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Logic and Foundations I� �
• Part 1. Equational theory

• Part 2. First order theory

• Part 3. Model theory

• Part 4. First order arithmetic and incompleteness theorems� �
Part 2. Schedule� �
• Nov. 16, (1) ∀-theory and ∀∃-theory

• Nov. 23, (2) Horn theory and reduced products

• Nov. 30, (3) Ultra products and non-standard analysis� �
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Today’s topics

1 Recap

2 Homework
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Recap

• The theory of a structure A, denoted Th(A), is the set of sentences true in A.

• The elementary diagram of A is Th(AA).

• Diag(A) = the set of atomic sentences and negations of atomic sentences in Th(AA),
is called the basic diagram.

• L-structures A and B are elementary equivalent, denoted A ≡ B, if the same
L-sentences hold in both structures, that is, Th(A) = Th(B)

• A structure A is an elementary substructure of a structure B, denoted A ≺ B,
if A is a substructure of B and the same LA-sentences hold in both structures, i.e,
Th(AA) = Th(BA).

• Note that the notion of elementary substructure is stronger than that of elementary
equivalence:

A ∼= B ⇒ A ≺ B ⇒ A ≡ B
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Recap

Theorem (Tarski-Vaught’s criterion)

A ≺ B iff A ⊆ B and for any formula φ(x, y1, . . . , ym) and any a1, . . . , am ∈ A,

BA |= ∃xφ(x, a1, . . . , am) ⇒ there exists an a ∈ |A| s.t. BA |= φ(a, a1, . . . , am).

Definition

A chain of structures A0 ⊆ A1 ⊆ · · · ⊆ Ai ⊆ · · · (i < ω) is called a elementary chain if

A0 ≺ A1 ≺ · · · ≺ Ai ≺ · · · (i < ω)

And the structure A =
⋃

i<ω Ai is called the union of the elementary chain.

Theorem (Elementary chain theorem)

Let A0 ≺ A1 ≺ · · · be an elementary chain. Let A be the union of the elementary chain.
Then for each i, Ai ≺ A.
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Recap

Definition

For an open formula (a formula without quantifiers) φ,
∀x1 · · · ∀xmφ is called a ∀ formula (or universal, Π1), and
∀x1 · · · ∀xn∃y1 · · · ∃ymφ is called a ∀∃ formula (or universal-existential, Π2).

A set of ∀ sentences is called a ∀-theory or a universal theory,
and a set of ∀∃ sentences is called a ∀∃-theory or an inductive theory.

Let T be a theory of a language L. We denote the class of all models of T by Mod(T), i.e.,

Mod(T) = {A : A |= T}

Theorem ( Loś-Tarski)

The following two conditions are equivalent.

1 Mod(T) is closed under substructures.

2 There exists an ∀-theory T ′ such that Mod(T) = Mod(T′).
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Theorem (Chang- Loś-Suszko)

The followings are equivalent.

(1) Mod(T) is closed under the union of chains. That is, if A0 ⊆ A1 ⊆ · · · is a chain of
models of T , the union is also a model of T .

(2) There exists a ∀∃-theory T ′ such that Mod(T′) = Mod(T).

Definition

A theory T is said to be model complete if for any model A, B of T ,

A ⊆ B ⇒ A ≺ B.

Lemma

A model-complete theory is a ∀∃-theory.

Proof. In a model-complete theory T , a chain of models is an elementary chain, so by the
elementary chain theorem, the union is also a model of T . By the Chang- Loś-Suszko
theorem, this theory is a ∀∃ theory.
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Problem 6� �
Let T be a ∀∃ theory, and φ1, φ2 be ∀∃ sentences. Now, suppose any model A of T
can be extended to a model of T ∪ {φ1} and a model of T ∪ {φ2}. Then show that
any model A of T can be extended to T ∪ {φ1, φ2}.� �

Solution:

• Construct a chain A ⊆ A1 ⊆ A2 ⊆ · · · of a ∀∃ theory T such that A2i+1 is a model of
T ∪ {φ1} and A2i+2 is a model of T ∪ {φ2}.

