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Logic and Foundations I� �
• Part 1. Equational theory

• Part 2. First order theory

• Part 3. Model theory

• Part 4. First order arithmetic and incompleteness theorems� �
Part 3. Schedule� �
• Nov. 16, (1) ∀-theory and ∀∃-theory

• Nov. 23, (2) Horn theory and reduced products

• Nov. 30, (3) Ultra products and non-standard analysis� �
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Today’s topics

1 Recap

2 Elementary substructure

3 ∀-theory and ∀∃-theory
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Recap: Language Interpretation

Definition

Given two languages L,L′ and a theory T ′ in the language L′. A pair ⟨U, I⟩ that satisfies
the following is called a interpretation (translation) of language L (in T ′).

(1) U(x) is a formula in L′. T ′ ⊢ ∃xU(x). (It represents the domain of a theory.)

(2) I is a function from L to formulas in L′.
If f is an n-ary function symbol, I(f) is an (n+ 1)-ary formula and

T ′ ⊢ ∀x1 · · · ∀xn(U(x1) ∧ · · · ∧ U(xn) → ∃!y(I(f)(x1, . . . , xn, y) ∧ U(y))).

If R is an n-ary relation symbol, I(R) is also an n-ary formula.
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Recap: Interpretation of formulas

• We interpret an L-formula φ into a formula φI in L′.

• We first adjust I(f) slightly to define a function, since it may not represent a function
outside of U . With a new constant a, we set

I ′(f)(x1, . . . , xn, y) ⇔

((U(x1) ∧ · · · ∧ U(xn)) ∧ I(f)(x1, . . . , xn, y)) ∨ ((¬U(x1) ∨ · · · ∨ ¬U(xn)) ∧ y = a).

Then, I ′(f) defines a function. And if its function symbol is denoted by f, then fI is f.

• Next, by R we also denote a relational symbol defined by I(R). So, RI is R.
Then, terms and atomic formulas of L will remain unchanged after interpretation.
The propositional connectives are also kept unchanged

• We only need to deal with quantifiers.
(1) (∃xψ)I is ∃x(U(x) ∧ ψI). (2) (∀xψ)I is ∀x(U(x) → ψI).
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Recap: Theory Interpretation

Definition

• Let T and T ′ be theories in languages L and L′, respectively. Suppose that ⟨U, I⟩ is
an interpretation of language L in T ′.

• Then, ⟨U, I⟩ is called an interpretation of theory T in T ′, if for any sentence σ in L,

T ⊢ σ ⇒ T ′ ⊢ σI .

• If there is an interpretation of T in T ′, T is said to be interpretable within T ′.

• Moreover, ⟨U, I⟩ is called a faithful interpretation of T ′ in T , if the following holds

T ⊢ σ ⇔ T ′ ⊢ σI .
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Homework
Homework� �
1 Show that Peano arithmetic PA is interpretable within ZF set theory.

2 Show that ZF without Infinity axiom is interpretable within PA.� �
Solutions:

(1) In ZF, U(x) is defined as a predicate representing a finite ordinal, and the arithmetic
operations of PA are the same as those for ordinals.

- To show that this is a proper interpretation of PA in ZF, it is sufficient to show that
the interpretation of mathematical induction is provable in ZF. This is obvious, since
induction on finite ordinals holds for all the formulas of ZF.

(2) For the converse, we define k ∈ n iff the k+1-th digit of the binary expression of n is
1. Let U(x) be x = x.

- k ∈ n expresses that the set with code k belongs to the set with code n. By such an
interpretation, all the axioms of ZF other than the axiom of infinity are provable
within PA. In particular, the axiom of replacement is interpreted into a collection
principle (a variation of induction as we will discuss in next semester).
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Introduction to part 3

• In part 1, we gave the necessary and sufficient conditions for a class of structures to
be axiomatized in equational class theory (Birkhoff’s variety theorem).

