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® Part 1. Equational theory

® Part 2. First order theory

® Part 3. Model theory

® Part 4. First order arithmetic and incompleteness theorems

Part 2. Schedule

® Nov. 16, (1) V-theory and V3-theory
® Nov. 23, (2) Horn theory and reduced products
® Nov. 30, (3) Ultra products and non-standard analysis
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® The theory of a structure 2, denoted Th(2), is the set of sentences true in 2.
® The elementary diagram of 2l is Th(2(,).

® Diag(2() = the set of atomic sentences and negations of atomic sentences in Th(2(,),
is called the basic diagram.

® [-structures 2 and B are elementary equivalent, denoted 2 = ‘B, if the same
L-sentences hold in both structures, that is, Th() = Th(B)

® A structure 2 is an elementary substructure of a structure B, denoted 2 < 93,
if A is a substructure of B and the same L 4-sentences hold in both structures, i.e,
Th(2A4) = Th(B4).

® Note that the notion of elementary substructure is stronger than that of elementary
equivalence:

AEZPB=A<B=A=DB
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Theorem (Tarski-Vaught's criterion)
A < B iff A C B and for any formula ¢(x,y1,...,Yym) and any ai,...,a,, € A,

By | Jxp(x,ay,...,an,) = there exists an a € || s.t. By = p(a,aq,...,an).

Definition
A chain of structures 2g C; C--- CA; C--- (i <w) is called a elementary chain if

A <Ay <+ <Ay <+ (i < w)

And the structure 2 = J,_, 2; is called the union of the elementary chain.

Theorem (Elementary chain theorem)

Let Ay <Ay < --- be an elementary chain. Let 2 be the union of the elementary chain.
Then for each i, A; < 2.
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Definition
For an open formula (a formula without quantifiers) ¢,

Vaq -+ -Va,e is called a V formula (or universal, I1;), and
Vay -+ -V, Jyr - - - Jyme is called a V3 formula (or universal-existential, II5).

A set of V sentences is called a V-theory or a universal theory,
and a set of V3 sentences is called a V3-theory or an inductive theory.

Let T be a theory of a language £. We denote the class of all models of T' by Mod(T), i.e.,
Mod(T) ={2A: A = T}

Theorem (Los-Tarski)

The following two conditions are equivalent.
@ Mod(T) is closed under substructures.
@ There exists an V-theory T' such that Mod(T) = Mod(T").
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Theorem (Chang-tos-Suszko)

The followings are equivalent.

(1) Mod(T) is closed under the union of chains. That is, if Ao C Ay C --- is a chain of
models of T', the union is also a model of T.

(2) There exists a V3-theory T' such that Mod(T’) = Mod(T).

Definition
A theory T is said to be model complete if for any model 2, B of T,

AC B = A< B.

Lemma
A model-complete theory is a V3-theory.
Proof. In a model-complete theory T', a chain of models is an elementary chain, so by the

elementary chain theorem, the union is also a model of T'. By the Chang-tos-Suszko
theorem, this theory is a V3 theory.
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Homework Let T be a V3 theory, and 1, 2 be V3 sentences. Now, suppose any model 2 of T’
can be extended to a model of T'U {1} and a model of T'U {¢2}. Then show that
any model 2 of T' can be extended to T'U {1, p2}-

Solution:
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Problem 6

Homework Let T be a V3 theory, and 1, 2 be V3 sentences. Now, suppose any model 2 of T’
can be extended to a model of T'U {1} and a model of T'U {¢2}. Then show that
any model 2 of T' can be extended to T'U {1, p2}-

Solution:

® Construct a chain 2 C2(; C Ay C --- of a V3 theory T such that 209, 1 is a model of
T U {p1} and Ag; 42 is a model of T'U {p2}.

® Since | J;cn i is the union of a chain of models {RA2;41} of a V3 theory T'U {¢1}, it
is also a model of T'U {¢1}, by the Chang-tos-Suszko theorem.

® Similarly, since ;o 2; is the union of a chain of models {A2;,2} of a V3 theory
T U {pa}, it is also a model of T'U {p2}.