• Since
⋃

i∈N Ai is the union of a chain of models {A2i+1} of a ∀∃ theory T ∪ {φ1}, it
is also a model of T ∪ {φ1}, by the Chang- Loś-Suszko theorem.

• Similarly, since
⋃

i∈N Ai is the union of a chain of models {A2i+2} of a ∀∃ theory
T ∪ {φ2}, it is also a model of T ∪ {φ2}.

• Therefore,
⋃

i∈N Ai is a model of T ∪ {φ1, φ2}. So, any model A of T can be
extended to T ∪ {φ1, φ2}.
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Problem 7 Homework� �
In a model-complete theory, show that for every formula, there exists an equivalent ∀
formula. (Hint. See the proof of (1)⇒(2) in the  Loś-Tarski theorem.)� �

Solution:

• Let φ be formula. We may assume that φ is a sentence by replacing the free variables
contained in φ with new constants. Then, if a ∀ sentence equivalent to that sentence
is found, by replacing the new constants in it with the original variables, we will obtain
a ∀ formula equivalent to the original formula.

• Furthermore, we may assume that T ∪ {φ} is consistent. Otherwise, any sentence ⊥
expressing a contradiction is equivalent to φ on T .

• Let T ′ = {σ : σ is a ∀ statement, and T ∪ {φ} ⊢ σ}.
• Now, let A be an arbitrary model of T ∪ T ′. In the same way as the proof of the

 Los-Tarski theorem, we can construct a model BA of Diag(A) ∪ T ∪ {φ}. Then by
the model completeness of T , we have A ≺ BA. Therefore, A |= φ.

• By the completeness theorem, T ∪ T ′ ⊢ φ. Therefore, there exists a finite subset
{σ1, σ2, . . . , σn} ⊂ T ′ such that T ⊢ (σ1 ∧ · · · ∧ σn) → φ. Since (σ1 ∧ · · · ∧ σn) can
be easily transformed into an equivalent ∀ sentence σ, we have T ⊢ σ ↔ φ.
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Horn formula

• The Horn formula was introduced by A. Horn in the early
1950s for mathematical interest (related with direct product) as
we will introduce today.

• However, in the 1970s, R. Kowalski discovered an efficient
procedure for proving Horn formulas. Based on this idea, the
theory and applications of logic programming rapidly
developed.a

• Horn formulas have become widely known as the logic of
artificial intelligence.

aRobert Kowalski: A Short Story of My Life and Work
https://www.doc.ic.ac.uk/ rak/history.pdf

A. Horn

R. Kowalski

https://www.doc.ic.ac.uk/~rak/history.pdf
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We fix a language L.

Definition

• For atomic formulas θi (i < n), θ0 ∨ ¬θ1 ∨ · · · ∨ ¬θn or ¬θ1 ∨ · · · ∨ ¬θn is called a
basic Horn formula.

• A formula constructed from the basic Horn formulas by using only ∧, ∀, and ∃ is
called a Horn formula.

• The set of Horn sentences is called a Horn theory.

A basic Horn formula can be expressed as follows, which is easier to use in applications:

θ1 ∧ · · · ∧ θn → θ0

or
θ1 ∧ · · · ∧ θn → ⊥,

where ⊥ denotes a contradiction.
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Example� �
• The theory of regular rings, which adds the axiom ∀x∀y(xyx = x) to ring theory,

is a Horn theory.

• The theory of integral domain (commutative ring theory +
∀x∀y(x • y = 0 → x = 0 ∨ y = 0)) and field theory (commutative ring theory +
∀x∃y(x ̸= 0 → xy = 1)) is not Horn theory.� �

The models of a Horn theory is closed under “reduced products”, which is a generalization
of direct product.