• In this part, we will discuss various forms of axiomatic systems in first-order logic (e.g.,
Horn theory) and the properties of the models of such systems. To study them, we
will introduce the basic concepts of model theory, such as elementary substructures,
elementary class, model-complete, reduced product and ultraproduct.

• In addition, we will discuss non-standard analysis as an important application of model
theory. Using ultrapower or utraproduct, we can construct a nonstandard extension of
real numbers including infinitesimals and infinities, where the limit can be replaced by
a finite calculation.

• The non-standard analysis we introduce here will be adopted with some restrictions in
a weaker system (to be discussed in next semester).
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Definition (Recall the similar definitions for algebraic structures)

Let A and B be L-structures. A morphism ϕ : |A| → |B| is called an homomorphism
denoted ϕ : A → B if the following holds:

• for all f ∈ L and a0, . . . , am−1 ∈ |A|,

ϕ(fA(a0, . . . , am−1)) = fB(ϕ(a0), . . . , ϕ(am−1)),

• for all R ∈ L and a0, . . . , an−1 ∈ |A|,

RA(a0, . . . , an−1) ⇒ RB(ϕ(a0), . . . , ϕ(an−1)).

A homomorphism ϕ is called an embedding if it is injective (one-to-one) and
for all R and a0, . . . , an−1 ∈ |A|,

RA(a0, . . . , an−1) ⇔ RB(ϕ(a0), . . . , ϕ(an−1)).

If an embedding ϕ : A → B is surjective, we say that ϕ is isomorphism.
In this case, we say that A and B are isomorphic and write

A ∼= B
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Lemma

Let A and B be L-structures. A morphism ϕ : |A| → |B| is an embedding iff Bϕ(A) is a
model of Diag(A).

Proof. By induction on the construction of formulas (Exercise).

Definition (Recall: Tarski’s truth definition clauses)

The set of true sentences in the structure AA, denoted Th(AA), is defined inductively by
Tarski’s truth definition clauses.

• For an atomic sentence φ of LA, φ ∈ Th(AA) ⇔ φ is true in AA,

• ¬φ ∈ Th(AA) ⇔ φ ̸∈ Th(AA),

• φ ∧ ψ ∈ Th(AA) ⇔ φ ∈ Th(AA) and ψ ∈ Th(AA),

• φ ∨ ψ ∈ Th(AA) ⇔ φ ∈ Th(AA) or ψ ∈ Th(AA),

• φ→ ψ ∈ Th(AA) ⇔ φ ̸∈ Th(AA) or ψ ∈ Th(AA),

• ∀xφ(x) ∈ Th(AA) ⇔ for every a ∈ A, φ(a) ∈ Th(AA),

• ∃xφ(x) ∈ Th(AA) ⇔ there exists a ∈ A such that φ(a) ∈ Th(AA).

Th(AA) is called the elementary diagram of the structure A.
Diag(A) = the set of atomic sentences and negations of atomic sentences in Th(AA),
is called the basic diagram.
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Definition

A structure A is a substructure of a structure B if |A| ⊆ |B| and the identity map
i|A| : |A| → |B| is an embedding (In other words, if the interpretation of a function symbol
f or a relational symbol R in the structure A is the same as the interpretation of the
corresponding symbol in B restricted to A). Then we write

A ⊆ B.

Example 1� �
(N,+, ·, 0, 1, <) ⊆ (R,+, ·, 0, 1, <).� �

For a homomorphism ϕ : A → B, the substructure of B whose domain is the image ϕ(|A|)
is called the homomorphic image, and written as ϕ(A). For an embedding ϕ : A → B,
ϕ(A) and A are isomorphic.
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The logical counterpart of isomorphism is “elementary equivalence.” “Elementary” is a
term used almost synonymously with “first-order logic” by the Tarski school at Berkeley.