® Therefore, ;o 2Ai is @ model of T'U {1, 02} So, any model A of T' can be
extended to T'U {1, 2} 0
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In a model-complete theory, show that for every formula, there exists an equivalent V

formula. (Hint. See the proof of (1)=(2) in the tos-Tarski theorem.)

Homework

Solution:
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In a model-complete theory, show that for every formula, there exists an equivalent V
formula. (Hint. See the proof of (1)=(2) in the tos-Tarski theorem.)

Homework

Solution:

® |et ¢ be formula. We may assume that ¢ is a sentence by replacing the free variables
contained in ¢ with new constants. Then, if a V sentence equivalent to that sentence
is found, by replacing the new constants in it with the original variables, we will obtain
a vV formula equivalent to the original formula.

® Furthermore, we may assume that T'U {¢} is consistent. Otherwise, any sentence L
expressing a contradiction is equivalent to ¢ on T'.

® let 7/ ={o:0isaV statement, and T U {p} I o}.

® Now, let 2 be an arbitrary model of T UT". In the same way as the proof of the
Los-Tarski theorem, we can construct a model 8 4 of Diag() U T U {¢}. Then by
the model completeness of T, we have 2 < B 4. Therefore, 2 = .

® By the completeness theorem, T'U T’ | . Therefore, there exists a finite subset
{o1,02,...,0n} CT"such that T+ (o1 A---Ao,) — . Since (01 A+ Aoy,) can
be easily transformed into an equivalent V sentence o, we have T'F o < ¢.
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® The Horn formula was introduced by A. Horn in the early
SO 1950s for mathematical interest (related with direct product) as
we will introduce today.

® However, in the 1970s, R. Kowalski discovered an efficient
procedure for proving Horn formulas. Based on this idea, the A. Horn
theory and applications of logic programming rapidly
developed.?

® Horn formulas have become widely known as the logic of
artificial intelligence.

R. Kowalski

?Robert Kowalski: A Short Story of My Life and Work
https://www.doc.ic.ac.uk/ rak/history.pdf


https://www.doc.ic.ac.uk/~rak/history.pdf
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Horn formula and
reduced product

We fix a language L.
Definition

® For atomic formulas 6; (i < n), gV =01 V- --V =0, or =01 V -- -V =0, is called a
basic Horn formula.

® A formula constructed from the basic Horn formulas by using only A, V, and 3 is
called a Horn formula.

® The set of Horn sentences is called a Horn theory.
A basic Horn formula can be expressed as follows, which is easier to use in applications:
1 N---NO, — O

or
O N NO,— L,

where | denotes a contradiction.
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Horn formula and
reduced product

~ Example

® The theory of regular rings, which adds the axiom VazVy(xyz = x) to ring theory,
is a Horn theory.

® The theory of integral domain (commutative ring theory +
VaVy(zey=0—2=0Vy =0)) and field theory (commutative ring theory +

Vady(x # 0 — xzy = 1)) is not Horn theory.

N

J

The models of a Horn theory is closed under “reduced products”, which is a generalization

of direct product.

Before introducing reduced products, we begins with some preliminary definitions.
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Horn formula and
reduced product

Definition

Let I be a non-empty set. F C P(I) is said to be filter on I if the following are satisfied.

(1) o¢gF, IeF.
2 XeF, XCYCI=YE€eF.
3) X,2Ye F—-XnNnY eF.

- Problem 8

Let I be an infinite set. Show the following.
@ The collection of all finite subsets of I is not a filter.
® The collection of all infinite subset of I is not a filter.

© The collection of subsets of I whose complement is finite is a filter, which is
called a Fréchet filter.

@ For each i € I, the collection of all subsets of I containing i, {X CI:i€ X} is
a filter, which is called a principal filter.

-

J
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If S C P(I) has the finite intersection property: for any finite subset {Jy,...J,} C S,

Horn formula and Jlm"'mJTL#g?

reduced product
then there exists a filter F including S.
Proof. Let F ={X CI:JiN---NJ, CX for some {Jy,...,J,} CS}.
Definition

Let 2; = (A;, £, ... ,R¥® ...) (i € I) be an L-structure.
Let F be a filter on I. Then, we define the binary relation ~x on [] A; as follows

a~rb & {iel:a(i)=0()} € F.