Before introducing reduced products, we begins with some preliminary definitions.
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Definition

Let I be a non-empty set. F ⊆ P(I) is said to be filter on I if the following are satisfied.

(1) ∅ ̸∈ F , I ∈ F .

(2) X ∈ F , X ⊆ Y ⊆ I ⇒ Y ∈ F .

(3) X,Y ∈ F → X ∩ Y ∈ F .

Problem 8� �
Let I be an infinite set. Show the following.

1 The collection of all finite subsets of I is not a filter.

2 The collection of all infinite subset of I is not a filter.

3 The collection of subsets of I whose complement is finite is a filter, which is
called a Fréchet filter.

4 For each i ∈ I, the collection of all subsets of I containing i, {X ⊆ I : i ∈ X} is
a filter, which is called a principal filter.� �
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Lemma

If S ⊂ P(I) has the finite intersection property: for any finite subset {J1, . . . Jn} ⊂ S,

J1 ∩ · · · ∩ Jn ̸= ∅,

then there exists a filter F including S.

Proof. Let F = {X ⊆ I : J1 ∩ · · · ∩ Jn ⊂ X for some {J1, . . . , Jn} ⊂ S}.

Definition

Let Ai = (Ai, f
Ai , . . . ,RAi , . . .) (i ∈ I) be an L-structure.

Let F be a filter on I. Then, we define the binary relation ≈F on
∏
Ai as follows

a≈Fb ⇔ {i ∈ I : a(i) = b(i)} ∈ F .

Lemma

≈F is an equivalence relation.
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Proof.

• The laws of reflection and symmetry are clear from the definitions.

• To show the transitive law, we assume a≈Fb, b≈Fc.

• By definition,

{i ∈ I : a(i) = b(i)} ∈ F and {i ∈ I : b(i) = c(i)} ∈ F .

• On the other hand,

{i ∈ I : a(i) = c(i)} ⊇ {i ∈ I : a(i) = b(i)} ∩ {i ∈ I : b(i) = c(i)}
• By conditions (2) X ∈ F , X ⊆ Y ⊆ I ⇒ Y ∈ F and (3) X,Y ∈ F → X ∩ Y ∈ F of

the definition of filter, we have

{i ∈ I : a(i) = c(i)} ∈ F .

Therefore, a≈Fc.
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For a1, . . . , an ∈
∏
Ai, we set ∥φ(a1, . . . , an)∥ := {i ∈ I : Ai |= φ(a1(i), . . . , an(i))}.

Ai here is strictly AiAi
. But for simplicity, we write A for AA if it is clear from the context.

Lemma

If a1≈Fb1, . . . , an≈Fbn, we have

∥f(a1, . . . , an) = f(b1, . . . , bn)∥ ∈ F ,

∥R(a1, . . . , an)∥ ∈ F ⇔ ∥R(b1, . . . , bn)∥ ∈ F .

Proof.
This can be derived from the following and the definition of filter.⋂

k≤n

{i ∈ I : ak(i) = bk(i)} ⊆ ∥f(a1, . . . , an) = f(b1, . . . , bn)∥,

⋂
k≤n

{i ∈ I : ak(i) = bk(i)} ∩ ∥R(a1, . . . , an)∥ ⊆ |R(b1, . . . , bn)∥.

Therefore, ≈F is a congruence relation on
∏
Ai.
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• We can define the quotient structure in the same way as for the algebraic structure.

• That is, its domain is the set of equivalence classes denoted
∏
Ai/≈F or

∏
Ai/F ,

and the value of a function f and the truth value of a relation R is uniquely
determined on the equivalence classes regardless of choice of representative elements.

Definition

Let Ai = (Ai, f
Ai , . . . ,RAi , . . .) (i ∈ I) be L-structures. Let F be a filter on I. Then, the

following L-structure is called the reduced product of Ai, denoted by
∏

Ai/F .(∏
Ai/F , f

∏
Ai/F , . . . ,R

∏
Ai/F , . . .

