| \cap \|\theta_1 \wedge \cdots \wedge \theta_n\| \in \mathcal{F}$ . Thus by the last lemma, we have  $\prod \mathfrak{A}_i/\mathcal{F} \models \theta_0$ , which conflicts with the assumption  $\prod \mathfrak{A}_i/\mathcal{F} \not\models \varphi$   $\Box$ 

K. Tanaka

## Recap

Homewo

Horn formula and reduced product

Ultraproducts

## Lemma

L

et 
$$arphi(x_1,\ldots,x_n)$$
 be a Horn formula, then for  $a_1,\ldots,a_n\in\prod A_i$ ,

$$\|\varphi(a_1,\ldots,a_n)\| \in \mathcal{F} \Rightarrow \prod \mathfrak{A}_i/\mathcal{F} \models \varphi([a_1],\ldots,[a_n])$$

**Proof.** By induction on the construction of a Horn formula with  $\land$ ,  $\forall$ , and  $\exists$ . For the basic Horn formula, it follows from the last lemma. Formulas  $\varphi \land \psi$  and  $\exists x \varphi(x)$  are treated in the lemma in Page 18.

For a formula  $\forall x \varphi(x)$ ,

$$\begin{aligned} |\forall x \varphi(x)|| \in \mathcal{F} \Rightarrow \text{ for all } a \in \prod A_i, \ ||\varphi(a)|| \in \mathcal{F} \\ \Rightarrow \text{ for all } a \in \prod A_i, \ \prod \mathfrak{A}_i / \mathcal{F} \models \varphi([a]) \\ \Leftrightarrow \prod \mathfrak{A}_i / \mathcal{F} \models \forall x \varphi(x) \quad \Box \end{aligned}$$

K. Tanaka

## Recap

Homewo

Horn formula and reduced product

Ultraproducts

- The above lemma shows that the Horn formula preserves reduced products, that is, a reduced product of models of a Horn formula becomes a model of the original Horn formula again.
- Therefore, the class of models of a Horn theory is closed under reduced products, especially under direct products. Then the converse is also true in the following sense.

## Theorem (Keisler-Galvin)

The following are equivalent:

- $(1) \ \operatorname{Mod}(T)$  is closed under reduced products.
- (2) There exists a Horn theory T' such that Mod(T) = Mod(T').

A proof can be found in Chang-Keisler's classic textbook Model Theory.

(Example) The product of regular rings is a regular ring.

K. Tanaka

#### Recap

Homewor

Horn formula and reduced product

Ultraproducts

(Exercise) Show that the class of Boolean algebras with atoms (non-atomless) is closed under direct products but not under reduced products.

 The theory of Boolean algebra is a ∀-theory. "Boolean algebra has an atom a" is expressed by the following ∃∀-sentence.

 $\exists a \forall x (a \neq 0 \land (a \bullet x = x \to x = a \lor x = 0)).$ 

- In a direct product  $\prod \mathfrak{A}_i$  of such Boolean algebras, consider a function f whose value is an atom  $a \in |\mathfrak{A}_i|$  for only one i and 0 elsewhere. Then, f becomes an atom of  $\prod \mathfrak{A}_i$ .
- On the other hand, consider the reduced product ∏ 𝔄<sub>i</sub>/𝓕 with the Fréchet filter 𝓕. Assume that it has an atom [g]. Since it is not zero 0<sup>Π𝔄<sub>i</sub>/𝓕</sup>, it takes a value other than 0 on an infinite set J ⊆ I. Now divide J into two infinite sets J<sub>1</sub> and J<sub>2</sub>. Let h be the function obtained from g by replacing its values on J<sub>2</sub> with 0. Then we have

$$[g] \cdot [h] = [h], \ [h] \neq [g], \ [h] \neq 0,$$

which contradicts the assumption that [g] is an atom

• It is not easy to describe which sentences preserve the direct product. In fact, Machover (1960) showed it is not computable.

K. Tanaka

## Recap

Homework

Horn formula and reduced product

Ultraproducts

(Exercise) Show that the class of Boolean algebras with atoms (non-atomless) is closed under direct products but not under reduced products.

• The theory of Boolean algebra is a ∀-theory. "Boolean algebra has an atom *a*" is expressed by the following ∃∀-sentence.

 $\exists a \forall x (a \neq 0 \land (a \bullet x = x \to x = a \lor x = 0)).$ 

- In a direct product ∏ 𝔅<sub>i</sub> of such Boolean algebras, consider a function f whose value is an atom a ∈ |𝔅<sub>i</sub>| for only one i and 0 elsewhere. Then, f becomes an atom of ∏ 𝔅<sub>i</sub>.
- On the other hand, consider the reduced product  $\prod \mathfrak{A}_i/\mathcal{F}$  with the Fréchet filter  $\mathcal{F}$ . Assume that it has an atom [g]. Since it is not zero  $0^{\prod \mathfrak{A}_i/\mathcal{F}}$ , it takes a value other than 0 on an infinite set  $J \subseteq I$ . Now divide J into two infinite sets  $J_1$  and  $J_2$ . Let h be the function obtained from g by replacing its values on  $J_2$  with 0. Then we have

$$[g] \bullet [h] = [h], \ [h] \neq [g], \ [h] \neq 0,$$

which contradicts the assumption that [g] is an atom.