Lemma

X is an equivalence relation.
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® The laws of reflection and symmetry are clear from the definitions.
® To show the transitive law, we assume a~rb, b~ rc.

® By definition,

Horn formula and
reduced product

{iel:a(i)=0b()} e Fand{iel:b(i)=c(i)}eF.
® On the other hand,

(il al)=cl)}2{iel a@)=>b6)}n{iecl: b(i)=c@)}

® By conditions (2) X e F,XCYCI=YeFand (3) X, Y € F - XNY € F of
the definition of filter, we have

{iel:a(i)=c(i)} € F.

Therefore, ax~rc. O
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Horn formula and
reduced product

For ay,...,an € [T Ai, we set |[p(ar,...,an)||:={i €T : 2% = p(ai(i),...,a,(i))}.
2A; here is strictly ;4,. But for simplicity, we write 2( for A 4 if it is clear from the context.

Lemma

Ifalz;bl, coog anz}-bn, we have
I£(ar, ... an) = £(b, ..., bn)| € F,

IR(a1,...,an)|| € F < ||R(b1,...,b,)| € F.

Proof.
This can be derived from the following and the definition of filter.

M4 € T2 arli) = (i)} € [£(ars - an) = £(br, - )]l
k<n

({i € T:an(i) =bi(i)} N [R(ar,...,an)| S [R(b1, ..., bn)|-

k<n

Therefore, ~x is a congruence relation on ] A;.
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® That is, its domain is the set of equivalence classes denoted [[ A;/~F or [[ A;/F,
Mo il 2 and the value of a function f and the truth value of a relation R is uniquely
redueed product determined on the equivalence classes regardless of choice of representative elements.

Definition
Let A; = (A;, £%,...,R™ ...) (i € I) be L-structures. Let F be a filter on I. Then, the
following L-structure is called the reduced product of 2;, denoted by [2l;/F.

(HAi/]-',mei/f,...,ani/f,...)

® For a non-empty set I, F = {I} is a filter and []2;/F = []2,.
In other words, the direct product is also one kind of the reduced products.

® For the principal filter F = {X CI: ke X}, []2A:/F = 2As.
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reduced product

Lemma

If ¢ is a formula obtained from the atomic formula with A and 3, then for
a1,...,an € [ A4,

[T126/7 E ella.- . lan) & lle(ar, .., an)ll € F.

Proof. By induction on the construction of formulas.
® [f  is an atomic formula, it is clear by the definition.
o If o=11 A1, it follows from the induction hypo. and the closedness of filter under N.
® let o = Jzyp(x). For simplicity, we do not display parameters ay, ..., a, in ¢.

HQli/]-' = Jzy(z) < for some a € Hml , HQ{Z-/}" E ¥([a])
& for some a € HQ(l .
= [[Fzp(@)| € F (- [[9(a)ll € [IFzy(z)])).

e Conversely, let ||Jzy(z)|| € F. By the axiom of choice, we take a € [[ A; such that
for each i € ||Fzp(x)]|, A E ¥ (a(é)). Then, ||¢p(a)]] € F. By the induction
hypothesis, [[2;/F = ¢([a]). Therefore, [[A:/F |= Jxp(x). O

¥(a)|| € F (induction hypothesis)
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Lemma
Let o(x1,...,x,) be a basic Horn formula, then for a, ..., a, € [[ A;, we have
Horn formula and
e lp(ar, .y an)l € F = T2/ F E (o], - - - [an)-
Proof.
® For simplicity, we do not display parameters ay,...,a, € [] A; in the formula.

® et ¢ be a basic horn sentence (6pV)—6; V --- V =6, where 0; (i < n) are atomic
sentences. We show a contradiction by assuming (D||¢|| € F and Q[ 2:/F  «.

® By @, since [[;/F =61 A---AB,, by the last lemma, we have [|6; A---AB,| € F.
- If ¢ does not contain 6y, we have @ = ||p|| N ||01 A--- A b,]| € F, which violates the
condition of a filter .