)

• For a non-empty set I, F = {I} is a filter and
∏

Ai/F ∼=
∏

Ai.
In other words, the direct product is also one kind of the reduced products.

• For the principal filter F = {X ⊆ I : k ∈ X},
∏

Ai/F ∼= Ak.
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Lemma

If φ is a formula obtained from the atomic formula with ∧ and ∃, then for
a1, . . . , an ∈

∏
Ai,∏

Ai/F |= φ([a1], . . . , [an]) ⇔ ∥φ(a1, . . . , an)∥ ∈ F .

Proof. By induction on the construction of formulas.

• If φ is an atomic formula, it is clear by the definition.
• If φ=ψ1 ∧ ψ2, it follows from the induction hypo. and the closedness of filter under ∩.
• Let φ = ∃xψ(x). For simplicity, we do not display parameters a1, . . . , an in φ.∏

Ai/F |= ∃xψ(x) ⇔ for some a ∈
∏

Ai ,
∏

Ai/F |= ψ([a])

⇔ for some a ∈
∏

Ai , ∥ψ(a)∥ ∈ F (induction hypothesis)

⇒ ∥∃xψ(x)∥ ∈ F (∵ ∥ψ(a)∥ ⊆ ∥∃xψ(x)∥).

• Conversely, let ∥∃xψ(x)∥ ∈ F . By the axiom of choice, we take a ∈
∏
Ai such that

for each i ∈ ∥∃xψ(x)∥, Ai |= ψ(a(i)). Then, ∥ψ(a)∥ ∈ F . By the induction
hypothesis,

∏
Ai/F |= ψ([a]). Therefore,

∏
Ai/F |= ∃xψ(x).
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Lemma

Let φ(x1, . . . , xn) be a basic Horn formula, then for a1, . . . , an ∈
∏
Ai, we have

∥φ(a1, . . . , an)∥ ∈ F ⇒
∏

Ai/F |= φ([a1], . . . , [an]).

Proof.

• For simplicity, we do not display parameters a1, . . . , an ∈
∏
Ai in the formula.

• Let φ be a basic horn sentence (θ0∨)¬θ1 ∨ · · · ∨ ¬θn, where θi (i < n) are atomic
sentences. We show a contradiction by assuming 1○∥φ∥ ∈ F and 2○

∏
Ai/F ̸|= φ.

• By 2○, since
∏

Ai/F |= θ1 ∧ · · · ∧ θn, by the last lemma, we have ∥θ1 ∧ · · · ∧ θn∥ ∈ F .
- If φ does not contain θ0, we have ∅ = ∥φ∥ ∩ ∥θ1 ∧ · · · ∧ θn∥ ∈ F , which violates the
condition of a filter .
- If φ contains θ0, we have ∥θ0∥ = ∥φ∥ ∩ ∥θ1 ∧ · · · ∧ θn∥ ∈ F . Thus by the last
lemma, we have

∏
Ai/F |= θ0, which conflicts with the assumption

∏
Ai/F ̸|= φ
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Lemma

Let φ(x1, . . . , xn) be a Horn formula, then for a1, . . . , an ∈
∏
Ai,

∥φ(a1, . . . , an)∥ ∈ F ⇒
∏

Ai/F |= φ([a1], . . . , [an]).

Proof. By induction on the construction of a Horn formula with ∧, ∀, and ∃.
For the basic Horn formula, it follows from the last lemma. Formulas φ ∧ ψ and ∃xφ(x)
are treated in the lemma in Page 18.
For a formula ∀xφ(x),

∥∀xφ(x)∥ ∈ F ⇒ for all a ∈
∏

Ai, ∥φ(a)∥ ∈ F

⇒ for all a ∈
∏

Ai,
∏

Ai/F |= φ([a])

⇔
∏

Ai/F |= ∀xφ(x)
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• The above lemma shows that the Horn formula preserves reduced products, that is, a
reduced product of models of a Horn formula becomes a model of the original Horn
formula again.