• It is not easy to describe which sentences preserve the direct product. In fact, Machover (1960) showed it is not computable.

K. Tanaka

## Recap

Homework

Horn formula and reduced product

Ultraproducts

- A sentence with several ∀ in front of a basic Horn formula is called a ∀-Horn sentence (or simply called a Horn sentence in some literature). A collection of such sentences is called a ∀-Horn theory (or simply a Horn theory).
- A ∀-Horn theory is a nice extension of equational theory. The following theorem is a counter part of Birkhoff's equational class theorem. It can be proven similarly, and we leave the details to the reader.

## Theorem

Let  ${\mathcal K}$  be a class of  ${\mathcal L}\text{-structures},$  then the following are equivalent:

- $(1)\ {\cal K}$  is closed under direct products, substructures, and isomorphic images.
- $(2)\ {\cal K}$  is closed under reduced products, substructures, and isomorphic images.
- (3) There exists a  $\forall$ -Horn theory T such that  $Mod(T) = \mathcal{K}$ .

## K. Tanaka

## Recap

Homeworl

Horn formula and reduced product

Ultraproducts

# Ultraproducts

In the following, we will consider the necessary and sufficient conditions for a class of structures to be axiomatized by first order logic, that is, be expressed as Mod(T).

## Definition

A class  $\mathcal{K}$  of  $\mathcal{L}$ -structures is called an **elementary class** if there exists a set T of sentences such that  $\mathcal{K} = Mod(T)$ . In this case, we write

 $\mathcal{K} \in EC_{\Delta}.$ 

To characterize elementary classes, we use a kind of reduced product called "ultraproduct". To define it, we first introduce an ultrafilter.

## Definition

The filter  $\mathcal{F}$  on I is an **ultrafilter** (maximal filter) if the following properties are satisfied.

 $\forall X \subset I(X \in \mathcal{F} \lor I - X \in \mathcal{F}).$ 

K. Tanaka

## Recap

Homework

Horn formula and reduced product

Ultraproducts

## Lemma

Every filter  $\mathcal{F}$  can be expanded to an ultrafilter  $\mathcal{U}$ .

**Proof.** Consider the class of all filters including a given filter  $\mathcal{F}$ . Since it is closed under the union of chains, by Zorn's lemma, there is a maximal filter  $\mathcal{U}$  which is an ultrafilter.

A principal filter is an ultrafilter. There exists an ultrafilter which is non-principal.

## Lemma

There exists a non-principal ultrafilter  $\mathcal{U}$  on any infinite set I.

## Proof.

Let I be an infinite set, and  $\mathcal{F}$  be a Fréchet filter on it (a subset of I whose complement is finite). By the above lemma, an ultrafilter  $\mathcal{U}$  can be obtained by expanding  $\mathcal{F}$ . Then  $\mathcal{U}$  is non-principal, since for each  $i \in I$ ,  $I - \{i\} \in \mathcal{F} \subseteq \mathcal{U}$ , so we have  $\{i\} \notin \mathcal{U}$ .

K. Tanaka

## Recap

Homewor

Horn formula and reduced product

Ultraproducts

# Stone's representation theorem

We prove Stone's representation theorem using an ultrafilter.

## Theorem (Stone's representation theorem)

For any Boolean algebra  $\mathfrak{B}$ , there exists a set X, and  $\mathfrak{B}$  can be embedded in the power set algebra  $\mathfrak{P}(X)$ . In particular, if  $\mathfrak{B}$  is finite, it is isomorphic to  $\mathfrak{P}(X)$ .

## Proof.

- Let  $\mathfrak{B} = (B, \lor, \land, \neg, 0, 1)$  be a Boolean algebra. Filters, Ultrafilters, and others can naturally be defined for a subset  $F \subseteq B$  with the ordering  $x \leq y \Leftrightarrow x \land y = x$ . Let X be the set of all ultrafilters of B and  $\mathcal{P}(X)$  be its power set.
- Now,  $f: B \to \mathcal{P}(X)$  is defined as follows: For each  $b \in B$ , f(b) is the set of all ultrafilters containing b. We show f is injective. If  $a \neq b$ , then  $(\square a \land (\neg b) \neq 0$  or  $(\textcircled{2})(\neg a) \land b \neq 0$ .

Case ①. Since  $\{a, \neg b\}$  has the finite intersection property, it can be extended to an ultrafilter  $U \subseteq B$ . Thus,  $U \in f(a)$  and  $U \notin f(b)$ , and we have  $f(a) \neq f(b)$ . Case ② can be treated similarly.