Definition

L-structures A and B are elementary equivalent, denoted A ≡ B, if the same
L-sentences hold in both structures, that is, Th(A) = Th(B)

Lemma

Any two isomorphic structures are elementary equivalent, that is,

A ∼= B ⇒ A ≡ B

It must be easier to show that for an isomorphism ϕ : A → B, Th(AA) = Th(Bϕ(A)).
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Definition

A structure A is an elementary substructure of a structure B, denoted A ≺ B, if A is a
substructure of B and the same LA-sentences hold in both structures, i.e,
Th(AA) = Th(BA).

Note that the notion of elementary substructure is stronger than that of elementary
equivalence:

A ∼= B ⇒ A ≺ B ⇒ A ≡ B

Also, ≺ is a transitive relation.

Example 2� �
Let N< = (N, <). Then N+

< = (N− {0}, <).

N<
∼= N+

<, N< ≡ N+
<, N+

< ⊆ N<.

but,

N+
< ̸≺ N<.� �
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Problem 2: exercise� �
Let Q< = (Q, <), R< = (R, <). Which of ∼=, ⊆, ≡, ≺ holds between the two strucures
(no proof is required)?� �
Problem 3: exercise� �

Suppose A ≡ B and |A| is finite. Show that A ∼= B.� �
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Theorem (Tarski-Vaught’s criterion)

A ≺ B iff A ⊆ B and for any formula φ(x, y1, . . . , ym) and any a1, . . . , am ∈ A,

BA |= ∃xφ(x, a1, . . . , am) ⇒ there exists an a ∈ |A| s.t. BA |= φ(a, a1, . . . , am).

Proof. (only if) is clear.

For (if), we will show that for any formula φ(x1, . . . , xn) and any a1, . . . , an ∈ A,

AA |= φ(a1, . . . , an)⇔BA |= φ(a1, . . . , an)

by induction on the construction of φ.

If φ is an atomic formula, then the equivalence ⇔ holds by A ⊆ B.

For the induction step, the essential case is that φ is of the form ∃xψ.
⇐ can be obtained from the condition of the theorem and ⇒ is trivial.
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Problem 4.1� �
For a theory T of a language L, the following are equivalent:

(i) (Weak Henkin property). For an L-formula φ(x) with no other free variable
than x, there are L-terms t1, . . . , tn that do not contain variables,

T ⊢ ∃xφ(x) → φ(t1) ∨ · · · ∨ φ(tn).

(ii) For any model A of T , its smallest substructure is an elementary substructure.� �
Problem 4.2� �

For a theory T of a language L, the following are equivalent:

(i) (Weak Skolem property). For any L-formula φ(x, y1, . . . , ym) with no other
free variables than displayed, there exist terms t1(y1, . . . , ym), . . . , tn(y1, . . . , ym)
such that

T ⊢ ∃xφ(x, y1, . . . , ym) → φ(t1(y1, . . . , ym), y1, . . . , ym) ∨ · · ·
∨φ(tn(y1, . . . , ym), y1, . . . , ym).

(ii) For any model A of T , any substructure becomes an elementary substructure.� �
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Solution:
(i) → (ii) of problem 4.1

• Let A a model of T , and B be its smallest substructure. Then |B| is the set of tA

where t is a term without variables.

• To applying the Tarski-Vaught test, assume A |= ∃xφ(x). Note that ∃xφ(x) may
include elements of B as closed terms. Then by the weak Henkin property of T , there
exist closed terms t1, . . . , tn such that A |= φ(t1) ∨ · · · ∨ φ(tn). So, there is i ≤ n
such that A |= φ(ti) with ti ∈ |B|.

• Hence, by the Tarski-Vaught criterion, B ≺ A.

(ii) → (i) of problem 4.1

• By using contraposition, let T be a theory without the weak Henkin property. Then,
there exists a formula φ(x) and T ∪{∃xφ(x)}∪{¬φ(t) : t is a term without variables}
is consistent (by compactness). Let A be a model of such a theory and B be its
smallest substructure consisting of closed terms.

• Assume that B ≺ A. So, since B is also a model of such a theory, B |= ∃xφ(x), and
then there is a closed term t such that B |= φ(t). Again, since B ≺ A, we have
A |= φ(t), which is a contradiction.