• Therefore, the class of models of a Horn theory is closed under reduced products,
especially under direct products. Then the converse is also true in the following sense.

Theorem (Keisler-Galvin)

The following are equivalent:

(1) Mod(T) is closed under reduced products.

(2) There exists a Horn theory T ′ such that Mod(T) = Mod(T′).

A proof can be found in Chang-Keisler’s classic textbook Model Theory.

(Example) The product of regular rings is a regular ring.
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(Exercise) Show that the class of Boolean algebras with atoms (non-atomless) is closed
under direct products but not under reduced products.

• The theory of Boolean algebra is a ∀-theory. “Boolean algebra has an atom a” is
expressed by the following ∃∀-sentence.

∃a∀x(a ̸= 0 ∧ (a •x = x→ x = a ∨ x = 0)).

• In a direct product
∏

Ai of such Boolean algebras, consider a function f whose value
is an atom a ∈ |Ai| for only one i and 0 elsewhere. Then, f becomes an atom of

∏
Ai.

• On the other hand, consider the reduced product
∏

Ai/F with the Fréchet filter F .
Assume that it has an atom [g]. Since it is not zero 0

∏
Ai/F , it takes a value other

than 0 on an infinite set J ⊆ I. Now divide J into two infinite sets J1 and J2. Let h
be the function obtained from g by replacing its values on J2 with 0. Then we have

[g] • [h] = [h], [h] ̸= [g], [h] ̸= 0,

which contradicts the assumption that [g] is an atom.

• It is not easy to describe which sentences preserve the direct product. In fact,
Machover (1960) showed it is not computable.
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• A sentence with several ∀ in front of a basic Horn formula is called a ∀-Horn
sentence (or simply called a Horn sentence in some literature). A collection of such
sentences is called a ∀-Horn theory (or simply a Horn theory).

• A ∀-Horn theory is a nice extension of equational theory. The following theorem is a
counter part of Birkhoff’s equational class theorem. It can be proven similarly, and we
leave the details to the reader.

Theorem

Let K be a class of L-structures, then the following are equivalent:

(1) K is closed under direct products, substructures, and isomorphic images.

(2) K is closed under reduced products, substructures, and isomorphic images.

(3) There exists a ∀-Horn theory T such that Mod(T) = K.
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Ultraproducts
In the following, we will consider the necessary and sufficient conditions for a class of
structures to be axiomatized by first order logic, that is, be expressed as Mod(T).

Definition

A class K of L-structures is called an elementary class if there exists a set T of sentences
such that K = Mod(T). In this case, we write

K ∈ EC∆.

To characterize elementary classes, we use a kind of reduced product called “ultraproduct”.
To define it, we first introduce an ultrafilter.

Definition

The filter F on I is an ultrafilter (maximal filter) if the following properties are satisfied.

∀X ⊂ I(X ∈ F ∨ I −X ∈ F).
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Lemma

Every filter F can be expanded to an ultrafilter U .

Proof. Consider the class of all filters including a given filter F .
Since it is closed under the union of chains, by Zorn’s lemma, there is a maximal filter U
which is an ultrafilter.

A principal filter is an ultrafilter. There exists an ultrafilter which is non-principal.

Lemma

There exists a non-principal ultrafilter U on any infinite set I.

Proof.
Let I be an infinite set, and F be a Fréchet filter on it (a subset of I whose complement is
finite). By the above lemma, an ultrafilter U can be obtained by expanding F . Then U is
non-principal, since for each i ∈ I, I − {i} ∈ F ⊆ U , so we have {i} ̸∈ U .



Logic and
Foundation

K. Tanaka

Recap

Homework

Horn formula and
reduced product

Ultraproducts

26

Stone’s representation theorem
We prove Stone’s representation theorem using an ultrafilter.

Theorem (Stone’s representation theorem)

For any Boolean algebra B, there exists a set X, and B can be embedded in the power set
algebra P(X).
In particular, if B is finite, it is isomorphic to P(X).