- If ¢ contains 6y, we have [|0g]| = ||¢|| N ||01 A--- A By € F. Thus by the last
lemma, we have [[2;/F = 6y, which conflicts with the assumption []2l;/F = O




Logic and
Foundation

K. Tanaka

Horn formula and
reduced product

Lemma
Let p(z1,...,x,) be a Horn formula, then for ay, ..., a, € [] 4,

le(ar, - an)ll € F = [ [%/F E ¢(lai],- - - lan))-

Proof. By induction on the construction of a Horn formula with A, V, and 3.

For the basic Horn formula, it follows from the last lemma. Formulas ¢ A ¢ and Jze(z)
are treated in the lemma in Page 18.

For a formula Vzp(z),

IVzp(z)|| € F = for all a € HA"’ llp(a)|l € F
= for all a € HA"’ H%/]—“ E ¢([a])
= HQ(Z-/]-" EVze(x) O
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Horn formula and
reduced product

® The above lemma shows that the Horn formula preserves reduced products, that is, a
reduced product of models of a Horn formula becomes a model of the original Horn
formula again.

® Therefore, the class of models of a Horn theory is closed under reduced products,
especially under direct products. Then the converse is also true in the following sense.

Theorem (Keisler-Galvin)

The following are equivalent:
(1) Mod(T) is closed under reduced products.
(2) There exists a Horn theory T such that Mod(T) = Mod(T").

A proof can be found in Chang-Keisler's classic textbook Model Theory.

(Example) The product of regular rings is a regular ring.
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Horn formula and
reduced product

(Exercise) Show that the class of Boolean algebras with atoms (non-atomless) is closed
under direct products but not under reduced products.
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K Tonaka under direct products but not under reduced products.

® The theory of Boolean algebra is a V-theory. “Boolean algebra has an atom a” is
expressed by the following 3V-sentence.

Horn formula and
reduced product

JaVz(a #O0A (asz =z > x=aVa=0)).

® In a direct product [[2; of such Boolean algebras, consider a function f whose value
is an atom a € |2;| for only one i and 0 elsewhere. Then, f becomes an atom of [] 2.

® On the other hand, consider the reduced product [[2l;/F with the Fréchet filter F.
Assume that it has an atom [g]. Since it is not zero 011%:/7 it takes a value other
than 0 on an infinite set J C I. Now divide J into two infinite sets J; and J5. Let h
be the function obtained from g by replacing its values on J; with 0. Then we have

9]+ [n] = [h], [n] # 9], [h] # O,
which contradicts the assumption that [g] is an atom.

® |t is not easy to describe which sentences preserve the direct product. In fact,
Machover (1960) showed it is not computable.
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® A sentence with several V in front of a basic Horn formula is called a V-Horn
sentence (or simply called a Horn sentence in some literature). A collection of such
Horn formula and sentences is called a V-Horn theory (or simply a Horn theory).

reduced product

® A V-Horn theory is a nice extension of equational theory. The following theorem is a
counter part of Birkhoff's equational class theorem. It can be proven similarly, and we
leave the details to the reader.

Theorem
Let IC be a class of L-structures, then the following are equivalent:

(1) K is closed under direct products, substructures, and isomorphic images.
(2) K is closed under reduced products, substructures, and isomorphic images.

(3) There exists a Y-Horn theory T such that Mod(T) = K.
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Ultraproducts

Ultraproducts

In the following, we will consider the necessary and sufficient conditions for a class of
structures to be axiomatized by first order logic, that is, be expressed as Mod(T).

Definition
A class IC of L-structures is called an elementary class if there exists a set T of sentences
such that £ = Mod(T). In this case, we write

K € ECAa.
To characterize elementary classes, we use a kind of reduced product called “ultraproduct”.
To define it, we first introduce an ultrafilter.
Definition
The filter F on I is an ultrafilter (maximal filter) if the following properties are satisfied.

VXCI(XeFVI-XE€F).
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Ultraproducts

Lemma
Every filter F can be expanded to an ultrafilter U.
Proof. Consider the class of all filters including a given filter F.