Problem 4.2 can be solved by similar argument.
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Definition

A countable ascending sequence of structures

A0 ⊆ A1 ⊆ · · · ⊆ Ai ⊆ · · · (i < ω)

is called a chain of structures. Then, the structure A =
⋃

i<ω Ai, which is naturally
defined as the limit of the chain, is called the union of the chain. Note that it is clear that
for each i < ω, Ai is a substructure of A.

Definition

A chain of structures is called a elementary chain if

A0 ≺ A1 ≺ · · · ≺ Ai ≺ · · · (i < ω)

And the structure A =
⋃

i<ω Ai is called the union of the elementary chain.

Theorem (Elementary chain theorem)

Let A0 ≺ A1 ≺ · · · be an elementary chain. Let A be the union of the elementary chain.
Then for each i, Ai ≺ A.
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Proof. First, let A be the union of the elementary chains A0 ≺ A1 ≺ · · · . We claim that
for all i and for any a1, . . . , an ∈ Ai,

AiAi |= φ(a1, . . . , an) ⇔ AAi |= φ(a1, . . . , an).

We prove the claim by induction on the construction of the formula φ(x1, . . . , xn), based
on Tarski-Vaught’s criterion. Note that if the induction is carried out for each fixed i, the
argument does not work well.
• If φ(x1, . . . , xn) is an atomic formula, the claim is obvious.
• The essential step in induction is the case that φ ≡ ∃xψ. Now, take any i and any
a1, . . . , an ∈ Ai.
(⇒) follows immediately from the induction hypothesis.
To show (⇐), assume that AAi

|= ∃xφ(x, a1, . . . , am).
Then for some a ∈ A, AA |= φ(a, a1, . . . , am). Take a sufficiently large j ≥ i such
that a, a1, . . . , am ∈ Aj . So, we have AAj |= φ(a, a1, . . . , am).
By the induction hyppothesis, we have AjAj

|= φ(a, a1, . . . , am). Therefore,
AjAj

|= ∃xφ(x, a1, . . . , am). Finally, since Ai ≺ Aj by transitivity of ≺, we have
AiAi

|= ∃xφ(x, a1, . . . , am).

It is easy to generalize the above theorem to transfinite sequences for any ordinal α.

A0 ≺ A1 ≺ · · · ≺ Aβ ≺ · · · (β < α)



Logic and
Foundation

K. Tanaka

Recap

Elementary
substructure

∀-theory and
∀∃-theory

20

∀-theory and ∀∃-theory

We will extend Birkhoff’s equational class theorem to ∀-theories and ∀∃-theories, which are
the most commonly used forms of axiomatic systems in mathematics.

Definition

Let T be a theory of a language L. We denote the class of all models of T by Mod(T), i.e.,

Mod(T) = {A : A |= T}

Birkhoff’s equational class theorem can be restated as the following extended form:

Theorem (Birkhoff’s theorem)

Let K be a class of L-structures, then the following are equivalent:

(1) K is closed under direct products, substructures and homomorphic images.

(2) There exists a theory T consisting of (the universal closures of) atomic formulas such
that K = Mod(T ).
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A question naturally arises from the theorem in the last page. If we consider the closure
conditions of K separately, what kind of axiomatic system corresponds to each case?

(1) Direct products will be expanded to “reduced products” and studied in the next
lecture.

(2) Substructures will be discussed later in this lecture.

(3) Homomorphic images will be treated in the next semester. We will show the following
nice theorem.

Theorem (Lyndon theorem)

The following are equivalent.

1 Mod(T) is closed under homomorphic images.

2 There exists a theory T ′ of sentences expressed without negation ¬ such that
Mod(T) = Mod(T′).
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Definition

For an open formula (a formula without quantifiers) φ,
∀x1 · · · ∀xmφ is called a ∀ formula (or universal, Π1), and
∀x1 · · · ∀xn∃y1 · · · ∃ymφ is called a ∀∃ formula (or universal-existential, Π2).