Proof.

• Let B = (B,∨,∧,¬, 0, 1) be a Boolean algebra. Filters, Ultrafilters, and others can
naturally be defined for a subset F ⊆ B with the ordering x ≤ y ⇔ x ∧ y = x. Let X
be the set of all ultrafilters of B and P(X) be its power set.

• Now, f : B → P(X) is defined as follows:
For each b ∈ B, f(b) is the set of all ultrafilters containing b. We show f is injective.
If a ̸= b, then 1○a ∧ (¬b) ̸= 0 or 2○(¬a) ∧ b ̸= 0.

Case 1○. Since {a,¬b} has the finite intersection property, it can be extended to an
ultrafilter U ⊆ B. Thus, U ∈ f(a) and U ̸∈ f(b), and we have f(a) ̸= f(b).
Case 2○ can be treated similarly.
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• Furthermore, by the property of filter F : a ∧ b ∈ F ⇔ a ∈ F and b ∈ F , we have

f(a ∧ b) = f(a) ∩ f(b).

• Also, by the property of the ultrafilter U : a ̸∈ U ⇔ ¬a ∈ U , we have

f(¬a) = X − f(a).

Thus, f : B → P(X) is embedding.

• If B is finite, any ultrafilter must be a principal filter. And its generator is an atom
(non-zero minimal element) in B. So, let X be the set of atoms. It is easy to see that
B and P(X) are isomorphic.
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Ultraproducts

Definition (Ultraproduct)

The reduced product
∏

Ai/U for an ultrafilter U is called an ultraproduct.

Theorem ( Los)

Let U be an ultrafilter. For any formula φ(x1, . . . , xn) and a1, . . . , an ∈
∏
Ai,∏

Ai/U |= φ([a1], . . . , [an]) ⇔ ∥φ(a1, . . . , an)∥ ∈ U .

Proof. By induction on the construction of formulas. The atomic formulas and formulas
beginning with ∧ and ∃ are treated in Page 18.
Then we only need to treat the case of negation, ¬φ since ∨ and ∀ can be expressed by
∧,∃ and negation ¬.

∏
Ai/U |= ¬φ⇔

∏
Ai/U ̸|= φ

⇔ ∥φ∥ ̸∈ U (∵ induction hypothesis)

⇔ ∥¬φ∥ ∈ U (∵ maximality of U).
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By applying the above theorem, we obtain another proof of compactness theorem.

Corollary (Compactness theorem)

A theory T has a model iff any finite subset of T has a model.

• The necessity is clear and we show the sufficiency.

• Let I be the set of finite subsets of T . For each φ ∈ T , let Jφ = {i ∈ I : φ ∈ i}. Then
{Jφ : φ ∈ T} has the finite intersection property since {φ1, . . . , φn} ∈ Jφ1

∩ · · · ∩ Jφn
.

• There exists an ultrafilter U ⊇ {Jφ : φ ∈ T} by the lemma on Page 14 and the first
lemma on Page 25.

• Let Ai be a model for each i ∈ I and A =
∏

Ai/U . We show that A is a model of T .

• First, take an arbitrary φ ∈ T . Since

i ∈ Jφ ⇒ φ ∈ i⇒ Ai |= φ,

we have Jφ ⊆ {i : Ai |= φ}. Since Jφ ∈ U , ∥φ∥ = {i : Ai |= φ} ∈ U .

• By the  Los Theorem, we have A |= φ.
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Problem 9: Homework� �
Use an ultraproduct to show that any field F has algebraic closure F .

(Hint. Let FP be the splitting field of a polynomial P , and for each Q ∈ F [X],

JQ = {P ∈ F [X] : Q is splitted into a product of linear expressions over FP }.

Then, let U be an ultrafilter containing {JQ : Q ∈ F [X]}, and consider the ultraproduct∏
FP /U .)� �
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Thank you for your attention!
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