## K. Tanaka

## Recap

- Homework
- Horn formula an reduced product
- Ultraproducts

• Furthermore, by the property of filter  $F: a \land b \in F \Leftrightarrow a \in F$  and  $b \in F$ , we have

$$f(a \wedge b) = f(a) \cap f(b).$$

• Also, by the property of the ultrafilter  $U{:}~a\not\in U\Leftrightarrow \neg a\in U$  , we have

$$f(\neg a) = X - f(a).$$

Thus,  $f: B \to \mathcal{P}(X)$  is embedding.

If 𝔅 is finite, any ultrafilter must be a principal filter. And its generator is an atom (non-zero minimal element) in 𝔅. So, let X be the set of atoms. It is easy to see that 𝔅 and 𝔅(X) are isomorphic.

K. Tanaka

## Recap

#### Homework

Horn formula and reduced product

#### Ultraproducts

# Ultraproducts

## Definition (Ultraproduct)

The reduced product  $\prod \mathfrak{A}_i/\mathcal{U}$  for an ultrafilter  $\mathcal{U}$  is called an **ultraproduct**.

# Theorem (Łos)

Let  $\mathcal{U}$  be an ultrafilter. For any formula  $\varphi(x_1, \ldots, x_n)$  and  $a_1, \ldots, a_n \in \prod A_i$ ,  $\prod \mathfrak{A}_i / \mathcal{U} \models \varphi([a_1], \ldots, [a_n]) \Leftrightarrow \|\varphi(a_1, \ldots, a_n)\| \in \mathcal{U}.$ 

**Proof.** By induction on the construction of formulas. The atomic formulas and formulas beginning with  $\land$  and  $\exists$  are treated in Page 18. Then we only need to treat the case of negation,  $\neg \varphi$  since  $\lor$  and  $\forall$  can be expressed by

 $\land, \exists$  and negation  $\neg$ .

$$\begin{split} \prod \mathfrak{A}_i/\mathcal{U} \models \neg \varphi \Leftrightarrow \prod \mathfrak{A}_i/\mathcal{U} \not\models \varphi \\ \Leftrightarrow \|\varphi\| \not\in \mathcal{U} \quad (\because \text{ induction hypothesis}) \\ \Leftrightarrow \|\neg \varphi\| \in \mathcal{U} \quad (\because \text{ maximality of } \mathcal{U}). \end{split}$$

K. Tanaka

## Recap

Homewor

Horn formula and reduced product

Ultraproducts

By applying the above theorem, we obtain another proof of compactness theorem.

## Corollary (Compactness theorem)

A theory T has a model iff any finite subset of T has a model.

- The necessity is clear and we show the sufficiency.
- Let I be the set of finite subsets of T. For each  $\varphi \in T$ , let  $J_{\varphi} = \{i \in I : \varphi \in i\}$ . Then  $\{J_{\varphi} : \varphi \in T\}$  has the finite intersection property since  $\{\varphi_1, \ldots, \varphi_n\} \in J_{\varphi_1} \cap \cdots \cap J_{\varphi_n}$ .
- There exists an ultrafilter  $\mathcal{U} \supseteq \{J_{\varphi} : \varphi \in T\}$  by the lemma on Page 14 and the first lemma on Page 25.
- Let  $\mathfrak{A}_i$  be a model for each  $i \in I$  and  $\mathfrak{A} = \prod \mathfrak{A}_i / \mathcal{U}$ . We show that  $\mathfrak{A}$  is a model of T.
- First, take an arbitrary  $\varphi \in T$ . Since

$$i\in J_{\varphi} \Rightarrow \varphi\in i \Rightarrow \mathfrak{A}_i\models \varphi,$$

we have  $J_{\varphi} \subseteq \{i : \mathfrak{A}_i \models \varphi\}$ . Since  $J_{\varphi} \in \mathcal{U}$ ,  $\|\varphi\| = \{i : \mathfrak{A}_i \models \varphi\} \in \mathcal{U}$ .

• By the Łos Theorem, we have  $\mathfrak{A}\models\varphi.$ 

## K. Tanaka

## Recap

Homework

Horn formula and reduced product

Ultraproducts

## Problem 9: Homework -

Use an ultraproduct to show that any field  $\mathcal{F}$  has algebraic closure  $\overline{\mathcal{F}}$ .

(Hint. Let  $\mathcal{F}_P$  be the splitting field of a polynomial P, and for each  $Q \in \mathcal{F}[X]$ ,

 $J_Q = \{P \in \mathcal{F}[X] : Q \text{ is splitted into a product of linear expressions over } \mathcal{F}_P\}.$ 

Then, let  $\mathcal{U}$  be an ultrafilter containing  $\{J_Q : Q \in \mathcal{F}[X]\}$ , and consider the ultraproduct  $\prod \mathcal{F}_P/\mathcal{U}$ .)

K. Tanaka

Recap

Homework

Horn formula an reduced product

Ultraproducts

# Thank you for your attention!