Since it is closed under the union of chains, by Zorn's lemma, there is a maximal filter U
which is an ultrafilter. O

A principal filter is an ultrafilter. There exists an ultrafilter which is non-principal.

Lemma

There exists a non-principal ultrafilter U on any infinite set I.

Proof.

Let I be an infinite set, and F be a Fréchet filter on it (a subset of I whose complement is
finite). By the above lemma, an ultrafilter U can be obtained by expanding F. Then U is
non-principal, since for each i € I, I — {i} € F C U, so we have {i} £ U.
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Stone’s representation theorem
We prove Stone's representation theorem using an ultrafilter.

Theorem (Stone's representation theorem)

For any Boolean algebra *B, there exists a set X, and *B can be embedded in the power set

algebra P(X).
In particular, if B is finite, it is isomorphic to P (X).

Proof.

® let B = (B,V,A,—,0,1) be a Boolean algebra. Filters, Ultrafilters, and others can
naturally be defined for a subset F' C B with the ordering z <y < x Ay =2x. Let X
be the set of all ultrafilters of B and P(X) be its power set.

® Now, f: B — P(X) is defined as follows:
For each b € B, f(b) is the set of all ultrafilters containing b. We show f is injective.
If a # b, then Da A (—=b) # 0 or @(—a) Ab#0.
Case (T). Since {a, b} has the finite intersection property, it can be extended to an
ultrafilter U C B. Thus, U € f(a) and U € f(b), and we have f(a) # f(b).
Case (2) can be treated similarly.
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® Furthermore, by the property of filter F: aAbe€ F < a € F and b € F, we have

Ultraproducts f(a /\ b) = f(a‘) m f(b)
® Also, by the property of the ultrafilter U: a ¢ U < —a € U, we have
f(ma) = X — f(a).

Thus, f: B — P(X) is embedding.

e If 9B is finite, any ultrafilter must be a principal filter. And its generator is an atom
(non-zero minimal element) in B. So, let X be the set of atoms. It is easy to see that
B and P(X) are isomorphic. O
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Ultraproducts

Definition (Ultraproduct)
The reduced product [[2;/U for an ultrafilter U is called an ultraproduct.

Theorem (Los)

Let U be an ultrafilter. For any formula p(x1,...,x,) and ay,...,a, € [ 4;,
[T2:/U = ¢(lai], ..., [an])  lle(ar,. .. an)l| €U.

Proof. By induction on the construction of formulas. The atomic formulas and formulas
beginning with A and 3 are treated in Page 18.

Then we only need to treat the case of negation, —¢ since V and V can be expressed by
A, 3 and negation —.

| I RS | D2
< |l¢ll €U (. induction hypothesis)
< ||lmell €U (.- maximality of U). O



Logic and
Foundation

K Tansio By applying the above theorem, we obtain another proof of compactness theorem.

Corollary (Compactness theorem)
A theory T has a model iff any finite subset of T' has a model.

Ultraproducts

® The necessity is clear and we show the sufficiency.

Let I be the set of finite subsets of 7. For each ¢ € T', let J, = {i € I : ¢ € i}. Then
{J, : ¢ € T} has the finite intersection property since {¢1,...,on} € Jo, N---NJy, .

® There exists an ultrafilter i/ O {J,, : ¢ € T'} by the lemma on Page 14 and the first
lemma on Page 25.

Let 2; be a model for each ¢ € I and 2 = [[2;/U. We show that 2 is a model of T.
First, take an arbitrary ¢ € T'. Since

ied,=pci=A =o,

we have J, C {i: 2; |= ¢}. Since J, €U, |l¢|| ={i: A = ¢} € U.
By the Los Theorem, we have 2l = .
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~ Problem 9: Homework
Ultraproducts Use an ultraproduct to show that any field F has algebraic closure F.
(Hint. Let Fp be the splitting field of a polynomial P, and for each Q € F[X],
Jo = {P € F[X]: Q is splitted into a product of linear expressions over Fp}.

Then, let U be an ultrafilter containing {Jg : Q € F[X]}, and consider the ultraproduct

[[Fep/U.)
N




Thank you for your attention!
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