A set of ∀ sentences is called a ∀-theory or a universal theory,
and a set of ∀∃ sentences is called a ∀∃-theory or an inductive theory.

Theorem ( Loś-Tarski)

The following two conditions are equivalent.

1 Mod(T) is closed under substructures.

2 There exists an ∀-theory T ′ such that Mod(T) = Mod(T′).
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Proof.
To show (2) ⇒ (1), let T be a ∀-theory and B ⊆ A ∈ Mod(T).

• We want to show B ∈ Mod(T).

• Take any ∀x1 · · ·xnφ(x1, . . . , xn) ∈ T . Then, A |= ∀x1 · · ·xnφ(x1, . . . , xn).

• So, for any b1, . . . , bn ∈ B ⊆ A, AB |= φ(b1, . . . , bn). Since φ is an open formula,
from B ⊆ A we have BB |= φ(b1, . . . , bn).

• Thus, B |= ∀x1 · · · ∀xnφ(x1, . . . , xn) and so B ∈ Mod(T) as required.

To show (1) ⇒ (2), suppose Mod(T) is closed under substructures.

• Let T ′ = {σ : σ is a ∀-sentence, and T ⊢ σ}.

• Since Mod(T) ⊆ Mod(T′) is obvious, it is sufficient to show Mod(T′) ⊆ Mod(T).

• Take an A ∈ Mod(T′). Let D = Diag(A) (the basic diagram). If D ∪ T has a model
BA, then it clearly contains a substructure isomorphic to A. So by the assumption,
A ∈ Mod(T).

• Hence, it is sufficient to show that D ∪ T has a model.
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Claim: D ∪ T has a model.

• By way of contradiction, assume that D ∪ T has no model. Then, there exists a finite
set {φ1(a1, . . . , an), . . . , φk(a1, . . . , an)} ⊂ D such that the following is inconsistent.

{φ1(a1, . . . , an), . . . , φk(a1, . . . , an)} ∪ T
• Let φ(a1, . . . , an) = φ1(a1, . . . , an) ∧ · · · ∧ φk(a1, . . . , an). Then, we have,

T ⊢ ¬φ(a1, . . . , an).
• Since T does not contain the constants a1, . . . , an, we replace them with variables
x1, . . . , xn, and we have T ⊢ ¬φ(x1, . . . , xn), so T ⊢ ∀x1 · · · ∀xn¬φ(x1, . . . , xn).

• Since ∀x1 · · · ∀xn¬φ(x1, . . . , xn) ∈ T ′, we have A |= ∀x1 · · · ∀xn¬φ(x1, . . . , xn), that
is, AA |= ¬φ(a1, . . . , an). This implies that for some i ≤ k, AA |= ¬φi(a1, . . . , an),
and so ¬φi(a1, . . . , an) belongs to D, which is a contradiction.

Problem 5� �
Consider why the above theorem cannot be rephrased as follows.
If K is a class of L structure, the following two are equivalent:
(1) K is closed under substructures.
(2) There exists a ∀-Theory T such that K = Mod(T ).� �
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Theorem (Chang- Loś-Suszko)

The followings are equivalent.

(1) Mod(T) is closed under the union of chains. That is, if A0 ⊆ A1 ⊆ · · · is a chain of
models of T , the union is also a model of T .

(2) There exists a ∀∃-theory T ′ such that Mod(T′) = Mod(T).

Proof.
To show (2) ⇒ (1), Let A0 ⊆ A1 ⊆ · · · be a chain of models of ∀∃ theory T ′.
We want to show A =

⋃
i∈N Ai is also a model of T ′.

• Let ∀x1 · · · ∀xn∃y1 · · · ∃ymφ(x1, . . . , xn, y1, . . . , ym) be a ∀∃-sentence in T ′.

• Take any a1, . . . , an ∈ A. Then there exists some k such that {a1, . . . , an} ⊆ Ak.

• Since Ak is a model of T ′, AkAk
|= ∃y1 · · · ∃ymφ(a1, . . . , an, y1, . . . , ym), and so there

exist b1, . . . , bm ∈ Ak such that AkAk
|= φ(a1, . . . , an, b1, . . . , bm).

• Since φ is open and Ak ⊆ A, we have AA |= φ(a1, . . . , an, b1, . . . , bm).

• Thus AA |= ∃y1 · · · ∃ymφ(a1, . . . , an, y1, . . . , ym). Since a1, . . . , an ∈ A are arbitrary,

A |= ∀x1 · · · ∀xn∃y1 · · · ∃ymφ(x1, . . . , xn, y1, . . . , ym).
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To show (1) ⇒ (2), Let T ′ = {σ : σ is a ∀∃-sentences, where T ⊢ σ}.
• Since Mod(T) ⊆ Mod(T′) is obvious, it suffices to show that Mod(T′) ⊆ Mod(T).

• Let A ∈ Mod(T′) and D∀ be the set of all ∀-sentence contained in Th(AA).

- Using the compactness theorem in the same way as the proof of  Loś-Tarski theorem,
D∀ ∪ T has a model BA.

- Then B as a reduct of BA is also a model of T , and so we have A ⊆ B

• Next let D = Diag(B). We want to show D ∪ Th(AA) has a model.

- Conversely, assume there is a conjunction φ of sentences from D s.t. Th(AA) ⊢ ¬φ.

- Assuming b1, . . . , bn are the constants appearing φ belonging to B −A, we express φ
by φ(b1, . . . , bn), that is, φ(x1, . . . , xn) is a formula in language LA.

- Since Th(AA) ⊢ ¬φ(b1, . . . , bn), we have

Th(AA) ⊢ ∀x1 · · · ∀xn¬φ(x1, . . . , xn) ⇒ ∀x1 · · · ∀xn¬φ(x1, . . . , xn) ∈ D∀

⇒ BA |= ∀x1 · · · ∀xn¬φ(x1, . . . , xn) ⇒ BA |= ¬φ(b1, . . . , bn) ⇒ Contradiction.

• Now let A′
A be the model of D ∪ Th(AA). Then B ⊆ A′ and A ≺ A′.
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• To summarize, for A ∈ Mod(T′), there is a model B(⊇ A) of T , and also a A′ ⊇ B
such that A ≺ A′.

• Since A′ ∈ Mod(T′), we can use the same argument to find a model B′ of T such
that B′ ⊇ A′, and there is a A′′ ⊇ B′ such that A′ ≺ A′′.

• By repeating this process, we have an elementary chain of models of T ′

A ≺ A′ ≺ A′′ ≺ · · ·

and a chain of models of T

B ⊆ B′ ⊆ B′′ ⊆ · · · .

Since A(n) ⊆ B(n) ⊆ A(n+1), the two chains have the same union, denoted A∞.

- On one hand, by the elementary chain theorem, A ≺ A∞.

- On the other hand, A∞ |= T by condition (1) of the theorem.

• Therefore, A is a model of T , as desired.
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Problem 6� �
Let T be a ∀∃ theory, and φ1, φ2 be ∀∃ sentences. Now, suppose any model A of T
can be extended to a model of T ∪ {φ1} and a model of T ∪ {φ2}. Then show that
any model A of T can be extended to T ∪ {φ1, φ2}.� �
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Definition

A theory T is said to be model complete if for any model A, B of T ,

A ⊆ B ⇒ A ≺ B.

Lemma

A model-complete theory is a ∀∃-theory.

Proof. In a model-complete theory T , a chain of models is an elementary chain, so by the
elementary chain theorem, the union is also a model of T . By the Chang- Loś-Suszko
theorem, this theory is a ∀∃ theory.

Problem 7 Homework� �
In a model-complete theory, show that for every formula, there exists an equivalent ∀
formula. (Hint. See the proof of (1)⇒(2) in the  Loś-Tarski theorem.)� �
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Thank you for your attention!
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